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Trapped one-dimensional Bose gas as a Luttinger liquid

H. Monien, M. Linn, and N. Elstner
Physikalisches Institut, Universit®onn, NuRallee 12, D-53115 Bonn, Germany
(Received 24 July 1998

The low-energy fluctuations of a trapped, interacting quasi-one-dimensional Bose gas are studied. Our
considerations apply to experiments with highly anisotropic traps. We show that under suitable experimental
conditions the system can be described as a Luttinger liquid. This implies that the correlation function of the
bosons decays algebraically, preventing Bose-Einstein condensation. At significantly lower temperatures a
finite-size gap destroys the Luttinger liquid picture and Bose-Einstein condensation is again possible.
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The experimental realization of Bose-Einstein condensaplane. If the extensioh of the trap in thez direction is much
tion (BEC) in atomic vapors of’'Rb[1] and®*Na[2,3] has larger than its radius, it is justified to approximate the
attracted a lot of intere$é]. Recently, a highly anisotropic, potential in the longitudinal direction by zero. One-
quasi-one-dimensional trap has been desigifgdd Up to  dimensional physics will be dominant, if the temperature is
now, the possibility of BEC in one dimension has mainly much lower than the energy of the lowest radial excitation.
been discussed for the noninteracting Bose [§g%. The The energy scale is set byw, , with o, being the trap
role of dimensionality has been carefully examined for thefrequency{12,13. Thus the condition for one dimensionality
ideal bose gas by van Druten and Kettef®. In one dimen- IS
sion the interaction between bosons plays an essential role hw, >kgT, (1)
due to the strong constraint in phase sp@eThe question
of BEC in a quasi-one-dimensional system is therefore morgvhereT the temperature of the Bose gas. A typical value for
complicated. The purpose of this paper is to demonstrate tha, | which has been realized in the experiments performed
under suitable experimental conditions the low-energy exciat MIT by the Ketterle group5], is 27 240 Hz. In order to
tations of this system are described by a Luttinger-liquidrealize a one-dimensional Bose gas for this value ofthe
(LL) [10] model. The superfluid correlations of a LL decay temperature has to be lower than 1.8 nK. Another possibility
algebraically and the system is not Bose condensed. At much to increase the value, , which might be more feasible
lower temperatures, which are determined by the extensiogxperimentally. For instance, permanent magnets can be
of the trap in the longitudinal direction, the spectrum of theysed to increase trap frequencies by more than an order of
phase fluctuations is again cut off by finite-size effects andnagnitude14].
the bosons could condense again. Assuming that this condition foi, can be met experi-

The realization of a L.uttinger qu.ui.d ina one—dimensional mentally, we can model the system by the following Hamil-
Bose gas would be a highly nontrivial example of an inter-tgnian:

acting quantum liquid. Fermionic systems that are believed
to be described by a Luttinger liquid include quasi-one- #2
dimensional organic metal§11], magnetic chain com- Hzf d’r l/fT(F)( ~omATUM — e
pounds, quantum wires, and edge states in the quantum Hall
effect. While these systems are always embedded in a three- 1 13 e e I
dimensional matrix and thus show a crossover to three- 3 f drd®r" g (N () ga(r =) g(r") ¢(F),
dimensional behavior at low temperatures, the trapped one-
dimensional Bose gas would provide a clean testing ground 2
for the concept of a Luttinger liquid. _ . . . e

The paper is organized as follows. First we discuss th herem is t_he atomic masgy |35 the»chzemlcal potentlgl fixed
circumstances under which a trapped Bose gas can be copY the particle numbeN = [d"r |(7)|*, andg=4fi"a/m
sidered as a one-dimensional quantum system. Next we derf?: the coupling constant, wita being thes-wave scattering
onstrate in an explicit calculation that there is a gapless mod'x’?qgth-2 V\2/e Zon!y consider repulsive interactiond)
with a linear dispersion. We show that the Hamiltonian of =zMe} (x“+y~) is the trapping potential. The field opera-
the low-lying excitations can be identified as that of a Lut-tors #'(F) and ¢(F) are bosonic creation and destruction
tinger liquid and therefore the density-density correlationoperators. o
function decays algebraically. In the remainder of the paper We now illustrate that a gapless mode for a Hamiltonian,
we discuss the implication of the algebraic decay of thesuch as Eq(2), exists[10,15. The dynamics of(rt) is
particle-particle correlation function for BEC and review the governed by the equation of motion
properties of a Luttinger liquid.

