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Mesoscopic motion of atomic ions in magnetic fields
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We introduce a semiclassical model for highly excited atomic ions moving in a magnetic field, which allows
us to describe the mixing of the Landau orbitals of the center of mass in terms of the electronic excitation and
magnetic field. The extent of quantum energy flow in the ion is investigated and a crossover from localization
to delocalization with increasing center of mass energy is detected. Our model of the moving ion in a magnetic
field turns out to be closely connected to models for transport in disordered finite-size wires.
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Interacting particle systems in strong magnetic fie
show a rich variety of complex phenomena. The source
this complexity is competition between the magnetic a
Coulomb interactions, which are of inherently different ch
acter. With changing strength of the external field the cor
sponding systems undergo a metamorphosis involving qu
tatively different states. In atomic physics attention focus
for more than a decade on the hydrogen atom in a magn
field ~see Ref.@1# and references therein! on which detailed
experimental and theoretical investigations yielded many
cellent insights into semiclassical and quantum aspect
nonintegrable systems and significantly enhanced our un
standing of the new features arising due to the presenc
the external field. With an increasing degree of excitat
and/or increasing field strength the electronic motion of
classical atom shows a transition from regular to irregu
i.e., chaotic behavior and intermittency. More recently it h
become evident that the nonseparability of the collecti
i.e., center of mass~c.m.! and electronic motion of atoms i
the presence of a magnetic field, leads to a variety of tw
body phenomena. The corresponding coupling of the c
and electronic motion is fundamentally different for neut
and charged systems. Examples of two-body effects in n
tral systems are the classical chaotic diffusion of the c.m.@2#
or the existence of weakly bound giant dipole states@3#. For
atomic ions the interaction of the c.m. and electronic degr
of freedom is more intricate and manifests itself in a contin
ous, classical flow of energy from the collective to the int
nal motion and vice versa. Detailed studies of the class
dynamics of rapidly moving highly excited He1 ions in a
magnetic field showed that this energy exchange leads to
self-ionization process@4# of the ion. Very little, however, is
known about the quantum properties and behavior of mov
highly excited atomic ions.

Using Landau orbitals for the c.m. motion in zeroth-ord
and fixed nucleus zero-field wave functions for the electro
motion to estimate their coupling matrix elements, it w
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demonstrated@5# that there exist a number of different phys
cal situations for which the interaction between the collect
and electronic motion becomes strong. The latter induce
strong mixing of the c.m. and electronic motion and is
potential source of interesting quantum properties of the i
in particular when the dynamics of the corresponding cla
cal ion is chaotic. A detailed investigation of the coupl
c.m. and electronic motion of the highly excited quantu
mechanical ion in this regime, which is the subject of inter
in the present paper, is, however, a highly nontrivial task:
are dealing with five nonseparable and strongly mixing
grees of freedom in a regime of very high level densi
which depends on a number of parameters~field strength,
total energy, etc.!. The ab initio description of the quantum
dynamics in the above regime goes even beyond mod
computational possibilities and we thus seek a model
proach that captures the essential physics of the prob
Here we propose and analyze a semiclassical model of
excited ion, and explore the consequences of coupling
tween its c.m. and electronic degrees of freedom.

Since we deal with the interaction of the c.m. and ele
tronic motion in atomic ions we first have to introduce co
lective ~c.m.! and relative variables in the Hamiltonian d
scribing the atom. The total pseudomomentumK @6# is a
conserved quantity associated with the c.m. motion, wh
in spite of the fact that its components perpendicular to
magnetic field are not independent, i.e., do not commute,
be used to transform the Hamiltonian to a particularly sim
and physically appealing form@5#, which for the He1 ion
readsH5H11H21H3 where
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where m, M0 , and M are the electron, nuclear, and tot
mass, respectively.a5(M012m)/M and Q is the net
charge of the ion.B is the magnetic field vector, which i
assumed to point along thez axis. ~R,P! and ~r,p! are the
canonical pairs for the c.m. and internal motion, respectiv
H involves five degrees of freedom, since parallel to
magnetic field the c.m. undergoes free translational mo
and can be separated completely.
H1 andH3 depend exclusively on the c.m. and electron

