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Kinetic energy in density-functional theory

R. K. Nesbet
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099

~Received 9 December 1997!

While Kohn-Sham theory uses the quantum-mechanical operator for kinetic energy, Thomas-Fermi theory
replaces this with an effective local potential. If both theories are based on the exact universal density func-
tional defined by Hohenberg-Kohn theory, it is an interesting question whether they should give the same
results forN-electron ground states. This question is examined and answered in the negative. The inconsis-
tency is resolved only by extending the definition of functional derivatives to encompass linear operators. An
exact theory must incorporate one-electron energies and occupation numbers derived from Kohn-Sham theory.
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I. INTRODUCTION

Hohenberg and Kohn@1# proved the existence of a un
versal functionalF@r# equal to the mean value of the sum
kinetic energyT and two-electron Coulomb interactionU for
anN-electron ground state whose electron density functio
r(r ). The external potential functionv(r ) that determines
this ground state is uniquely associated with the speci
density. The integral*vr defines a functionalV@r# in which
v(r ) is considered to be fixed. Givenv(r ), the total energy
functionalE5F1V is minimized by the particular densityr
that corresponds to theN-electron ground state@1#. To avoid
formal mathematical difficulties, bothr and v are assumed
here to correspond to physically realizable systems for in
gral N, and both are assumed to be spin-indexed scalar fie
Spin indices are suppressed in the notation used.

If the functionalE@r# can be defined for arbitrary varia
tions dr that do not conserveN, and if a functional deriva-
tive equivalent to a sum of local potential functions can
defined bydE5*(dE/dr)drd3r , the Thomas-Fermi equa
tion is obtained by minimizingE2mN for fixed v, wherem
is the chemical potential@2#. Under the stated assumptions

d$E2mN%5E H dE

dr
2mJ drd3r50 ~1!

implies the Thomas-Fermi equation,

dE

dr
5m. ~2!

Equation~2! determinesr(r ) when m is adjusted to give a
specified value ofN. This derivation can be questioned o
several grounds. The parameterm drops out of Eq.~1! for
variations that conserveN. Separate assumptions are r
quired to establish the meaning of functionals and functio
derivatives for nonintegralN, and Fermi-Dirac statistics ma
impose severe restrictions@3#.

The argument developed here will focus on the ques
as to whether the functional derivative for kinetic energy
equivalent to a local potential function. Substitution of
effective local potentialvT5dT/dr for the kinetic-energy
operatorv̂T52 1

2 ¹2 is implicit in the derivation and use o
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the Thomas-Fermi equation. Kohn and Sham@4# found a
way to use the kinetic-energy operator directly, by equat
the true correlated ground-state density function to that o
noninteracting system of electrons moving in an effect
potential fieldw(r ). The density function takes the formr
5( inif i* f i , expressed in terms of orthonormal orbit
functionsf i(r ). The occupation numbersni are determined
by Fermi-Dirac statistics at zero temperature, and can
assumed to have values limited to one or zero for a sys
with discrete one-electron energy levels or with an ene
gap at the Fermi level. Through a derivation given in det
below, this leads to Kohn-Sham equations for the occup
orbital functions,

H dE

dr
2e i J f i50. ~3!

Here the kinetic energy part ofdE/dr is represented by the
differential operator2 1

2 ¹2 and the remaining terms are a
sumed to define the local potential functionw(r ).

Equations~2! and ~3! cannot both be generally true. O
integrating the Thomas-Fermi formula,

E r
dE

dr
d3r5Nm, ~4!

where N5*rd3r5( ini . If the Kohn-Sham equations, Eq
~3!, are multiplied on the left bynif i* , then integrated and
summed, they produce

(
i

niE f i*
dE

dr
f id

3r5(
i

nie i , ~5!

which should agree with Eq.~4! under the assumption
made. It is clear that these results are inconsistent.
chemical potentialm is not less than the highest value ofe i
for occupied orbital functions (ni51). Hence( inie i,Nm
unless alle i are equal, generally possible for no more th
two electrons. The present paper is concerned with the
lidity of and relationship between these apparently incomp
ible consequences of the same underlying theory.
R12 © 1998 The American Physical Society
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II. EFFECTIVE LOCAL POTENTIALS

The functional derivative of a density functionalF de-
scribes the change ofF due to an arbitrary infinitesima
variation of r. This is usually defined by dF
5*@dF/dr(r )#dr(r )d3r , which requires the functional de
rivative to be a local function, as in the derivation of Eq.~2!
in Thomas-Fermi theory. In Kohn-Sham theory, variations
the density are generated by variations of an orthonorma
of occupied orbital functions, for whichr5( inif i* f i . For
variations generated in this way, the definition of a fun
tional derivative can be generalized to

dF5(
i

niE H df i* ~r !
dF

dr~r !
f i~r !1c.c.J d3r .

