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While Kohn-Sham theory uses the quantum-mechanical operator for kinetic energy, Thomas-Fermi theory
replaces this with an effective local potential. If both theories are based on the exact universal density func-
tional defined by Hohenberg-Kohn theory, it is an interesting question whether they should give the same
results forN-electron ground states. This question is examined and answered in the negative. The inconsis-
tency is resolved only by extending the definition of functional derivatives to encompass linear operators. An
exact theory must incorporate one-electron energies and occupation numbers derived from Kohn-Sham theory.
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I. INTRODUCTION

Hohenberg and Kohfl] proved the existence of a uni-

the Thomas-Fermi equation. Kohn and Shi found a
way to use the kinetic-energy operator directly, by equating
the true correlated ground-state density function to that of a

versal functionaF[ p] equal to the mean value of the sum of noninteracting system of electrons moving in an effective

kinetic energyl and two-electron Coulomb interacti&hfor

potential fieldw(r). The density function takes the form

anN-electron ground state whose electron density function is=2;n; ¢ ¢;, expressed in terms of orthonormal orbital

p(r). The external potential function(r) that determines

functions ¢;(r). The occupation numberg are determined

this ground state is uniquely associated with the specifiely Fermi-Dirac statistics at zero temperature, and can be

density. The integrafv p defines a functiona¥[ p] in which
v(r) is considered to be fixed. Givar(r), the total energy
functionalE=F +V is minimized by the particular densigy
that corresponds to thé-electron ground stafdl]. To avoid
formal mathematical difficulties, both andv are assumed

assumed to have values limited to one or zero for a system
with discrete one-electron energy levels or with an energy
gap at the Fermi level. Through a derivation given in detail

below, this leads to Kohn-Sham equations for the occupied

here to correspond to physically realizable systems for inte-

gralN, and both are assumed to be spin-indexed scalar fields.

Spin indices are suppressed in the notation used.

If the functionalE[ p] can be defined for arbitrary varia-
tions 8p that do not conservdl, and if a functional deriva-
tive equivalent to a sum of local potential functions can b
defined bySE= [(SE/Sp)Spd3r, the Thomas-Fermi equa-
tion is obtained by minimizinde — uN for fixed v, whereu
is the chemical potentidR]. Under the stated assumptions,

S6E
a{E—MN}:f 5 H Spd3r=0 (1)
implies the Thomas-Fermi equation,
oE 5
S M v

Equation(2) determinesp(r) when u is adjusted to give a

specified value oN. This derivation can be questioned on

several grounds. The paramejerdrops out of Eq.(1) for

variations that conservél. Separate assumptions are re-

e

0.

orbital functions,
oE
op € ¢i= ()

Here the kinetic energy part &E/ 5p is represented by the
differential operator— V2 and the remaining terms are as-
sumed to define the local potential functiwsr).

Equations(2) and (3) cannot both be generally true. On

integrating the Thomas-Fermi formula,

J

whereN=[pd3r=3;n;. If the Kohn-Sham equations, Eq.
(3), are multiplied on the left by, ¢ , then integrated and
summed, they produce

oE

p5—pd3r=NM. (4

oE
Ei) niJ’ ¢’i*5—p¢id3r:§i: Nie;, 6)

quired to establish the meaning of functionals and functionalyhich should agree with Eq(4) under the assumptions

derivatives for nonintegrall, and Fermi-Dirac statistics may
impose severe restrictions].

made. It is clear that these results are inconsistent. The
chemical potentia is not less than the highest value &f

The argument developed here will focus on the questiolior occupied orbital functionsn=1). Hence=;n;e<Npu
as tO whether the fUnC“OnaI-derlvatl\./e for klne:[lC _energy ISunless a"Ei are equaL genera”y possib|e for no more than
equivalent to a local potential function. Substitution of anyyo electrons. The present paper is concerned with the va-

effective local potentiab = 6T/8p for the kinetic-energy

operatorot=— V2 is implicit in the derivation and use of
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lidity of and relationship between these apparently incompat-
ible consequences of the same underlying theory.
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II. EFFECTIVE LOCAL POTENTIALS Ill. REFERENCE STATES AND COMPONENT
FUNCTIONALS

The functional derivative of a density functiongl de-
scribes the change df due to an arbitrary infinitesimal The postulate of Kohn and Shdwd| that the density func-
variation of p. This is wusually defined by §F  tion p is a sum of orbital densities is equivalent to assuming
= [[ 6F/8p(r)]8p(r)d3, which requires the functional de- the existence of a reference stdtedefined by a normalized
rivative to be a local function, as in the derivation of E8).  wave function that is a single Slater determinant. This can be
in Thomas-Fermi theory. In Kohn-Sham theory, variations ofput into a more general context by fixing the arbitrary nor-
the density are generated by variations of an orthonormal s@balization of the true correlated-electron wave functiol”
of occupied orbital functions, for which=Z3;n;¢* ¢;. For  so that @|¥)=(®|®)=1. This unsymmetric normalization
variations generated in this way, the definition of a func-implies an unsymmetric energy formula for any energy ei-
tional derivative can be generalized to genvalue E=(®|H|¥)=(P|H|D)+ (P|H|¥—-P). Be-
causeV — & is orthogonal tab, the last term of this energy
SE formula provides a natural definition of correlation energy
SF=> ”ij (5¢>i*(r)—¢i(r)+c.c. d3r. E.=(®|H|¥ —d) with respect to a given choice of the ref-

[ op(r) erence state. The universal functiofdlp]=E— fvpd®r is
defined in ground states for whi¢ff + U +V—E}¥ =0 and
E=E[v], a functional of the external potential. The univer-
al functional takes the formF[p]=(®|T+U|®D)

(®|T+U+V|¥—d) using the Kohn-Sham ansatz, since
(®|V|®) is equal to the subtracted terfw pd°r.

