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We analyze the gauge dependence of the relativistic electron gas correlation Epeesylting from the
no-pair approximation. In particular, we evaluate the relativistic no-pair Lindhard function as the basic ingre-
dient of the random-phase approximatiRPA) for E.. The resulting gauge-dependent no-pair RPA is
compared with a gauge-invariant counterpart. The implications for relativistic density functionals are examined
by applying the local-density approximation based on each of these foristofatoms. It is found that the
gauge dependence Bf is irrelevant on the overall level of accuracy obtained with present density functionals.
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PACS numbd(s): 31.10+z, 31.30.Jv, 52.66:h

I. INTRODUCTION AND SUMMARY OF RESULTS 22)). In particular, it has been shown for the relativistic ex-
change energg, that, in contrast to the RHF scherfig],
The extension of nonrelativistic many-body methods tothe exact DFT treatment of the no-pair exchange via the
the relativistic domain leads to the question how to deal withrelativistic OPM ensures gauge invariance even if the full
the negative-energy continuum states. Sughghas pointed  transverse interaction is used self-consistefil§]. On the
out in the context of the relativistic Hartree-FO@RHF) ap-  other hand, explicit approximations for the relativistic DFT
proximation that these states must be projected out in ordedgrelation energyE, are not gauge invariant when the no-
to obtain variationally stable bound-state solutions, thereb)(_,air approximation is used in their derivatiga9]. As an
defining the no—(vir_tual_—)pair approximation. It is well analysis of the importance of gauge effects Earwe here
known that this projection leads to gquge—dependent resuli§iscuss the no-pair approximation for the relativistic local-
for the exchange-correlatidrc) energy if the complete rela- density approximation(RLDA) [16,23-25. The RLDA

tivistic electron-electron interaction is taken into account. o . . .
While for conventional many-body methods this gauge de_plays a central role as it is the most simple approximation for

pendence has recently been analyzed in great detail for heI'iE-C and serves as basis for the construction of more accurate

umlike ions[2-5], it has to date not been addressed in thedenslty functionals such as relativistic GGH3]. It is thus

framework of relativistic density-functional theorpFT)  Well suited for this study. _ _
[6,7]. However, the more refined DFT methods, like the gen- N the RLDA the local xc energy density of the inhomo-
eralized gradient approximatid®GA) [8-10 and the opti- ~9eneous system of interest is approximated by the xc energy
mized potential methotOPM) [11,17], are now approaching density e;c™—~ of a relativistic homogeneous electron gas
quantum chemical accuradyl3—15. For applications to (RHEG) with given local density. Our discussion thus starts
high-Z atoms these techniques have recently been extendétith a brief review of the random-phase approximation
to include relativistic correctiongl6—18, so that the ques- (RPA) for eRE¢, which gives the main contribution to
tion arises to what extent the resulting xc energies depend cel "= in the high-density limit relevant for the present pur-
the gauge chosen for the electron-electron interaction, i.epose. In particular, we contrast the usual no-pair approxima-
the photon propagator. tion with the gauge-invarianto-seaapproximation. While in

In addition to the no-pair approximation there exists athe former the negative-energy continuum states are pro-
second possible source of gauge dependence: Transition mjacted out completely, only the vacuum QED limit of each
trix elements or Feynman diagrams may become gauge d@dividual fermion loop in a given energy diagram is omitted
pendent if they are evaluated with single-particle orbitals thain the no-sea approximatiof5,26,7. Until today, in the
experience a nonlocal potentidhs, e.g., in the RHF context of the RLDA, the no-sea approximation has been
schemg However, due to the multiplicative nature of the used exclusively. On the other hand, the no-pair approxima-
DFT single-particle potential this second source of gaugeion represents the standard in conventional quantum chemi-
dependence is not present in DFT calculations, as discussedl methodg27-30. Any previous comparison of RLDA
in detail elsewhergl9] (note that gauge-invariant transition and quantum chemical resultas in[16]) has ignored this
matrix elements can also be obtained with RHF orbitals if adifference. This study of the no-pair RLDA therefore also
suitable resummation of the perturbation series is (128  provides an estimate for the accompanying uncertainty.
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The basic ingredient of the RPA is the noninteractingHere %" represents the time-ordered current-current re-
current-current response functiggy”, i.e., the relativistic  sponse function of the RHE{®@5]. The subscrips indicates
Lindhard function[31-33. We thus evaluatgh” within the  that the coupling constarg? is scaled bys. XV’ is the
no-pair approximation and use the result to calculate the noracuum QED limit of x£”. Finally, wa denotes the free
pair RPA foreR"EC (in Sec. I). The differences between the photon propagator of QED, for which various gauges are in
no-sea and the no-pair results EﬁHEG are discussed in Sec. use. In the covariant gauge one a6]

