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Bose-Einstein condensate in a double-well potential as an open quantum system
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We study the dynamics of a Bose-Einstein condensate in a double-well potential in the two-mode approxi-
mation. The dissipation of energy from the condensate is described by the coupling to a thermal reservoir of
noncondensate modes. As a consequence of the coupling, the self-locked population imbalance in the macro-
scopic quantum self-trapping decays away. We show that a coherent state predicted by spontaneous symmetry
breaking is not robust and decoheres rapidly into a statistical mixture due to the interactions between conden-
sate and noncondensate atoms. However, via stochastic simulations we find that with a sufficiently fast mea-
surement rate of the relative phase between the two wells the matter wave coherence is established even in the
presence of the decoherenf81050-2947©@8)50607-3

PACS numbg(s): 03.75.Fi, 42.50.Vk, 05.30.Jp, 03.65.Bz

Bose-Einstein condensatéBECS exhibit a macroscopic but narrow spherical square-well potential, tuned so as to
guantum coherence that is absent in thermal atomic erpossess exactly one single-particle bound state. In this model
sembleq1]. In conventional reasoning, the BEC is assignedthe thermal reservoir of noncondensate atoms consists of a
a macroscopic wave function with an arbitrary but fixed continuum of unbound modes obtained by the scattering so-
phase. The selection of a phase implies the spontaneoligfions of the potential well. The binding ener@y, of the
breaking of the gauge symmetry. The atom-atom interaction8EC mode is assumed to be large compared to the thermal
in finite-sized BECs affect coherence properties. The relativ€nergy of the noncondensed atoms. Then, the fugacity satis-
phase of BECs undergoes diffusion or collapses due to thfies z=e”#<1, where x is the chemical potential ang
condensate self-interactiofi®,3]. The interactions between = 1/(kgT), even in the presence of a BEC. The condensation
condensate and noncondensate atoms create decohgfence 0ccurs because of the depth of the attractive potential. The
Modeling decoherence by fully including the quantum ef-small fugacity allows the derivation of the master equation in
fects requires sophisticated theoretical studies that nontrivithe Markov and Born approximations. By expanding in
ally include noncondensate atoms. In the experiments ofems of the small parametersand a/d, wherea is the
BECs of dilute alkali-metal atomic gasgs] trapped atoms S-wave scattering length and is the length scale of the
are evaporatively cooled and they continuously exchang8EC, the reduced density operator for the BEC satisfies the
particles with their environment. Thus, standard approachellowing equation of motion:
of quantum optics for open systems involving master equa- .
tions and heat reservoirs seem especially natural for treating ~ #=i/A[p,Hs]+C1D[b'b]p+C,D[b']p
atomic BECS[G—J.O]. B 2.3/43

In this paper we study the evolution of the master equa- +Coex B(RA = w)I2]DIblp+ O(Z°a%d). (1)
tion for a BEC in a double-well potential in a two-mode Here we have defined
approximation using previously derived modgl§. Macro-
scopic quantum coherence of BECs results in coherent quan- Dlc]lp=cpct—1/2(cTcp+pclo), 2
tum tunneling of atoms between the two modes or the “two
BECs,” which is analogous to the coherent tunneling ofandA=2xN—E, is expressed in terms of the strength of the
Cooper pairs in a Josephson junctidi-15. According to ~ Self-interaction energy. The system Hamiltonian for the
the Josephson effect, the atom numbers of the BECs oscillaBEC is denoted byHs. For simplicity, the interactions be-
even if the number of atoms in each condensate is initialljfween different noncondensate atoms are estimated by the
equal. Even BECs with a well-defined number of atoms, andBoltzmann scattering ratg=onsk/m, whereo is the scat-
with no phase information, could exhibit oscillations in par-tering cross section and is the density of the gas. The
ticular measurement processes on at¢h@ or on photons parameter<; andC, may then be estimated I, ~y and
[17,1@ C2/C122/(,8Eb)

