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Scheme for direct observation of the Wigner characteristic function in cavity QED
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We suggest a quantum state reconstruction scheme. Our proposal is applicable to the field inside a micro-
wave cavity as well as to the harmonic motion of a trapped atom. It will be shown that the inversion of
two-level atoms after a resonant interaction with a coherently displaced quantum state is directly related to the
Wigner characteristic function of the initial state. This method neither requires the preparation of atoms in a
quantum superposition of the upper and lower energy levels nor heavy numerical processing of the measured
data. We demonstrate the reconstruction scheme for the example of a Schro¨dinger-cat superposition state.
@S1050-2947~98!51607-1#
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The reconstruction of quantum-mechanical states for r
ning light fields as well as for cavity fields has been stud
extensively in recent times@1#. Quasiprobability distributions
and density matrices for running fields have been experim
tally determined by the homodyne measurement scheme@2#.

Quantum nature does not persist for a long period of ti
when the nonclassical system is exposed to a classical e
ronment. The quantum state is, thus, better protected
high-Q cavity @3# or in a trap@4#. Measurement schemes fo
the field inside a cavity have been proposed by probing
quantum state with two-level atoms and subsequently m
suring the atomic subsystem@1,5–9#. Nonclassical motiona
states of single trapped atoms have already been experi
tally reconstructed@10#. The reconstruction scheme require
however, heavy numerical processing, including using re
larization techniques on the measured data.

Despite numerous theoretical suggestions, it is true
the cavity field state has not yet been fully determined
experiment. For convenience, we will therefore confine
discussion to this challenging case, although the sugge
method is also applicable to a harmonically bound atom i
trap. We thus focus on the following situation. A singl
mode microwave field inside a high-Q cavity is prepared i
well-defined and reproducible~although not necessaril
pure! quantum state that shall be investigated. This stat
subsequently displaced in phase space by driving the ca
with a strong coherent field. Then the field is probed by
two-level atom, initially prepared in one of its consider
energy levels. After a resonant atom-field interaction
scribed by the Jaynes-Cummings model, the atomic inv
sion is determined by a measurement. The quality facto
the cavity is assumed to be sufficiently large to disreg
damping processes in the time period between the prep
tion of the field and the detection of the atom. The measu
probability of atomic inversion for specific interaction time
turns out to be the Wigner characteristic function, which
the two-dimensional Fourier transformation of the Wign
distribution. This scheme requires neither the preparation

*On leave from Department of Physics, Sogang Univers
C.P.O. Box 1142, Seoul, Korea.
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atoms in a coherent superposition between upper and lo
levels nor heavy numerical processing of the measured d
Moreover, it demonstrates that the Wigner characteri
function candirectly be measured even though it is acom-
plex distribution.

In fact, our scheme is closely related to the nonline
atomic homodyne detection proposed by Wilkens and M
stre@6,7#. In their setup, an atom is coupled to two modes
the field, one acting as the signal mode, the other as the l
oscillator mode. In the present paper we suggest a more
alizable scheme based on current experimental condition

The displacement of the initial cavity field represented
a density matrixr is carried out by coupling a resonant o
cillator to the field mode. In Ref.@9#, the oscillator is treated
classically. A more complete quantum-mechanical picture
gained by modeling this operation with a beam splitter. T
classical oscillator is replaced by a coherent stateug& and the
cavity field is expanded into coherent statesub&, that is,r
5*P(b)ub&^bud2b, whereP(b) is the Glauber-Sudarsha
distribution@11#. The beam-splitter transformation~see, e.g.,
Ref. @12#! results in an entangled state of the two outp
modes. Tracing over one of them yields, for the density m
trix rD of the other mode,

rD5D~ARg!F 1

12RE PS b

A12R
D ub&^bud2bGD†~ARg!.

~1!

The reflection coefficientR is determined by the coupling
between driving field and cavity. For the case of weak co
pling (R'0) but still keepingARg[a at a finite value—
which is the case considered in this paper—the driven ca
field rD in Eq. ~1! is approximated by the unitary transfo
mation rD5D(a)rD†(a) with the displacement operato
D(a)5exp(aa†2a*a). Here a and a† are the annihilation
and creation operators anda5uaueif is a complex number
characterizing the amplitude and phase of thedisplacement
in phase space.

