
ny

PHYSICAL REVIEW A AUGUST 1998VOLUME 58, NUMBER 2
Relativistic exchange-correlation energy functional: Gauge dependence
of the no-pair correlation energy
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We analyze the gauge dependence of the relativistic electron gas correlation energyEc resulting from the
no-pair approximation. In particular, we evaluate the relativistic no-pair Lindhard function as the basic ingre-
dient of the random-phase approximation~RPA! for Ec . The resulting gauge-dependent no-pair RPA is
compared with a gauge-invariant counterpart. The implications for relativistic density functionals are examined
by applying the local-density approximation based on each of these forms ofEc to atoms. It is found that the
gauge dependence ofEc is irrelevant on the overall level of accuracy obtained with present density functionals.
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PACS number~s!: 31.10.1z, 31.30.Jv, 52.60.1h
to
it

rd
eb

u
-
nt
de
he
th

n

d
-
d
i.e

a
m
d

ha

e
g

ss
n
if

x-

the
full

T
o-

al-

for
rate

o-
ergy
as
rts
on

r-
a-

pro-
ch
d

en
a-
mi-

so
I. INTRODUCTION AND SUMMARY OF RESULTS

The extension of nonrelativistic many-body methods
the relativistic domain leads to the question how to deal w
the negative-energy continuum states. Sucher@1# has pointed
out in the context of the relativistic Hartree-Fock~RHF! ap-
proximation that these states must be projected out in o
to obtain variationally stable bound-state solutions, ther
defining the no-(virtual-)pair approximation. It is well
known that this projection leads to gauge-dependent res
for the exchange-correlation~xc! energy if the complete rela
tivistic electron-electron interaction is taken into accou
While for conventional many-body methods this gauge
pendence has recently been analyzed in great detail for
umlike ions@2–5#, it has to date not been addressed in
framework of relativistic density-functional theory~DFT!
@6,7#. However, the more refined DFT methods, like the ge
eralized gradient approximation~GGA! @8–10# and the opti-
mized potential method~OPM! @11,12#, are now approaching
quantum chemical accuracy@13–15#. For applications to
high-Z atoms these techniques have recently been exten
to include relativistic corrections@16–18#, so that the ques
tion arises to what extent the resulting xc energies depen
the gauge chosen for the electron-electron interaction,
the photon propagator.

In addition to the no-pair approximation there exists
second possible source of gauge dependence: Transition
trix elements or Feynman diagrams may become gauge
pendent if they are evaluated with single-particle orbitals t
experience a nonlocal potential~as, e.g., in the RHF
scheme!. However, due to the multiplicative nature of th
DFT single-particle potential this second source of gau
dependence is not present in DFT calculations, as discu
in detail elsewhere@19# ~note that gauge-invariant transitio
matrix elements can also be obtained with RHF orbitals
suitable resummation of the perturbation series is used@20–
PRA 581050-2947/98/58~2!/993~8!/$15.00
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22#!. In particular, it has been shown for the relativistic e
change energyEx that, in contrast to the RHF scheme@2#,
the exact DFT treatment of the no-pair exchange via
relativistic OPM ensures gauge invariance even if the
transverse interaction is used self-consistently@19#. On the
other hand, explicit approximations for the relativistic DF
correlation energyEc are not gauge invariant when the n
pair approximation is used in their derivation@19#. As an
analysis of the importance of gauge effects forEc we here
discuss the no-pair approximation for the relativistic loc
density approximation~RLDA! @16,23–25#. The RLDA
plays a central role as it is the most simple approximation
Ec and serves as basis for the construction of more accu
density functionals such as relativistic GGAs@18#. It is thus
well suited for this study.