We consider the Bose gas in a cylindrical symmetric trap
confined to the axis by a tight trapping potential in they

h2
o= =S Ayt (U=t gy,
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a one-dimensional nonlinear Schinger equation, which is A
well understood 10]. We merely illustrate in the following 0]

its application to the problem of trapped bosons. For a mac- EL
roscopically occupied ground state, the operatocan be
considered as a classical complex field. Then &).be- 81
comes the Gross-Pitaevskii equation. We describe the com-
plex field #(r,t) by its density-phase representatiaf(r,t)
=/p(F,t) exdif(rt)]. A saddle-point solution to Eq3) is
given by a constant phase and static deng(ty,t) = po(r),
which only depends on the radius due to the axial sym- q-
metry of the problem. The solution of the Gross-Pitaevskii
equation in a cylindrical trap and its fluctuations in the
Thomas-Fermi approximation has been discussed in detail by >
Zaremba[16]. We only repeat the steps of the calculation
that are necessary for our arguments. Expanding in small
fluctuations of the phas&d and densitydp around the T 05 T
saddle-point solution, )

W(F,1) = po+ op(F,1)ell%ot 00l

we obtain the linearized equations of motion #rand 56,

Y

qR

-

FIG. 1. Qualitative behavior of the low-energy excitation spec-
trum (lower curve for a one-dimensional trapped Bose gas. The
first radial excitation(upper curve with energy w~w, is also
shown. The discussion in the text focusses on the role of the lower

L soeas 52 1 V( . 5p) @ branch.
t gop am pg Po o0’
5 The existence of a collective mode with linear dispersion for
h small q is a direct consequence of the interaction between
haop= m V(poV 56). ®) particles. Only for a vanishing coupling constapntdoes the

spectrum reduce to that of free particles, regardless of the
These equations possess a trivial solutiofp£€0, 56  ground-state occupation. In a one-dimensional tlap R)
= const) whose energy vanishes. This is the Goldstone mod&e phase fluctuations of the boson wave function destroy
corresponding to global rotations of the condensate’s phassuperfluid order due to phase-space constrdih@. The
Radial fluctuations can be ignored, because their energfjnite-size gap in three-dimensional trags~R) introduces
scale is set byiw, , the trap frequency. Thus it is justified to a cutoff in the phase-space integrals, the phase-space argu-
consider the one-dimensional limit where the equations simment does not apply12,18, and BEC is possible. As all

plify to trapped Bose gases are of finite size, in principle the phonon
spectrum remains discrete. The level splitting is only rel-
. ht 1, evant in the limit
0t59—95p—m% 976p, (6)

2
kgT<hvsT—. 9)

h2

— 2
hd bp= Epoaz o0. (7)
For the MIT trap[5] with the lengthL=0.5 mm, this tem-
perature turns out to be roughly 18 K (assuming Na at-
oms. Only in this limit the system can be in a Bose con-
densed phase. If the lengthis not macroscopic the gap in
the lowest mode will be appreciable and there is Bose-

The solutions are plane wavép, 56xe'(9z~ V) with fre-
guencies

2\2
h2w2:h2v2q2+ h_) q4
s 2m '

8

where the sound velocity is given layx=/gpo/m, which is
the Bogoliubov value for a homogeneous Bose @ag. 1).

Einstein condensation for a finite number of particles, as
pointed out by Ho and MAL8]. We stress that this is due to
the smallness df and not a generic feature of the system. A
setup withL comparable taR is really three-dimensional.
One can check that the gap energy for a one-dimensional trap
found by Ho and Ma scales with the inverse axial extension
of the system and hence disappears for large systems. We
conclude that fok. satisfying condition9) there is a gapless

It has been observed experimentally in anisotropic threesound mode that inhibits the formation of a condensate at all

dimensional trap$5].

finite temperatures. Nonetheless the decay of coherence is

We draw two important conclusions from this relation. only weak. This is due to the fact that the system can be
The g? term cannot be treated as a small perturbation on theescribed as a Luttinger liquid, as now will be shown.
energy of a noninteracting Bose gas; hence the smallest in- With the same approximation as for the equations of mo-
teraction changes the excitation spectrum fundamentallytion, the Hamiltonian in the long-wavelength limit is



RAPID COMMUNICATIONS

PRA 58 TRAPPED ONE-DIMENSIONAL BOSE GAS AR&\... R3397
h2p K 2p
H=f dz m(azaa)%ﬁa& , (10) nzwlB\/? (19

wherep is the number of particles per unit length anis the  wherelg= J#/w, m is the magnetic length of the trap per-
compressibility. pendicular to the axis anda is the scattering length of the
The Hamiltonian, Eq.(10), is known as the Luttinger- trapped atoms. Because the interaction is weak we do not
liguid Hamiltonian[10,19. This concept has been mostly expect the exponeny to be renormalized substantially. For
used to investigate the properties of fermionic systems in oneurrent traps the exponentis of the orderp~21000, dem-
dimension. The Luttinger-liquid Hamiltonian, E¢LO), can  onstrating that the phase coherence of the bosons decays
be diagonalized by a Bogoliubov transformation in terms ofonly very weakly and is experimentally indistinguishable
new bosonic creation and destruction operatxjrs)q forthe  from true BEC[20]. However, for steeper magnetic traps,
long-wavelength density-fluctuation modes. This is possiblas, ~50 kHz, particle densities gf~10* particles/cm, and
due to the linear dispersion relation. The Bogoliubov trans-assuming a scattering length of Bk0for Rb[21], the expo-

formation is given by nent » is »~4 and it should be possible to observe LL
behavior. BelowT~ 0.4 nK only the linear mode is excited
1 _ and the physics is described by LL physics. At still lower
Sp=— > €% (bl+b_g), (1)  temperaturesT~10 2K, the finite-size gap comes into
V2 470 play [18].