One interesting feature of the coherent quantum tunneling In a single-mode approximation the processes in which a
between two BECs is that due to the nonlinearity arisingBEC atom collides with a noncondensate atom and produces
from atom-atom interactions, oscillations are expected to béwo BEC particles, or vice versa, do not conserve to leading
suppressed when the population difference exceeds a criticafder energy and they are absent from &g. The term that
value in a process known as macroscopic guantum selis proportional toC; describes elastic two-body collisions
trapping (MQST) [13,14. We show that in the presence of between condensate and noncondensate atoms and it induces
collisions between the condensate and noncondensate atopigase decoherend¢&9]. Inelastic collisiondthe terms pro-
MQST decays away, i.e., the atom numbers of the two BECgortional toC, in Eq. (1)] introduce amplitude decoherence
become balanced. [19]. With the present approximations the amplitude deco-

Anglin [7] derived the master equation for a trapped BECherence is dramatically reduced compared to the phase
by considering a special model of a BEC confined in a deeglamping. The central assumption is a small fugacity indicat-
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ing BE,>1. In the scattering processes the energy must be
conserved to leading order, so that depletion and growth of
the BEC involve noncondensate atoms with high enough en-
ergy to balance the large binding energy of the trapped state.
If the BEC is described by a multiple number of modié§
the amplitude decoherence does not need to be small com-
pared to the phase decoherence. The necessary condition for
the validity of the single-mode approximation in a harmonic
trap is that the self-energy of the atom-atom interactions of
the BEC should not dominate over the mode energy spacing.
This assumption clearly breaks down in the Thomas-Fermi
limit in which the kinetic energy is negligible compared to
the self-interaction energy indicating (4%/1)®> 1, where
| = (%/mw)? is the length scale of the harmonic oscillator.
Jakschet al.[9] have calculated the intensity and the ampli-
tude fluctuations of a BEC. They have evaluated the coeffi-
cients of the master equation in the Thomas-Fermi limit and
have obtained stronger amplitude decoherence than phase
decoherence. Nevertheless, the calculations of the BEC fluc-
tuations are still performed in the one-mode approximation.
We consider Anglin’'s model for the master equat|[@h
in the studies of the coherent quantum tunneling of a BEC in
a double-well potential. To obtain the system Hamiltonian
for the BEC we approximate the total field operator by the
two lowest quantum modeg(r) = ¢,(r)b+ ¢.(r)c, where

Tr(p?)
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¢, and ¢, are the local mode solutions of the individual .
wells with small spatial overlap, and the corresponding an- T It

nihilation operators ard and c. The Hamiltonian in the o j R — =
two-mode approximation read$3] (o)
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FIG. 1. The expectation value of the number of atoms in Wwell
©) (@) as a function of time. The initial state is the atomic coherent
state withN,=N.=50 and the relative phase=m/2. The solid

Here ¢ is the energy difference between the modes. The tunkine is the result without decoherenge=0. The dashed line has
neling between the two wells is described By which is  ¥=0.1« and the dashed-dotted ling=0.4«. (b) Tr(p?) for the
proportional to the overlap of the spatial mode function ofSame run.
the opposite wells. The short-ranged two-body interactio
strength is obtained from=2maf/mf|¢,(r)|*, where we
have assumed thdf ¢, (r)|*= | #c(r)|*.

It is useful to describe the dynamics of E§) in terms of
the atomic coherent stat¢g0], which exhibits coherence,
but conserves the total number of atoms:

Hs/fi=¢b™b+Q(bTc+c™b) + «[ (b)?b%+ (cT)c?].

