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Scheme for direct observation of the Wigner characteristic function in cavity QED
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We suggest a quantum state reconstruction scheme. Our proposal is applicable to the field inside a micro-
wave cavity as well as to the harmonic motion of a trapped atom. It will be shown that the inversion of
two-level atoms after a resonant interaction with a coherently displaced quantum state is directly related to the
Wigner characteristic function of the initial state. This method neither requires the preparation of atoms in a
quantum superposition of the upper and lower energy levels nor heavy numerical processing of the measured
data. We demonstrate the reconstruction scheme for the example of aiigerecat superposition state.
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The reconstruction of quantum-mechanical states for runatoms in a coherent superposition between upper and lower
ning light fields as well as for cavity fields has been studiedevels nor heavy numerical processing of the measured data.
extensively in recent timgd]. Quasiprobability distributions Moreover, it demonstrates that the Wigner characteristic
and density matrices for running fields have been experimerfunction candirectly be measured even though it iscam-
tally determined by the homodyne measurement scHéle plexdistribution.

Quantum nature does not persist for a long period of time In fact, our scheme is closely related to the nonlinear
when the nonclassical system is exposed to a classical emvtomic homodyne detection proposed by Wilkens and Mey-
ronment. The quantum state is, thus, better protected in $tre[6,7]. In their setup, an atom is coupled to two modes of
high-Q cavity [3] or in a trap[4]. Measurement schemes for the field, one acting as the signal mode, the other as the local
the field inside a cavity have been proposed by probing th@scillator mode. In the present paper we suggest a more re-
quantum state with two-level atoms and subsequently mealizable scheme based on current experimental conditions.
suring the atomic subsystef,5—-9. Nonclassical motional The displacement of the initial cavity field represented by
states of single trapped atoms have already been experime-density matrixp is carried out by coupling a resonant os-
tally reconstructedl10]. The reconstruction scheme requires, Cillator to the field mode. In Ref9], the oscillator is treated
however, heavy numerical processing, including using reguclassically. A more complete quantum-mechanical picture is
larization techniques on the measured data. gained by modeling this operation with a beam splitter. The

Despite numerous theoretical suggestions, it is true thaglassical oscillator is replaced by a coherent stajeand the
the cavity field state has not yet been fully determined bycavity field is expanded into coherent stags, that is, p
experiment. For convenience, we will therefore confine the=/P(8)|8){B|d?B, whereP(p) is the Glauber-Sudarshan
discussion to this challenging case, although the suggestatistribution[11]. The beam-splitter transformatidsee, e.g.,
method is also applicable to a harmonically bound atom in &ef. [12]) results in an entangled state of the two output
trap. We thus focus on the following situation. A single- modes. Tracing over one of them yields, for the density ma-
mode microwave field inside a high-Q cavity is prepared in drix pp of the other mode,
well-defined and reproducibldalthough not necessarily
pure quantum state that shall be investigated. This state is 1 B
subsequently displaced in phase space by driving the cavityp,= D(\/ﬁy) f p( )|,3><,3|d26
with a strong coherent field. Then the field is probed by a 1-R v1-R
two-level atom, initially prepared in one of its considered (N
energy levels. After a resonant atom-field interaction de-
scribed by the Jaynes-Cummings model, the atomic inverThe reflection coefficienR is determined by the coupling
sion is determined by a measurement. The quality factor obetween driving field and cavity. For the case of weak cou-
the cavity is assumed to be sufficiently large to disregargling (R=~0) but still keepingyRy=a at a finite value—
damping processes in the time period between the preparahich is the case considered in this paper—the driven cavity
tion of the field and the detection of the atom. The measurefield pp in Eq. (1) is approximated by the unitary transfor-
probability of atomic inversion for specific interaction times mation pp=D(a)pD'(a) with the displacement operator
turns out to be the Wigner characteristic function, which isD(«)=exp(a’—a*a). Herea anda' are the annihilation
the two-dimensional Fourier transformation of the Wignerand creation operators and=|«|€? is a complex number
distribution. This scheme requires neither the preparation ofharacterizing the amplitude and phase of di&placement

in phase space
Now the displaced field state is probed by an atom, in-
*On leave from Department of Physics, Sogang University,jected in its upper level. Assuming exact resonance between
C.P.0. Box 1142, Seoul, Korea. atom and cavity field, the Jaynes-Cummings interadtid3)

DT(VRy).
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leads to the probabilityp, of finding the atom after the in-
teraction timer in the lower level, which is given by the
expressiorf9]

|

Py, 7)= %— %Tr{pDT(a)COS{Z)\T\/FH- 1)D(a)}.
2

The photon-number operator has been denotedbyw'a,
while A stands for the dipole coupling strength.

