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Semiclassical dynamics of strongly driven systems
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A nonperturbative analytical semiclassical approach describing the interaction of a quantum system with
strong oscillating fields is presented, including the limit where the external high-frequency field destroys the
classical trajectories of a field-free system. Applied to ionization of a Rydberg atom, our approach allows us to
describe the so-called ‘‘interference’’ and ‘‘adiabatic’’ mechanisms of laser-induced stabilization of atomic
Rydberg states in a unified way.@S1050-2947~98!50208-9#

PACS number~s!: 32.80.Rm, 31.50.1w
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Approximate analytical solutions of the Schro¨dinger
equation for a system interacting with a strong oscillat
field are the cornerstones of our understanding of quan
dynamics in intense laser fields. For example, the Keldy
type @1# solutions, reincarnated in recent recollision mod
@2#, have been crucial to our understanding of intense la
atom physics.

The major problem in finding analytical solutions is th
difficulty in treating both the binding potential and the exte
nal field equally and nonperturbatively. For examp
Keldysh-type theories ignore atomic potential in the fin
state of a laser-driven atom. We develop a semiclassica
proach that deals with this difficulty, and that can be appl
to a broad class of problems in different areas of physics

The most interesting and general applications of
method are to the class of problems in which a quant
system with slow field-free dynamics faces fast oscillat
external fields. An atomic physics example would be pho
ionization of a Rydberg atom by a strong laser field of f
quencyvL.1/2n2 (n is the principal quantum number!. A
molecular optics example would be rotational heating o
molecule trapped and aligned in a focus of an intense in
red laser beam@3#.

We have also extended our solution to include the limi
which the high-frequency field completely destroys the t
jectories of the field-free system. This allows us to show t
for Rydberg atoms two different mechanisms of atom
stabilization—the so-called ‘‘interference’’@4# and ‘‘adia-
batic’’ @5# stabilization models—are two limits of the sam
expression. As the field increases, the approximately c
stant ionization rateg;1/n3, found in the region of interfer-
ence stabilization, gives way to a decreasingg as the ampli-
tude of electron oscillations in the external field approac
the characteristic sizen2 of the Kepler orbit.

Let a particle move in a time-independent potentialU1(x)
and interact with an external time-dependent field descri
by the potentialU2(x,t) ~e.g.,xE cosvLt for the laser field!.
We assume that the solutions for the potentialsU1(x) and
U2(x,t) are known separately.

In the semiclassical approximation we look for the wa
function in a formC(x,t)5exp@iS(x,t)#, with the initial con-
dition C(x,t0)[C in(x)5exp@iSin(x)#, which describes a
field-free system at some initial momentt0 . For a standing
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wave, such as an eigenstate, the initial problem is solved
each of the two counterpropagating waves independently

We look for S(x,t) in a form S(x,t)5S1(x,t)1S2(x,t)
1s(x,t). Here C1(x,t)5exp@iS1(x,t)# satisfies the Schro¨-
dinger equation for the potentialU1 only, and C2(x,t)
5exp@iS2(x,t)# satisfies the Schro¨dinger equation forU2
only. The initial condition is satisfied by settingS1(x,t0)
5Sin(x) andS2(x,t0)5s(x,t0)50, wheret0 is the moment
at which the external field is turned on. The conditio
S2(x,t0)50 is met automatically if the external field is in
tially zero.

The semiclassical equation fors(x,t) is
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~1!

where we dropped all terms linear in\ and higher. Here we
discuss a one-dimensional problem, but for periodic motio
the method can also be used in a three-dimensional~3D!
case.

Equation~1! is the Hamilton-Jacobi equation forS(x,t)
written in the formS(x,t)5S1(x,t)1S2(x,t)1s(x,t). The
terms ]S1 /]x5p1(x) and ]S2 /]x5p2(x,t) are the mo-
menta in each of the potentialsU1 and U2 separately, and
]s/]x5dp is the correction to these momenta in the ex
expressionp5p11p21dp. As long asdp!p11p2 , we
can neglect]s/]x in square brackets in Eq.~1!. There are at
least two cases whendp is small. The first is a high-
frequency external field in which fast and slow motions a
well separated and hencep'p11p2 . Second,p2!p1 re-
sults indp!p1 .

