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Trapped one-dimensional Bose gas as a Luttinger liquid

H. Monien, M. Linn, and N. Elstner
Physikalisches Institut, Universita¨t Bonn, Nußallee 12, D-53115 Bonn, Germany

~Received 24 July 1998!

The low-energy fluctuations of a trapped, interacting quasi-one-dimensional Bose gas are studied. Our
considerations apply to experiments with highly anisotropic traps. We show that under suitable experimental
conditions the system can be described as a Luttinger liquid. This implies that the correlation function of the
bosons decays algebraically, preventing Bose-Einstein condensation. At significantly lower temperatures a
finite-size gap destroys the Luttinger liquid picture and Bose-Einstein condensation is again possible.
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The experimental realization of Bose-Einstein conden
tion ~BEC! in atomic vapors of87Rb @1# and 23Na @2,3# has
attracted a lot of interest@4#. Recently, a highly anisotropic
quasi-one-dimensional trap has been designed@5#. Up to
now, the possibility of BEC in one dimension has main
been discussed for the noninteracting Bose gas@6,7#. The
role of dimensionality has been carefully examined for
ideal bose gas by van Druten and Ketterle@8#. In one dimen-
sion the interaction between bosons plays an essential
due to the strong constraint in phase space@9#. The question
of BEC in a quasi-one-dimensional system is therefore m
complicated. The purpose of this paper is to demonstrate
under suitable experimental conditions the low-energy e
tations of this system are described by a Luttinger-liq
~LL ! @10# model. The superfluid correlations of a LL deca
algebraically and the system is not Bose condensed. At m
lower temperatures, which are determined by the exten
of the trap in the longitudinal direction, the spectrum of t
phase fluctuations is again cut off by finite-size effects a
the bosons could condense again.

The realization of a Luttinger liquid in a one-dimension
Bose gas would be a highly nontrivial example of an int
acting quantum liquid. Fermionic systems that are belie
to be described by a Luttinger liquid include quasi-on
dimensional organic metals@11#, magnetic chain com-
pounds, quantum wires, and edge states in the quantum
effect. While these systems are always embedded in a th
dimensional matrix and thus show a crossover to thr
dimensional behavior at low temperatures, the trapped o
dimensional Bose gas would provide a clean testing gro
for the concept of a Luttinger liquid.

The paper is organized as follows. First we discuss
circumstances under which a trapped Bose gas can be
sidered as a one-dimensional quantum system. Next we d
onstrate in an explicit calculation that there is a gapless m
with a linear dispersion. We show that the Hamiltonian
the low-lying excitations can be identified as that of a L
tinger liquid and therefore the density-density correlat
function decays algebraically. In the remainder of the pa
we discuss the implication of the algebraic decay of
particle-particle correlation function for BEC and review t
properties of a Luttinger liquid.

We consider the Bose gas in a cylindrical symmetric t
confined to thez axis by a tight trapping potential in thex-y
PRA 581050-2947/98/58~5!/3395~4!/$15.00
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plane. If the extensionL of the trap in thez direction is much
larger than its radiusR, it is justified to approximate the
potential in the longitudinal direction by zero. One
dimensional physics will be dominant, if the temperature
much lower than the energy of the lowest radial excitatio
The energy scale is set by\v' , with v' being the trap
frequency@12,13#. Thus the condition for one dimensionalit
is

\v'@kBT, ~1!

whereT the temperature of the Bose gas. A typical value
v' , which has been realized in the experiments perform
at MIT by the Ketterle group@5#, is 2p3240 Hz. In order to
realize a one-dimensional Bose gas for this value ofv' the
temperature has to be lower than 1.8 nK. Another possib
is to increase the valuev' , which might be more feasible
experimentally. For instance, permanent magnets can
used to increase trap frequencies by more than an orde
magnitude@14#.

Assuming that this condition forv' can be met experi-
mentally, we can model the system by the following Ham
tonian:

H5E d3rc†~rW !S 2
\2

2m
D1U~rW !2m Dc~rW !

1
1

2 E d3rd3r 8c†~rW !c†~rW8!gd~rW2rW8!c~rW8!c~rW !,

~2!

wherem is the atomic mass,m is the chemical potential fixed
by the particle numberN5*d3r uc(rW)u2, andg54p\2a/m
is the coupling constant, witha being thes-wave scattering
length. We only consider repulsive interactions.U
5 1

2 mv'
2 (x21y2) is the trapping potential. The field opera

tors c†(rW) and c(rW) are bosonic creation and destructio
operators.

