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Stable bound states okt +Li and e*+Na
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Using model potentials to describe the ionic cores, we have approximated thei and e* +Na systems
as quasi-three-body problems and performed adiabatic hyperspherical calculations to search for the existence
of bound states. We have confirmed the existence of a bound sta& feti that was first predicted by
Ryzhikh and Mitroy[Phys. Rev. Lett21, 4124(1997] with a binding energy of 58 meV. Further, we predict
the existence of a stable bound stated6r- Na with a binding energy of 7 meV and explain why bound states
exist for these two systems but not for thé+H system, despite the fact that Hhas a higher binding energy
than either Lir or Na . Based on this work, we find that it is unlikely that positrons can form stable bound
states with any other of the alkali-metal atoms.
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Atomic and molecular negative ions in which an electroncal approach has been used to calculate the scattering cross
binds itself to a neutral atom or molecule are well known insections of positrons with atoms to look for resonarée§|,
nature. The question of whether a positron can bind itself tdout has never been applied to Li and Na targets. The close-
an atom or a molecule to form an electronically stable state isoupling approach has been used édr collisions with Li,
less well understood. For the simplest three-body system, dput no search for the bound states has been repérted
electron can form a stable bound state with atomic hydrogeAlthough positrons are claimed to be capable of forming
with a binding energy of about 0.75 eV, but a positron andbound states with Mg, Zn, and other atoms from many-body
an atomic hydrogen cannot form a stable bound state. Howealculationg8], this conclusion is not generally accepted.
ever, it has been shown recently by Ryzhikh and Mitfby In our calculation, we trea¢™ +Li as a three-body sys-
that a positron and a neutral Li atom can form a stable bountem, consisting of a Li core, an electron, and a positron.
state, with a binding energy of about 59 meV. Their calcu-The Li* core is represented by a model potential with the
lation was based on the stochastic variational method. lparameters adjusted to fit the Li bound-state energies, If
particular, they used Gaussian basis functions in which thér_) is the distance of the positrgelectron from the core,
nonlinear parameters were optimized using the stochastige define the hyperradius to Re= \/r2++r2, and the hyper-
technique of Varga and Suzuk?]. Their prediction is in  angle to be tag=r, /r_. In this paper we consider the
disagreement with the earlier negative results from the=Q case, which is most favorable for the existence of bound
configuration-interaction-Hylleraas calculations of CIa8}  states. The wave function then is described by the three in-
and from Yoshida and Miyakp4], who used the diffusion  ternal coordinate®, ¢, and 6, whered is defined to be the
quantum Monte Carlo method. angle between the positron and the electron with respect to

One of the most powerful theoretical techniques forthe Li* core. The Schidinger equation is then given kin
searching for stable bound states in few-body systems is th@omic units [9]

hyperspherical method within the adiabatic approximation.
In this approach, the adiabatic hyperspherical potential is

first calculated. If the potential curve is repulsive, there is no 1 2 A2-1
possibility for the existence of any bound states. If the po- — s ==t ==
tential curve is both attractive and deep enough, then stable 2 R 2R
bound states are expected. This method has been used to

identify the existence of bound states and resonances in

: : : I—al ,\ is the grand angular-momentum operator ahib
variety of three-body and four-body systems. In this Rapid ere . .
Communication, we report hyperspherical calculations fOIIhe potential among the three charged particles. Note that the

the e* +Li system, which supports the positive result of wave function has been rescaled by a fa@dF sin ¢ cos b

Ryzhikh and Mitroy[1]. In addition, we show that a similar In _order to eI|m|'nate. first derivatives iR anq ¢. In the .
bound state exists for the" + Na system that has a binding adiabatic approximation, the total wave function is approxi-

- mated asy(R, ¢,0)=F(R)P(R;¢,6), where the “channel
energy of approximately 7 meV. In the past, the hyperSphenfunction” ®(R: ¢.6) is the solution of

