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Semiclassical dynamics of strongly driven systems
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A nonperturbative analytical semiclassical approach describing the interaction of a quantum system with
strong oscillating fields is presented, including the limit where the external high-frequency field destroys the
classical trajectories of a field-free system. Applied to ionization of a Rydberg atom, our approach allows us to
describe the so-called “interference” and “adiabatic” mechanisms of laser-induced stabilization of atomic
Rydberg states in a unified waj51050-29478)50208-9

PACS numbd(s): 32.80.Rm, 31.50:w

Approximate analytical solutions of the ScHioger wave, such as an eigenstate, the initial problem is solved for
equation for a system interacting with a strong oscillatingeach of the two counterpropagating waves independently.
field are the cornerstones of our understanding of quantum We look for S(x,t) in a form S(x,t) = S;(x,t) + S,(x,t)
dynamics in intense laser fields. For example, the Keldysh+ o(x,t). Here ¥(x,t)=exdiS;(x,t)] satisfies the Schro
type [1] solutions, reincarnated in recent recollision modelsdinger equation for the potentidl; only, and ¥,(x,t)

[2], have been crucial to our understanding of intense laser=ex{diS,(x,t)] satisfies the Schdinger equation forU,
atom physics. only. The initial condition is satisfied by setting;(X,tg)

The major problem in finding analytical solutions is the =S;,(x) andS,(x,ty) = o(X,tg) =0, wheret, is the moment
difficulty in treating both the binding potential and the exter- at which the external field is turned on. The condition
nal field equally and nonperturbatively. For example,S,(x,to)=0 is met automatically if the external field is ini-
Keldysh-type theories ignore atomic potential in the finaltially zero.
state of a laser-driven atom. We develop a semiclassical ap- The semiclassical equation for(x,t) is
proach that deals with this difficulty, and that can be applied
to a broad class of problems in different areas of physics. do 1 do|doc S, S| 1 9S;9S,

The most interesting and general applications of our T T om X 5+ X+ X + o o
method are to the class of problems in which a quantum
S i 1 ! . 1)

ystem with slow field-free dynamics faces fast oscillating

external fields. An atomic physics example would be photo- . .
ionization of a Rydberg atom by a strong laser field of fre-Where we dropped all terms linear #nand higher. Here we

quencyw,>1/2n% (n is the principal quantum numberA discuss a one-dimensional problem, but for periodic motions

molecular optics example would be rotational heating of athe method can also be used in a three-dimensigsia)

molecule trapped and aligned in a focus of an intense infra®@3¢: . . . .
red laser begrri)fs] 9 Equation(1) is the Hamilton-Jacobi equation f@&(x,t)

We have also extended our solution to include the limit atV"itten in the form3(x,t) =S,(x,t) + Sy(x,t) + o(x,t). The

which the high-frequency field completely destroys the tra-l8MMS dS1/9x=p1(x) and 9S,/9x=p,(x,t) are the mo-

jectories of the field-free system. This allows us to show thaf"enta in each of the potential$, and U, separately, and
for Rydberg atoms two different mechanisms of atomic?o/dx=ép is the correction to these momenta in the exact

stabilization—the so-called “interference[4] and “adia-  €XPressionp=p;+p,+ép. As long asdp<p;+p,, we

batic” [5] stabilization models—are two limits of the same C&n Neglecta/dx in square brackets in E¢L). There are at

expression. As the field increases, the approximately corf€ast two cases wheidp is small. The first is a high-

stant ionization rate/~ 1/n3, found in the region of interfer- frequency external field in which fast and slow motions are

ence stabilization, gives way to a decreasinas the ampli- Well separated and henge~=p;+p,. Second,p,<p, re-

tude of electron oscillations in the external field approache§Ults in op<<p.

the characteristic size? of the Kepler orbit. Let x(t') be a trajectory that arrives at poirt at the
Let a particle move in a time-independent poteritla(x) momentt, and satisfies the characteristic equation for E&y.

and interact with an external time-dependent field describedx/dt’' =[p;(x) + p,(X,t')]/m. We introduce

by the potentiald,(x,t) (e.g.,x& cosw t for the laser field

We assume that the solutions for the potentldigx) and x dx’

7(X)= mf

U,(x,t) are known separately.

