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Bose-Einstein condensate in a double-well potential as an open quantum system

Janne Ruostekoski and Dan F. Walls
Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

~Received 16 March 1998!

We study the dynamics of a Bose-Einstein condensate in a double-well potential in the two-mode approxi-
mation. The dissipation of energy from the condensate is described by the coupling to a thermal reservoir of
noncondensate modes. As a consequence of the coupling, the self-locked population imbalance in the macro-
scopic quantum self-trapping decays away. We show that a coherent state predicted by spontaneous symmetry
breaking is not robust and decoheres rapidly into a statistical mixture due to the interactions between conden-
sate and noncondensate atoms. However, via stochastic simulations we find that with a sufficiently fast mea-
surement rate of the relative phase between the two wells the matter wave coherence is established even in the
presence of the decoherence.@S1050-2947~98!50607-5#

PACS number~s!: 03.75.Fi, 42.50.Vk, 05.30.Jp, 03.65.Bz
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Bose-Einstein condensates~BECs! exhibit a macroscopic
quantum coherence that is absent in thermal atomic
sembles@1#. In conventional reasoning, the BEC is assign
a macroscopic wave function with an arbitrary but fix
phase. The selection of a phase implies the spontan
breaking of the gauge symmetry. The atom-atom interacti
in finite-sized BECs affect coherence properties. The rela
phase of BECs undergoes diffusion or collapses due to
condensate self-interactions@2,3#. The interactions betwee
condensate and noncondensate atoms create decoheren@4#.
Modeling decoherence by fully including the quantum
fects requires sophisticated theoretical studies that nont
ally include noncondensate atoms. In the experiments
BECs of dilute alkali-metal atomic gases@5# trapped atoms
are evaporatively cooled and they continuously excha
particles with their environment. Thus, standard approac
of quantum optics for open systems involving master eq
tions and heat reservoirs seem especially natural for trea
atomic BECs@6–10#.

In this paper we study the evolution of the master eq
tion for a BEC in a double-well potential in a two-mod
approximation using previously derived models@7#. Macro-
scopic quantum coherence of BECs results in coherent q
tum tunneling of atoms between the two modes or the ‘‘t
BECs,’’ which is analogous to the coherent tunneling
Cooper pairs in a Josephson junction@11–15#. According to
the Josephson effect, the atom numbers of the BECs osc
even if the number of atoms in each condensate is initi
equal. Even BECs with a well-defined number of atoms, a
with no phase information, could exhibit oscillations in pa
ticular measurement processes on atoms@16# or on photons
@17,18#.

One interesting feature of the coherent quantum tunne
between two BECs is that due to the nonlinearity aris
from atom-atom interactions, oscillations are expected to
suppressed when the population difference exceeds a cr
value in a process known as macroscopic quantum s
trapping~MQST! @13,14#. We show that in the presence o
collisions between the condensate and noncondensate a
MQST decays away, i.e., the atom numbers of the two BE
become balanced.

Anglin @7# derived the master equation for a trapped BE
by considering a special model of a BEC confined in a d
PRA 581050-2947/98/58~1!/50~4!/$15.00
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but narrow spherical square-well potential, tuned so as
possess exactly one single-particle bound state. In this m
the thermal reservoir of noncondensate atoms consists
continuum of unbound modes obtained by the scattering
lutions of the potential well. The binding energyEb of the
BEC mode is assumed to be large compared to the the
energy of the noncondensed atoms. Then, the fugacity s
fies z5ebm!1, wherem is the chemical potential andb
51/(kBT), even in the presence of a BEC. The condensa
occurs because of the depth of the attractive potential.
small fugacity allows the derivation of the master equation
the Markov and Born approximations. By expanding
terms of the small parametersz and a/d, where a is the
s-wave scattering length andd is the length scale of the
BEC, the reduced density operator for the BEC satisfies
following equation of motion:

ṙ5 i /\@r,HS#1C1D@b†b#r1C2D@b†#r

1C2exp@b~\D2m!/2#D@b#r1O~z2a3/d3!. ~1!

