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Polarization, correlation, and distortion effects in excitation processes
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Analytical expressions are derived for the asymptotic correlated three-body state of a Coulomb compound
consisting of a continuum particle and an electron bound to a residual ion. The extension of these expressions
to finite distances is also given. The distortion of the continuum particle’s motion by the Coulomb nuclear field
and the field of the bound electron is investigated as well as the amount of polarization of the bound system
due to coupling of the bound electron to the continuum part[@&050-29478)50609-9

PACS numbes): 34.10+x, 34.80.Dp

In recent years, considerable progress has been made dorrelated electron pairs emitted upon photon and particle
the analytical description of highly excited few-particle Cou-impact [2,8,9. In addition to the, meanwhile well-known
lomb complexes. Such excited systems are usually generatstiortcomings of this mod¢b,9,10, its mathematical struc-
upon the impact of photons and charged particles. E.g., foture suggests that it is only designed for total breakup reac-
photon- and electron-impact fragmentation processes thaions without regard to any virtual intermediate excitations.
lead to three interacting continuum particles, a number of The basic mathematical concept of starting from
analytical approaches have been put forwhtd6]. One asymptotic states and then propagating to finite distances
strategy to derive approximate expressions for the three-bodyas, however, been recently employed to consider interme-
wave functions is to start from the asymptotic eigenstates ofliate and direct excitationgl1,12. In Ref. [11] a scheme
the three-particle Hamiltonian and to search for reasonablbas been proposed to include tf@f-shell) virtual excita-
extensions of these states to finite distanf®$,7]. One tions to discrete and continuum levels in the three-body scat-
well-known approximation obtained this wa¥,2,5 regards tering states. In actual calculations of ionization probabili-
the three-body Coulomb system as the sum of three, in corties, however, only virtual continuum states have been
figuration space, noninteracting two-body subsysténghe included.
two-body energy shell The mathematical reflection of this In a second approach by Dewanddr?] a version of the
point of view is that the three-body continuum stdtg- isa  3C wave function has been suggested to deal with direct
product of three two-body Coulomb wavém the two-body electron-impact excitation of hydrogen. He applied the
energy shejl each simulating the interaction within a spe- theory to the $—2p transitions and evaluated the angular
cific two-body subsystem, i.e(atomic units are used correlation parameters A and R (A=(fqf§)/o,
throughout; outgoing wave boundary conditions are considR=Re(f,fg)/o, wheref, is the excitation amplitude of the

ered, magnetic subleveh, , o is the differential cross section, and
(--+) denotes the average over spiRemarkable agreement

— -3 - ;
Wac(ra.rp)=(2m) "~ explika-ra+iky-rp) with experimental data was found in the backward direction

. . co for theR parameter, yet some serious discrepancies remained
XNasFaliaa,1,=Ka(ratKa ra)] unexplained at a certain angular region.
XNy 1F1[i @y, 1~ iKp(Fp+ Kp-p)] _ Dewangan suggested_ that a wave function f_or the projec-
tile electron and the excited atom can be obtained from Eqg.
X Nap 1F1[iaabrlr_ikab(rab"'lzab' Fan) ], (1) upon a straightforward replacement of the ejected-

electron Coulomb wave,

&)

wherer,,, are the coordinates of the continuum particles (2m) 2N, exp(ikb~rb)1F1[iab,1,—ikb(rb+l2b~rb)],
escaping with momentk,,, (with respect to a residual ion

Nj=I(1-iaj)exp(-7q/2), je{a,b,ab} are normaliza- py 5 hound atomic eigenfunctich(r,) for the excited tar-
tion constants,Fi[a,b,x] is the confluent hypergeometric et state in the exit channel. Subsequently the wave vigtor

function, andr,,=r,—Try, is the interparticle relative coordi- 5 set to zero. Thigd hocreplacement reduces E@) to the
nate withk,,, being its conjugate momentum. In E@) the  yyo.center wave functioiTCW)
Sommerfeld parameters arg=—Z2Z/K;, j=a,b, and a,p,

=1/(2k,), whereZ is the charge of the residual ion. _
This resulting T wave function, so called since it con- ¥Tcw(Ta:Tb)
sists of three Coulomb waves, has, in some cases, consider- _ ~312 ; 2 ;
: o P S =(2 I(1+i expliky-r
able success in predicting the relative angular distributions of (2m)~A( @)l Aika-ra)