In the semiclassical approximation we look for the wave
function in a formW¥ (x,t) = exdiS(x,t)], with the initial con-
dition W (x,tp)=V;,(x)=exdiSy(X)], which describes a a classical time accumulated along the field-free trajectory
field-free system at some initial momeit. For a standing between an arbitrary poindy and the poinix. Denoting the

, 2
xo P1(X") @
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inverse function ag.(7), we can write thdield-freetrajec- Sinceo does not have to be small compared to unity, the
tory that arrives at poink at momentt as xo[7(x)+t’  deviationW(x,t)—¥;, can be large—a useful property of
—t]. perturbation theoryin action compared to the standard

Now, for fast-oscillatingp,(x,t) the standard procedure duantum-mechanical perturbation theory.

of separating fast and slow motiof8] can be used to write Consider the laser fielcf(t)coswt, with envelope

X(t') as a superposition of slightly modified field-free trajec- _f(t) sufficiently long to include many oscillations. Substitut-

o ) : : ) in = —&f(t)sin w /o into EQ. (4) neglectin in the
tory and oscillationx,¢(t') around this trajectory: ar%lﬁ)rznent of(pz aﬁ)é i?ltegratin% (bi/ pagrts Wg(?i;cd that
- =&xf(t)sin w t/w,_+ 0o, where
X(1") =X [ T(X—=Xos 1))+ 1" —t]+Xos{t"). ©)

- t
_ ) ) a(x,t,to)=—J dt’ Exg(7—t+t")f(t")cosw t’. (5)
Here x,s{t’) is determined bymx, {t’)=p,(X¢(7+t’ to

—1),t"). Modification 7(X) — 7(X—Xgsd N X¢ IN EQ. (3) is

to ensurex(t’=t)=x. The solution Eq.(3) is valid if the ~ TNe termexf(t)sin w Ve, is gauge related and is cancelled
amplitude of oscillations,. is small compared to both the PY the identical term with a negative sign that appears in the
size of the field-free orbit and the scale of the inhomogeneity/0lkov propagator expf,) for the external field in the

of the external fieldp; {X* Xos) =~ P AX). length gauge. Real absorption and/or emission of energy is
Using the trajectoryx(t’), one can verify that the ap- described by eqpo(xt,tg)], which can be used to obtain
proximate solution of Eq(1) is simple expressions for multiphoton transitions.

To make the discussion more specifyet keep the deri-

1 vation generg| consider a Rydberg atom in a state with
Xtt)=—— | dt'p,[x(t’ ()], 4 prmmpal guantum number_>1 and an orbit with the eccen-
a( o) m fto PaLX(t) IpLX(1"), '] @ tricity e~1. Such a one-dimensional system can be realized

experimentally{ 7]. Let the orbit be aligned with the electric

provided thatp; {X) ~ Py AX £ Xeed, that is, both fields are f|<e(lji 2‘1tr;eulaser, and let the laser frequency be highn3/2
L . .

sufficiently homogeneous on the scalexgf.. Then one can The pulse duratioT, can be either long or short com-

also replace in Eq. (4) with the field-free trajectory. [see pared to the classicalKeplen period of the systenT,

Eq. (3)], simplifying practical calculations a#(x,t,to). =27n®. For T,>T, we assume that complete ionization
Thus, o(xt,1o) is determined by the produghp, accu-  requires many Kepler periods and calculate the ionization

mulated along the trajectory(t’) that must arrive at a point probability P;,,(T,) over one Kepler period,. Obviously,

x at timet with p;(x) =dS; /9x; initial momentump, due to  for long pulsesT >T,, Pi,n(T,) should be less than unity.

the external fielde.qg., drift momentum in the laser figlds  In the opposite case of fast ionization short pul$es<T,

equal to zero. The separation of fast and slow motions cahave to be considered.