[1I. 1t is shown that these differences are comparatively small

in the density range relevant for atorfsee Sec. lll A. The 0 _ 2
importance of higher-order retardation effects is studied by a D,.(a)=D(q%)
comparison of results obtained with the full transverse inter-

action and those found with its weakly relativistic limit, the with

Breit approximation. The differences again turn out to be

rather small in the interesting density range. In Sec. Ill B the —47e?
consequences for electronic structure calculations for atoms D(g%) =
are discussed. Here the neon isoelectronic series serves as a

basis, as it is the most systematic set of atomic systems b
yond heliumlike or lithiumlike ions for which reference data

are availablg28]. While the absolute size of the gauge ef- _ ; [Feynman gaugé=G)] andx = [Landau gauge(LG)]

fects is shown to increase with the percentage deviation is are relevant. Alternatively, in the Coulomb gau@G) the

largest for light atoms, indicating that the gauge dependencshoton propagator reads

is already present in the lowest-order weakly relativistic cor-

)\_1q dv
Qur™ 5 32 ) @

q2+i6 , @

fhere the gauge parameterepresents an additional degree
of freedom. In practice, however, only the two choices

rection (compare[2]). On the other hand, the differences D(—cP) 0

between the various gauges are marginal compared with the

overall error of the RLDA with respect to relativistic second- D%CYq)= 0 (| o + a9\ |. @
order many-body perturbation theofRMBPT2) [28]. . (9] 9i ¢

This demonstrates that the failure of the RLDA to accu-
rately reproduce the relativistic contribution to atontg L
does not originate from the different treatment of negative-Often the weakly relativistic limit of Eq(4), the Coulomb-
energy states and photon retardation effects in the no-sé#f€it (CGB) interaction[37], is utilized,
RLDA and the RMBPT2 reference data, thus supporting the 1 0
conclusions irf16]. To complete the analysis p16] the role
of the so-called second-order exchange graphs, which have 0,CGB 2 ig;
only been included on the nonrelativistic level in this study, D A@=D(=a)| o ij T QI—gJ ' ®)
remains to be investigated. Unfortunately, the complete den- q
sity dependence of these contributions to the RHEG is not
known. From the high-density limi{34], however, the which includes transversgetardation and magnejieffects
second-order exchange graphs are expected to give roughiy lowest order in 1.
40% of the RPA. These contributions should thus not affect To date, the response function of the RHEG has only been

the principal conclusions drawn on basis of the RPA. evaluated in the RP/25,31], defined by the Dyson equation
In view of the overall accuracy of the RLDA for atoms o
the results presented here should only be understood as an XkpaA(@)=X6"(Q) + x6"(q)D () xrpaA(D), (6)

order of magnitude estimate of the gauge dependence inher-

ent in more accurate many-body schemes, both in the quaMtherexs” represents the noninteracting limit f”, i.e., the
tum chemical framework and in DFT. Nevertheless, this estelativistic Lindhard function,

timate suggests that the error introduced by the no-pair
approximation is smaller than the differences between the v 0 v~0

various many-body techniques, e.g., between RMBPT2 and Xo"(a)= _'f (277)4”{7MG (P)y'G(p+a). (D
the relativistic coupled-cluster approag29]. In particular,

the accuracy of the more refined DFT approximationsHpr Here G° is the electron propagator of the noninteracting
(as GGASs[9,10])) has not yet reached the level on which aRHEG, which may be decomposed in two different ways,
gauge dependence would be relevant.