In the RLDA the local xc energy density of the inhom
geneous system of interest is approximated by the xc en
density exc

RHEG of a relativistic homogeneous electron g
~RHEG! with given local density. Our discussion thus sta
with a brief review of the random-phase approximati
~RPA! for exc

RHEG, which gives the main contribution to
exc

RHEG in the high-density limit relevant for the present pu
pose. In particular, we contrast the usual no-pair approxim
tion with the gauge-invariantno-seaapproximation. While in
the former the negative-energy continuum states are
jected out completely, only the vacuum QED limit of ea
individual fermion loop in a given energy diagram is omitte
in the no-sea approximation@25,26,7#. Until today, in the
context of the RLDA, the no-sea approximation has be
used exclusively. On the other hand, the no-pair approxim
tion represents the standard in conventional quantum che
cal methods@27–30#. Any previous comparison of RLDA
and quantum chemical results~as in @16#! has ignored this
difference. This study of the no-pair RLDA therefore al
provides an estimate for the accompanying uncertainty.
993 © 1998 The American Physical Society
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The basic ingredient of the RPA is the noninteracti
current-current response functionx0

mn , i.e., the relativistic
Lindhard function@31–33#. We thus evaluatex0

mn within the
no-pair approximation and use the result to calculate the
pair RPA forec

RHEG ~in Sec. II!. The differences between th
no-sea and the no-pair results forec

RHEG are discussed in Sec
III. It is shown that these differences are comparatively sm
in the density range relevant for atoms~see Sec. III A!. The
importance of higher-order retardation effects is studied b
comparison of results obtained with the full transverse in
action and those found with its weakly relativistic limit, th
Breit approximation. The differences again turn out to
rather small in the interesting density range. In Sec. III B
consequences for electronic structure calculations for at
are discussed. Here the neon isoelectronic series serves
basis, as it is the most systematic set of atomic systems
yond heliumlike or lithiumlike ions for which reference da
are available@28#. While the absolute size of the gauge e
fects is shown to increase withZ, the percentage deviation i
largest for light atoms, indicating that the gauge depende
is already present in the lowest-order weakly relativistic c
rection ~compare@2#!. On the other hand, the difference
between the various gauges are marginal compared with
overall error of the RLDA with respect to relativistic secon
order many-body perturbation theory~RMBPT2! @28#.

This demonstrates that the failure of the RLDA to acc
rately reproduce the relativistic contribution to atomicEc
does not originate from the different treatment of negati
energy states and photon retardation effects in the no
RLDA and the RMBPT2 reference data, thus supporting
conclusions in@16#. To complete the analysis of@16# the role
of the so-called second-order exchange graphs, which h
only been included on the nonrelativistic level in this stud
remains to be investigated. Unfortunately, the complete d
sity dependence of these contributions to the RHEG is
known. From the high-density limit@34#, however, the
second-order exchange graphs are expected to give rou
40% of the RPA. These contributions should thus not aff
the principal conclusions drawn on basis of the RPA.

In view of the overall accuracy of the RLDA for atom
the results presented here should only be understood a
order of magnitude estimate of the gauge dependence in
ent in more accurate many-body schemes, both in the q
tum chemical framework and in DFT. Nevertheless, this
timate suggests that the error introduced by the no-
approximation is smaller than the differences between
various many-body techniques, e.g., between RMBPT2
the relativistic coupled-cluster approach@29#. In particular,
the accuracy of the more refined DFT approximations forEc
~as GGAs@9,10#! has not yet reached the level on which
gauge dependence would be relevant.

II. THEORY

The starting point of our discussion is the representa
of the xc energy densityexc of the RHEG via a coupling
constant integral@7,25,31,33# (\5c51)

exc
RHEG5

i

2E0

1

dsE d4q

~2p!4
Dmn

0 ~q!@xs
mn~q!2xV,s

mn ~q!#.
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Here xs
mn represents the time-ordered current-current

sponse function of the RHEG@35#. The subscripts indicates
that the coupling constante2 is scaled bys. xV,s

mn is the
vacuum QED limit ofxs

mn . Finally, Dmn
0 denotes the free

photon propagator of QED, for which various gauges are
use. In the covariant gauge one has@36#

Dmn
0 ~q!5D~q2!S gmn2

l21

l

qmqn

q2 D , ~2!

with

D~q2!5
24pe2

q21 i e
, ~3!

where the gauge parameterl represents an additional degre
of freedom. In practice, however, only the two choicesl
51 @Feynman gauge~FG!# andl5` @Landau gauge,~LG!#
are relevant. Alternatively, in the Coulomb gauge~CG! the
photon propagator reads

Dmn
0,CG~q!5S D~2q2! 0

0 D~q2!S gi j 1
qiqj

q2 D D . ~4!