Let x̃(t8) be a trajectory that arrives at pointx, at the
momentt, and satisfies the characteristic equation for Eq.~1!

dx̃/dt85@p1( x̃)1p2( x̃,t8)#/m. We introduce

t~x!5mE
x0

x dx8

p1~x8!
, ~2!

a classical time accumulated along the field-free traject
between an arbitrary pointx0 and the pointx. Denoting the
R793 © 1998 The American Physical Society
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inverse function asxcl(t), we can write thefield-freetrajec-
tory that arrives at pointx at momentt as xcl@t(x)1t8
2t#.

Now, for fast-oscillatingp2(x,t) the standard procedur
of separating fast and slow motions@6# can be used to write
x̃(t8) as a superposition of slightly modified field-free traje
tory and oscillationsxosc(t8) around this trajectory:

x̃~ t8!5xcl@t„x2xosc~ t !…1t82t#1xosc~ t8!. ~3!

Here xosc(t8) is determined bymẋosc(t8)5p2„xcl(t1t8
2t),t8…. Modification t(x)→t(x2xosc) in xcl in Eq. ~3! is
to ensurex̃(t85t)5x. The solution Eq.~3! is valid if the
amplitude of oscillationsxosc is small compared to both th
size of the field-free orbit and the scale of the inhomogen
of the external field:p1,2(x6xosc)'p1,2(x).

Using the trajectoryx̃(t8), one can verify that the ap
proximate solution of Eq.~1! is

s~x,t,t0!52
1

m E
t0

t

dt8p1@ x̃~ t8!#p2@ x̃~ t8!,t8#, ~4!

provided thatp1,2(x)'p1,2(x6xosc), that is, both fields are
sufficiently homogeneous on the scale ofxosc. Then one can
also replacex̃ in Eq. ~4! with the field-free trajectoryxcl @see
Eq. ~3!#, simplifying practical calculations ofs(x,t,t0).

Thus,s(x,t,t0) is determined by the productp1p2 accu-
mulated along the trajectoryx̃(t8) that must arrive at a poin
x at timet with p1(x)5]S1 /]x; initial momentump2 due to
the external field~e.g., drift momentum in the laser field!, is
equal to zero. The separation of fast and slow motions
also be done for a 3D system, in which casep1p2 in Eq. ~4!
is replaced by a scalar product.

The solution of Eq.~4! is valid if ~i! p1,2(x6xosc)
'p1,2(x), that is, sufficiently small oscillation amplitude
and ~ii ! dp5]s/]x!p11p2 , that is, sufficiently small
change in the zero-order momentump11p2 due to coupling
of the two motions. None of these conditions explicitly r
quires high-field frequencies, and both can be satisfied
frequencies comparable to that of the system, providedp2
!p1 . In general, for short timesu]s/]xu is always small. Its
increase with time determines for how long our solution
applicable.

According to Eq.~4!, dp5]s/]x is due to the work of
the external field along the field-free trajectory and the w
of the fieldU1(x) along the oscillating partxosc of the tra-
jectory x̃(t8) Eq. ~3!. Since this is less thanp1

2/2m, this work
can still be large compared to the photon energy, ensu
that multiphoton processes dominate over single-photon
conventional perturbation theory is inapplicable.

The wave function evolution is given byC(x,t)
5eis(x,t)C (0)(x,t) with C (0)(x,t)5exp@i(S1(x,t)1S2(x,t)#,
which describes the evolution that ignores coupling of
two fields. Note that since an eigenstate corresponds to
counterpropagating waves, for such an initial condition o
has twos(x,t,t0) that differ by the direction ofp1(x) on the
classical trajectory.
ty

n

at

k

g
nd

e
o

e

Sinces does not have to be small compared to unity, t
deviation C(x,t)2C in can be large—a useful property o
perturbation theoryin action compared to the standar
quantum-mechanical perturbation theory.