4

G%(p)=Gy(p)+Gp(p) ®)
Il. THEORY 0 G o
The starting point of our discussion is the representation +(P) -(P), ©
of the xc energy densitg,. of the RHEG via a coupling p+m
constant integrafl7,25,31,33 (A=c=1) GY(p)=—-7, (10)
p?—m?+ie
RHEG e d4q 0 nv wv

eXC :Ef dSJ—4D,u,V(q)[XS (q)_XV,S(q)] . p-}-m

° 7 (2m W GB(p)=2mi 8(p°~Ey) e ~O(ke—[p]), (1D



PRA 58
pr+m| O(pl—ke)  O(ke—|pl)
M= | 5 =t oo (12
p [P —Eptie p —Ep—ie
p_+m -1
G%(p)= : 13
(p) 2E, pOIE, i (13
where Ep=(p?+m?)Y2,  ph=(*E,.,p), and kg

=(372n)'3 n being the density of the RHEG. In E() the
vacuum QED propagatc@?, has been extracted fro®°,

leaving a remainde®? , in which the occupied gas states are

isolated. On the other hand, in E) the contributions of
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It is well known that the no-pair approximation quite gen-
erally leads to gauge dependent correlation energies, which
is reflected by the nontransversality gf , [40],

Quxbod ) =0, quitdD=—adxm(@). (2D
The no-sea approximation, on the other hand, is gauge in-
variant as bottyg” andygy, satisfy the transversality relation
q,.x“"=0. For the RPA this can be verified immediately
[41] using Egs(16), (17), and(20).

For any gauge of the photon propagator and tensor struc-
ture of the Lindhard function the full response functig)

been separated. In the nonrelativistic lin®f approaches
the standard nonrelativistic electron gas propagator.
These two different decompositions 6f form the basis

for the no-pair and no-sea approximations. In the former all  XrpaA(d)=F(q)

negative-energy states are projected[djit On the propaga-
tor level this corresponds to replaci@f by G° , so that the
noninteracting response function reduces to

4

14 H p 14
Xé‘,np(Q)=—lf St{y*GL(p)y"GL(p+a)}.
(27)
(14)
Evaluating Eq.(14) one finds for the tensor structure of
Xg,]r;p*
X&Ep: Pleth_ Pt VX;IW—p—’_ EL‘[I'L V;Ip- (19
where
4/ o 9%
PU= g2 | P’ (a%%d'q) |- (16
1[0 0
F,#u:E 0 ngij+qiqj , (17
~ 4/0 0

The explicit forms foryk," and x;,, are listed in the Appen-
dix.

The no-sea approximatidi25,26, on the other hand, is
defined as
(19

MY _ MV UV
Xons— Xo — Xov:

which is easily evaluated using the decompositi@h In

contrast to Eq(15), x§ ,shas only two independent tensorial

components

X'LOL,;s: P;Lw)(hs_ PLLI'WXIS' (20

X has often been the

[25,32,33,38,3D

reported in

literature

ample, in the covariant gauge one obtains

Xed@[1—D(A2A(AN) xns(@) IPE

o —
1+ D<q2>—xhp<q>) Py

+ Xnp(Q) 7

q2
- D(qz)gxhp(q)ﬂp(q)go”go”

)
an(Q)

- P&V, (22

1+D(g)xg@)

with

Xho @ = xaD[1—A(q,\)]

} -1
and A(g,\)=(g¥/q®)(1—\)/\. As D, xkba is even ing®
and analytic for Ref®)=0 and Im(qd$>O, theq® integra-
tion along the real axis in Eql) can be deformed to a
contour along the imaginary axis. The replacemght:i
leads to purely reaj(h*STnp, which can be obtained by inser-
tion of qy=(iw,q) into the real part of the forms given in
the Appendixthis is abbreviated by(qy,) in all subsequent
formulag. The coupling constant integration can then be per-
formed analytically. After subtraction of the exchange con-
tribution this leads to

F(q)=[ 1-D(g?)

q2

~D(0?) X D xmp( @ | AlGN) + =
q

= [~ qfdg
do | S nlF )

+2In[1+D(agd) x/s(aw)|
+D () { X Gw) — X G [ 1= A(Qw \)]
—2xnaw)}) (23)

egﬁg(n,mzzf

0

in the covariant gauge, while for the CG one finds
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FIG. 1. RPA correlation energy per particle for the no-sea and F|G. 2. Relative deviatiom [Eq. (26)] of no-pair correlation

no-pair approximations.