Yb'cy=|B|cle'¢. The relative phase between the two wells
is ¢. Equation(5) clearly shows how the atomic coherent
states are projections of the coherent statk€) onto the
basis sets of a fixed total number of atohs

We study the evolution of atomic coherent states in the
presence of decoherence in both wdllandc. Because of

j small overlap between the mode functions, decoherence

2] 1/2 m+j N
0, )= . im), (4) cross-terms between the modes are ignored. As already
16.¢) m;j m+j/  (1+]7]%) .m) noted, with the present approximations the amplitude deco-

herence is negligible compared to the phase damping.
where|j,m) is an eigenstate of the angular momentum op- The dynamics of the master equation is studied in terms
eratorsJ, and J? with eigenvaluesm andj(j+1). Herer  of stochastic trajectories of state vect¢&l]. The master
=e % tan(@/2). We define the angular momentum operatorsequation is unraveled by Monte Carlo evolution of wave
in terms of the BEC operators in the usual way=(b'c functions. In Fig. 18) we _have plotted the expe_(_;tation vz_ilue
+cib)f2, jy:(bfc_cfb)/(m)' and 3,=(b™b—c'c)/2, 3:‘ thetnur_nberr?f atotms; I? We!?[h Nﬂb](t). 'Il'k}f |n|t|ﬁl state/zls
Thenj=N/2 is a constant of motion and the atomic coheren e awomic conerent state Wi & reiaive phase

states may be expressed in terms of the number states of t gtween the two wells and the expectation values for the
BECs: y P Atom numberdN,=N;=50. We have seN«/(1=0.5 and

£=0. The solid line is the result without decoherenge
=0. The oscillations are damped due to the collapse of the
-1y, (5) macroscopic coherendd3]. The dashed line hag=0.1«
and the dashed-dotted line has=0.4«. The decoherence
clearly increases the damping of the oscillations. Although
the model used is very simplified, we can make rough esti-
mates for the parameters. For the effective mode volume

N! N CN7|B|

16, p)n= m 20 WU,N

wherel=m+N/2, and B and C are the “coherent ampli-
tudes” of the two BECs:(b'b)=|BJ2, (c'c)=|C|?, and
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FIG. 2. The expectation value of the number of atoms in Wwell T T i
in the case of large nonlinearity. The initial state is the atomic 08k
coherent state wittN,=4N.=80 and¢=0. The solid line is the
result without decoherence and describes the macroscopic quantum
self-trapping. The oscillations undergo collapses and revivals. The 50’6’
dashed line shows how the atom population becomes balanced in §
the presence of decoherence. 0.4f !
1Uf|p(r)|*=10"° cn®, a=5 nm, >>Na, and for the tempera- ozt el
ture T=100 nK, y= 0.1« corresponds to the density of the e ‘
noncondensate atoma~10° cm3 and the fugacity z t ° Time (1/x) o1

~1073. In Fig. 1(b) we have plotted Tig?) for the same run
of simulations. We see that a pure state predicted by sponta- FIG. 3. The relative visibility of the interferengg (t) (a) when
neous symmetry breaking is not robust and decoheres rapidtfie number of atoms in one well is nondestructively measured by
into a statistical mixture due to the interactions between conlight scattering. The BECs are initially in pure number states with
densate and noncondensate atoms. Np=52 andN.= 48. The photon-scattering ralfe= 0.8x. The solid

If the nonlinearity is large compared to the tunneling fre-line is the result without decoherenge=0. The dashed line repre-
quency and the population imbalance exceeds a criticgientsy=0.05 and the dashed-dotted line represepts1.8«. (b)
value, the oscillations of the atom numbers are suppresseki(¢?) for the same run.
[13,14). A large number of atoms remains “locked” in one
of the wells. In Fig. 2 we have plotteN,(t) obtained by in the forward direction. The measurement is nondestructive
integrating Eq.(3) (the solid ling and the solution of the in the sense that a BEC atom in mdolescatters back to the
master equation in the presence of the decohereﬂce same modé. The amplitude of the scattered field has the
= 0.2« (the dashed line In this caseN«/Q=4.5, ¢=0, and  dependenceES |« Edeg/(A)b'b on the detuning), the di-
the initial state is the atomic coherent state with the expecpole matrix elemend,, and the amplitude of the incoming
tation valuesN,=4N.=80 and¢=0. Due to the interac- field £ [22]. The direct counting of spontaneously emitted
tions between condensate and noncondensate atoms MQ®fiotons can be simulated in terms of quantum trajectories
vanishes and the atom population becomes balanced. [21], in which the stochastic quantum “jumps” correspond