+V(R,¢,0) | y=Ey. @
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with R treated as a parameter. This equation is solved using
the finite-element methd®]. Thenth eigenstate for channel

v is then obtained by solving the one-dimensional hyperra- — ::klla
dial equation
1 d? R
5 gz T YR+ W,y (R) | Fun(R)=EyF (R, £ s
() £

where W, (R)=—3(® |d¥dR?|®,) is the so-called

second-order diagonal coupling termuifs the lowest chan-

nel, it can be shown that the lowest eigenenergy obtained

from Eq. (3) gives an upper bound, while the eigenvalue

obtained without théV,, term gives a lower bounfLO]. 06 . ‘ .
The effective interaction among the three charged par- 0.0 5.0 10.0 15.0 20.0

ticles is given byV=V,,+ V,5+ Vo3, Where we use 1, 2, and R{au)

310 de_note the Li cpre., the ppsitron,_and the electron, FIG. 1. TheL=0 adiabatic hyperspherical potential curtie-

respectively. Thee’-Llf interactionVy3 is the sum of a  ¢yding the diagonal coupling tejmhat supports the bound state

static potential, a localized exchange potentl], and an  for the e* +Li system (solid line and for thee*+Na system

obtained from the two 4 wave functions obtained by cally.

performing Hartree-Fock self-consistent-field calculation
for Li, which thus accounts for the relaxation of the core e have also performed similar calculations for #ie

orbital. The I00|af|Z%t|0n potential has the forMy(r) 1 Na system. The model potentials between each pair of par-
=— a/2r*(1-e "), where «=0.1923[13] is the di- ticles are generated in the same fashion asefot Li. The

pole polarizability for Li* andr is the cutoff radius ob- dipole polarizability ise=0.9448[13] and the fitted cutoff
tained by fitting so that the ground- and excited-state enerradius isr.=1.05. We first checked the results for Na
gies of Li are well reproducedr{=0.613). For the where the adiabatic hyperspherical method obtains a binding
interactionV,, between the Li core and the positron, the energy of 0.0393 Ry, to be compared with the experimental
static part of the potential is the same asvipy, except of  value of 0.0402 Ry. For the™ + Na system, the potential
opposite sign; there is no exchange term, and the polarizatioturve shown in Fig. 1 gives a binding energy of 0.000 51 Ry,
potential is the same as M;;. The potentialV,; between or about 7 meV. Even though this is a small value, we be-

the positron and the electron is lieve that the bound state does indeed exist, since we expect
1 the calculated binding energy to be an upper bound for a
Vpg= — — +2 cos V(T OVo(F), 4) given model potential The upper bound is not rigorous here

since the potential curve shown is not the lowest one in the
present model calculation. There are three unphysical curves
where the second term is the so-called dielectronic correctiothat approach thesl 2s, and 2 orbitals of N& asymptoti-
to the polarization potentidtil4]. Note that this term, which cally, but they are well separated from the present curve of
is due to the polarization of the core, has the effect of reducinterest) Furthermore, as stated above, the equivalent calcu-
ing the interaction between the two “bare” charges. lation for Na gives a bound state at0.0393 Ry, which is

We used the model potential described above to calculatabove the experimental value of0.0402 Ry. In other
the lowest few hyperspherical potential curves for #ie  words, the binding energy for the” + Na system is likely to
+Li system. In order to check the validity of the model be somewhat larger than 7 meV. We mention that the hyper-
potential and the adiabatic approximation used, we first perspherical approach has no difficulty finding bound states that
formed the calculation for the Li system. Including the are very close to the threshold. For states that are near the
second-order nonadiabatic coupling tek,,, the calcu- threshold, the wave functions extend over the laRyegion
lated Li~ ground-state energy is 0.0441 Ry, compared withwhere the asymptotic potentials are well known. Thus the
the experimental result of 0.0458 Ry. small error in the potential curve in the smRllregion has