also be done for a 3D system, in which cag@, in Eq. (4) For T, >T, the pulse envelope does not change signifi-

is replaced by a scalar product. cantly during one Kepler period. We sfft)=1 and calcu-

The solution of Eq.(4) is valid if () p1AX*Xosd  |ate exp(o) overone Kepler periodor the staten), finding
~p1AX), that is, sufficiently small oscillation amplitude; jts gepletion after one Kepler periotin general, the wave
and (i) 6p=dolox<p;+p,, that is, sufficiently small fnction coincides witin) only att, and becomes a super-
change in the zero-order momenty p, due to coupling  position of many|n) states once the pulse is on. However,
of }he two motions. None.of these conditions expllc_ltly r€-the Shialinger equation is linear and the propagator can be
quires high-field frequencies, and both can be satisfied &pplied to each state in the superposition independgntly.

frequencies comparable to that of th(_a system, proviged Changing the integration variable in E¢) to t"=7—t
<p;. In general, for short timelgo/dx| is always small. Its +t', we obtain

increase with time determines for how long our solution is
applicable. _
According to Eq.(4), Sp=da/dx is due to the work of o(X,t,t—=T,)=— jg dt” Exq(t")cog w t"+ o(X,1)],
the external field along the field-free trajectory and the work Tn
of the fieldU(x) along the oscillating part, of the tra- 6)

jectoryx(t’) Eq. (3). Since this is less thauﬁ/Zm, thiswork  \vhere e(x,)=w [t—7(x)] and the integral is calculated

can still pe large compared to the photon energy, ensuringmng the closed orbit arriving at poirtat timet.
that multiphoton processes dominate over single-photon and

. . o . Equation (6) can be written asr=—a cose+ 3 sin ¢.
conventional perturbation theory is inapplicable. . . LT .
The wave function evolution is given by¥(x,t) Since expfia cose+iB sin @)= J(Va?+ B2 exp(+ike

— o OO (x 1) with WO(x,t)=exdi(Sxt)+SxH)], —ik#), where tard=a/B, we see that up to a common phase

which describes the evolution that ignores coupling of the

two fields. Note that since an eigenstate corresponds to two V(x,t)= >, J(Z)e Migtimolt=rly. (x) (7
counterpropagating waves, for such an initial condition one m

has twoo(x,t,tg) that differ by the direction op,(x) on the

classical trajectory. where
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_ with the predicition of4], as well as the minimum ionization
Z:‘ ;3 dt” &xg(t)exp —iw t")| =ToélXa(w)]. (8)  lifetime 7yiy~T,. The “death valley” of field strengths
Tn wherer;~T, is also predicted by the interference stabiliza-
tion model whenl mixing is taken into accountll]. Our

By projecting'¥(x,t) onto the field-free wave functions and calculation assumes an aligned orbit, which requires mixing

using a standard semiclassical substitution of varialdles f |
(x) in the overlap integralgthat are accumulated at obmanyt. e ;
zzTnZ) one can check what is already clear from the time, The applIC(?IbI“-'[y of the _above res“'zts 'S limited tly requir
dependence in Eq7): A,=e ™]__(Z) are the ampli- ing small_ oscillation amplltudex=€/w,_ and smallﬁg/ﬁx.
tudes ofm-photon absorption after one round-trip along the 10 'qugntlfy these conditions we note that absorptlon' and/or
Kepler orbit. The survival amplitude of the initial stdey, ~ €Mission of photons by a Rydberg atom occurs at distances