RP _
ec’n,ﬁ(n)—ZJO dwfo (2
+2In|1+D(ag) x/,(aw)|
+D (a3 [ xre ) — 2xmaw) 1}

dg
W)3{In|1—D<q5v>xhp<qW>|

(24)
The CGB approximation foefF is obtained from Eq(24)
by substituting ¢ g3/ d?) xn, for xn,. The corresponding no-
sea resulef 2 [7,16,25,42 is given by Eq.(24) with x5
replaced byy-:" . The integrations in Eq$23) and(24) have
to be performed numericalljfor this purpose we have used

polar coordinateg?®= w2+ ¢?, ¢p=arctan(g|/)].

Ill. RESULTS

RPA
c,np

A. Gauge dependence oé

The no-sea RPA represents a gauge-invariant approximgs the productD

tion for the RHEG correlation energy, in which the density-

energies with respect to no-sea values as a function of the gauge
parameten [Eq. (2)].

A direct estimate of the importance of the negative-energy
continuum is obtained from the relative deviatidnof no-
pair from no-sea results,

RPA RPA
ec,np_ €cns

RPA
eC,nS

A (26)

For the covariant gaugd is plotted as a function of the
gauge parametex for different values of3 [Eq. (25)] in Fig.

2. While B~1 corresponds to inner-shell densities of very
heavy elementsB~0.01 is a typical value for the valence
regime. As all the functions involved in ER3) are strictly
monotonic, the overall gauge dependenceeRfi(n,\) is
governed by the factor (2\)/\, which fixes the relative
weight of the two components of the photon propagé®pr

In fact, the nontransversality ofg 1, [Eq. (21)] is irrelevant
OVXS,‘Ep, which determines the RPA energy

via Egs.(1) andl(LG) when\=1. Accordingly, Fig. 2 shows

dependent part ofg " is fully taken into account. It therefore ot in the range of atomic densitiés is smallest in the
can serve as a comparative standard with respect to Whi(‘\'ﬂcinity of \=1. i.e.. for the FG. On the other hand. while

the gauge dependence of no-pair results can be measur
The correlation energy per partick®"=%n in the FG and
CG is plotted together with the corresponding no-sea data i
Fig. 1 as a function of the dimensionless density varighle

B=ke/mc=(37%n)¥¥mc. (25)
While in the nonrelativistic limit3—0 the gauge depen-
dence ofeRHEC vanishes, the differences between the gauge
increase linearly in the high-density reginfas to be ex-

%fle gauge dependenceaffi is of the order of a few percent

for A>1, it increases drastically fox<<1. This is easily
Understood by noting that for=1 {7 is essentially linear
in (L—\)/\, as (1—)\)/)\;Ip represents only a small contri-
bution to the totaDgyxgﬁ,pin this regime, so that an expan-
sion of eXpA(n,\) with respect to this term is legitimate. In
any case, for ultrarelativistic values @f the deviation be-
swveen the no-pair and the no-sea approximation becomes
arbitrarily large, reflecting the growing importance of virtual

pected from a dimensional analysis; compare Appendix B o€lectron-positron pair creation.

[7D.

Some CG results foA are given in Table I. The overall

TABLE I. Relative deviationA [Eq. (26)] for CG, CGB, FG, and LG37] for different values of3 [Eq.

(29)].
A

B CGB CG FG LG
0.01 3.6x10°7 1.4x10°° 7.1x10°6 7.1x10°6
0.1 -9.0x10°* —-9.1x10°* —-1.2x1073 —1.9x10°8
0.5 —1.1x1072 —1.3x1072 —1.2x1072 —4.5%x107°2
1.0 1.8<10°2 7.1x1073 3.0x1072 —7.2x1072
10.0 2.2x1071 1.7x1071 2.7x1071 1.1x10°?
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TABLE Il. Relative deviations [Eq. (27)] for CG, FG, and LG This agrees with a corresponding observafidhin the con-

[37] for different values of3 [Eq. (25)]. text of atomic RHF calculations.
o B. No-pair RLDA results for atoms

B CG FG LG . . . .