In Fig. 1 we show the adiabatic potential curves &r  less effect on the calculated energies for these diffuse bound
+Li and e +Na that asymptotically approach the ground states. For instance, the two weakly bound states irfiieg
state of Ps. The potential curves that approach the grourigimer have been accurately obtained using this mefSgd
state of Li and of Na lie higher. From the" + Li potential To explore the sensitivity of the calculated binding energy
curve, we solved the one-dimensional eigenvalue problenfor the e +Na system on the model potential used, we ar-
Eg. (3), and obtained a binding energy of 0.004 27 Ry, orbitrarily altered the cutoff radius parametey from 1.05 to
58.1 meV, which should be compared with the valuel.5. The resulting binding energies in rydbergs for the two
0.004 34 Ry(59 me\) obtained by Ryzhikh and Mitrofl]. = models and from the experiment a(@.377 81, 0.373 32,
Thus, we confirm the existence of an electronically stabled.377 7} for 3s, (0.143 37, 0.142 35, 0.143 15or 4s,
bound state for thee® +Li system. Note that its binding (0.22594, 0.224 36, 0.223p9for 3p, and (0.111 89,
energy is much less than the binding energy of 623 meV fof.111 85, 0.111 8for 3d, respectively; i.e., the new poten-
Li™. tial is not as attractive as the fitted one. With the new

ro—r|



RAPID COMMUNICATIONS

R6 YUAN, ESRY, MORISHITA, AND LIN PRA 58
-0.2 v 09 A
\ 0.8 4
-03 | ‘\\ 1 0.7 A a g \ \
oat \ 1 0.6 7y ON \
0.4 \\ gi a ', ..?s‘\\\\\\t\‘\\\\
-05 | M e cmmmammmmm e m =] 4 7 Iu n W
= 03 /i m,, ': \\\ M“ \
& 06} ] 02 Mgy "" ‘ \\\\\\\ ,
= :l iy I:, Iy m\ O T 1
£ 01 R M\\‘ \\\\\\\\\\‘53\ 08
5 07 ] 0 ity ’"Hu"': RN Il
0 I gl [t nm\\ N
08 ] 1, llllm ,', o/
0.9 d'n 05 0
10}
-1 . . .
0.0 5.0 10.0 15.0 6
R(a.u.)
5
FIG. 2. The two lowest. =0 adiabatic hyperspherical potential 4
curves for thee™ +H system. 3
=1.5, the calculated binding energy for thé+ Na system 2
is 4.2 meV. We emphasize that the second term in(Bqis 1 !
needed. If this term is neglected then the calculated binding 9,

energy for thee™+Na system is 14 meV.Recently,
Ryzhikh et al. [11] have calculated the binding energy for
this system to be at 4.8 meV. They also used the model
potential approach, and the resulting three-body system was
solved using the stochastic variational method. Their model

potential between the electron and the *Neore differs 37
somewhat from ours. Their binding energies fat 3s, 3p, 25
and 3 are 0.363 62, 0.140 15, 0.219 26, and 0.11147 Ry, -
respectively).

The above calculation clearly confirms the existence of a '
stable bound state for the" + Li system forL=0, as pre-
dicted by Ryzhikh and Mitroy1]. We have also predicted 05
the existence of a bound state for #ie+ Na system. On the 0, >
other hand, the existence of such bound states is quite unex-
pected since it is known that there are no bound states for the
e’ +H system, despite the fact that Hhas a larger binding
energy(0.75 e\j than either Li or Na~ (binding energies of FIG. 3. Density plots of the channel wave functions in tief)
0.623 eV and 0.547 eV, respectivelyffhus, one of the re- plane. For the™ +H system:(a) the first channel aR=3 a.u.;(b)
maining issues is to understand why a positron cannot binthe second channel &=8 a.u.; (c) similar plots for thee™ + Li
itself to H but can to Li and Na. system aR=6 a.u.