Consider the laser fieldEf (t)cosvLt, with envelope
f (t) sufficiently long to include many oscillations. Substitu
ing p252Ef (t)sinvLt/vL into Eq.~4! neglectingxosc in the
argument ofp1 , and integrating by parts, we find thats

5Ex f(t)sinvLt/vL1s̃, where

s̃~x,t,t0!52E
t0

t

dt8 Excl~t2t1t8! f ~ t8!cosvLt8. ~5!

The termEx f(t)sinvLt/vL is gauge related and is cancelle
by the identical term with a negative sign that appears in
Volkov propagator exp(iS2) for the external field in the
length gauge. Real absorption and/or emission of energ
described by exp@is̃(x,t,t0)#, which can be used to obtai
simple expressions for multiphoton transitions.

To make the discussion more specific~yet keep the deri-
vation general!, consider a Rydberg atom in a state wi
principal quantum numbern@1 and an orbit with the eccen
tricity e'1. Such a one-dimensional system can be reali
experimentally@7#. Let the orbit be aligned with the electri
field of the laser, and let the laser frequency be high: 1/2n2

,vL!1 a.u.
The pulse durationTL can be either long or short com

pared to the classical~Kepler! period of the systemTn
52pn3. For TL@Tn we assume that complete ionizatio
requires many Kepler periods and calculate the ionizat
probability Pion(Tn) over one Kepler periodTn . Obviously,
for long pulsesTL@Tn, Pion(Tn) should be less than unity
In the opposite case of fast ionization short pulsesTL!Tn
have to be considered.

For TL@Tn the pulse envelope does not change sign
cantly during one Kepler period. We setf (t)51 and calcu-
late exp(is̃) overone Kepler periodfor the stateun&, finding
its depletion after one Kepler period.~In general, the wave
function coincides withun& only at t0 and becomes a supe
position of manyun& states once the pulse is on. Howeve
the Shro¨dinger equation is linear and the propagator can
applied to each state in the superposition independen!
Changing the integration variable in Eq.~5! to t95t2t
1t8, we obtain

s̃~x,t,t2Tn!52 R
Tn

dt9 Excl~ t9!cos@vLt91w~x,t !#,

~6!

where w(x,t)5vL@ t2t(x)# and the integral is calculate
along the closed orbit arriving at pointx at time t.

Equation ~6! can be written ass̃52a cosw1b sinw.
Since exp(2ia cosw1ib sinw)5(kJk(Aa21b2)exp(1ikw
2iku), where tanu[a/b, we see that up to a common pha

C~x,t !5(
m

Jm~Z!e2 imue1 imvL@ t2t~x!#C in~x!, ~7!

where
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Z5U R
Tn

dt9 Excl~ t9!exp~2 ivLt9!U5TnEuxcl~vL!u. ~8!

By projectingC(x,t) onto the field-free wave functions an
using a standard semiclassical substitution of variablex
→t(x) in the overlap integrals~that are accumulated atx
!2n2) one can check what is already clear from the tim
dependence in Eq.~7!: Am5e2 imuJ2m(Z) are the ampli-
tudes ofm-photon absorption after one round-trip along t
Kepler orbit. The survival amplitude of the initial stateun&,
i.e., the amplitude of the initial wave function exactly repr
ducing itself after one Kepler period isA05J0(Z). The
probabilities ofm-photon absorption after one Kepler perio
are Pm(Tn)5uAmu25Jm

2 (Z) and the total ionization prob
ability is

Pion~Tn!5 (
m>1

Pm~Tn!5
12J0

2~Z!

2
5

12uA0u2

2
. ~9!

We note that similar expressions forPm were obtained for
the case of laser-assisted bremsstrahlung in the pionee
paper@8# of Bersons, using a completely different approa
An analytical estimate forZ is @9# Z'2.58E/vL

5/3. For E
!vL

5/3 ionization requires many Kepler periods, and one c
introduce the average ionization rate asG ion5Pion(Tn)/Tn

5@12J0
2(Z)#/2Tn .

Equation ~8! is generalized for a 3D case by replacin
Excl with the scalar product. The ionization probability@Eq.
~9!# should then be averaged over the orientation of the
pler trajectory with respect to the laser field axis, smear
out oscillations ofJ0

2(Z).
There is a well-known correspondence between semic

sical matrix elementsxnm and the Fourier component
xcl(vnm) on the classical trajectoryxcl(t). For a bound-free
transition from the stateun& to the continuum stateuE&,
xcl(vnE)5A2p/TnxnE @9#. Using this relationship, in the
limit Z!1 one can easily see the equivalence ofG ion and the
Fermi golden rule.