—-2/3 1/3 : :
i.e., the amplitude of the initial wave function exactly repro- Xint™ L [‘;}é wherep;~w(~. Using Eq.(6) and an esti-

ducing itself after one Kepler period i8y=Jy(Z). The mateZ~S/w5/3, one finds that botl#p and are small as .
probabilities ofm-photon absorption after one Kepler period long asé<w["”. We also note that our approximate semi-

are P(T,) =|Anl?=J2(2) and the total ionization prob- classical solution does not correctly describe the long-term

ability is (t>T,) dynamics of outgoing above-threshold wave packets
at x>x;;, since for them the correction to the field-free
1—33(2) 1—|Ay|2 propagator is no longer small at-n?. However, this does
Pion(Tn)Zle Pm(Th)= 5 == (99 not affect the ionization rates, which are determinedk at
B ~Xint -

o . . Let us now address the problem of generalizing the results
We note that similar expressions f8, were obtained for g the case of large oscillation amplitude> x;,,, and relating
the case of laser-assisted bremsstrahlung in the pioneeringhterference” and “adiabatic” stabilization pictures for
paper[8] of Bersons, using a completely different approach.rydberg atomic states. Adiabatic, or Kramers-Henneberger,
An analytical estimate foZ is [9] Z~2.585w;°. For £  stabilization is associated with the Kramers-Henneberger
<w;" ionization requires many Kepler periods, and one canKH) transformation to the reference frame oscillating with
introduce the average ionization rate 3g,=Pion(T,)/ T, the electron. In this frame the exact potential for the electron
=[1-J33(2)]/2T,. motion is V(X—«a coswt), where V(x) is the field-free

Equation (8) is generalized for a 3D case by replacing (e.g., Coulombig potential. Using the Fourier expansion,
Ex. with the scalar product. The ionization probabilfgg.  one can write
(9)] should then be averaged over the orientation of the Ke-
pler trajectory with respect to the laser field axis, smearing
out oscillations ofJ3(Z).

There is a well-known correspondence between semiclas-
sical matrix elementsx,,, and the Fourier components |n high-frequency fields the second term on the right-hand
Xci(wnm) On the classical trajectony,(t). For a bound-free side is argued to be a weak perturbat[&h Eigenstates of
transition from the stat¢n) to the continuum stat¢E),  the potentiaM,(x), which can be interpreted as an effective
Xei(wng) = V2w TyXpe [9]. Using this relationship, in the potential of a field-dressed system, are expected to be long-
limit Z<1 one can easily see the equivalencé’gf, and the lived. This constitutes the main idea of “adiabatic” stabili-
Fermi golden rule. zation. For Rydberg states of an atom these effects are ex-

At Z~1 (£~ ™) complete depletion of the initial state pected around a~n? [13]. Adiabatic (or Kramers-
occurs in one or fewer Kepler periods. Then it is logical toHenneberger stabilization is not identical to interference

consider short pulseB <T,,. The correction exp§) is then stabilization since the former can also occur in ground states
calculated over the complete pulse duration. Fo T, we of short-range potentials, even before the distortion of the
find that the ionization probability depends linearly on pulseShort-range potential induces new bound states in the poten-
duration[10] and the ionization rate can still be introduced. tial well Vo(x) [12]. However, for Rydberg states we find
The rate is still given by the same formul,,=[1 that two stabilization pictures appear as two limits of the
—J2(2)1/2T,, stabilizing around'j,,~1/2T, at Z>1 (the ~ Same general expression.
so-called “death valley?. Thze_key idea in generalizing our approach_ to the case of

The physical reason for a linear time dependence of th&~N" IS t0 treatVo(x) asU,(x) and the remaining part of
ionization probability in short pulseB, <T,, is simple: ion-  Ed. (10) as the fast oscillating potentidd,(x,t), directly
ization of a Rydberg state occurs near the origin, while thdncluding the major aspect of orbit distortion into the
wave function is delocalized over the whole orbit. Thus, ini- SIOW" part of the trajectory. Separation of fast and slow
tial conditions are evenlyin time) distributed along the Ke- Motions in the KH frame requires that local oscillation am-
pler orbit, and the number of trajectories that pass the origiPlitudes a!<(>_():|de/dX|/k wi are small cpmpared to Fhe
during T_<T,, depends linearly off, . characteristic length scale &, andV,, which in the limit