Next, we include the effect of measurements in the calcuto the detection of photons. The procedure is similar to Ref.
lations. We assume that the number of atoms is nondestru€23]. The detection rate of the scattered photons in the
tively measured in one of the two wells. The effect of thepresent case iE((b'b)?)x|Eg -ES]|.
measurement is included in quantum trajectory simulations If the number of atoms in a BEC is not large, the scatter-
by averaging over the dissipation channels corresponding timg between the condensate and noncondensate modes is not
the interactions between condensate and noncondensate aegligible. This introduces amplitude decoherence similar to
oms, but at the same time by considering the measurement tiie amplitude decoherence due to the atomic collisions in
the number of atoms in one of the wells to be a single realEq. (1). If we require that the two-mode master equation
ization of a stochastic trajectory. We consider a particulaccurately describes the tunneling dynamics, for small har-
situation in which the Josephson dynamics is nondestruononic traps, the amplitude decoherence due to the light scat-
tively measured by shining a coherent light beam throughiering may not be negligible. For large traps the model can
one of the BECs. be accurate even for large atom numbers because the BEC

We assume that the incoming light field with a large de-self-interaction energyk=l~3 and the trap frequencyy
tuning from the atomic resonance is scattered from well = ~2. Nevertheless, as a first approximation we ignore the
For instance, if the shape of the gas is flat and the light islecoherence due to the light scattering.
shone through a thin dimension, the dipole shifts are small The density matrix of a BEC may be reconstructed using
and the sample can be considered optically [R2l. ABEC  the nondestructive measurements of the number of atoms in
atom scatters back to the BEC via coherent spontaneous scate of the wells. The procedure is similar to R&#4], except
tering, stimulated by a large number of atoms in the BECthat the density matrix has time dynamics now determined
Coherently scattered photons are emitted into a narrow conlgy the Hamiltonian(3), the dissipation, and the back action
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of the measurements. Following the notation of R2#], at We consider a situation where the two BECs are initially

time t we havep(t)=U(t)'pU(t), whereU(t) in this case in pure number states witk,=52 andN.=48. We _have set
is the time propagator. Then the probability of the measureN«/{2=0.25, £=0.009), and the photon-scattering rafe
ment result ofm atoms in wellb at timet is given by = 0-8«. In Fig. 3& we have plottedB, (t). The solid line is

P (t)=(mlo(t)Im). By inverting this expression the den- the result without decoherenge=0. The dashed line repre-
si{ny( r)nat<rix|g£\r? |be> rec)(;nstructégél]_ P sents y=0.05 and the dashed-dotted line represents

The off-diagonal long range ordé@DLRO) between the - 1-8«- For the number state, in the beginniig="0, but
two wells may be desc.ribed by the visibility of the interfer- g ’C: nlsg?ﬂggcgv;%g tg}:c?)rheesrirr]\%zglgvflglé)dsigzzedrggfeeés?r?g
_enceﬁ [tlhﬂ' To (_a”mtphas(ljze the_effe(;} of(de?og_erer:ﬁ%mel but the measurements of spontaneously scattered photons es-
Ignore the osciiiating dynamics dis (Including the ol ap)ish the macroscopic coherence, even though the BECs
lapses and revivalsby propagating the system dynamics

. : are initially in pure number states. In Figla3 we have plot-
back. In accordance with Reff17] we define ted Tr(p?) for the same run. We see that Bf) remains

2 close to one and the state is reasonably pure due to the fast
pele=— Tr{eMs/t pe~HsipT(0)c(0)]. (6) measurement rate even in the presence of decoherence if
N =0.0629". In the case of stronger decoherence with
=2.29" the state evolves into a statistical mixture.
Normally, one would assume that measuring the number
atoms in one well would destroy coherence. However, the
ast oscillation dynamics of E¢3) mixes the atoms between
he two wells, with the oscillations depending @h. The
apidly mixed atom population and the dependence of the