The functional derivative here can be a linear operatorv̂F
that acts on wave functions, but this reduces to the us
definition if the functional derivative is simply a local func
tion vF(r ). For a density functional that is also a function
of the orbital functions, orbital and density-functional deriv
tives are related by the chain ruledF/df i* 5ni(dF/dr)f i .
As will be shown below, in Eqs.~8!, the mean value of
kinetic energy in the Kohn-Sham model state defines
kinetic-energy functional for which dT/df i* 5ni

$2 1
2 ¹2%f i . The chain rule in this case defines the function

derivativev̂T5dT/dr as a linear operator. It is used in th
form in the Kohn-Sham equations, which will be shown b
low to be the correct result of variational theory.

It is possible for a linear operator to be equivalent to
local potential function in a set of differential equations. F
any orbital functional that is also a density functional,

(
i

f i*
dF

df i*
5(

i
nif i* ~r !

dF

dr~r !
f i~r !

5(
i

nif i* ~r !v̂Ff i~r !. ~6!

If the functional derivativedF/dr defines a local potentia
vF(r ), this function can be factored out of Eq.~6! and con-
structed from the formula

(
i

f i*
dF

df i*
5vF~r !r~r !. ~7!

In deriving the Thomas-Fermi equation, the functional d
rivative dT/dr is assumed to define a local functionvT(r ).
A derivation of the Kohn-Sham equations is given below t
is valid whether or not local potentialsvF(r ) exist. Kinetic
energy appears as the usual linear operator,v̂T52 1

2 ¹2. The
assumption thatv̂T can be replaced byvT(r ) is the principal
difference between these theories. Their inconsistency
more than two electrons, as shown above, implies that
assumption fails, and that the Thomas-Fermi equation ca
be derived in an exact theory.
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III. REFERENCE STATES AND COMPONENT
FUNCTIONALS

The postulate of Kohn and Sham@4# that the density func-
tion r is a sum of orbital densities is equivalent to assum
the existence of a reference stateF defined by a normalized
wave function that is a single Slater determinant. This can
put into a more general context by fixing the arbitrary no
malization of the true correlatedN-electron wave functionC
so that (FuC)5(FuF)51. This unsymmetric normalization
implies an unsymmetric energy formula for any energy
genvalue E5(FuHuC)5(FuHuF)1(FuHuC2F). Be-
causeC2F is orthogonal toF, the last term of this energy
formula provides a natural definition of correlation ener
Ec5(FuHuC2F) with respect to a given choice of the re
erence state. The universal functionalF@r#5E2*vrd3r is
defined in ground states for which$T1U1V2E%C50 and
E5E@v#, a functional of the external potential. The unive
sal functional takes the form F@r#5(FuT1UuF)
1(FuT1U1VuC2F) using the Kohn-Sham ansatz, sinc
(FuVuF) is equal to the subtracted term*vrd3r .

If the reference stateF is determined byr either directly
or through the wave functionC, it becomes a functiona
F@r# and mean values evaluated in the reference state
functionals of the density. Under these conditions, the
symmetric energy formula provides a natural decomposit
of the universal functional into component density functio
als, all defined by ground-state numerical values. These

T@r#5~FuTuF!,

Eh@r#5~FuUhuF!,

Ex@r#5~FuUxuF!,

Ec@r#5~FuT1U1VuC2F!. ~8!

The notation here defines the Hartree or classical part of
reference-state energy~operatorUh), the exchange part~op-
eratorUx), and a residual correlation term.