Here we have defined

D@c#r[crc†21/2~c†cr1rc†c!, ~2!

andD.2kN2Eb is expressed in terms of the strength of t
self-interaction energyk. The system Hamiltonian for the
BEC is denoted byHS . For simplicity, the interactions be
tween different noncondensate atoms are estimated by
Boltzmann scattering rateg5sn\k/m, wheres is the scat-
tering cross section andn is the density of the gas. Th
parametersC1 andC2 may then be estimated byC1;g and
C2 /C1.z/(bEb).

In a single-mode approximation the processes in whic
BEC atom collides with a noncondensate atom and produ
two BEC particles, or vice versa, do not conserve to lead
order energy and they are absent from Eq.~1!. The term that
is proportional toC1 describes elastic two-body collision
between condensate and noncondensate atoms and it ind
phase decoherence@19#. Inelastic collisions@the terms pro-
portional toC2 in Eq. ~1!# introduce amplitude decoherenc
@19#. With the present approximations the amplitude de
herence is dramatically reduced compared to the ph
damping. The central assumption is a small fugacity indic
R50 © 1998 The American Physical Society
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ing bEb@1. In the scattering processes the energy mus
conserved to leading order, so that depletion and growth
the BEC involve noncondensate atoms with high enough
ergy to balance the large binding energy of the trapped s
If the BEC is described by a multiple number of modes@8#,
the amplitude decoherence does not need to be small c
pared to the phase decoherence. The necessary conditio
the validity of the single-mode approximation in a harmon
trap is that the self-energy of the atom-atom interactions
the BEC should not dominate over the mode energy spac
This assumption clearly breaks down in the Thomas-Fe
limit in which the kinetic energy is negligible compared
the self-interaction energy indicating (15Na/ l )1/5@1, where
l 5(\/mv)1/2 is the length scale of the harmonic oscillato
Jakschet al. @9# have calculated the intensity and the amp
tude fluctuations of a BEC. They have evaluated the coe
cients of the master equation in the Thomas-Fermi limit a
have obtained stronger amplitude decoherence than p
decoherence. Nevertheless, the calculations of the BEC
tuations are still performed in the one-mode approximati

We consider Anglin’s model for the master equation@7#
in the studies of the coherent quantum tunneling of a BEC
a double-well potential. To obtain the system Hamiltoni
for the BEC we approximate the total field operator by t
two lowest quantum modesc(r ).fb(r )b1fc(r )c, where
fb and fc are the local mode solutions of the individu
wells with small spatial overlap, and the corresponding
nihilation operators areb and c. The Hamiltonian in the
two-mode approximation reads@13#

HS /\5jb†b1V~b†c1c†b!1k@~b†!2b21~c†!2c2#.
~3!

Herej is the energy difference between the modes. The t
neling between the two wells is described byV, which is
proportional to the overlap of the spatial mode function
the opposite wells. The short-ranged two-body interact
strength is obtained fromk52pa\/m* ufb(r )u4, where we
have assumed that* ufb(r )u45* ufc(r )u4.

It is useful to describe the dynamics of Eq.~3! in terms of
the atomic coherent states@20#, which exhibits coherence
but conserves the total number of atoms:

uu,f&5 (
m52 j

j S 2 j
m1 j D 1/2 tm1 j

~11utu2! j u j ,m&, ~4!

where u j ,m& is an eigenstate of the angular momentum o
eratorsĴz and Ĵ2 with eigenvaluesm and j ( j 11). Heret
[e2 if tan(u/2). We define the angular momentum operat
in terms of the BEC operators in the usual way:Ĵx5(b†c

1c†b)/2, Ĵy5(b†c2c†b)/(2i ), and Ĵz5(b†b2c†c)/2.
Then j 5N/2 is a constant of motion and the atomic coher
states may be expressed in terms of the number states o
BECs:

uu,f&N5AN!