For the remainder of this paper we assufng® to be
large compared to the mean photon numfvetr{ pn} of the
initial cavity field. We expand the argument of the cosine
function in Eq.(2) into a Taylor series around the average

photon numbeny=tr{pDT(@)nD(a)} of the shifted state, FIG. 1. Wigner characteristic function for a ScHneger-cat
which can be approximated W‘|2 state with the amplitudeg= =+ 2i. Even though the shape is iden-
tical to that of the Wigner distribution, the interpretation of the two
n— | a|2 Gaussian hills and the oscillations around the origin is just opposite.
2xtVn+1=2x7 V|a|?+ 1+ - ———
2 \lal*+1 equals the scaled interaction time, whereas the aggie

n_ 2\2 R X .
_ E (n—|al*) I &) tally observed atomic inversion refers therefore directly to

8 J(|a|?+1)3 the real part of the characteristic function fomr

_ _ =nw/(2V|a|?+1) (n=0,1,2...) [this means % 2p,

The large magnitude of the displacement guarantees that the(_l)ncr(ﬂ)] and to its imaginary part for Ar=(n
Wldt.h Anp 9f the photolnumber d|str|but|9n will now obey + Lym/(2\[a[?+ 1) [this leads correspondingly to-12p,
the inequality =xAnp<<np. Under these circumstances, the =(—1)"1C,()]. Our method enables one to investigate
Rabi oscillations in the atomic inversion as a functionrof 5 area of particular interest in theutspace” without nec-
show (for a few revival times well separated collapses and gggarily recording the complete information on the quantum
revivals. The first term in the Taylor expansi¢8) is the  giate. Equation(5) implies immediately that the real and
Rabi oscillation, the second term determines the pe”Od'CQ“naginary parts of(u) are bound betweer 1 and—1, a
recurrence of collapses an(_j revivals, and the third term modize|1-known property, which is illuminated here in a physical
fies the shape of the reviva[d4]. In the context of the gniext.
present paper, we are only interested in the envelope of the \ye emphasize that the characteristic functitelf is a
Rabi oscillationseforethe first revival, which appears at the quantum state representation of full value. It is particularly
scaled interaction tim& 7= 21 +/np. This enables us to take closely related to the momenta afanda’ via its deriva-
the Taylor expansion only until the second term. Using thetives, ~ that  is,  6/du)"(— aldu*)"C(u)] .= —0

] determined by the phase of the driving field. The experimen-

relationsD T(a)D (@) =1 andD'(a)aD(«)=a+ a, we find =({aT”am}Sym> (sym denotes the symmetrically-ordered
the following approximation for the ground state probability producy and to the Wigner distribution via a two-
Py dimensional Fourier transformation. The connection to the
density operator is given by the integral transformatjon
Pg(a,r)~E—ERe(e2”‘”m = %__fC(,U,)D(—,u,—,u*)dz,u,. In Fock representation, the
2 2 matrix elementgn|D(«)|m) play the role of gattern func-
tion.

n . .
—+a'd’+ae '’ field prepared in a quantum-mechanical superposition of two

N )”) We exemplify the reconstruction scheme for the cavity
| coherent states+ ¢), that is,

X Tr[ pex;{ iNT
4)

In Eq. (4), n/|a| can again be neglected by keeping the in-
teraction time sufficiently small compared to the revival
time. This finally leads to the following simple result:

|Wy=M|O)+|—0), N2=(2+2e 2% ()