X 1Fili@a, 1= iKa(ra+ Ko ra)]
*Electronic address: jber@mpi-halle.de X Fd{—iaa,1,—3[iKa(rap+Ka-rap) 1} 2

1050-2947/98/588)/1641(4)/$15.00 PRA 58 R1641 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R1642 JAMAL BERAKDAR PRA 58
To maintain proper asymptotic behavigy, is to be replaced 2Z 2\ 4
by Zrab_ [— T—FE aTb‘l‘Ab‘l'Zika'Va‘l‘Aa

The procedure leading t& 1, is motivated by physical
and practical considerations, yet it leaves in the dark the 27 27 21
actual mathematical justification and foundations for the ex- +—+——— e"/’z &=0. (8
pression(2). Nonetheless, as shown in R¢L2], the com- ™ Ta Tab

parison with the experimental findings shows that some o
the physics of the excitation process is captured¥ay, .
Therefore, it seems worthwhile to derive E) from first
principles, which might open the way for more elaborate
methods beyond that of ER). The relation of the approxi-

I:urthermore we deduce the differential equation

Mg+ Ap+i(Aa+Ap) p— (V)= (V)2 +2i(Vyop-

mation(2) to conventional perturbative approaches has been Z 1\/dd 9

discussed in Refl12]. +V,$-V,)—2i ﬁ+ r_)(F_i W) -2k, Va0
In this work a mathematical method is sought to derive b/ A 7Tb b

(asymptotig eigenstates of highly excited three-body sys- 2Z 2Z 2

tems with one particle moving in the continuum of a two- +2iky- Vot E+ I CJE &=0. 9

body compound. For clarity a system consisting of two elec-

trons and a heavy ion with chargé is considered; the Asymptotically, terms that fall off faster than the Cou-
general case can be treated along the same Wmess-  |omp potential can be neglected. Therefore, we end up with

polarization terms then have to be neglegted . an asymptotic differential equation from which the function
The time-independent Scldinger equation for this sys- 4 can be determined:
tem reads
iZ&¢>+k v z Z+1—O 10
2z 2z 2 B T oarg TKaVad— m oot =0, (10)
Ag+Ap+ —+———+2E|(ra,r,)=0. (3
la b lab

For the solution of Eq(10) an ansatz is appropriate that

The total energiE is the sum of the energy of the continuum Possesses the form
electronk?/2 and that of the bound electron in a state speci-

fied by the principle, orbital, and magnetic quantum numbers ¢~ =—inIn(ry) + o=, 1D
n,/,m, respectively, i.e., 7
2 2 D= =5 In(kar a7 Ko Ta) + 07, (12
a
- _ - .8
E= 2n2+ > 4

where ¢* is a complex function yet to be specified.
Incoming- or outgoing-wave boundary conditions can be ac-
The unperturbed state of the bound electibrhas the  ~qunted for by choosing the or — sign in Eq.(12), respec-
form [13] tively. The first term in Eq(11) leads in Eq.(6) to a real
exponential factor that describes the behavior of the state of
b 1 Zry ~ the electron bound to the residual ion. For the following this
Cn./m(To)= rg_—l)(”/(rb)ex‘{ B T) Yom() O term s basically irrelevant and can be included in the func-
tions &, as defined in Eq(7). The first term in Eq.(12)
signifies the dephasing of the unbound electsohy virtue
of the nuclear field and can thus be considered as a measure
'4f the distortion of this electron’s motion due to coupling to
the residual ion.

The phasep™ in Eq. (12) is due to the electronic corre-
lation. Substitution of Eq(11) into Eq.(10) leads, in case of

where y, ,(r,) and Y/'m(Fb) are, respectively, the radial

wave functions and the spherical harmonics in the notatio
of Ref.[13]. The asymptotic uniform motion of the projectile

electron is generally4+ 1) modified by a Coulomb phase.