Now the displaced field state is probed by an atom,
jected in its upper level. Assuming exact resonance betw
atom and cavity field, the Jaynes-Cummings interaction@13#
,
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leads to the probabilitypg of finding the atom after the in
teraction timet in the lower level, which is given by the
expression@9#

pg~a,t!5
1

2
2

1

2
Tr$rD†~a!cos~2ltAn̂11!D~a!%.

~2!

The photon-number operator has been denoted byn̂5a†a,
while l stands for the dipole coupling strength.

For the remainder of this paper we assumeuau2 to be
large compared to the mean photon numbern̄5tr$rn̂% of the
initial cavity field. We expand the argument of the cosi
function in Eq.~2! into a Taylor series around the avera
photon numbern̄D5tr$rD†(a)n̂D(a)% of the shifted state,
which can be approximated byuau2

2ltAn̂1152ltFAuau2111
1

2

n̂2uau2

Auau211

2
1

8

~ n̂2uau2!2

A~ uau211!3
1¯G . ~3!

The large magnitude of the displacement guarantees tha
width DnD of the photon number distribution will now obe
the inequality 1!DnD!n̄D . Under these circumstances, th
Rabi oscillations in the atomic inversion as a function ot
show ~for a few revival times! well separated collapses an
revivals. The first term in the Taylor expansion~3! is the
Rabi oscillation, the second term determines the period
recurrence of collapses and revivals, and the third term m
fies the shape of the revivals@14#. In the context of the
present paper, we are only interested in the envelope of
Rabi oscillationsbeforethe first revival, which appears at th

scaled interaction timelt52pAn̄D. This enables us to tak
the Taylor expansion only until the second term. Using
relationsD†(a)D(a)51 andD†(a)âD(a)5â1a, we find
the following approximation for the ground state probabil
pg:

Pg~a,t!'
1

2
2

1

2
ReXe2iltAuau211

3TrH rexpF iltS n̂

uau
1a†eif1ae2 ifD G J C,

~4!

In Eq. ~4!, n̂/uau can again be neglected by keeping the
teraction time sufficiently small compared to the reviv
time. This finally leads to the following simple result:

122Pg~a,t!'Cr~m!cos~2ltAuau211!

2Ci~m!sin~2ltAuau211!. ~5!

Cr(m) and Ci(m) denote, respectively, the real and imag
nary parts of the Wigner characteristic functionC(m)
5Tr@rD(m)# for the initial cavity field at the reciproca
phase-space locationm5 ilteif. The magnitudeumu5lt
the

al
i-

he

e

-
l

equals the scaled interaction time, whereas the anglef is
determined by the phase of the driving field. The experim
tally observed atomic inversion refers therefore directly
the real part of the characteristic function forlt
5np/(2Auau211) (n50,1,2, . . . ) @this means 122pg
5(21)nCr(m)# and to its imaginary part for lt5(n

1 1
2 )p/(2Auau211) @this leads correspondingly to 122pg

5(21)n11Ci(m)#. Our method enables one to investiga
an area of particular interest in the ‘‘m-space’’ without nec-
essarily recording the complete information on the quant
state. Equation~5! implies immediately that the real an
imaginary parts ofC(m) are bound between11 and21, a
well-known property, which is illuminated here in a physic
context.

We emphasize that the characteristic functionitself is a
quantum state representation of full value. It is particula
closely related to the momenta ofa and a† via its deriva-
tives, that is, (]/]m)n(2]/]m* )mC(m)um5m* 50
5^$a†nam%sym& ~sym denotes the symmetrically-ordere
product! and to the Wigner distribution via a two
dimensional Fourier transformation. The connection to
density operator is given by the integral transformationr

5 1
p *C(m)D(2m,2m* )d2m. In Fock representation, th

matrix elementŝnuD(m)um& play the role of apattern func-
tion.

We exemplify the reconstruction scheme for the cav
field prepared in a quantum-mechanical superposition of
coherent statesu6z&, that is,

uc&5N~ uz&1u2z&), N 25~212e22uzu2!21. ~6!

