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Impact of spontaneous spatial symmetry breaking on the critical atom number
for two-component Bose-Einstein condensates
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Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusett

~Received 13 August 1998!

The consequences of spatial symmetry breaking in two-component Bose-Einstein condensates are explored
for the 85Rb187Rb system. It is shown that the mean-field critical number of85Rb atoms depends strongly on
whether the single-particle wave function is symmetry preserving or symmetry breaking. This system thus
provides a uniquely straightforward experimental means of observing spatial symmetry breaking.
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PACS number~s!: 03.75.Fi, 05.30.Jp
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Two-component atomic Bose-Einstein condensates
play a wide variety of interesting ground-state structures
large part, the sheer number of parameters available—t
trapping frequencies for each species, three scatte
lengths, and the number of atoms of each species—ren
this multiplicity possible. Add to this list the effects of ex
ternal fields, including gravity, and the possible combin
tions are virtually endless. The description of the system
mean fields plays a large role also, since the reduction of
linear many-body Schro¨dinger equation to a system of effe
tive single-particle equations yields nonlinear equatio
Nonlinear equations can display a quite complicated dep
dence on the parameters involved.

Only a few small regions of this parameter space h
been explored either theoretically or experimentally, ho
ever. Nevertheless, interesting phenomena such as gra
tional separation@1#, phase separation@2,3#, and spontaneou
spatial symmetry breaking@4–6# have been predicted. O
these, only the first—the effect of gravity—has been o
served experimentally@7#. The second is merely a matter o
finding and condensing a system with appropriate scatte
lengths. But, the third effect, spontaneous spatial symm
breaking, generally requires a somewhat subtle measure
in order to be seen@6#. I present in this paper a special ca
for which the consequences of spontaneous spatial symm
breaking can be experimentally observed by relativ
straightforward means.

A single condensate with a negative scattering len
whose number exceeds a critical value is unstable with
spect to recombination processes that eject atoms from
trap @8#. The same instability persists for two-compone
condensates when one of the intraspecies scattering len
is negative. The combination of85Rb and 87Rb in their
uF53, MF53& andu2,2& hyperfine states, respectively, is on
such system. I will show below that the critical number
85Rb atoms depends strongly on whether or not the me
field solution is symmetry preserving. Thus, an experimen
measurement of the critical number of85Rb atoms will be a
clear indicator of spatial symmetry breaking. The cavea
that a condensate of85Rb and87Rb has yet to be successful
created experimentally. On the other hand, any two-spe
system that shares the same characteristics as the85Rb187Rb
system~one negative intraspecies scattering length, the o
PRA 581050-2947/98/58~5!/3399~4!/$15.00
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positive, and a positive interspecies scattering length! will
presumably be a candidate for experimentally observing s
tial symmetry breaking.

Spontaneous spatial symmetry breaking occurs only
particular combinations of the parameters listed above an
characterized by the fact that the solutions of the mean-fi
~or Hartree-Fock! equations do not possess the spatial sy
metries of the original many-body Hamiltonian. The exa
ground state of the system must, of course, retain these
tial symmetries and so a symmetry-restored wave func
should be constructed from the symmetry-broken mean-fi
solution in order to calculate physical observables. In an i
tropic trap or a pancakelike cylindrically symmetric tra
symmetry breaking means that the rotational symmetry
broken. In a cigarlike cylindrically symmetric trap or a com
pletely anisotropic trap, the parity in the weakest trap dir
tion is broken. By forcing the trap symmetry onto th
Hartree-Fock solution, a symmetry-preserving solution c
also be found. In symmetry-breaking regimes, however
has a higher total energy than the symmetry-breaking s
tion, and is rejected in favor of the latter in accord with t
variational principle.

The trap considered in this paper is the cigarlike trap fr
the experiment of Myattet al. @7# and thus will display a
broken parity symmetry. Since the mean-field critical nu
ber for a single condensate with a negative scattering len
increases with decreasingv ~Nc}v21/2 in an isotropic trap
of frequencyv!, I will use frequencies near the lowest po
sible ones in that experiment@9#, nr512 Hz andnz56 Hz.
Even for these frequencies, the critical number for a sin
condensate of85Rb atoms is only about 90 because the85Rb
scattering length is large and negative. Reliably and ac
rately measuring the number of atoms in such a small sam
is a nontrivial technical task that would only be exacerba
by reducing the critical number. It might even be hoped t
the critical number could be increased under the stabiliz
influence of the second species in a double condensate.
is not the case, however, as will be shown below.

The u3,3& and u2,2& spin states have been chosen for tw
reasons:~i! the spin-flip decay rate is sufficiently small fo
mixed species collisions, and~ii ! the magnetic moment is th
same for both species so that gravity does not break
symmetry of the trap. I have used 109.1,2400, and 210 a.u.
R3399 ©1998 The American Physical Society
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for the 87Rb intraspecies scattering length, the85Rb intraspe-
cies scattering length, and the interspecies scattering len
respectively@10,11#. Two parameters remain—the numbe
of atomsN1 and N2 ~here and below, the label 1 refers
85Rb and 2 to87Rb!.