NN (
l 50

N CN2 lB l

Al ! ~N2 l !!
u l ,N2 l &, ~5!

where l 5m1N/2, andB and C are the ‘‘coherent ampli-
tudes’’ of the two BECs:^b†b&5uBu2, ^c†c&5uCu2, and
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^b†c&5uBiCueiw. The relative phase between the two we
is w. Equation~5! clearly shows how the atomic cohere
states are projections of the coherent statesuB,C& onto the
basis sets of a fixed total number of atomsN.

We study the evolution of atomic coherent states in
presence of decoherence in both wellsb andc. Because of
small overlap between the mode functions, decohere
cross-terms between the modes are ignored. As alre
noted, with the present approximations the amplitude de
herence is negligible compared to the phase damping.

The dynamics of the master equation is studied in ter
of stochastic trajectories of state vectors@21#. The master
equation is unraveled by Monte Carlo evolution of wa
functions. In Fig. 1~a! we have plotted the expectation valu
of the number of atoms in wellb, Nb(t). The initial state is
the atomic coherent state with the relative phasew5p/2
between the two wells and the expectation values for
atom numbersNb5Nc550. We have setNk/V50.5 and
j50. The solid line is the result without decoherenceg
50. The oscillations are damped due to the collapse of
macroscopic coherence@13#. The dashed line hasg50.1k
and the dashed-dotted line hasg50.4k. The decoherence
clearly increases the damping of the oscillations. Althou
the model used is very simplified, we can make rough e
mates for the parameters. For the effective mode volu

FIG. 1. The expectation value of the number of atoms in welb
~a! as a function of time. The initial state is the atomic cohere
state withNb5Nc550 and the relative phasew5p/2. The solid
line is the result without decoherenceg50. The dashed line has
g50.1k and the dashed-dotted lineg50.4k. ~b! Tr(r2) for the
same run.
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1/* uf(r )u451029 cm3, a55 nm, 23Na, and for the tempera
ture T5100 nK, g50.1k corresponds to the density of th
noncondensate atomsn;109 cm23 and the fugacity z
;1023. In Fig. 1~b! we have plotted Tr(r2) for the same run
of simulations. We see that a pure state predicted by spo
neous symmetry breaking is not robust and decoheres rap
into a statistical mixture due to the interactions between c
densate and noncondensate atoms.

If the nonlinearity is large compared to the tunneling fr
quency and the population imbalance exceeds a crit
value, the oscillations of the atom numbers are suppres
@13,14#. A large number of atoms remains ‘‘locked’’ in on
of the wells. In Fig. 2 we have plottedNb(t) obtained by
integrating Eq.~3! ~the solid line! and the solution of the
master equation in the presence of the decoherencg
50.2k ~the dashed line!. In this caseNk/V54.5, j.0, and
the initial state is the atomic coherent state with the exp
tation valuesNb54Nc580 andw50. Due to the interac-
tions between condensate and noncondensate atoms M
vanishes and the atom population becomes balanced.

Next, we include the effect of measurements in the cal
lations. We assume that the number of atoms is nondes
tively measured in one of the two wells. The effect of t
measurement is included in quantum trajectory simulati
by averaging over the dissipation channels correspondin
the interactions between condensate and noncondensa
oms, but at the same time by considering the measureme
the number of atoms in one of the wells to be a single re
ization of a stochastic trajectory. We consider a particu
situation in which the Josephson dynamics is nondest
tively measured by shining a coherent light beam throu
one of the BECs.

We assume that the incoming light field with a large d
tuning from the atomic resonance is scattered from wellb.
For instance, if the shape of the gas is flat and the ligh
shone through a thin dimension, the dipole shifts are sm
and the sample can be considered optically thin@22#. A BEC
atom scatters back to the BEC via coherent spontaneous
tering, stimulated by a large number of atoms in the BE
Coherently scattered photons are emitted into a narrow c

FIG. 2. The expectation value of the number of atoms in web
in the case of large nonlinearity. The initial state is the atom
coherent state withNb54Nc580 andw50. The solid line is the
result without decoherence and describes the macroscopic qua
self-trapping. The oscillations undergo collapses and revivals.
dashed line shows how the atom population becomes balance
the presence of decoherence.
ta-
ly
-