degrees of freedom, respectively.H1 describes the free mo
tion of a c.m. pseudoparticle with chargeQ and massM . H3

describes the electronic motion in the presence of param
netic, diamagnetic, as well as Coulomb interactions, wh
analogous to the hydrogen atom@1#, exhibits an enormous
complexity of classical and quantum properties with cha
ing parameters, i.e., energy and/or field strength.H2 contains
the coupling between the c.m. and electronic motion of
ion and represents a Stark term with a rapidly oscillat
electric field 1/M „B3@P2 (Q/2)B3R#… determined by the
dynamics of the ion. It is the interaction HamiltonianH2 that
is responsible for the interesting quantum effects that will
investigated in the present Rapid Communication.

From the above it is natural to consider the representa
of the coupling HamiltonianH2 in a basis that consists o
products of eigenstatesFc.m. of H1 andC of H3 . Calculat-
ing the corresponding matrix elements we encounter so
selection rules that are of immediate relevance to our mo
~see below!. Since the total angular-momentum compone
parallel to the magnetic fieldLz is a conserved quantity fo
H, and since the corresponding c.m. angular-momen
Lc.m.z

and electronic angular-momentumLz are conserved

quantities forH1 andH3 , respectively, the matrix elemen
of H2 involve only c.m. and electronic states with magne
quantum numbers that are correspondingly different. In
dition, we have the relation̂Fc.m.8 u@P2(Q/2)B3R#uFc.m.&
5 iM (E82E)^Fc.m.8 uRuFc.m.&, which, together with the di-
pole selection rules for electronic transitions, allows on
changes of the c.m.~m! and electronic (m) magnetic quan-
tum numbers by 1 and requires a change of energy for
c.m. motion. According to Ref.@5# the matrix elements o
H2 involve a factorAN for N@umu. ~N is the Landau prin-
cipal quantum number of the c.m. motion!, which yields the
scaling of the coupling matrix elements ofH2 with respect to
varying c.m. energy.

Our model for the moving He1 ion in a magnetic field is
built up from three key constituents associated with
HamiltoniansH1 , H2 , andH3 . The equidistant and infi-
nitely degenerate spectrum ofH1 is completely characterize
by the c.m. quantum numbersN and m. H1 represents the
integrable part of the system that is coupled viaH2 to the
chaotic part represented byH3 . The classical dynamics o
H3 @7# depends on the scaled energy and angular mom

tum, which are given byL̂z5Lz(
1
4 B)1/3 and Ê5E(2B)22/3,

respectively. In order to locate the regime of chaotic el
tronic motion we have made Poincare´ surfaces of section o
the classical dynamics ofH3 (Ê,L̂z) for a dense grid of
values of the scaled energy and angular momentum. Sta
with a completely chaotic phase space forL̂z50 we find that
with increasing values of the angular momentum the fract
.
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of chaotic phase-space volume decreases rapidly. In cont
the regime of negativeL̂z that yields predominantly chaoti
phase space is much larger. If we take a typical scaled en
of Ê520.1, for example, and require more than 90%
phase space to be occupied by chaotic trajectories, we ob
the regimeL̂z5@22.71,0.136#, which corresponds toLz5
@2200,110# for B51025 ~we use atomic units throughou
i.e., the field strengthB51 a.u. corresponds to 2.353105 T!.
The mixing of electronic eigenfunctions belonging to neg
tive values of the angular momentumLz therefore represent
an important ‘‘open channel’’ with respect to the coupling
the chaotic electronic motion to the c.m. motion. In this r
gion of Lz the c.m. motion of the classical ion is strong
affected by coupling to the chaotic electron. Indeed, stud
of the classical dynamics of the ion close to the ionizat
threshold demonstrated@4# that large negative values of th
angular momentum are an inherent feature of intermitt
dynamics as well as a prerequisite for the self-ionization p
cess, whereby energy transfer from the c.m. to the elec
results in ionization. We therefore turn our attention to th
subspace and investigate the quantum-mechanical prope
of this channel.