Figure 1 shows the orbital energy«1 of 85Rb as a function
of N1 for various values ofN2 . The solid lines are for the
ground-state solution of the Hartree-Fock equations whe
they are symmetry preserving or symmetry breaking. T
dashed lines indicate the orbital energy for solutions for
to maintain thez-parity symmetry. Thus, where the solid an
dashed curves overlap, the Hartree-Fock ground state is s
metry preserving, but is otherwise symmetry breaking,
that the transition from symmetry preserving to symme
breaking as a function ofN1 can also be seen in the figur
This transition point is indicated in the figure by circles, a
the error bars simply indicate the coarseness of the gri
N1 . It is interesting to note that forN151 the mean-field
ground state is symmetry preserving in all cases.

For reference, the Hartree-Fock equations for the orb
wave functionsc i are @1–5#

@h11~N121!U11uc1u21N2U12uc2u2#c15«1c1 ,

@h21N1U21uc1u21~N221!U22uc2u2#c25«2c2 . ~1!

The one-body operatorshi in these equations include th
kinetic energy and trapping potential contributions. T
atom-atom interaction potentials have been approximate
these equations by a Diracd function pseudopotential@12#.
The coefficientUi j of thed function is 2p\2ai j /m i j , where
m i j 5mimj /(mi1mj ) is the reduced mass of atomsi and j,
with ai j their s-wave scattering length.

For single condensates with a negative scattering len
the orbital energy acquires an infinite slope at the criti
value of the number of atoms@8#. Beyond this critical value,
the system is said to be unstable against collapse. It ca
expected that the Hartree-Fock equations for a double c
densate show a similar behavior. It can be seen in Fig. 1

FIG. 1. 85Rb orbital energy«1 as a function of the numberN1 of
85Rb atoms. Various values of the number of87Rb atomsN2 are
shown—500, 1000–5000 in steps of 1000, and 10000–5000
steps of 5000—a few of which are labeled for clarity. The so
lines denote the mean-field ground-state solution; and the da
lines, the symmetry-preserving solution. The circles mark the p
at which the energies for the two types of solutions begin to devi
Also, each curve terminates at the critical number ofN1 .
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the 85Rb orbital energy does indeed repeat the single cond
sate behavior near the critical value. Since numerically so
ing Eq. ~1! is increasingly resource intensive as the critic
value is approached, I have only extended the lowest cu
(N25500) to values near the critical value. This curve illu
trates the general behavior each curve would display i
were continued to its respective critical number. In all cas
the critical value occurs within ten atoms of the final po
shown.

The main result of this paper is embodied by Fig.
namely, that the critical number for the symmetry-brok
solution is approximately half that of the symmetr
preserving solution for any given value ofN2 . The origin of
this difference is relatively straightforward to understand,
can be seen in Fig. 2. The85Rb number densities are show
for both symmetry-preserving and symmetry-breaking cas
with the numbers of atoms fixed atN1580 and N2
550 000. SinceN2@N1 , the 87Rb in all cases forms an es
sentially inert cloud aroundz50 and is thus not shown
When Eq.~1! is scaled by the harmonic-oscillator length a
energy for87Rb, the effective trapping frequency for85Rb is

in
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t

e.

FIG. 2. 85Rb number densitiesn1(x,y50,z) for ~a! the
symmetry-restored wave function Eq.~2!, ~b! the symmetry-broken
solution, and ~c! the symmetry-preserving solution forN1

580 85Rb atoms andN2550 000 87Rb atoms. SinceN2@N1 , the
87Rb number density forms a relatively imperturbable cloud n
z50. In ~a! and~c!, for instance, it fills the region between the85Rb
peaks.
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a factor ofm1 /m2 smaller. Combined with the repulsive in
terspecies interaction this weaker trap explains why the85Rb
rests at the edge of the87Rb. The85Rb lies at the ends be
cause the trap frequency in thez direction is smaller. In the
symmetry-preserving solution, the87Rb is seen to separat
the 85Rb into essentially two condensates, each of which
sustain approximately the single condensate critical num
of atoms. For the symmetry-breaking solution the85Rb at-
oms cluster at one end of the trap, behaving roughly
would a single condensate of85Rb atoms in the sense that
can only sustain about the single condensate critical num
of atoms.

The variation in the critical number of atoms in Fig. 1
a function ofN2 is due to the variation in the effective fre
quency ‘‘seen’’ by the85Rb atoms. That is, the85Rb atoms
lie at the minima of an effective potential comprised of t
trap plus87Rb mean field. Near these minima, the effecti
potential is approximately harmonic with some effective f
quency. As the number of87Rb atoms increases, the effectiv
frequency in thez direction also increases. And, since t
single condensate critical number is proportional tov21/2, it
follows that the critical number decreases as a function
N2 .

A physical wave function possessing definitez-parity
symmetry can now be constructed from the symme
broken Hartree-Fock solutions. Although the general met
of constructing symmetric wave functions from symmet
broken ones for either continuous or discrete symmetrie
well known @13#, this procedure is greatly simplified by th
fact that the symmetry-broken one is a discrete symme
Writing the many-body Hartree-Fock wave function as

FHF~x1 ,...,xN11N2
!