Next we compare our results to the “two-step condensa-
1 iqz + tion” picture put forward by van Druten and Ketter]&].
0,00=— >, e¥gy(bi—b_g). (120 The authors consider aideal Bose gas in a highly aniso-
V2 q#0 . . K .
tropic trap. In the noninteracting system there is no funda-

+ . . . _mental difference between the one and three dimensions, ex-
The by ,b, satisfy the usual boson commutation relation . : : .

e ) _ cept in the density of states. As soon as interactions have to
[Dg.bg 1= g @and 56 and dp form a pair of conjugate op- e considered, the situation changes drastically. Basically we
erators: have developed a more precise physical picture of the regime

. ) , that van Druten and Ketterle call the “two-step BEC8].
[06(2),0p(2')]=16(z—2"). (13)  Our claim is that in this regime the ground state is described
_ o _ by a Luttinger liquid and not by an ideal Bose gas.
This condition fixes the functionf, andgg: Since the Luttinger-liquid model has a harmonic Hamil-
tonian, Eq.(16), for the phase and density fluctuations, any
fq=Vlale, (14  expectation value and dynamical correlation function of the
boson operators in the long-wavelength limit can be evalu-
gq=s9nq)[ale %, (15  ated. Luttinger liquids are well u.ndersyood and many results
can be carried over to the one-dimensional trapped Bose gas.

wherea, is the parameter of the Bogoliubov transformation. At larger densities the parameters of the Luttinger-liquid
|n5erting the representatiomﬁl) and (12) for 5p and 56, model will be renorma“zed from the Sadd|e-pOInt ya|ueS_ by
respectively, in the Hamiltonian for the fluctuations, the LL short-range fluctuations and also by the three-dimensional

in terms of the new bosonic operators is given by density profile of the trapped Bose gas. The renormalized
parameters can be obtained by considering more realistic in-

teractions in one dimension. For a repulsigéunction po-
H=2> fwg(bibg+ 3), (16)  tential the sound velocity and the compressibility have been
a%0 obtained exactly22]. We are currently working on models
. ) with longer-range interactions that can be treated by the
with the choice exp(@;)=7yp/mg. The phonon frequency yensity-matrix—renormalization-group method. Results of
is given byw,=v4|q| wherevs is the sound velocity. this work will be presented elsewhdi23]. In a complemen-
One of the striking features of a Luttinger liquid is that 51y approach, we calculate the finite-size effects in the ex-
the model has only two microscopic parameters, the Sounﬂerimental setup on the dynamics of the bosf2@. An-
velocity vs and the compressibilitye. Another important  giher interesting problem that we are currently investigating
property is that the correlation functions of the original bo- s the response of the system to an impurity atom. The finite
son opergtors de_cay algebraicglly in a Luttinger liquid. Theqmass leads to an unusual behavior of the mobil2y, 26.
asymptotic behavior for large distances; -, of the boson-  aisg the transport properties should differ significantly from
boson and density-density correlation function is given byihe conventional Bose condensate if the Bose gas is in the

[10] Luttinger-liquid regime.
N N To summarize, we have shown under which experimental
(Y(2)Ww(0))~1/z"7, (17 conditions a trapped quasi-one-dimensional system of inter-
acting Bosons is described by a Luttinger-liquid Hamil-
(p(2)p(0))—(p)2~ nl 22, (18 tonian. An experimental realization of such a system would

provide a clean laboratory for testing the properties of a Lut-
where# is the correlation exponent. A useful naive estimatetinger liquid. Its behavior deviates significantly from the
for #, assuming that the compressibiliky~gp? is noninteracting Bose gas. Unlike other systems that are real-
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izations of a Luttinger liquid, three-dimensional effects be- We would like to acknowledge useful discussions with V.
come less important for lower temperatures. Moreover, itGomer, T.-L. Ho, W. Ketterle, M. Ma, D. Meschede, A. A.

would be possible to tune important parameters like the derNerseseyan, A. J. Millis, V. Rittenberg, and H.-J. Schulz.
sity and the length, i.e., the trap frequeney , which is  H.M. acknowledges the hospitality of the Aspen Center for
impossible in a solid. Physics.
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