-
al
ed

c-

ST

-
c-

s
to
at-
of
l-
r
c-
h

-

is
ll

at-
.
ne

in the forward direction. The measurement is nondestruc
in the sense that a BEC atom in modeb scatters back to the
same modeb. The amplitude of the scattered field has t
dependenceuES

1u}Edeg /(\D)b†b on the detuningD, the di-
pole matrix elementdeg , and the amplitude of the incomin
field E @22#. The direct counting of spontaneously emitte
photons can be simulated in terms of quantum trajecto
@21#, in which the stochastic quantum ‘‘jumps’’ correspon
to the detection of photons. The procedure is similar to R
@23#. The detection rate of the scattered photons in
present case isG^(b†b)2&}uES

2
•ES

1u.
If the number of atoms in a BEC is not large, the scatt

ing between the condensate and noncondensate modes
negligible. This introduces amplitude decoherence simila
the amplitude decoherence due to the atomic collisions
Eq. ~1!. If we require that the two-mode master equati
accurately describes the tunneling dynamics, for small h
monic traps, the amplitude decoherence due to the light s
tering may not be negligible. For large traps the model c
be accurate even for large atom numbers because the
self-interaction energyk} l 23 and the trap frequencyv
} l 22. Nevertheless, as a first approximation we ignore
decoherence due to the light scattering.

The density matrix of a BEC may be reconstructed us
the nondestructive measurements of the number of atom
one of the wells. The procedure is similar to Ref.@24#, except
that the density matrix has time dynamics now determin
by the Hamiltonian~3!, the dissipation, and the back actio

c

um
e
in

FIG. 3. The relative visibility of the interferenceb r(t) ~a! when
the number of atoms in one well is nondestructively measured
light scattering. The BECs are initially in pure number states w
Nb552 andNc548. The photon-scattering rateG50.8k. The solid
line is the result without decoherenceg50. The dashed line repre
sentsg50.05k and the dashed-dotted line representsg51.8k. ~b!
Tr(r2) for the same run.
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of the measurements. Following the notation of Ref.@24#, at
time t we haver(t)5Û(t)†rÛ(t), whereÛ(t) in this case
is the time propagator. Then the probability of the measu
ment result ofm atoms in well b at time t is given by
Pm(t)5^mur(t)um&. By inverting this expression the den
sity matrix can be reconstructed@24#.

The off-diagonal long range order~ODLRO! between the
two wells may be described by the visibility of the interfe
enceb @17#. To emphasize the effect of decoherence onb we
ignore the oscillating dynamics ofHS ~including the col-
lapses and revivals! by propagating the system dynami
back. In accordance with Ref.@17# we define

beiw[
2

N
Tr@eiH St/\re2 iH St/\b†~0!c~0!#. ~6!

For a coherent state we haveb51, and w is the relative
phase between the two wells. However, for a number s
there is no phase information andb50. If the BECs have
unequal atom numbers, the maximum visibility is reduc
from one tobmax52ANbNc/N. Hence, it is useful to define
the relative visibility byb r[b/bmax.

We simulate the dynamics of the dissipation and the m
surements by repeating single realizations of quantum tra
tories. In the first realization we save the stochastic time
the photon detections. In every subsequent run of the tra
tory the times of the photon detections are forced to be
same as in the first run. Although the photon detection tim
after the first trajectory are deterministic, the collision tim
between condensate and noncondensate atoms correspo
to the dissipation channels are stochastic in every run. A
aging over all the trajectories allows us to consider the p
ton measurements to be a ‘‘single realization’’ of the qua
tum trajectory even though the atomic collisions are at
same time ensemble averages corresponding to the de
matrix evolution.
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We consider a situation where the two BECs are initia
in pure number states withNb552 andNc548. We have set
Nk/V50.25, j50.005V, and the photon-scattering rateG
50.8k. In Fig. 3~a! we have plottedb r(t). The solid line is
the result without decoherenceg50. The dashed line repre
sents g50.05k and the dashed-dotted line representsg
51.8k. For the number state, in the beginningb r50, but
b r→1 rapidly even in the presence of weak decoherence
a consequence of the decoherence ODLRO starts decrea
but the measurements of spontaneously scattered photon
tablish the macroscopic coherence, even though the B
are initially in pure number states. In Fig. 3~b! we have plot-
ted Tr(r2) for the same run. We see that Tr(r2) remains
close to one and the state is reasonably pure due to the
measurement rate even in the presence of decoherenceg
50.0625G. In the case of stronger decoherence withg
52.25G the state evolves into a statistical mixture.

