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Multidimensional parametric quantum solitons
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We consider the parametric quantum field theory involving cubic and quartic couplings of two bosonic
fields. This is exactly soluble for the two-particle energy eigensta@esuantum solitonsin one, two, and
three space dimensions. We estimate the binding energies and corresponding radii in the case of photonic fields
in nonlinear optical materials, and Bose-Einstein condensi@4€50-294{©8)51110-9

PACS numbegps): 42.50—-p, 03.65.Ge, 11.10.St, 42.65.Tg

The search for three-dimensional quantum bound states déwer bound to the Hamiltonian ener§]. For stable para-
interacting Bose fields has resulted in surprisingly few exactmetric quantum field theories the Hamiltonian must be modi-
solutions. However, a large variety of these quantum soliton§ed.
are known theoretically in one spatial dimension, and experi- We investigate the effects of modifying the nonlinear in-

ments are now possible to test these theories. This meafgractions by adding a quartic term to the Hamiltonian, and

that, complementary to high-energy physics, particlelikeby imposing a momentum cutoff on the coupling constants.

structures may be investigated in a larger variety of physicalf‘ quartic term c_orresp_onds to four-wav«_a mixing, or a non-
systems inear refractive index in the corresponding optical medium.

. . . It is also found, for example, in atom-atom interactions. With
While theory and experiments are possible for quantu b

i . Al di idd. 21 this still | h positive quartic interaction, a rigorous lower bound to the
SO |t<_)ﬂ§ in oné spatial dimensidd, 2], t IS st eaves t e energy does exist, and we demonstrate the existence of exact
multidimensional problem open. The difficulty is that field two-particle bound-state solutions in higher dimensions.

theories with localized attractive interactions usually demonhege types of quantum solitons have a unique character: the
strate a collapsing behavior in higher dimensions. For exzg|ution has a finite binding energy, but the corresponding

ample, the Bose gas with an attractigéunction potential  two-particle wave function has a zero radius, unless a mo-

(nonlinear Schrdinger model—while stable in one dimen-  mentum cutoff is imposed on the couplings. Solutions in one

sion [1]—has no lower bound to its Hamiltonian in higher dimension have a finite radius in all cases.

dimensions. At the classical level, this instability causes a To demonstrate these solutions, consider a quantum inter-

self-focusing singularity. action Hamiltonian given by2,6]:

Promising candidates for higher-dimensional quantum 52
solitons therefore include quantum field theories whose clas- H:f dPx > ——|Vd|2+Hpdid,
sical analogs are stable. Early approximate solutions of this i=12 2m

type were investigated by Christ and LEH, and recently 5 .
some exact quantum results were obtained for the classical + £(¢i¢;+¢12¢z)+ _Dq;’{Zq,i ) (1
Davey-Stewartson moddB]. Despite the exact two- and 2 2
three-dimensional solutions that exist in the quantum Daveyl'—lere(l)- (i=
Stewartson model, there are no known physical systems thﬂ !
are described by this quantum field theory. There has als
been research into possible two-photon solutions to vari

1,2) are two complex Bose fields with commu-
tion relations 0{<bi(x),<b;r(x’)]= 3ij6(x—x"), m; are the
Brfective masses, is the phase mismatch, ang, and «p

X ) . %re the coupling constants responsible for the parametric
tions of the attractive Bose-gas probl¢a], but without ex-  ree wave mixing and four-wave mixing processes, respec-
perimental verlflcatlon. L ) tively, in D space dimensiond)(=1,2,3).

We report here an investigation into a parametric quantum | "' oo space dimension, witk;=0, there are known
field theory corresponding to a two-component Bose gas ing,_narticle bound-state solutiohg]. We now ask what so-
teracting via a three-wave mixing process. This is known Qutions can exist in higher dimensions. In any number of
have stable classical solitary-wave solutions in higher dimenaimensions the Hamiltoniafi) has a momentum conserva-
sions[5]. Itis a traveling-wave analog of the quantum theory,[ion law an,d a boson number conservation law in wHich
used to describe quantum squeeZzifyj and more recently =fd(D)>2(|CD1|2+2|cD2|2) is conserved. We therefore search

e o o sl tha are eigentale of the momentu opeRor
P ’ the operatorN, and H. In the two-particle caseN=2),

energies.