In the field-free system classical actions for the statys ~@>n? is given bya. With increasing a, decreases andl
and |[n+1) differ by unity, and hencér,Z=1 means a increases and, hence, the conditmp< « is better satisfied.
strong mixing of adjacent Rydberg states, which forms the Following the same procedure as described above, we
physical basis of the “interference” stabilization modéd]. ~ find that the semiclassical propagator describing absorption
The critical field for the onset of stabilizatiair- wf’3 agrees and/or emission of energy is €xp(x.t.ty)], where

V(X—a cosw t)=Vo(X)+ >, Vi(x)cosko t. (10)
k=1
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Adiabatic stabilization should appear as the limit of Eq.
(12) at a~n?. For estimates we used a model potential
0 (11) V(x)=—1/yx>+ 1. We found that forx~n? ionization of a

Rydberg staten®")>1 between the wells o¥/y(x) (i.e.,
|x|<a) is negligible. Indeed, fora~n?>1 the Rydberg
electron motion between the wells \@§(x) is very slow and
the Fourier integrals of this motion at frequencike
> are very small. [For k|x|<a, Vy~cosk{a
—7ki2)Vo(x) with very flat Vo(x)~—2 In af(m a?—x?)
[14]. Forn?~ a, all o, remain very small compared to unity
gs long ascy(t')<a; o<1 indicates low ionizatiod.

Since ionization can only occur from the wells\6§(x),
the ionization lifetime is determined k) the modification
of TH with increasinga and (i) the efficiency of ioniza-
tion during one pass of the well. lonization cannot occur
faster than int~T& ") which increases as the potential
Vo(X) is stretched with increasing.

In the vicinity of the wells wherd\x=a—x<<a we have
Vi((X)=Vo(x) [14] as long ak?|Ax|<a. An estimate using
this approximation shows that when the trajectory enters the

Using the equivalence of the norm in and the Fourier Well exp{o) becomes fast oscillating antly quickly devi-

domain, we find thajAo|2+2%,_s|As]2=1 and, similar ates from unity. Hence, for a Rydberg staté™> 1, ioniza-

to the previous result, the ionization probability is tion during one pass through the well is efficient and the

PH(TKHY = (1A |2)/2. wave function is depleted in~ T | The change i (K"
Intereference stabilization is easily obtained as the limit ofVith increasinga determines the partial stabilization of the

P (TKH)Y gt a<x;,,. Using the Taylor expansion we SYSt€m.

5 t
o=—2 ftdt' Vi(Xgplt" + 7 (X) —t])cogka t'),

k=1

where Xk, 7xn(X) refer to the trajectory in the potential
Vo(X). We change the integration variable tto=t' + 7—t
and introduceo(x,t,t—T&), where T") is the round-
trip period in the KH potentialVy(x). Since a(xt,t

— Ty is a periodic function ofp(x,t) = [t— r¢u(X)],
one can expand exif) in the Fourier series igp. The zero-
order component of the expansion gives the amplitude of th
initial state|n(KH)) exactly reproducing itself after one clas-
sical periodT(*") (the survival amplitude

1 27 ) -
Po=5— fo de eXp(lk; ok<<p>),

ole)=— § dt” V,(t")cogkw t"+ ko). (12

write V(X— a cosw t)~V(X)—V,a cosw t. Then Eg.(12)

gives Ag=Jo(Z*) with Z*=T,a|Vy(w,)|. The Fourier
componentV,(w,) is calculated on the field-free trajectory

described by the Newton equation=—V,(x). Hence,
IVi(w)|=w|x(w)|, yielding Z* =T.&x(w.)|, identical

In conclusion, the physical situation of having two differ-
ent time scales for coupledast and sloyw motions is quite
typical in many areas of physics. Although the survival am-
plitude of the initial state was calculated here for a Rydberg
atom, the derivation is general and valid for periodic trajec-
tories in other systems, as long as the region of efficient

to that given by Eq(8). This establishes the connection be- photon absorption is small compared to the size of the field-

tween interference stabilization and the KH picture.

free orbit.
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