5c1~x1!¯c1~xN1
!c2~xN111!¯c2~xN11N2

!,

the symmetry-restored wave function is

F65N6@FHF6PzFHF#. ~2!

The normalization constantN6 is given by

N6
2252@16^PzFHFuFHF&#,

and Pz is the totalz-parity operator that changes allzi to
2zi . In terms of the orbitalsc i and their reflectionspzc i ,
the remaining matrix element inN6 is given by

^PzFHFuFHF&5^pzc1uc1&
N1^pzc2uc2&

N2.

Because the overlap of each orbital with its reflected co
terpart is raised to theNi th power, this matrix element is
essentially zero except for small numbers of atoms. T
same argument holds for the cross term arising in the ex
tation value of nearly any observable. For instance, wh
restoring the symmetry in principle lifts the degeneracy
the symmetry-broken state, in practice the splitting is ne
gible since the cross term in the total energy,

E652N6
2@EHF6^PzFHFuHuFHF&#,

is vanishingly small. When a continuous symmetry is b
ken, however, the cross terms in expectation values of
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servables likely remain non-negligible for a larger range
atom number. Nevertheless, for either discrete or continu
broken symmetries, the degenerate symmetry-broken s
decouple completely in the limit of large atom number.
course, these degenerate states can still be combined to
symmetry eigenstates.

A more suitable observable for studying the impact
restoring the symmetry is the number density. Assuming r
orbital wave functions, the85Rb number density for the
symmetry-restored wave function is

n1
6~x!5N1N6

2@ uc1~x!u21upzc1~x!u262c1~x!pzc1~x!

3^pzc1uc1&
N121^pzc2uc2&

N2#.

~The 87Rb number density can be written similarly.! The
cross term remains negligibly small, but as Fig. 2~a! shows,
the density is symmetric with respect to reflections throu
the z50 plane unlike the symmetry-broken number dens
shown in Fig. 2~b!. For comparison, the number density f
the symmetry-preserving solution is shown in Fig. 2~c!. The
symmetry-broken number density also differs from t
symmetry-preserving and symmetry-restored densities by
ing localized at one end of the trap rather than at both en
This configuration is representative of all choices ofN1 and
N2 consistent with Fig. 1, except for the smallest values
N2 for which the symmetry-preserving85Rb number density
remains localized nearz50. The number density thus pro
vides a means for distinguishing the symmetry-broken so
tion.

Since two-component condensates with one negative
traspecies scattering length have not yet been studied an
Thomas-Fermi approximation is not applicable, the dep
dence of their ground-state properties on the system’s par
eters is essentially unknown. Some of this parameter sp
was explored above for the physical scattering lengths of
85Rb187Rb system. To gain additional insight for system
with one negative intraspecies scattering length, I have s
ied the85Rb187Rb system treatinga12 as unknown. That is,
I have solved the Hartree-Fock equations with85Rb187Rb
parameters as a function ofa12. The total energies are show
in Fig. 3 for various values of N1 and fixed
N2 (N2N2 (N255000). The total energy of the groun

FIG. 3. Total energy as a function ofa12 for 5000 87Rb atoms
and different numbers of85Rb atoms as indicated. The solid line
denote the mean-field ground-state solution; and the dashed l
the symmetry-preserving solution. The circles mark the criti
value ofa12 for symmetry breaking.
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Hartree-Fock solution is given by the solid lines; and t
symmetry-preserving solution, by the dashed lines. As
Fig. 1, where the solid and dashed curves overlap, the gro
Hartree-Fock solution is symmetry preserving. The dep
dence onN1 of the critical value ofa12 above which the
Hartree-Fock solution is symmetry broken can thus be se
The circles again indicate the critical value, and the er
bars reflect the coarseness of the grid used ina12. The gen-
eral trend of the critical value ofa12(N1)—large for small
N1 and decreasing with increasingN1—is in qualitative
agreement with previous studies@6#.

I have shown that a mixed isotope condensate of85Rb and
87Rb is an excellent candidate for experimentally observ
the effects of spontaneous spatial symmetry breaking. U
the combination of a critical number measurement an
number density measurement, the three possible ground-
wave functions based on solutions of Eq.~1!—symmetry
preserving, symmetry breaking, and symmetry restored—
be distinguished. This statement, however, assumes thatz
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parity of the trapping potentials is perfect. The rotation
symmetry assumed in this paper need not be perfect. Ind
it need not be present at all. But, if thez parity is broken~by
the separation of the trap centers for each species, for
stance!, the critical number for85Rb will again be roughly
that of an isolated condensate. Moreover, the number den
will closely resemble the symmetry-broken density shown
Fig. 2~b!. Test calculations show that this is already the ca
by the time the trap centers are separated by 0.25mm.

In the course of this study of the85Rb187Rb system, I
have also mapped out the ground state properties for a
component condensate with a negative intraspecies sca
ing over a wide range of parameters. Such studies begi
provide a framework for the qualitative understanding of t
ground-state properties of other similar systems.

This work is supported by the National Science Foun
tion through the Institute for Theoretical Atomic and Mo
lecular Physics.
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