Our results have a number of entirely unexpected fea'Ehese have the structure
tures. The most surprising is that we show that the simplest
parametric quantum field theory, like the attractive Bose-gas V)
model, is unstable in two and three dimensions. However,
unlike the Bose-gas model, this instability shows no trace at
the classical level, where there is stable behavior with a

f f d®xd®lyg(x—y)e! 2 o) d(y)

|0). @

+f d®xe' K *pJ(x)
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In general, the Ham”toniafﬂ.) could also contain a quar- fd(D)X|Vg(X)|2 (|n the case of thé-function Singu|a|’ity this
tic interaction term for the second-harmonic fidlg. How-  would give infinity). The normalization integral for the total
ever, this has no effect on the two-particle eigenstate unde{yo-particle wave function(W|¥)~1+ [d®xg?(x)=1
consideration. Therefore, the corresponding term in thgoes not vanish due to the contribution of the second-
Hamiltonian is omitted for simplicity. harmonic field[9].

To prove a lower bound on the Hamiltonian energy, we |t should be mentioned that the pointlike structure, Eq.
apply Eq.(1) to [¥) and use the symmetry property of the (6), in the two-particle eigenstate refers to the correlation
two-particle wave functiong(x)=g(—x). This leads to a function of the subharmonic fields. That is, the localization is
general expression for the Hamiltonian energy, in which wen the relative position of the two subharmonic quanta, not in
can omit the contribution of the positive term their absolute position. The quantum soliton itself has a de-

~(2h%/m;) fd®)x|Vg(x)|? to arrive at a lower bound. Ap- |ocalized center-of-mass, just as one would expect for an
plying a chain of algebraic inequalities to this reduced enenergy eigenstate.

ergy, we finally obtain that, ikp>0 and To understand our solutions in more detail, we note that
) parametric couplings of the type found in Ed) are usually
Alxpl>2Akp, () restricted to a finite range of relative momenta or wave num-

bers. Therefore it is more realistic to incorporate the finite
range of the couplings into our interaction Hamiltonian. To
represent this we can introduce a cutoff|kf=k, in the
72K2 Alxol? (WIH|W) relative momenta of_the in_teracting fields. Th_e interaction
+hp— < ) (4 part of the Hamiltonian(1) is then expressed in terms of
2Kp (W) a;(k), the Fourier component ab;, so that its cutoff de-
To evaluate an u : rPendence is implemented through the limits of the corre-
pper bound to the lowest-energy eige Sponding integrals
value of our Hamiltonian we use a variational approach. In We can now aﬁalyze the energy eigenvalue problem di-
the one-dimensional cas® & 1) we choose a trial function rectly, by introducing a Fourier transform gfr), so that

g(r) in the formg(r) =geexp(|r|/ry), wherer =x—y, fol- 7 D) . D .
lowing the structure of the known exact solution for the pureg(r) Jd™kG(K)exp(k-r)/(2m)". Due to the CUtoff in

o ; - the nonlinearities, we need only investigate eigenstates for
parametric interactioh8]. We calculate then the variational which G(K) =0 if |k|>k,,. This leads to the following equa-

energyE=(W|H|¥)/(¥|¥) and minimize it with respect tions (valid for |k|<k.) for an eigenstate:
to the parameterg, andr,. As a result of this optimization

where A= —%2K2/(4m,) + #2K?/(2m,) +#p and K=|K|,
then the lower bound, can be defined by

E

- 2m,

procedure, subject to a localized bound-state formatign ( . m; | Xp

>0), we obtain that there always exists one positive solution (k*+u9)GK) =~ == |5 +xpg(0) |,

with a finite optimumr value, if the condition(3) is met.

Herer is obtained by solving a cubic equation similar to /2K 2 h2K2  hi2u?

that found in the purely parametric cd€y. The final result E= >m +hp+hixpg(0)= e mo )

for the minimal value off, which corresponds to the exact 2 ! !

eigenvalueE in this case, is Herek=|k|, and we have introduced an inverse length scale

i, SO thatu?=(K/2)2—Em, /#2. Clearly,#2u?/m; can be
interpreted as the binding energy of a solution with momen-

Thus, a finite-size diphoton quantum soliton is shown totum K. The solution is boundagainst two-particle decayf

o . . . is real an itive.
exist in our model in one dimension. K IS eada ,:j pos'lt et the bindi d effecti
In higher dimensionsy =2,3) we use the following trial n order 1o evaluate the binding energy and efiective ra-

function: g(r)=geexd—(|r|/ro)®], where r=x—y. The dius, we next solve fog(0) and find
variational energyE approaches its minimal value in the XD
limits r5—0,s—0, and atgo= — xp /(2«p). Again the con- 9(0)=- > |*pt
dition (3) is assumed to be fulfilled to provide localized

bound states. The final result for the minimal valueEof where the cutoff structure functiof, (D=1,2,3) is
takes the form of the expression f&; [see Eq.(4)]. This