Normally, one would assume that measuring the num
of atoms in one well would destroy coherence. However,
fast oscillation dynamics of Eq.~3! mixes the atoms betwee
the two wells, with the oscillations depending onb r . The
rapidly mixed atom population and the dependence of
photon detection rate onb r allow measurements to induc
phase coherence.

In conclusion, we have shown that as a consequenc
the interactions between condensate and noncondensa
oms MQST decays away. Due to the interactions, a B
does not remain in a pure state with a well-defined relat
phase. However, the coherence properties can be establ
via the measurement process even in the presence of d
herence. In particular, nondestructive detections allow
measurements of phase dynamics.

We acknowledge discussions with A. C. Doherty. Th
work was supported by the Marsden Fund of the Royal
ciety of New Zealand and The University of Auckland R
search Fund.
@1# M. R. Andrewset al., Science275, 637 ~1997!; E. A. Burt
et al., Phys. Rev. Lett.79, 337 ~1997!.

@2# E. M. Wright et al., Phys. Rev. A56, 591 ~1997!.
@3# M. Lewenstein and L. You, Phys. Rev. Lett.77, 3489~1996!;

Y. Castin and J. Dalibard, Phys. Rev. A55, 4330 ~1997!; J.
Javanainen and M. Wilkens, Phys. Rev. Lett.78, 4675~1997!.

@4# W. H. Zurek, Phys. Today44 ~10!, 36 ~1991!, and references
therein.

@5# M. H. Andersonet al., Science269, 198 ~1995!; K. B. Davis,
et al., Phys. Rev. Lett.75, 3969 ~1995!; C. C. Bradleyet al.,
ibid. 78, 985 ~1997!.

@6# D. Jaksch, C. W. Gardiner, and P. Zoller, Phys. Rev. A56, 575
~1997!.

@7# J. Anglin, Phys. Rev. Lett.79, 6 ~1997!.
@8# C. W. Gardiner and P. Zoller, e-print cond-mat/9712002.
@9# D. Jakschet al., e-print cond-mat/9712206.

@10# H. M. Wiseman and J. A. Vacaro~unpublished!.
@11# J. Javanainen, Phys. Rev. Lett.57, 3164~1986!.
@12# F. Dalfovo, L. Pitaevskii, and S. Stringari, Phys. Rev. A54,
4213 ~1996!.

@13# G. J. Milburnet al., Phys. Rev. A55, 4318~1997!.
@14# A. Smerziet al., Phys. Rev. Lett.79, 4950~1997!.
@15# I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A57, R28

~1998!.
@16# M. W. Jack, M. J. Collett, and D. F. Walls, Phys. Rev. A54,

R4625~1996!.
@17# J. Ruostekoski and D. F. Walls, Phys. Rev. A56, 2996~1997!.
@18# J. F. Corney and G. J. Milburn, e-print cond-mat/9712282.
@19# D. F. Walls and G. J. Milburn, Phys. Rev. A31, 2403~1985!.
@20# F. T. Arecchiet al., Phys. Rev. A6, 2211~1972!.
@21# K. Mo” ller, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B10,

524 ~1993!, and references therein.
@22# J. Javanainen and J. Ruostekoski, Phys. Rev. A52, 3033

~1995!.
@23# J. Ruostekoskiet al., Phys. Rev. A57, 511 ~1998!.
@24# E. L. Bolda, S. M. Tan, and D. F. Walls, Phys. Rev. Lett.79,

4719 ~1997!; R. Walser,ibid. 79, 4724~1997!.