In the theory of Kohn and Sham@4#, the reference state i
determined by minimizing the kinetic energy while requirin
the reference-state densityrF to be equal to the correlate
densityrC . This suffices to determine all of the compone
functionals listed in Eqs.~8!. In reference-state density func
tional theory@5#, the reference stateF is determined by a
condition of maximum overlap on the eigenstateC. This
eliminates the one-electron operatorT1V from the implied
correlation part of the universal functional, but redefines
theory in terms of functionals of the reference-state elect
density. In Hartree-Fock theory, the correlation term is a
sent and the reference stateF is determined by minimizing
(FuHuF). This defines a universal functionalF0@r# for
single-determinant wave functions@6#. Component function-
als are defined in Hartree-Fock ground states.

Except for Ec , each component functional defined b
Eqs.~8! has an explicit representation as a functional of
occupied orbitals of the reference state. If an equivalent lo
potential exists for any of these functionals, including t
kinetic energy, it can be extracted from Eqs.~6! and~7!. For



-

th
ia
he
ge
ns
li-
re

es
ie

b
e

c-
r
l
l

ns,

-

.

i-

ard
nc-
ions
of

rre-
sity-
ne

als.
is
ti-

y-
iva-
s-

he
in-

am
ions

-
en

de-

nd

ap-

of

RAPID COMMUNICATIONS

R14 PRA 58R. K. NESBET
the explicit density functionalEh5 1
2 ( i , jninj ( i j uuu i j ), where

u51/r 12, this construction gives the classical~Hartree! po-
tential function,

vh~r !r~r !5(
i

nif i* ~r !v̂hf i~r !

5(
i

nif i* ~r !(
j

nj~ j uuu j !f i~r !. ~9!

Given Ex52 1
2 ( i , jninj ( i j uuu j i ) for a ground state, Eq.~7!

implies

vx~r !r~r !5(
i

nif i* ~r !v̂xf i~r !

52(
i

nif i* ~r !(
j

nj~ j uuu i !f j~r !, ~10!

equivalent to the local exchange potential of Slater@7#.
For the kinetic energy of the reference state,T
5( ini( i u2

1
2 ¹2u i ), Eq. ~7! gives a formula assumed in de

riving Eq.~3!,

vT~r !r~r !5(
i

nif i* ~r !v̂Tf i~r !

5(
i

nif i* ~r !$2 1
2 ¹2%f i~r !. ~11!

IV. ONE-ELECTRON EQUATIONS

For consistency with the Hohenberg-Kohn theorems,
energy functional must be minimized with respect to var
tions of the orbital functions, subject to orthonormality. T
Kohn-Sham equations are the Euler-Lagrange equations
erated by this minimization condition. First-order variatio
of the energy functional, modified using Lagrange multip
ersl j i to enforce orthonormality of the orbital functions, a
given by

dH E@r#2(
i j

ninj S E f i* f jd
3r2d i j Dl j i J

5(
i

niF E df i* H dE

nidf i*
2(

j
njf jl j i J d3r1c.c.G

1(
i

dniE f i*
dE

dr
f id

3r . ~12!

Euler-Lagrange equations follow on requiring this expr
sion to vanish for unconstrained variations of the occup
orbital set, with fixed occupation numbers (ni51). The
coupled equations for the occupied orbitals are

dE

nidf i*
5(

j
njf jl j i . ~13!

As in Hartree-Fock theory, a canonical form is obtained
diagonalizing the matrix of Lagrange multipliers. Th
kinetic-energy term here isdT/nidf i* 52 1

2 ¹2f i . From the
e
-

n-

-
d

y

chain rule for orbital functional derivatives of density fun
tionals, dF/nidf i* 5(dF/dr)f i , the remaining operato
terms are@d(E2T)/dr#f i . Assuming that this functiona
derivative defines a local potentialw(r ), this gives the usua
form of the Kohn-Sham equations, Eq.~3!. If occupation
numbers are varied in a basis of Kohn-Sham eigenfunctio
only the final term in Eq.~12! is nonzero. On introducing the
chemical potentialm as a Lagrange multiplier for the con
straint( ini5N, the variational equation takes the form

(
i

H ]E

]ni
2mJ dni5(

i
$e i2m%dni50, ~14!

wheree i5*f i* (dE/dr)f id
3r , in the canonical orbital basis

The first equality here implies Janak’s theorem@8#, e i
5]E/]ni . The second equality is consistent with Ferm
Dirac statistics. At zero temperature, variationsdni must
vanish except at the Fermi level,e i5m.