At Z;1 (E;vL
5/3) complete depletion of the initial stat

occurs in one or fewer Kepler periods. Then it is logical
consider short pulsesTL<Tn . The correction exp(is̃) is then
calculated over the complete pulse duration. ForTL!Tn we
find that the ionization probability depends linearly on pu
duration@10# and the ionization rate can still be introduce
The rate is still given by the same formulaG ion5@1
2J0

2(Z)#/2Tn , stabilizing aroundG ion;1/2Tn at Z@1 ~the
so-called ‘‘death valley’’!.

The physical reason for a linear time dependence of
ionization probability in short pulsesTL!Tn is simple: ion-
ization of a Rydberg state occurs near the origin, while
wave function is delocalized over the whole orbit. Thus, i
tial conditions are evenly~in time! distributed along the Ke-
pler orbit, and the number of trajectories that pass the or
during TL!Tn depends linearly onTL .

In the field-free system classical actions for the statesun&
and un11& differ by unity, and hences̃,Z>1 means a
strong mixing of adjacent Rydberg states, which forms
physical basis of the ‘‘interference’’ stabilization model@4#.
The critical field for the onset of stabilizationE;vL

5/3 agrees
ing
.
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with the predicition of@4#, as well as the minimum ionization
lifetime tmin;Tn . The ‘‘death valley’’ of field strengths
wheret i;Tn is also predicted by the interference stabiliz
tion model whenl mixing is taken into account@11#. Our
calculation assumes an aligned orbit, which requires mix
of many l .

The applicability of the above results is limited by requ
ing small oscillation amplitudea5E/vL

2 and small]s̃/]x.
To quantify these conditions we note that absorption and
emission of photons by a Rydberg atom occurs at distan
xint;vL

22/3 @4#, wherep1;vL
1/3. Using Eq.~6! and an esti-

mateZ;E/vL
5/3, one finds that bothdp anda are small as

long asE!vL
4/3. We also note that our approximate sem

classical solution does not correctly describe the long-te
(t.Tn) dynamics of outgoing above-threshold wave pack
at x@xint , since for them the correction to the field-fre
propagator is no longer small atx;n2. However, this does
not affect the ionization rates, which are determined ax
;xint .

Let us now address the problem of generalizing the res
to the case of large oscillation amplitudea@xint and relating
‘‘interference’’ and ‘‘adiabatic’’ stabilization pictures fo
Rydberg atomic states. Adiabatic, or Kramers-Henneber
stabilization is associated with the Kramers-Henneber
~KH! transformation to the reference frame oscillating w
the electron. In this frame the exact potential for the elect
motion is V(x2a cosvLt), where V(x) is the field-free
~e.g., Coulombic! potential. Using the Fourier expansio
one can write

V~x2a cosvLt !5V0~x!1 (
k>1

Vk~x!coskvLt. ~10!

In high-frequency fields the second term on the right-ha
side is argued to be a weak perturbation@5#. Eigenstates of
the potentialV0(x), which can be interpreted as an effectiv
potential of a field-dressed system, are expected to be lo
lived. This constitutes the main idea of ‘‘adiabatic’’ stabil
zation. For Rydberg states of an atom these effects are
pected around a;n2 @13#. Adiabatic ~or Kramers-
Henneberger! stabilization is not identical to interferenc
stabilization since the former can also occur in ground sta
of short-range potentials, even before the distortion of
short-range potential induces new bound states in the po
tial well V0(x) @12#. However, for Rydberg states we fin
that two stabilization pictures appear as two limits of t
same general expression.

The key idea in generalizing our approach to the case
a;n2 is to treatV0(x) asU1(x) and the remaining part o
Eq. ~10! as the fast oscillating potentialU2(x,t), directly
including the major aspect of orbit distortion into th
‘‘slow’’ part of the trajectory. Separation of fast and slo
motions in the KH frame requires that local oscillation am
plitudes ak(x)5udVk /dxu/k2vL

2 are small compared to th
characteristic length scale ofV0 andVk , which in the limit
a@n2 is given bya. With increasingE ak decreases anda
increases and, hence, the conditionak!a is better satisfied.