E=%12K?/(4my)—A2/(myrd). (5)

% -1

myfo(u,Km)| ®

implies that the exact lowest-energy eigenvalue is given by f1(p,km) =tan *(kp/ )/ (),
E=E, . Returning to the form of the trial functiog(r) at the 2
optimum values of parameterg, s, andg,, we conclude fa(p k) =IN(1+ K/ )/ (A7),
that

fa(u,Km) =[km—u tanil(km/ﬂ)]/(zwz)- 9)

9(0)=—xp/(2«p), . . .
This result shows the difference caused by the space dimen-
g(r)=0 if r+0, (6) sionality. In one dimensiorf,;(u,k,,) approaches a constant
value at largek,, while in two and three dimensions
i.e., the quantum solitons in two and three dimensions have &, (u«,k,) has a logarithmic or linear divergence, respec-
pointlike (zero-radiug structure. This is different from the tively. The effect of this divergence depends on whether or
usual&function singularity, and leads to a vanishing integralnot the additional quartic interaction term is present. If it is
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presentiwith kp>0), there are exact solutions without cut- —>Kf/m“+Kf/rm, while the massn; appearing in terms that
off, having the property thag(r)=0 if r#0, andg(0) are independent dk? must be replaced by, . Also, k?
=—xp/(2kp). In these cases, the energy eigenvalle and u? in Eq. (7) are now defined ak?=¢%k?+k? and
takes the form oE, , Eq.(4). In other words, the solutions in M2E(82Kﬁ+ KE)/4_ Emy, /42, wheree=(m,, /my)'2.

two and three dimensions have a finite energy but zero radius As a result of these modifications, the cutoff structure

in the limit of ky,—c°. functions f,  u,k,) become dependent an In the limits
In the absence of the quartiC te(m if Kp is negative, as <1l and Skm>ﬂ the approximate expressions for

in the case of the nonlinear Schifnger mode), we must £, (4 k) are  fy(u.kn,e)=In(2eky/w)/(2me)  and

impose a cutoff on the couplings to prevent an energy divers (, k = =)=k (1—In &)/(277). In the casexp=0 andA

gence. With a finite cutoff, the general result for the energy—g (k =0, p= w,—2w,=0) this leads to the following

eigenvaluet is given by Eqs(7), (8), and(9). Analysis of  simple result for the soliton binding ener¢p the laboratory

Eq. (7) with respect tou shows that a positive solution is frame in two and three dimensions:

available, provided Eq(3) is satisfied, in one and two di-

mensions. In the three-dimensional case it is necessary that 72u?  my [x2]?

[ xa]>>2A[ k3+ 27w/ (mik,)]. This shows that a mo- El?l= =~

mentum cutoff can provide both finite energy and finite ra-

dius, even without the stabilizing quartic term.

ML - In(2eky,/w),

2,2 2
The classical version of the purely parametric quantum E[s]_ﬁ r My, [Xs] k. (1—In
. . . b . b — = 2 m 8). (11)
field theory is well behaved and in wide use as an approxi- my, A7
mate description of nonlinear optical interactions in paramet-
ric nonlinear crystal§sub-second-harmonic generatidb]. To give numerical estimates we choose=3, o]

Thus, we have an unusual situation, where the quantur:0.1 nf/s, A=2um, and the nonlinearity y’
counterpart of a well-defined classical theory requires a mo= 107 m/v, typical of highly nonlinear parametric media
mentum cutoff in the nonlinearities before it leads to non-e 9. GaAs asymmetric quantum wells and related systems

singular structures. However, an investigation into the ori{11]). With a characteristic waveguide diameter gii, this
gins of the theory shows that paraxial and finite bandwidthgives £=0.097 and y,=7.39x107\m/s, y,~1.65

approxima}ions are negded to redu_ce the full nonlinear Maxs 1 p mi/s, ys=369.5 n¥Zs, in one, two, and three space
well equaU_on Hamﬂtqman to 'Fhe S|mpler_ form treated here'dimensions, respectively.