We now illustrate that a gapless mode for a Hamiltonia
such as Eq.~2!, exists @10,15#. The dynamics ofc(rW,t) is
governed by the equation of motion

i\] tc52
\2

2m
Dc1~U2m!c1gc†cc, ~3!
R3395 ©1998 The American Physical Society
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a one-dimensional nonlinear Schro¨dinger equation, which is
well understood@10#. We merely illustrate in the following
its application to the problem of trapped bosons. For a m
roscopically occupied ground state, the operatorc can be
considered as a classical complex field. Then Eq.~3! be-
comes the Gross-Pitaevskii equation. We describe the c
plex field c(rW,t) by its density-phase representation:c(rW,t)
5Ar(rW,t) exp@iu(rW,t)#. A saddle-point solution to Eq.~3! is
given by a constant phase and static densityr(rW,t)5r0(r ),
which only depends on the radiusr , due to the axial sym-
metry of the problem. The solution of the Gross-Pitaevs
equation in a cylindrical trap and its fluctuations in t
Thomas-Fermi approximation has been discussed in deta
Zaremba@16#. We only repeat the steps of the calculati
that are necessary for our arguments. Expanding in sm
fluctuations of the phasedu and densitydr around the
saddle-point solution,

c~rW,t !5Ar01dr~rW,t !ei [u01du~rW,t !] ,

we obtain the linearized equations of motion fordr anddu,

\] tdu5gdr2
\2

4m

1

r0
¹S r0¹

dr

r0
D , ~4!

\] tdr5
\2

m
¹~r0¹du!. ~5!

These equations possess a trivial solution (dr50, du
5const) whose energy vanishes. This is the Goldstone m
corresponding to global rotations of the condensate’s ph
Radial fluctuations can be ignored, because their ene
scale is set by\v' , the trap frequency. Thus it is justified t
consider the one-dimensional limit where the equations s
plify to

\] tdu5gdr2
\2

4m

1

r0
]z

2dr, ~6!

\] tdr5
\2

m
r0]z

2du. ~7!

The solutions are plane waves~dr, du}ei (qz2vt)) with fre-
quencies

\2v25\2vs
2q21S \2

2mD 2

q4,

q5
2p

L
n, n50,1,. . . ,L21 ~8!

where the sound velocity is given byvs5Agr0 /m, which is
the Bogoliubov value for a homogeneous Bose gas~Fig. 1!.
It has been observed experimentally in anisotropic thr
dimensional traps@5#.

We draw two important conclusions from this relatio
Theq2 term cannot be treated as a small perturbation on
energy of a noninteracting Bose gas; hence the smalles
teraction changes the excitation spectrum fundamenta
c-
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The existence of a collective mode with linear dispersion
small q is a direct consequence of the interaction betwe
particles. Only for a vanishing coupling constantg, does the
spectrum reduce to that of free particles, regardless of
ground-state occupation. In a one-dimensional trap (L@R)
the phase fluctuations of the boson wave function des
superfluid order due to phase-space constraints@17#. The
finite-size gap in three-dimensional traps (L'R) introduces
a cutoff in the phase-space integrals, the phase-space a
ment does not apply@12,18#, and BEC is possible. As al
trapped Bose gases are of finite size, in principle the pho
spectrum remains discrete. The level splitting is only r
evant in the limit

kBT!\vs

2p

L
. ~9!

For the MIT trap@5# with the lengthL50.5 mm, this tem-
perature turns out to be roughly 10213 K ~assuming Na at-
oms!. Only in this limit the system can be in a Bose co
densed phase. If the lengthL is not macroscopic the gap i
the lowest mode will be appreciable and there is Bo
Einstein condensation for a finite number of particles,
pointed out by Ho and Ma@18#. We stress that this is due t
the smallness ofL and not a generic feature of the system.
setup withL comparable toR is really three-dimensional
One can check that the gap energy for a one-dimensional
found by Ho and Ma scales with the inverse axial extens
of the system and hence disappears for large systems.
conclude that forL satisfying condition~9! there is a gapless
sound mode that inhibits the formation of a condensate a
finite temperatures. Nonetheless the decay of coherenc
only weak. This is due to the fact that the system can
described as a Luttinger liquid, as now will be shown.

With the same approximation as for the equations of m
tion, the Hamiltonian in the long-wavelength limit is

FIG. 1. Qualitative behavior of the low-energy excitation spe
trum ~lower curve! for a one-dimensional trapped Bose gas. T
first radial excitation~upper curve! with energy v;v' is also
shown. The discussion in the text focusses on the role of the lo
branch.
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H5E dzF\2r

2m
~]zdu!21

k

2r2 dr2G , ~10!

wherer is the number of particles per unit length andk is the
compressibility.

The Hamiltonian, Eq.~10!, is known as the Luttinger-
liquid Hamiltonian @10,19#. This concept has been most
used to investigate the properties of fermionic systems in
dimension. The Luttinger-liquid Hamiltonian, Eq.~10!, can
be diagonalized by a Bogoliubov transformation in terms
new bosonic creation and destruction operatorsbq

† ,bq for the
long-wavelength density-fluctuation modes. This is poss
due to the linear dispersion relation. The Bogoliubov tra
formation is given by

dr5
1

&
(
qÞ0

eiqzf q~bq
†1b2q!, ~11!