The characteristic function for this ‘‘Schro¨dinger cat’’ can
analytically be derived from its definition. In our cas
~dephasing ofp), the Wigner distribution is inversion sym
metric with respect to the origin, and the characteristic fu
tion is therefore purely real. It is depicted in Fig. 1 forz
52i. When the density matrix satisfies the conditionrmn
[0 for oddm, which is true for the coherent superpositio
state, Eq.~6!, the shape of the Wigner distribution and i
characteristic functions areidentical. But note, that in the
reciprocal space the interpretation is just the other w

FIG. 1. Wigner characteristic function for a Schro¨dinger-cat
state with the amplitudesz562i . Even though the shape is iden
tical to that of the Wigner distribution, the interpretation of the tw
Gaussian hills and the oscillations around the origin is just oppos
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around: While the two mirror symmetrical Gaussian hills
the Wigner distribution around the amplitudes6z belong to
the part that stands for the classical mixture, the hills of
characteristic function are due to thequantum superposition;
and the oscillations around the origin, which are in the c
of Wigner’s function well known to display the coherenc
belong in terms of the characteristic function to the class
mixture. The characteristic function for the classical mixtu
of the coherent statesu6z& with missing superposition phas
information is presented in Fig. 2.

In Fig. 3 we show the atomic inversion according to E
~2! for the superposition state, Eq.~6!, as a function of the
scaled interaction timelt with fixed displacementa510
~dotted line!. The envelope of the fast Rabi oscillation
clearly reveals the cut through the characteristic funct
along theimaginaryaxism5 ilt ~solid line!, as predicted by
the analytical approximation, Eq.~5!, for Ci(m)[0. The
condition lt5np/(2Auau211) for Cr(m), which is cer-
tainly important for the general case@Ci(m)Þ0#, is marked

FIG. 2. Wigner characteristic function for a classical mixture
two coherent states with amplitudesz562i .

FIG. 3. Comparison between atomic inversion as a function
the scaled interaction timelt ~dotted line! and a cut through the
Wigner characteristic functionC(m5 ilt) of Fig. 1 along the
imaginary axis~solid line! for fixed a510. The atomic inversion a
the pointslt5np/@2Auau211# is marked by rhombuses. An in
teraction time distribution ofDt/t51% leads to a lower contras
marked with circles. The dashed line belongs to the statistical m
ture of Fig. 2. The inset shows the photon-number distribution
the displaced Schro¨dinger-cat state.
f

e

e
,
l

.

n

with rhombuses. We note that the phase of the actual R
oscillations differs slightly from that of the approximatio
~5!, which is not surprising, sinceuau is only moderately
large. Anyway, the second maximum of the envelope t
indicates the coherencebetween the two amplitudes wit
opposite phases is clearly resolved. This holds also
Gaussian-distributed interaction times with a normaliz
standard derivationDt/t51% ~marked with circles!, which
takes typical experimental errors into account@3,9,15#.

The inlay in Fig. 3 shows the photon statistics of t
displaced Schro¨dinger-cat state. The coherence appears a
interference structure of the photon number distribution. The
energy difference between the single peaks determines
‘‘satellite revival’’ of the Rabi oscillations. It appears for
much shorter interaction time than the ‘‘real’’ revivals th
are due to the energy difference ofdirectly neighboring pho-
ton numbers~and not included in our approach!. The photon
statistics of the mixture are simply Poisson-distributed a
the envelope of the atomic inversion for this case~dashed
curve! reflects the corresponding cut through Fig. 2.

Figure 4 shows the situation fora510i , corresponding to
a cut through the characteristic function along thereal axes.
The double peaked photon statistics~see inset! belong to the
two amplitudes6z. The two associated main frequenci
cause the oscillation in the envelope of the Rabi freque
~‘‘beat-signal’’!, which again reflects accurately the shape
the characteristic function. The coherent superposition
mixture are indistinguishable for this cut.

In conclusion, we have suggested a scheme to dire
measure the characteristic function of a quantum state
cavity or in a trap at any point in the reciprocal phase spa
The method has been demonstrated for a Schro¨dinger-cat
state which can be well distinguished from the correspond
statistical mixture.

We thank Professor Welsch for discussions and for bri
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Leonhardt for useful discussions, and Dr. Karapanagioti
carefully reading the manuscript. M.S.K. is grateful to t
Alexander von Humboldt Foundation and the Korean Min
try of Education for support through Grant No. BSRI-9
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FIG. 4. Same as in Fig. 3 but fora510i , which corresponds to
a cut through the Wigner characteristic function of Fig. 1 along
real axis.
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