Often the weakly relativistic limit of Eq.~4!, the Coulomb-
Breit ~CGB! interaction@37#, is utilized,

Dmn
0,CGB~q!5D~2q2!S 1 0

0 gi j 1
qiqj

q2 D , ~5!

which includes transverse~retardation and magnetic! effects
to lowest order in 1/c.

To date, the response function of the RHEG has only b
evaluated in the RPA@25,31#, defined by the Dyson equatio

xRPA
mn ~q!5x0

mn~q!1x0
mr~q!Drk

0 ~q!xRPA
kn ~q!, ~6!

wherex0
mn represents the noninteracting limit ofxmn, i.e., the

relativistic Lindhard function,

x0
mn~q!52 i E d4p

~2p!4
tr$gmG0~p!gnG0~p1q!%. ~7!

Here G0 is the electron propagator of the noninteracti
RHEG, which may be decomposed in two different ways

G0~p!5GV
0~p!1GD

0 ~p! ~8!

5G1
0 ~p!1G2

0 ~p!, ~9!

GV
0~p!5

p”1m

p22m21 i e
, ~10!

GD
0 ~p!52p id~p02Ep!

p”1m

2Ep
Q~kF2upu!, ~11!
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G1
0 ~p!5

p”11m

2Ep
F Q~ upu2kF!

p02Ep1 i e
1

Q~kF2upu!

p02Ep2 i e
G , ~12!

G2
0 ~p!5

p”21m

2Ep

21

p01Ep2 i e
, ~13!

where Ep5(p21m2)1/2, p6
m 5(6Ep ,pi), and kF

5(3p2n)1/3, n being the density of the RHEG. In Eq.~8! the
vacuum QED propagatorGV

0 has been extracted fromG0,
leaving a remainderGD

0 , in which the occupied gas states a
isolated. On the other hand, in Eq.~9! the contributions of
the positive-(G1

0 ) and negative-(G2
0 ) energy states hav

been separated. In the nonrelativistic limitG1
0 approaches

the standard nonrelativistic electron gas propagator.
These two different decompositions ofG0 form the basis

for the no-pair and no-sea approximations. In the former
negative-energy states are projected out@1#. On the propaga-
tor level this corresponds to replacingG0 by G1

0 , so that the
noninteracting response function reduces to

x0,np
mn ~q!52 i E d4p

~2p!4
tr$gmG1

0 ~p!gnG1
0 ~p1q!%.

~14!

Evaluating Eq.~14! one finds for the tensor structure o
x0,np

mn ,

x0,np
mn 5PL

mnxnp
L 2PT

mnxnp
T 1 P̄T

mnx̄np
T , ~15!

where

PL
mn5

21

q2q2 S q4 q2q0qi

q2q0qj ~q0!2qiqj D , ~16!

PT
mn5

1

q2 S 0 0

0 q2gi j 1qiqj D , ~17!

P̄T
mn5

1

q2 S 0 0

0 qiqj D . ~18!

The explicit forms forxnp
L,T and x̄np

T are listed in the Appen-
dix.

The no-sea approximation@25,26#, on the other hand, is
defined as

x0,ns
mn 5x0

mn2x0,V
mn , ~19!

which is easily evaluated using the decomposition~8!. In
contrast to Eq.~15!, x0,ns

mn has only two independent tensori
components

x0,ns
mn 5PL

mnxns
L 2PT

mnxns
T . ~20!

xns
L,T has often been reported in the literatu

@25,32,33,38,39#.
ll

It is well known that the no-pair approximation quite ge
erally leads to gauge dependent correlation energies, w
is reflected by the nontransversality ofx0,np

mn @40#,

qmx0,np
m0 ~q!50, qmx0,np

m j ~q!52qj x̄np
T ~q!. ~21!