]zdu5
1

&
(
qÞ0

eiqzgq~bq
†2b2q!. ~12!

The bq
† ,bq satisfy the usual boson commutation relati

@bq ,bq8
†

#5dq,q8 anddu anddr form a pair of conjugate op
erators:

@du~z!,dr~z8!#5 id~z2z8!. ~13!

This condition fixes the functionsf q andgq :

f q5Auqueaq, ~14!

gq5sgn~q!Auque2aq, ~15!

whereaq is the parameter of the Bogoliubov transformatio
Inserting the representations~11! and ~12! for dr and du,
respectively, in the Hamiltonian for the fluctuations, the L
in terms of the new bosonic operators is given by

H5 (
qÞ0

\vq~bq
†bq1 1

2 !, ~16!

with the choice exp(2aq)5\Ar/mg. The phonon frequency
is given byvq5vsuqu wherevs is the sound velocity.

One of the striking features of a Luttinger liquid is th
the model has only two microscopic parameters, the so
velocity vs and the compressibilityk. Another important
property is that the correlation functions of the original b
son operators decay algebraically in a Luttinger liquid. T
asymptotic behavior for large distances,z→`, of the boson-
boson and density-density correlation function is given
@10#

^C†~z!C~0!&;1/z1/h, ~17!

^r~z!r~0!&2^r&2;h/z2, ~18!

whereh is the correlation exponent. A useful naive estima
for h, assuming that the compressibilityk;gr2 is
e
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h5p l BA2r

a
, ~19!

where l B5A\/v'm is the magnetic length of the trap pe
pendicular to thez axis anda is the scattering length of the
trapped atoms. Because the interaction is weak we do
expect the exponenth to be renormalized substantially. Fo
current traps the exponenth is of the orderh;1000, dem-
onstrating that the phase coherence of the bosons de
only very weakly and is experimentally indistinguishab
from true BEC@20#. However, for steeper magnetic trap
v';50 kHz, particle densities ofr;104 particles/cm, and
assuming a scattering length of 110aB for Rb @21#, the expo-
nent h is h;4 and it should be possible to observe L
behavior. BelowT;0.4 nK only the linear mode is excite
and the physics is described by LL physics. At still low
temperatures,T;10212 K, the finite-size gap comes into
play @18#.

Next we compare our results to the ‘‘two-step conden
tion’’ picture put forward by van Druten and Ketterle@8#.
The authors consider anideal Bose gas in a highly aniso
tropic trap. In the noninteracting system there is no fun
mental difference between the one and three dimensions
cept in the density of states. As soon as interactions hav
be considered, the situation changes drastically. Basically
have developed a more precise physical picture of the reg
that van Druten and Ketterle call the ‘‘two-step BEC’’@8#.
Our claim is that in this regime the ground state is describ
by a Luttinger liquid and not by an ideal Bose gas.

Since the Luttinger-liquid model has a harmonic Ham
tonian, Eq.~16!, for the phase and density fluctuations, a
expectation value and dynamical correlation function of
boson operators in the long-wavelength limit can be eva
ated. Luttinger liquids are well understood and many res
can be carried over to the one-dimensional trapped Bose
At larger densities the parameters of the Luttinger-liqu
model will be renormalized from the saddle-point values
short-range fluctuations and also by the three-dimensio
density profile of the trapped Bose gas. The renormali
parameters can be obtained by considering more realistic
teractions in one dimension. For a repulsived-function po-
tential the sound velocity and the compressibility have be
obtained exactly@22#. We are currently working on model
with longer-range interactions that can be treated by
density-matrix–renormalization-group method. Results
this work will be presented elsewhere@23#. In a complemen-
tary approach, we calculate the finite-size effects in the
perimental setup on the dynamics of the bosons@24#. An-
other interesting problem that we are currently investigat
is the response of the system to an impurity atom. The fin
mass leads to an unusual behavior of the mobility@25,26#.
Also the transport properties should differ significantly fro
the conventional Bose condensate if the Bose gas is in
Luttinger-liquid regime.

To summarize, we have shown under which experimen
conditions a trapped quasi-one-dimensional system of in
acting Bosons is described by a Luttinger-liquid Ham
tonian. An experimental realization of such a system wo
provide a clean laboratory for testing the properties of a L
tinger liquid. Its behavior deviates significantly from th
noninteracting Bose gas. Unlike other systems that are r
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izations of a Luttinger liquid, three-dimensional effects b
come less important for lower temperatures. Moreover
would be possible to tune important parameters like the d
sity and the length, i.e., the trap frequencyv' , which is
impossible in a solid.
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