Following the same procedure as described above,
find that the semiclassical propagator describing absorp
and/or emission of energy is exp@is̃(x,t,t0)#, where
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s̃52 (
k>1

E
t0

t

dt8 Vk„xKH@ t81tKH~x!2t#…cos~kvLt8!,

~11!

where xKH ,tKH(x) refer to the trajectory in the potentia
V0(x). We change the integration variable tot95t81t2t

and introduces̃(x,t,t2Tn
(KH)), whereTn

(KH) is the round-

trip period in the KH potentialV0(x). Since s̃(x,t,t
2Tn

(KH)) is a periodic function ofw(x,t)5vL@ t2tKH(x)#,

one can expand exp(is̃) in the Fourier series inw. The zero-
order component of the expansion gives the amplitude of
initial stateun(KH)& exactly reproducing itself after one cla
sical periodTn

(KH) ~the survival amplitude!:

A05
1

2p E
0

2p

dw expS i (
k>1

s̃k~w! D ,

s̃k~w!52 R dt9 Vk~ t9!cos~kvLt91kw!. ~12!

Using the equivalence of the norm inw and the Fourier
domain, we find thatuA0u212(m>1uAmu251 and, similar
to the previous result, the ionization probability
Pion

(KH)(Tn
(KH))5(12uA0u2)/2.

Intereference stabilization is easily obtained as the limi
Pion

(KH)(Tn
(KH)) at a!xint . Using the Taylor expansion w

write V(x2a cosvLt)'V(x)2Vx8a cosvLt. Then Eq. ~12!
gives A05J0(Z* ) with Z* 5TnauVx8(vL)u. The Fourier
componentVx8(vL) is calculated on the field-free trajector

described by the Newton equationẍ52Vx8(x). Hence,
uVx8(vL)u5vL

2ux(vL)u, yielding Z* 5TnEux(vL)u, identical
to that given by Eq.~8!. This establishes the connection b
tween interference stabilization and the KH picture.
L

e

f

Adiabatic stabilization should appear as the limit of E
~12! at a;n2. For estimates we used a model potent
V(x)521/Ax211. We found that fora;n2 ionization of a
Rydberg staten(KH)@1 between the wells ofV0(x) ~i.e.,
uxu!a) is negligible. Indeed, fora;n2@1 the Rydberg
electron motion between the wells ofV0(x) is very slow and
the Fourier integrals of this motion at frequencieskvL

@vn
(KH) are very small. @For kuxu!a, Vk;cos(kx/a

2pk/2)V0(x) with very flat V0(x);22 ln a/(pAa22x2)
@14#. For n2;a, all s̃k remain very small compared to unit
as long asxKH(t8)!a; s̃k!1 indicates low ionization.#

Since ionization can only occur from the wells ofV0(x),
the ionization lifetime is determined by~i! the modification
of Tn

(KH) with increasinga and ~ii ! the efficiency of ioniza-
tion during one pass of the well. Ionization cannot occ
faster than int;Tn

(KH) , which increases as the potenti
V0(x) is stretched with increasinga.

In the vicinity of the wells whereDx[a2x!a we have
Vk(x)'V0(x) @14# as long ask2uDxu!a. An estimate using
this approximation shows that when the trajectory enters
well, exp(is̃) becomes fast oscillating andA0 quickly devi-
ates from unity. Hence, for a Rydberg staten(KH)@1, ioniza-
tion during one pass through the well is efficient and t
wave function is depleted int;Tn

(KH) . The change inTn
(KH)

with increasinga determines the partial stabilization of th
system.

In conclusion, the physical situation of having two diffe
ent time scales for coupled~fast and slow! motions is quite
typical in many areas of physics. Although the survival a
plitude of the initial state was calculated here for a Rydb
atom, the derivation is general and valid for periodic traje
tories in other systems, as long as the region of effici
photon absorption is small compared to the size of the fie
free orbit.
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