If the reference stat® is determined by either directly
or through the wave functio, it becomes a functional

The functional derivative here can be a linear operét,or
that acts on wave functions, but this reduces to the usua
definition if the functional derivative is simply a local func-
tion vg(r). For a density functional that is also a functional
of the orbital functions, orbital and density-functional deriva-

. . Moy _
tives are related by the chain rul/5¢7 =n;(5F/op) ¢ ®[p] and mean values evaluated in the reference state are

A.S V\."” be ShOV.V” below, in Eqgs(8), the mean valug of functionals of the density. Under these conditions, the un-
kinetic energy in the Kohn-Sham model state defines a

o . . . Symmetric energy formula provides a natural decomposition
?Tit'vcz'}e ngrg%);]e c];wuar;gtlr?JT::n thfic;rcas\(levr(;lglti]neﬁs-rt/r?e(bfiu;cr;;onaIOf the universal functional into component density function-
2 ‘75'; als, all defined by ground-state numerical values. These are
derivativev+= 6T/ 5p as a linear operator. It is used in this

rorm in the Kohn-Sham equations, vyh|ch will be shown be- T[p]=(®|T|®),
ow to be the correct result of variational theory.
It is possible for a linear operator to be equivalent to a
local potential function in a set of differential equations. For Enlp]=(®|U|D),
any orbital functional that is also a density functional,
Edp]l=(2[Uy|®),

oF

S5F
PIN o =2 ni¢; (Do 40 Efp]=(®|T+U+V|¥—d). ®

~ The notation here defines the Hartree or classical part of the
= meF (Nvpi(r). (6)  reference-state energgperatorUy,), the exchange partop-
' eratorU,), and a residual correlation term.
In the theory of Kohn and Shafd], the reference state is
If the functional derivativedF/dp defines a local potential determined by minimizing the kinetic energy while requiring
ve(r), this function can be factored out of E@) and con- the reference-state densipy, to be equal to the correlated
structed from the formula densitypy . This suffices to determine all of the component
functionals listed in Eqg8). In reference-state density func-
tional theory[5], the reference stat® is determined by a
oF _ dition of maximum overlap on the eigenstake This
2 b ——=ve(np(r). @ ond P genstare 1t
i S eliminates the one-electron operaibt V from the implied
correlation part of the universal functional, but redefines the
- . . . theory in terms of functionals of the reference-state electron
In deriving the Thomas-Fermi equation, the functional de-gensity. In Hartree-Fock theory, the correlation term is ab-

rivative 6T/5p is assumed to define a local functio(r).  sent and the reference stakeis determined by minimizing
Ader!vatlon of the Kohn-Sham equations is given b_elov_v that(q)|H|q))_ This defines a universal function&l[p] for

is valid whether or not local potentiais:(r) exist. Kinetic  gjngje_geterminant wave functiof§]. Component function-
energy appears as the usual linear operatpr, —3V2. The  als are defined in Hartree-Fock ground states.

assumption thai can be replaced by.(r) is the principal Except for E., each component functional defined by
difference between these theories. Their inconsistency foEgs.(8) has an explicit representation as a functional of the
more than two electrons, as shown above, implies that thisccupied orbitals of the reference state. If an equivalent local
assumption fails, and that the Thomas-Fermi equation cann@otential exists for any of these functionals, including the
be derived in an exact theory. kinetic energy, it can be extracted from E¢8). and(7). For
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the explicit density functiondE,= 3= jnin;(ij|ulij), where
u=1/r,, this construction gives the classidqilartreg po-
tential function,

vh<r>p<r>=2 niéF (Nonei(r)

=2i ni¢i*<r>; nGluleir. (9

Given Ex=—33; jmn;(ij|ulji) for a ground state, Eq(7)
implies

vx<r)p<r)=2i N ¥ (1)vyghi(r)

=—Ei m@*(r)? n(jluli)¢;(r), (10

equivalent to the local exchange potential of Slafét.
For the kinetic energy of the reference statd,

=3,n;(i|—3V?]i), Eq. (7) gives a formula assumed in de-

riving Eq(3),

vr(N)p(r)=2 nigF(Norey(r)

=Zni¢r<r>{—%v2}¢i<r>. (11)