The spectrum belonging to the chaotic HamiltonianH3
will be represented by a random matrix ensemble, which
the appropriate semiclassical description@9,10#. Since the
HamiltonianH3 possesses a generalized time-reversal inv
ance@8#, which consists of a rotation byp around thex axis
and a subsequent conventional time-reversal operation,
proper ensemble is the Gaussian orthogonal ensem
~GOE!. While the GOE provides the fluctuations of the ch
otic levels, we still need to specify the mean level dens
~MLD ! as a function of the energy, field strength, and
particular the angular momentumLz . Our approach to the
MLD is via the semiclassical Thomas-Fermi formula. Pe
forming the appropriate scale transformations, fixingL̂z ,
transforming to cylindrical coordinates, and subsequen
performing the integrations overf,pz ,pr ,z we arrive at the
following result for the semiclassical MLD:

rLz
~E,B!5~2B22!2/32E

0

`

drAAQ~A!, ~2!

with A5@1/2r2 (r2/21L̂z)
22Ê#222r2. The remaining in-

tegration overr has to be performed numerically. Startin
with Lz50 a general feature of the MLD is its rapid decrea
with increasingLz , whereas for negative values ofLz its
decay is much weaker. Not only the fraction of chaotic pha
space but also the absolute phase-space volume persist
to large negative values of the angular momentum, toLz
'2250, and thereforerLz

(E,B) represents in this regime
the density of irregular states. Having specified our GO
whose MLD at the center of the band is given by Eq.~2!
providing the levels ofH3 , we turn to the calculation of the
coupling matrix elements introduced byH2 . The size of the
matrix elements ofH2 can be determined from a semiclass
cal relation between off-diagonal matrix elements of an o
erator and the Fourier transform of its classical autocorre
tion function@11#. The variancesH 2

2 of the matrix elements

of H2 depends on the energies of the states they couple
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is very small when the energy difference is greater than
level spacing ofH1 @11#. For states close in energy,sH 2

2

appears as

sH 2

2 '~4prLz
!21E

2`

`

^H2~ t !H2~0!&e2 ivtdt, ~3!

where selection rules determine the numerical coefficien
Eq. ~3! @10#. Efficient evaluation of the above equatio
through classical trajectory calculations is by no mea
trivial and is done by introducing a suitable ensemble av
age via the periodogram approximation@12#. Figure 1 shows
x[rLz

usH2
u as a function of the angular momentum, calc

lated using Eqs.~1!–~3!. As examples we plotN5250, 300,
and 400~at m50! and m,0. Due to the selection rulesN
increases~decreases! by 1 asm decreases~increases! by 1.
As seen in the figure, the largest values ofx lie mainly in the
interval m'@220,2200#.

Based on the structure ofH the organization of our mode
is as follows. We have an array of sites, each of which c
responds to eigenstates ofH1 andH3 labeled by particular
values ofN, m, andm. We thus assign to each site the c.
quantum numbersN,m of a Landau orbital belonging toH1
and the levels of one member of the GOE representing
irregular levels ofH3 , which are labeled bym. The energy
levels at each site are theH3 levels plus the level ofH1 .
They are coupled by random matrix elements to levels
their neighboring sites, as imposed by the selection ru
The variance of the random elementssH2

2 is given by Eq.

~3!. The model thus has a one-dimensional structure, wh
sites labeled byN, m, andm are comprised of levels taken t
be from a GOE whose density is given by Eq.~2!. The ion
model so defined resembles the semiclassical pump mod
Arnold diffusion @13#. The classical stochastic pump mod
describes Arnold diffusion in terms of the pumping of ot
erwise regular trajectories via weak, irregular motion with
the Hamiltonian system@14#. Similarly, the classical c.m
motion of the ion is coupled to the chaotic motion of t
electron due to the magnetic field. The semiclassical pu
model of Arnold diffusion was found to be equivalent
models of single-particle transport in disordered wir

FIG. 1. The model parameterx[rLz
usH2

u, whererLz
andusH2

u
are calculated using Eqs.~2! and ~3!, respectively, as a function o
the angular-momentum quantum numberm. At m50, N5250
~short dashes!, 300 ~long dashes!, and 400.
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which predict localization@15–17#. The localization length
of the semiclassical pump model was expressed in terms
corresponding classical parameters. Likewise, we should
able to predict any localization of the quantum ion in term
of the corresponding classical system.