For a coherent state we hay®=1, and ¢ is the relative
phase between the two wells. However, for a number statg;
there is no phase information arg=0. If the BECs have f
unequal atom numbers, the maximum visibility is reducedt
from one tof.,=2VNyN/N. Hence, it is useful to define

the rela'give visibility by'BfE.B/'BmaX' o photon detection rate of, allow measurements to induce
We simulate the dynamics of the dissipation and the measpace conherence.

surements by repeating single realizations of quantum trajec- |, conclusion, we have shown that as a consequence of

tories. In the first realization we save the stochastic times of,e interactions between condensate and noncondensate at-
the photon detections. In every subsequent run of the trajegy,o MQST decays away. Due to the interactions, a BEC
tory the times of the photon detections are forced to be thjges not remain in a pure state with a well-defined relative

same as in the first run. Although the photon detection timeghase However, the coherence properties can be established
after the first trajectory are deterministic, the collision times,i5 the measurement process even in the presence of deco-

between condensate and noncondensate atoms correspondiigence. In particular, nondestructive detections allow the
to the dissipation channels are stochastic in every run. Avers,aasurements of phase dynamics.

aging over all the trajectories allows us to consider the pho-

ton measurements to be a “single realization” of the quan- We acknowledge discussions with A. C. Doherty. This

tum trajectory even though the atomic collisions are at thavork was supported by the Marsden Fund of the Royal So-
same time ensemble averages corresponding to the densitiety of New Zealand and The University of Auckland Re-

matrix evolution. search Fund.

[1] M. R. Andrewset al,, Science275, 637 (1997; E. A. Burt [12] F. Dalfovo, L. Pitaevskii, and S. Stringari, Phys. Rev5A,
et al, Phys. Rev. Lett79, 337(1997. 4213(1996.
[2] E. M. Wright et al,, Phys. Rev. A56, 591 (1997). [13] G. J. Milburnet al, Phys. Rev. A55, 4318(1997.

[3] M. Lewenstein and L. You, Phys. Rev. Lef7, 3489(1996;  [14]1 A. Smerziet al, Phys. Rev. Lett79, 4950(1997.
Y. Castin and J. Dalibard, Phys. Rev. 35, 4330(1997); J. [15] I. Zapata, F. Sols, and A. J. Leggett, Phys. RevSA R28

. . 1998.
Javanainen and M. Wilkens, Phys. Rev. L&R, 4675(1997. (
[4] W. H. Zurek, Phys. Today4 (10), 36 (1999, and references 0! &&ffé@M J. Collett, and D. F. Walls, Phys. Rev5A

] che';j'”A' . . Science26a. 168 (1995: K. B. Dayie  |17] 3 Ruostekoski and D. F. Wals, Phys. Revs8 2996(1997).
[5] M. H. Andersonet al, Scienc L (1999; K. B. Davis, [18] J. F. Corney and G. J. Milburn, e-print cond-mat/9712282.
etal, Phys. Rev. Lett75, 3969(1999; C. C. Bradleyetal.  1q] p. F. walls and G. J. Milburn, Phys. Rev. 31, 2403(1985.

ibid. 78, 985(1997. [20] F. T. Arecchiet al, Phys. Rev. A, 2211(1972.
[6] D. Jaksch, C. W. Gardiner, and P. Zoller, Phys. Re86A575  [21] K. Mdller, Y. Castin, and J. Dalibard, J. Opt. Soc. Am.1B,
(1997). 524 (1993, and references therein.
[7]J. Anglin, Phys. Rev. Let79, 6 (1997. [22] J. Javanainen and J. Ruostekoski, Phys. Rev52A 3033
[8] C. W. Gardiner and P. Zoller, e-print cond-mat/9712002. (1995.
[9] D. Jakschet al., e-print cond-mat/9712206. [23] J. Ruostekoskét al., Phys. Rev. A57, 511 (1998.
[10] H. M. Wiseman and J. A. Vacar@npublisheg [24] E. L. Bolda, S. M. Tan, and D. F. Walls, Phys. Rev. L&8,

[11] J. Javanainen, Phys. Rev. L€if, 3164(1986. 4719(1997; R. Walser,ibid. 79, 4724(1997).