In Fig. 2 we show the two lowedt=0 potential curves
for the e” + H system. The first curve has a minimumRit 7. Thus, near the potential minimum the three-body system
=3 a.u. and approaches the Hjllimit asymptotically, behaves like a positrooutsidea hydrogen atom. For the
while the second curve has a minimumRat8 a.u. and ap- second curve, the density distribution peaks ngarr/4 [see
proaches the Psg) limit asymptotically. In Figs. 8) and  Figs. 3b)], indicating that the positron and the electron are at
3(b) we show the probability densities of the channel func-the same distance from the"Hon. Furthermore, the range of
tions @, at their potential minimaR=3 and 8 a.u., respec- @is limited, so that the three charged particles approximately
tively. For comparison, the density fe" +Li at the mini-  form an isosceles triangle with the electron and the positron
mum (R=6a.u.) of the potential curve in Fig. 1 is also at the base and the'Hon at the top. Since the positron and
shown in Fig. &c). In order to understand these figures, it isthe electron are separated by about 2 a.u. and the plot is for
useful to recall the definition of the hyperspherical coordi-R=8 a.u., one can calculate that the distance from the proton
nates above. If the positron is farther away from the nucleu$o the electrorfand positronis about 6 a.u. At this distance,
than the electron, thew is betweenn/4 and «/2. If the  while H™ can polarize Ps, it is too far for the polarization
electron and positron form a pair, with nearly equal distancepotential to form a bound state for the three particlgs.
from the ion, thenp is close ton/4. Recall also that the angle bound state belonging to this channel would actually be a
0 is between the electron and the positron with respect to theesonance, since it can decay to the lower chapnel.
ion. Fore™ +H, from Fig. 3a), the density is distributed We next examine Fig.(8) to see if we can find a plau-
over the range of betweenn/4 and=/2; i.e., the positron in  sible explanation for the existence of the calculated bound
general is farther away from the nucleus than the electron. Astate fore™ +Li. This figure clearly shows that the" + Li
the same time, the probability density rangegifiom 0 to  system has the shape of an isosceles triangle also,efith
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ande™ at the base and Liat the top. Since the electron and lations by Igarashi and Shimamur@] show that the poten-
the positron have a mean distance of 2 a.u. and the potentiiftl minimum occurs aR around 7 or 8 a.u. The existence of
curve has its minimum aR=6 a.u., one can calculate that a bound state in this system despite this lafgeés consistent

the distance between the electigositron and Li* is about ~ with our explanation, since the positronium experiences a
4.2 a.u.—about 30% smaller than the distance between tHarger nuclear charge of 2.

electron(positron and H" in the et +H system. Thus, the In conclusion, we have performed adiabatic hyperspheri-
isosceles triangle for the® + Li system is rather flat, as can cal calculations on the™ + Li and e™ + Na systems to search
be seen from the larger range éfby comparing the range for the possible existence of bound states. Eor-Li we

of @ in Figs. 3b) and 3c)]. The proximity of Li* to the  confirmed the result of Ryzhikh and Mitrdyt] that a bound
positronium results in a stronger attraction among the threetate exists at about 58 meV, and &r+ Na we predicted a
particles so as to form a stable bound state. The same qualiound state with a binding energy of about 7 meV. We ana-
tative discussion can also be appliedefo+ Na. The poten-  |yze the condition for the existence of such bound states and
tial minimum for this system is at abo®=6.5 a.u., so that explain why such bound states occur in the present two sys-
the distance from the eleptrcﬁand positronto Na* is about tems, but not for the@* + H system, in spite of the fact that
4.5 a.u., and the calculation shows that a_weakly bound sta{g- pas a higher binding energy than the corresponding Li
still exists. On the other hand, the binding energy has dezng Ng jons. We also tentatively conclude that positrons

creased significantly compared & +Li. We thus antici-  cannot form bound states with other heavier alkali-metal at-
pate that a positron cannot bind itself to heavier alkali-metaly o

atoms like K and Cs. Although the possible bound states will

have the same shape of an isosceles triangle, the ion core will This work is supported in patd.M.Y., T.M., and C.D.L).

be too far from the Ps to achieve binding. In fact, the boundby the Division of Chemical Sciences, Office of Basic En-

states found for Li and Na targets here are likely the excepergy Sciences, Office of Energy Research, U.S. Department

tion rather than the norm. of Energy. B.D.E. is supported by the National Science
We mention that there is a Feshbach resonance associatEdundation through a grant for the Institute for Theoretical

with the Ps(%) threshold for thee™ + He" system that can Atomic and Molecular Physicd TAMP) at Harvard Univer-

be considered to be a bound state of HePs(1s). Calcu-  sity and the Smithsonian Astrophysical Observatory.
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