In this section we discuss the gauge dependence of atomic
0.1 —-4.3x10°* —5.7x107* -9.1x10°* correlation energies resulting from the no-pair RPA for the
0.5 —-1.5x10°* —1.4x10°* —-5.0x10°* RLDA. In the RLDA [23-25 the xc energy density of the
1.0 2.7x10°2 1.2x10°1 —-2.8x10°1 inhomogeneous system of interest is approximated by the xc
10.0 1.9x10°?! 3.1x10°?! 1.3x10°2 energy density of the RHEG, evaluated with the local density

n(r),

density dependence & in the CG is similar to that ob- RLDA 3. RHEG
served in the FG. While the C@ is smaller than the FG Exc [”]:f dr exc(n(r)). (28)
result for 3=1, neither of the two gauges givesAathat is
consistently smaller than that of the other in the atomic denThe no-pair RPA for the RLDA is defined by insertion of
sity range. In additionA has no definite sign, so that it is not either Eqgs.(23) or (24), depending on the gauge chosen.
clear at this stage which of the two gauges will lead toAlternatively, use ofesf,’ﬁ yields the no-sea RPA for the
smaller gauge errors in atomic RLDA calculatiofsee Sec. RLDA, which again serves as a comparative standard. In
I B). In contrast, gauge effects are more pronounced in therder to obtain a correlation functional that is more complete
LG. Moreover, the error of the Breit approximati®6GB)  than the RPA for lowm(nonrelativisti¢ densities the various
with respect to the full transverse interacti®®G) is of the  forms for the RPA are combined with an accurate parametri-
same order as the deviations between the different gaugegation of the nonrelativistic LDA16],
An analogous observation has been made by Lindgteai.
[5], analyzing two-electron systems. ERPAI N =ERPARIDA 0] — ERPALDA N+ ELPA[n]

The no-pair approximation foy4 " does not approach the _
correct weakly relativistic limit, which is given by a combi- (in our calculations we have used the parametrizatiof#4f
nation of the nonrelativistic paramagnetic current-currenfor E¢°*[n]). For the present purpose the corresponding
and spin-spin response functiop3]: This can be verified atomic correlation energies have been evaluated perturba-
directly by taking the weakly relativistic limit of Eq15), in  tively by insertion of exact exchange-only densities, obtained
which the ;Ip contribution does not vanish. The conse- Vi@ the relativistic OPM[16,19, which provides the most

quences of this deficiency can be seen in Table II: While th@ccurate DFT densities available to date. As the correlation
RPAn A for small 8 is masked potentialv . represents only a small contribution to the total

resulting large deviation dé; . .
by the very small absolute size of the relativistic correction,eﬁcec'['ve .Ko.h_n-Shgm potential, the neglect wf does not
pave a significant impact on the resultikg.

the problem becomes obvious as soon as the difference b . ; < .
P Results for the neon isoelectronic series, which allow the

tween no-pair and no-sea energies is normalized with respect ; o )
RPA_ _RPA extraction of theZ dependence of relativistic corrections

to the relativistic correctioe; . — €. ng rather than the total .
correlation energy : : most easily, as well as results for some neutral atoms are
listed in Tables Ill and IV. The RLDA values are compared

@RPA_ gRPA with relativistic second-order many-body perturbation theory
S= H_ (27)  data[28], calculated on the basis of the Dirac-Coulomb-Breit
€cns — €cNR Hamiltonian(i.e., the CGB interaction The totalER-P* is-

TABLE lll. Relativistic correlation energyEcR) for the Ne isoelectronic series: Comparison of no-pair RLDA values for FG, CG, and
CGB[37] with no-sea RLDA and RMBPT?2 resulf28]. The totalEY is decomposed into the nonrelativistic correlation endlf§ and the
relativistic correctionEX—EXR (all energies are in mhartree

-EWR EYR—ER

RLDA
Ne Method MBPT2 LDA RMBPT2
isoelectronic approximation no-pair no-pair no-pair no-pair no-sea
series gauge CGB CGB CG FG
Ne 383.2 746.4 2.1 0.5 0.5 0.4 0.7
Calo* 394.5 1009.0 10.6 42 42 38 5.6
Zn%* 403.9 1144 26 14 14 13 17
Zr30+ 408.6 1236 49 31 30 30 36
Sn¥+ 411.5 1307 80 57 56 56 64
Yb0+ 4148 1413 172 148 144 149 152
Hg™* 415.8 1454 237 218 211 222 217
Th30+ 416.6 1491 322 312 301 320 301