The values of all the ion parameters (N,m,E3 ,Lz ,B) are
embodied in the model parameterx[rLz

usH2
u, examples of

which are shown in Fig. 1. Thoughx clearly fluctuates over
the sites of the model, we could nevertheless estimate
localization length for this model in terms of an average,x̄,
over x. As seen in Fig. 1, the range inm over which energy
transfer can most appreciably occur ism'@220,2200#,
though the model also encompasses a wider range ofm,
where classically the ion is still predominately chaotic. I
terms of the averagex̄, the localization lengthj` of the
model, assuming an infinite number of sites, isj`54p2x̄2

@13,16#. Because the ion model has a finite length of abo
200 sites, the localization length can be estimated usi
finite-size scaling arguments for band random matrices, su
as the ion model, sincej'j` /(11cj` /L), c'1 @18#,
whereL is the length or the number of sites of the mode
The N dependence ofj arises from j`;N, since
usH2

u;AN ~see above!. Solving forrLz
andusH2

u using Eqs.

~2! and ~3! we find, e.g., thatj'j`'30 for N5400 (m
50). Thus, starting in a Landau level nearN'400, quan-
tum flow is restricted to about 30 sites inm. This is in
contrast to the classical ion, where, for a corresponding i
tial c.m. energy of'631027 a.u., there is no such restric-
tion in the chaotic motion overLz . Sincex varies asAN the
ion remains localized, in contrast to the classical ion, forN
up to values near 4000. Taking the cyclotron frequency to
1.431029 a.u., this corresponds to a c.m. energy of abo
631026 a.u.

These arguments, while using well-known predictions fo
equivalent random matrix models, nevertheless depend
our being able to use an average ofx over the length of the
model to estimatej. As a check, we have studied numeri
cally the ion model to compare predictions ofj using the
actual x, which varies as determined by the semiclassic
results for the ion calculated with Eqs.~1!–~3!, with results
using x̄, defined as the averagex over the length of the

FIG. 2. Localization length computed for the ion at differen
values of the Landau levelN at m50, from whichx is computed
with Eqs.~2! and~3!. Filled circles are results for the ion model and
open circles for the simpler version as described in the text. T
line is a fit through the data.
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model. Our numerical model ranges fromm52230 to 0.
Each site consists of 12 levels of the GOE. Though this
very small number, it is all we could include computationa
while also incorporating the largest possible number of si
We average over six realizations of each set of parame
and calculate the localization length of the eigenvectors.
sults are shown in Fig. 2, where we see that both models
ion and the simpler version withx̄, give the same results fo
j, and are close to the linej50.72j` , wherej`54p2x̄2,
and the factor 0.72 is purely an artifact of using only
levels per site, which is seen upon comparing with numer
results where more levels per site were used@13#.

The occurrence of the crossover from localized to de
calized c.m. motion that we find for the ion at a c.m. ene
of about 631026 a.u. with the above parameters will o
course vary with the strength of the field and the inter
a

s.
rs

e-
he

al

-
y

l

energy of the ion, as well as its mass, since we have con
ered only He1 here. This crossover should be observa
spectroscopically since the regimes of very weak and str
mixing show inherently different level spacings and abso
tion features. Finally, we mention that the above-investiga
quantum mixing of collective and electronic motion fo
atomic ions is certainly of interest also for charged molecu
systems in a magnetic field. Here the heavy vibrational a
rotational degrees of freedom couple, for heteronuclear s
tems, to the collective motion of the molecular ion providin
a potential source of new rotational and vibrational stru
tures.
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