IV. ONE-ELECTRON EQUATIONS
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chain rule for orbital functional derivatives of density func-
tionals, SF/n;5¢; =(5F/8p)¢;, the remaining operator
terms are[ S(E—T)/dp]d; . Assuming that this functional
derivative defines a local potentialr), this gives the usual
form of the Kohn-Sham equations, E(). If occupation
numbers are varied in a basis of Kohn-Sham eigenfunctions,
only the final term in Eq(12) is nonzero. On introducing the
chemical potentiaju as a Lagrange multiplier for the con-
straint>;n; =N, the variational equation takes the form

2 [E_ﬂ]&‘i:Z {ei—p}on=0,

> | on (14
wheree; = [ ¢ (5E/ 5p) ¢;d>r, in the canonical orbital basis.
The first equality here implies Janak’s theord®], e;
=gE/dn;. The second equality is consistent with Fermi-
Dirac statistics. At zero temperature, variatiofs; must
vanish except at the Fermi leved,= u.

This derivation involves no assumptions beyond standard
variational theory. The exact Hohenberg-Kohn energy func-
tional leads to exact Kohn-Sham equations. These equations
follow from expressing the energy functional as a sum of
component functionals defined, except for the residual corre-
lation energy, as reference-state mean values. Density-
functional derivatives of these component functionals define
linear operators that may be equivalent to local potentials.
The functional derivative of the kinetic-energy functional is
obtained explicitly as a linear operator. It cannot be identi-
fied with a local potential function without an additional hy-
pothesis or proof. The hypothesis that this operator is equiva-
lent to a local potential function is tested by the Thomas-

For consistency with the Hohenberg-Kohn theorems, th&€rmi formalism. As indicated in comparing Eqg) and
energy functional must be minimized with respect to varia->; the Thomas-Fermi equation is inconsistent with the
tions of the orbital functions, subject to orthonormality. The Kohn-Sham equations for more than two electrons. This in-
Kohn-Sham equations are the Euler-Lagrange equations gefonsistency negates the stated hypothesis.
erated by this minimization condition. First-order variations |f @n effective local potentiab(r) is substituted for the
of the energy functional, modified using Lagrange multipli- ©n€-electron kinetic-energy operator in the Kohn-Sham
ers\;; to enforce orthonormality of the orbital functions, are equations, as it is in Thomas-Fermi theory, these equations
given by change character drastlcal_ly. Indmdqal O(bltal energies

are replaced by the chemical potential Since the local
. 3 potential is independent of index the equations cannot de-
g E[P]_; nin; j &7 $idr = &ij | \ji termine the orbital substructure of the density function. Even
if all components ofSE/Jp were local functions, and an
equation analogous to the Thomas-Fermi equation were de-
fined by a weighted sum of the Kohn-Sham equations,

:Z n,

SE
f(s(ﬁl*{nlﬁd);k _; njd)j)\ji]d?’r+c.c.

5E_2i nip; € i

—=
P Z nid; o;

+Z 5nif ¢i*%¢id3r. (12

=e(r), (15)

Euler-Lagrange equations follow on requiring this expres-
sion to vanish for unconstrained variations of the occupied
orbital set, with fixed occupation numbersi£1). The e theory still would require Kohn-Sham eigenvalues and
coupled equations for the occupied orbitals are occupation numbers.

It can easily be shown that Hohenberg-Kohn theory ap-
plies to the model of Hartree-Fock ground-std@s A direct
test of locality is provided by considering variations of
ground-state Hartree-Fogk and E induced by varying the
As in Hartree-Fock theory, a canonical form is obtained bynuclear charg& [6]. From Eq.(11), v+(r) is the mean local
diagonalizing the matrix of Lagrange multipliers. The kinetic energy, such that=fv1pd>r. If v is equivalent to
kinetic-energy term here i6T/n;8¢F = —3V2¢;. From the  the functional derivativeST/ 5p, thenZ derivatives ofp and

SE
n; 8¢y
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of the kinetic-energy functionall must be related by V. DISCUSSION

dT/6Z=[v(dp/3Z)d°r. Hence the existence of a local |t has been shown here that the Thomas-Fermi equation is
functional derivative requires that inconsistent with the variational equations that determine or-
bital structure of the density function in Kohn-Sham theory.
To compute this orbital structure, it is necessary to describe
78 kinetic energy by the linear operaters V2 rather than by an
Qr= f —7 pdr=0. (16)  effective local potentiab . An important implication of this
result is that Fermi-Dirac statistics, involving occupation
numbers for normalized orbital functions, cannot be imple-
) , . mented in Thomas-Fermi theory. This is consistent with the
In recent work to be published elsewhéfd, this quantity \e|l-known failure of this theory to describe atomic shell
has been computed for atomic He, Be, and Ne, giving thgtrycture. The essential conclusion of this analysis is that for
values Qr(He)=-0.494x10"°, Qr(Be)=0.812, and ground states Thomas-Fermi theory is not equivalent to
Q1(Ne)=6.849 in Hartree atomic units. For the typical at- Kohn-Sham theory, even if the exact Hohenberg-Kohn uni-
oms Be and Ne, the criterion parame@y differs from zero  versal density functional were known and used.
by an amount much greater than any possible computational

inaccuracy. This indicates that it cannot generally be valid to ACKNOWLEDGMENTS
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