Fm %+ 4172 1524 436 441 425 455 413
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TABLE IV. Relativistic correlation energyE{E‘) for neutral atoms: Comparison of no-pair RLDA values
for FG, CG, and CGB37] with no-sea RLDA and RMBPT2 resulf28]. The totaIES is decomposed into
the nonrelativistic correlation enerdsh™ and the relativistic correctioBR—EX® (all energies are in mhar-

tree.
-E" E;"—E¢
RLDA
Method MBPT2 LDA RMBPT2
approximation no-pair no-pair no-pair no-pair no-sea

Atom gauge CGB CGB CG FG

Xe 2921 5199 146 92 90 90 103
Hg 5086 8356 486 301 293 303 310
Rn 5392 9026 548 385 374 387 393

split into the corresponding nonrelativistic energy, obtainednhartreg, differ by 396 mhartree, which is more than an
by insertion of the nonrelativistix-only OPM densityn"R  order of magnitude larger than the gauge uncertainty.
into ES°A[n] and the relativistic correction The importance of gauge effects for the physically more
relevant energy differences depends on the type of process
investigated: While for the ionization of inner-shell electrons
or inner-shell transitions in highly charged ions the gauge
errors resulting from the no-pair approximation are roughly
AE, has been calculated for both the FG and CG. In addias large as for total energies, they are much smaller for the
tion, for the CG the results obtained with the Breit approxi-ionization potentiallP) of valence electrons. As in the latter
mation (CGB) are also given, allowing a direct comparison process the core density, for which relativity and thus gauge
with the RMBPT2 data. effects are important, remains essentially unchanged, the
As is well known, the nonrelativistic LDA results, which gauge error in the neutral atom is more or less identical to
are here given as a measure of the absolute size of the gauti@t in the corresponding ion. In fact, the IPs obtained with
dependence of the no-pair energies, overestimate atBmic the various versions of the RPA discussed here differ only on
drastically. Compared with the total error of the nonrelativ-the uhariree level. An analogous statement applies to radia-
istic LDA, the differences between its various relativistic tive corrections, i.e., the creation of virtual electron-positron
forms are rather small: While for lo& the no-pair approxi- Pairs in the field of the nucleus: While for elements such as
mation clearly underestimates the no-gg&,, the percent- nobelium the absolute S|ze.of the resulting energy shifts is
age deviation being roughly 40% for Ne, the relation is re-larger than the total correlation energgompare, e.g|4,5)),
versed for higtz, with the error reducing to about 10%. This POth their direct and indirectvia the rearrangement d€-
tendency is somewhat more pronounced in the FG than ignd L-shell electron)sw_np_acts on th_e valence eIe_ctrons are
the CG, as expected from Tables | and II. Furthermore, th&ather small. Thus ra@atwg corrections must be included for
Breit approximation accurately reproduces the results ob@ll those processes in whidk- and L-shell electrons are
tained with the full transverse interaction: It overestimategnvolved, but can be safely neglected in the standard density-
the full transverse results by only 1—3 %, the error increasingunctional applications to quantum chemical and condensed

slowly with Z. Nevertheless, for heavy elements this error ismatter problems.
as large as the differences between the various gauges.
Compared with thé\E found with RMBPT2, the corre- ACKNOWLEDGMENTS
sponding RLDA results for the Ne isoelectronic series devi- We would like to thank H.-J. Ladde for helpful discus-
ate by about a factor 2—4 for lo&, but seem to become sions. Financial support by the Deutsche Forschungsgemein-
more accurate with increasing. However, the agreement schaft(Project No. Dr 113/20-Ris gratefully acknowledged.
for heavy neonlike ions has to be regarded as fortuitous, as it
is not found for neutral atom&ee Table IV: For example, APPENDIX: INDEPENDENT COMPONENTS OF THE
for neutral Hg the no-pair CGB RLDA yieldAE.= —301 NO-PAIR LINDHARD FUNCTION
mhartree, compared with the RMBPT2 value/d .= —486

mhartre/28]. Tables Il and IV should thus only be under- g integration can be done directly in spherical coordinates.