The paraxial approximation is only valid fd{l<277/)§. With a reasonable choice of the cutoff kt=2a/\
Thus a momentum cutoff of at mokf,~2m/\, wherex is — — 7, m)=1, the resulting solutions in two and three dimen-

the carrier wavelength of the subharmonic field, is requiredSions have binding energiesEE(Z]z4 43106 eV EL3
in order to use these approximations. A similar procedure ) P

was employed by Bethe, in using an estimated cutofpf — 2-22><10 G[S?V' for kp5=0) and radii €5’
—mec/% in the first Lamb-shift calculatiof10]. Just as in  =39.7#m,rg"=55.6 um) comparable to the known re-
the Lamb shift, this can be improved by more careful treatsults [8] for a one-dimensional waveguideEl{1~1.75
ment of the theory at large momenta. X10°° eV, I‘%l]21.94,um). In fact, we find tha‘r%”<r%2]

After imposing the cutoff aky,=2m/\, we can now cal-  <r[31 and E[Y>E[?’>E[®!, ie., the higher-dimensional
culate the radius, (which we define as,=1/u) and the  solitons are less strongly bound and of larger radius than
resulting binding energf,=7#%2u?/m,; of the solution. We  those in one dimension.
note, however, that our results should be slightly modified, |n summary, we have presented bound-state solutions or
before applying them to the case of optical parametric interquantum solitons to a parametric quantum field theory in
action for quantitative estimates. In this cabein Eq. (1)  more than one spatial dimension. The results have the re-
represent two optical fields with carrier frequencigs and  markable character that in the presence of the positive quar-
the x coordinate is defined in a moving frame with=%,_ tic term the solutions correspond to quantum pointlike struc-
—vt. Herex, is the laboratory-frame coordinate ands the  tures with finite energy. Imposing a momentum cutoff on the
group velocity that is assumed equal at both frequencies. Theonlinear couplings leads to finite radii of the solutions, and
effective Hamiltonian describing this nonlinear optical pro-finite binding energies, even if the stabilizing quartic term is
cess in more than one spatial dimension, in the presence absent. It should not be impossible to resolve these binding
diffraction and dispersion effects, is asymmetric with respecknergies—either by using cryogenic means or else by means

to the longitudinal and transverse coordingtge$]. of transient experiments on time and length scales shorter
To represent this we should rewrite the kinetic-energythan those of competing thermal Raman proceg$2kand
terms in the Hamiltoniartl) as absorption processes in nonlinear optical media.
52 The physical interpretation of these bound states is that

|V @2 n V. @il (10) they are a superposition of a second-harmonic and two sub-
m;, my, | harmonic photons, which can propagate without either
down-conversion of the higher-frequency photon or disper-
Here m;=%/w{ represents the longitudinaldispersivé  sive spreading of the subharmonic photons. In practical
mass, Wheran| = 9?w; /dk? is the dispersion in théth fre-  terms, of course, most photon pairs created by down-
quency band, whilen;, =% w; /|v|? is the transvers@lifirac-  conversion are in unbour(@ontinuun) states, which are not
tive) mass. Consequently, the relati®tf/m; appearing in treated in detail here. The possibility of creating bound states
the subsequent equations must be replaced KSym, that are immune to further down-conversion does not seem

HK:J’ d(D)X 2

iS2 2
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to have been treated in earlier theories of this process, abpectively, andn, , are the corresponding masses. The cou-
though nonclassical spatial oscillations were predicted in eapling constantyp would relate now to the molecular forma-
lier work [13]. tion rate, while kp is the effective self-interaction of the
Most significantly, the solitons form in nonlinear crystals atomic field. The simplest nontrivial objects in such systems,
and planar waveguides accessible with currently availablgyhich can be described by our two-particle quantum soliton
technology. It is therefore possible that this parametric quangp|ytions, are “dressed” molecules, each of which exists in a

tum theory, as well as being theoretically interesting, couldjnear superposition with a pair of atoms. Withya-value
result in the first experimental test of multidimensional quan-ggtimate of abouj s~ 10~® m¥¥sec[14], the atomic mass

turg\fgrl:t?nno:re]ep?rg/n:?srintO:)ﬁ;giaclziT.systems that could be em™ ™ 10 2> kg and a choice of the cutoff at an inverse scat-
- . — 71 - . .
ployed as a testing ground for our theory are Bose-Einsteiterlng lengthkey—1 nm, the corresponding binding energy

n . _
condensates of atomic gases. Bose-Einstein condensate . and the radius® would beE}*~1.6x107** eV and
(BEC) experiments are progressing very rapidly, and recenth ~21 um. Further details on the applications of our re-
achievements include formation of ultracold diatomic mol-sults to BEC systems will be presented elsewhere.
ecules through a Feshbach resonance or Raman photoasso-
ciation [14]. These hybrid atomic-molecular BEC systems The authors acknowledge the support provided by the
can directly be treated within our theory, where the fislds ~ Australian Research Council, and by the National Science
and ®, would represent atomic and molecular species, reFoundation(Grant No. PHY94-07194
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