This derivation involves no assumptions beyond stand
variational theory. The exact Hohenberg-Kohn energy fu
tional leads to exact Kohn-Sham equations. These equat
follow from expressing the energy functional as a sum
component functionals defined, except for the residual co
lation energy, as reference-state mean values. Den
functional derivatives of these component functionals defi
linear operators that may be equivalent to local potenti
The functional derivative of the kinetic-energy functional
obtained explicitly as a linear operator. It cannot be iden
fied with a local potential function without an additional h
pothesis or proof. The hypothesis that this operator is equ
lent to a local potential function is tested by the Thoma
Fermi formalism. As indicated in comparing Eqs.~4! and
~5!, the Thomas-Fermi equation is inconsistent with t
Kohn-Sham equations for more than two electrons. This
consistency negates the stated hypothesis.

If an effective local potentialvT(r ) is substituted for the
one-electron kinetic-energy operator in the Kohn-Sh
equations, as it is in Thomas-Fermi theory, these equat
change character drastically. Individual orbital energiese i
are replaced by the chemical potentialm. Since the local
potential is independent of indexi , the equations cannot de
termine the orbital substructure of the density function. Ev
if all components ofdE/dr were local functions, and an
equation analogous to the Thomas-Fermi equation were
fined by a weighted sum of the Kohn-Sham equations,

dE

dr
5

(
i

nif i* e if i

(
i

nif i* f i

5 ē~r !, ~15!

the theory still would require Kohn-Sham eigenvalues a
occupation numbers.

It can easily be shown that Hohenberg-Kohn theory
plies to the model of Hartree-Fock ground-states@9#. A direct
test of locality is provided by considering variations
ground-state Hartree-Fockr and E induced by varying the
nuclear chargeZ @6#. From Eq.~11!, vT(r ) is the mean local
kinetic energy, such thatT5*vTrd3r . If vT is equivalent to
the functional derivativedT/dr, thenZ derivatives ofr and
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of the kinetic-energy functionalT must be related by
]T/]Z5*vT(]r/]Z)d3r . Hence the existence of a loca
functional derivative requires that

QT5E ]vT

]Z
rd3r50. ~16!

In recent work to be published elsewhere@6#, this quantity
has been computed for atomic He, Be, and Ne, giving
values QT(He)520.49431025, QT(Be)50.812, and
QT(Ne)56.849 in Hartree atomic units. For the typical a
oms Be and Ne, the criterion parameterQT differs from zero
by an amount much greater than any possible computati
inaccuracy. This indicates that it cannot generally be valid
assume that the functional derivativedT/dr5 v̂T defines a
local potentialvT(r ).
e

al
o

V. DISCUSSION

It has been shown here that the Thomas-Fermi equatio
inconsistent with the variational equations that determine
bital structure of the density function in Kohn-Sham theo
To compute this orbital structure, it is necessary to desc
kinetic energy by the linear operator2 1

2 ¹2 rather than by an
effective local potentialvT . An important implication of this
result is that Fermi-Dirac statistics, involving occupatio
numbers for normalized orbital functions, cannot be imp
mented in Thomas-Fermi theory. This is consistent with
well-known failure of this theory to describe atomic she
structure. The essential conclusion of this analysis is that
ground states Thomas-Fermi theory is not equivalent
Kohn-Sham theory, even if the exact Hohenberg-Kohn u
versal density functional were known and used.

ACKNOWLEDGMENTS

The author is grateful to R. Colle for discussions, and
the Scuola Normale Superiore~Pisa! for financial support.
@1# P. Hohenberg and W. Kohn, Phys. Rev.136, B864 ~1964!.
@2# N. H. March, Adv. Phys.6, 1 ~1957!.
@3# R. K. Nesbet, Phys. Rev. A56, 2665~1997!.
@4# W. Kohn and L. J. Sham, Phys. Rev.140, A1133 ~1965!.
@5# R. K. Nesbet, J. Phys. B29, L173 ~1996!.
@6# R. K. Nesbet and R. Colle~unpublished!.
@7# J. C. Slater, Phys. Rev.81, 385 ~1951!, Eq. ~7!.
@8# J. F. Janak, Phys. Rev. B18, 7165~1978!.
@9# P. W. Payne, J. Chem. Phys.71, 490 ~1979!.