The characteristic function for this “Schdinger cat” can
analytically be derived from its definition. In our case
_ . T (dephasing ofr), the Wigner distribution is inversion sym-
1= 2Pg(a, 1)~ Cr(u)c0S2h7v]al"+1) metric with respect to the origin, and the characteristic func-
—Ci(w)sin2\ | e?+1). (5)  tion is therefore purely real. It is depicted in Fig. 1 for
=2i. When the density matrix satisfies the conditipgf,
C,;(n) andC;(u) denote, respectively, the real and imagi- =0 for oddm, which is true for the coherent superposition
nary parts of the Wigner characteristic functidd(u) state, Eq.(6), the shape of the Wigner distribution and its
=Tr pD(u)] for the initial cavity field at the reciprocal characteristic functions arlentical But note, that in the
phase-space locatiop=i\7€¢. The magnitude|u|=\7 reciprocal space the interpretation is just the other way
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FIG. 2. Wigner characteristic function for a classical mixture of -1.0 ' ! !
two coherent states with amplitudés- + 2i. A

around: While the two mirror symmetrical Gaussian hills of  FIG. 4. Same as in Fig. 3 but fer=10i, which corresponds to
the Wigner distribution around the amplitudes belong to  a cut through the Wigner characteristic function of Fig. 1 along the
the part that stands for the classical mixture, the hills of theeal axis.
characteristic function are due to theantum superposition
and the oscillations around the origin, which are in the cas#vith rhombuses. We note that the phase of the actual Rabi
of Wigner’s function well known to display the coherence, oscillations differs slightly from that of the approximation
belong in terms of the characteristic function to the classica(5), which is not surprising, sincéx| is only moderately
mixture. The characteristic function for the classical mixturelarge. Anyway, the second maximum of the envelope that
of the coherent statés- £) with missing superposition phase indicates the coherencbetween the two amplitudes with
information is presented in Fig. 2. opposite phases is clearly resolved. This holds also for
In Fig. 3 we show the atomic inversion according to Eq.Gaussian-distributed interaction times with a normalized
(2) for the superposition state, E¢), as a function of the standard derivatiod 7/ 7= 1% (marked with circles which
scaled interaction time 7 with fixed displacemen=10  takes typical experimental errors into acco(#,15.
(dotted ling. The envelope of the fast Rabi oscillations The inlay in Fig. 3 shows the photon statistics of the
clearly reveals the cut through the characteristic functiordisplaced Schidinger-cat state. The coherence appears as an
along theimaginaryaxis =i\ 7 (solid line), as predicted by interference structure of the photon number distributiohe
the analytical approximation, Ed5), for C,(x)=0. The energy difference between the single peaks determines the
condition A 7=n=/(2+[a[?+1) for C,(u), which is cer- “satellite revival” of the Rabi oscillations. It appears for a

tainly important for the general cag€;(u)+# 0], is marked ~Much shorter interaction time than the “real” revivals that
are due to the energy differencedifectly neighboring pho-

1.0 ton numbergand not included in our approacirhe photon

. statistics of the mixture are simply Poisson-distributed and
the envelope of the atomic inversion for this cddashed
curve reflects the corresponding cut through Fig. 2.

Figure 4 shows the situation far=10i, corresponding to
a cut through the characteristic function along tbel axes.

0.5

= The double peaked photon statistisge insétbelong to the

\G—m two amplitudes={. The two associated main frequencies

2 s cause the oscillation in the envelope of the Rabi frequency
S (“beat-signal”), which again reflects accurately the shape of

the characteristic function. The coherent superposition and
mixture are indistinguishable for this cut.
In conclusion, we have suggested a scheme to directly
o = measure the characteristic function of a quantum state in a
0 1 5 3 4 5 6 7 cavity or in a trap at any point in the reciprocal phase space.
Ar The method has been demonstrated for a Qthger-cat
state which can be well distinguished from the corresponding
FIG. 3. Comparison between atomic inversion as a function ofstatistical mixture.

the scaled interaction timer (dotted ling and a cut through the ) ) ]
Wigner characteristic functior€(u=i\7) of Fig. 1 along the We thank Professor Welsch for discussions and for bring-

imaginary axis(solid line) for fixed «=10. The atomic inversion at INg Refs.[6,7] to our attention, Professor Meystre and Dr.

the pointsk 7=nm/[2\[a]?+ 1] is marked by rhombuses. An in- Leonhardt for useful discussions, and Dr. Karapanagioti for
teraction time distribution of\7/7=1% leads to a lower contrast carefully reading the manuscript. M.S.K. is grateful to the
marked with circles. The dashed line belongs to the statistical mixAlexander von Humboldt Foundation and the Korean Minis-
ture of Fig. 2. The inset shows the photon-number distribution oftry of Education for support through Grant No. BSRI-97-

the displaced Schdinger-cat state. 2415.
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