stood as an indication of the size of gauge effects in finiteF . ) .
or the calculation we have proceeded as outlined in the
many-electron systems. Nevertheless, these gauge effects gre

smaller than the differences observed between standar pp.endix of Ref[38], _af_te_tr sqitably rearranging.the terms in
many-body methods: For Xe CGB RMBPT2 gived &, of its i\::nhtiee%?é]?;ir;rghtehzlvlgsi;gz zgt;nzt;eal and an imaginary part
146 mhartreq 28], which may be compared with the CGB

coupled-cluster value of 103 mhartrg29], whereas Table 1
IV suggests that the gauge dependence of Al is of the
order of 10 mhartree. On the other hand, theobtained
with the two most widely used GGAs fd&n], from Lee, (P symbolizes the Cauchy principal valJu®©ne finally ob-
Yang, and Parf9] (2749 mhartreeand Perdew10] (3145 tains for the three independent componentaz@;:f,p,

AE =ER-PAInR]— ELPA nNR], (29

After evaluating the frequency integration in Eq4) the

=p

1.
— Z)—o—lﬂ'&(a))
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9> | (E£)°-(Ef)® 8 7, 9 4m?q? )
Loy — ° g2, 10 o +_
Xnp(d) 8W2|q|3[ 5 + 3 Eekelo|+| gEE+ 5 — 0P+ 37 (EF —Ef)
4 Ef —Ep)2—q? 2 g2 Ef —Er—do) (Ef —Er+0qp)
4 —E?,é+q2E,:)In( 'i F)z q2 + 2E§—%+% % n( i F—do) ( i Ftdo
3 (Er —Ep)*—qj 6 (EF —Er—0o) (Ef —E¢+0do)
o 2m? (Ef+Ee—a) (Ef+Ec+a)| |q® |(Ef+Er—]|d) (Ef +Eg+]q))
+ = 1+—2 ain — " —? In — "
3 q (EF +Ee—a) (Ef +Eeta) (Ef +Eg—|al) (Ef +E+]q])

—i ZO(|Ex — E¢|<|qo| <Ef — Ep)[ — (2B +| o)) 3+ 2%+ 362(2E¢ + | qo| - a)
6 F FI<1o F F FT 1o a q°(2Eg+|dol —a)]

w
+i§<2kF—|q|>®(|qo|<EF—E;>|q0|[12E§+qé—3q2]], (A1)

@ [ 2H(ED)®—(EF)5] [1 2E2+3?\ (Ef)3—(Ef)® (2 @ 7. F. Q
T _ - - 1 _p2_t g2, W
an(q)—l6wz|q|3{ 57 3 = 3 +4 3+q2 Erkeldl+ 3EF quF+ 3
16m2 2 22 4 4m2 2 E+_E 2_ A2 2 2 2m2 2
T AW EEp)+| B2 2 2 O e (B ~Br) ~ G ol 4| 2g24 20, T, 20
3g°  ¢? 3 q? (Ef —Ep)?—05 6 2 ¢
(Ef —Eg—do) (Ef —Ee+do) | 2¢? 2m? (Ef +Eg—a) (Ef +Eg+a)
X Qg In — " -——| 1+ > |aln — "
(EF —Ef—do) (Ef —Eg+0o) 3 q (Ef +Ef—a) (Ef +tEf+a)
2lq]® | (Ef+Eg—|d) (Ef+Ee+|d))| _
T e - +1Z0(EF ~ Erl<lad <Ef ~E¢)
(Ef +Eg—1d)) (Ef +Eg+|q))
3 .3 ) 4m? T _
X| (2Eg+|qo|)*—a’+3q 1"‘? (2ER+|qo| —a) +|§(ZkF_|Q|)®(|QO|<EF_EF)
2 2 2 4m2
X|dol| 12EE+0q5+3c| 1+ —| [, (A2)
q
and
1 [(Ef)°—(Ef)®
T _ F S +13 —\3
an(q)_6w2|q|3[ 5 Keldl[ (Ef)°+(EF)°1}, (A3)
where
7. > + T2 4m?
Er= Vkg+m?, Er =V(kex|q)?+m?, a=|q| 1—?, (A4)
and

O(a<b)=0@(b—a), O(a<b<c)=B0(a<b)O(b<c). (A5)
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