Therefore, for the solution of E¢3) we make the ansatz

7r incoming-wave boundary conditions, to
vy iZ 3¢ ~ 1
W (ra,fe)=(ra,ry) > &, (® AR S
a a Mo = n o +kyq- Vo™ + . 0. (13

with the definitiony(r, 1) =expik,:r,+i¢). InEq.(6) Equation(13) can be solved by the ansatz
¢ is a(complex function yet to be determined and

- 1
¢+=Xln()\rab+c-rab). (14)

1 -
&=k Xn,/(Ip)Y / m(Tp)- (7 , » .
Mo Here the independemibmplexquantitiesh andc are still to

be determined. Upon substituting E44) into Eq.(13) and
Substitution of Eq(6) into Eq. (3) yields after some lengthy algebraic manipulations we obtain
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L. ~- 24 27x/2|A y u
c=—ka+|ﬁrb, o=Re ¢ =In[v°+u] ||+Wzarctan;. (22
Z 2
N2=|k,—i— fb) i (15) Expressions fox andy are then derived by substituting
n Eq. (18) into Eq.(13), which yields two coupled differential

equations. After algebraic manipulations the final expres-
In a similar manner we obtain for outgoing-wave boundarysions forx andy are deduced as

conditions
/ /
1 =12 k2—2—22+Z—2(F.k)212+E k2—2—2 "
¢ =——IN(\Tap—C-Typ). (16) 4\"@ p2] " pztbna 2\ fa p2f|
A (23
From Egs.(15) it follows that if r,>r, k,>2Z/n, then .
Eq. (12) simplifies to ®*=F(Z—1)kyIn(kyraFKa-ra). y:_Z(rb‘ka) (24

Thus, for a two-body compound consisting of a neutral Xxn

bound system4—1=0) and a continuum electron, there is

no distortion of the asymptotic uniform motion of the con- In the limit of fast projectile electrons,>Z/n the quantities

tinuum particle and no polarization of the bound system dug andy reduce tox~k, andy=—Zr,-k,/n, respectively,

to the presence of the free electron in the asymptotic regioryng the amplitude simplifies to unity, which means that the
In the general case, to get an insight into the amount of|arization of the bound state diminishes in this asymptotic

polarization of the bound state and the phase distortion of thggge

in- or outgoing electrons due to interelectronic correlation, it The apove asymptotic analysis can be extended to finite

is instructive to inspect the real and imaginary parts of thjistances(the mathematical details are somewhat more in-

complex function expg ). volved). The termy in Eq. (6) then read§cross terms of the
To this end we rewrite\ as kinetic-energy operators that appear in E8) had to be
A= x+iy, 17) neglected

wherex,y are real quantities. Thug~ attain the form — ) ) . R
= Nexpiky ry) 1Fil Tiag, 1L, Fik(rax Ky ry)]

. (18 X Fq[ Ziay , 1,7 1(NrgpFC-rap) ], (25)

*
~ u
b ZWIn[szr u?]¥e+i arctar(;

The real functions),u are given by where the complex vectorc and N are given by
Egs. (15 and «,=1/A. The normalization constant
N=(27) T (1+ia,)|? is derived from the requirement
that the asymptotic flux generated by E@&) should be
7 equivalent to that of the plane wayeé].
U=YTapt = T Fap- (19 It is straightforward to show that the wave function
n Y rew: as given by Eq(2), derives from Eqs(25) and(6) in
the high-energy limit, i.e.k,>Z/n [cf. Eqg. (15)], provided
On the other hand, we can characterize the complex funahat in Eq.(2) we replacer,;, by 2r,,. That the wave func-
tion exp{¢~) in the Gauss plane by the real phasand the  tion [Egs.(25) and(6)] satisfies the proper asymptote with-
amplitudeA, i.e., out any further modification is to be expected since this
property was imposed in the course of the derivation of Egs.
(25) and (6).
eXF(i?ﬁ_) =Aexplie). (20 Summarizing, in this work we envisaged correlated three-
body wave functions for Coulomb compounds consisting of
a bound two-body subsystem and a continuum particle. The
due to the electronic correlation, wherggis a measure for 2Symptotic properties have been explored and the extension
the distortion of the continuum particle’s motion. Farwe  (© finite distances has been pointed out. In addition, we stud-
obtain ied the relation of the derived expressions to the polarization
of the bound system and the distortion of the continuum
particle’s motion. In the high-energy limitk(>Z/n), the
. present wave function has already been employed for the
21) calculations of the angular correlation parameters of the
1s—2p transitions in hydrogen with encouraging results as
In an analogous way the phagds represented by compared to experimeifl2].

V=XIp—Ka Tap,

The amplitudeA describes the polarization of the initial state

- X u
A=exp(—Im $~)=[v2+u2]2A’ exp{ P arctan-
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