The no-sea approximation, on the other hand, is gauge
variant as bothx0

mn andx0,V
mn satisfy the transversality relatio

qmxmn50. For the RPA this can be verified immediate
@41# using Eqs.~16!, ~17!, and~20!.

For any gauge of the photon propagator and tensor st
ture of the Lindhard function the full response function~6!
can be written in terms of the tensors~16!–~18!. For ex-
ample, in the covariant gauge one obtains

xRPA
mn ~q!5F~q!Fxnp

L ~q!@12D~q2!L~q,l!x̄np
T ~q!#PL

mn

1x̄np
T ~q!S 11D~q2!

q2

q2
xnp

L ~q!D P̄T
mn

2D~q2!
q2

q2
xnp

L ~q!x̄np
T ~q!g0mg0nG

2
xnp

T ~q!

11D~q2!xnp
T ~q!

PT
mn , ~22!

with

F~q!5H 12D~q2!Fxnp
L ~q!2x̄np

T ~q!@12L~q,l!#

2D~q2!xnp
L ~q!x̄np

T ~q!S L~q,l!1
q2

q2D G J 21

and L(q,l)5(q2/q2)(12l)/l. As DmnxRPA
mn is even inq0

and analytic for Re(q0)>0 and Im(q0)>0, theq0 integra-
tion along the real axis in Eq.~1! can be deformed to a
contour along the imaginary axis. The replacementq0→ iv
leads to purely realxns,np

L,T , which can be obtained by inser
tion of qW5( iv,q) into the real part of the forms given in
the Appendix@this is abbreviated byx(qW) in all subsequent
formulas#. The coupling constant integration can then be p
formed analytically. After subtraction of the exchange co
tribution this leads to

ec,np
RPA~n,l!52E

0

`

dvE
0

` q2dq

~2p!3
„2 lnuF~qW!u

12 lnu11D~qW
2 !xnp

T ~qW!u

1D~qW
2 !$xnp

L ~qW!2x̄np
T ~qW!@12L~qW ,l!#

22xnp
T ~qW!%… ~23!

in the covariant gauge, while for the CG one finds
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ec,np
RPA~n!52E

0

`

dvE
0

` q2dq

~2p!3
$ lnu12D~qW

2 !xnp
L ~qW!u

12 lnu11D~qW
2 !xnp

T ~qW!u

1D~qW
2 !@xnp

L ~qW!22xnp
T ~qW!#%. ~24!

The CGB approximation forec,np
RPA is obtained from Eq.~24!

by substituting (2qW
2 /q2)xnp

T for xnp
T . The corresponding no

sea resultec,ns
RPA @7,16,25,42# is given by Eq.~24! with xnp

L,T

replaced byxns
L,T . The integrations in Eqs.~23! and~24! have

to be performed numerically@for this purpose we have use
polar coordinatesz25v21q2, f5arctan(uqu/v)].

III. RESULTS

A. Gauge dependence ofec,np
RPA

The no-sea RPA represents a gauge-invariant approx
tion for the RHEG correlation energy, in which the densi
dependent part ofx0

mn is fully taken into account. It therefore
can serve as a comparative standard with respect to w
the gauge dependence of no-pair results can be meas
The correlation energy per particleec

RHEG/n in the FG and
CG is plotted together with the corresponding no-sea dat
Fig. 1 as a function of the dimensionless density variableb,

b5kF /mc5~3p2n!1/3/mc. ~25!

While in the nonrelativistic limitb→0 the gauge depen
dence ofec

RHEG vanishes, the differences between the gau
increase linearly in the high-density regime~as to be ex-
pected from a dimensional analysis; compare Appendix B
@7#!.

FIG. 1. RPA correlation energy per particle for the no-sea a
no-pair approximations.
a-
-

ch
ed.

in

s

f

A direct estimate of the importance of the negative-ene
continuum is obtained from the relative deviationD of no-
pair from no-sea results,

D5
ec,np

RPA2ec,ns
RPA

ec,ns
RPA

. ~26!

For the covariant gaugeD is plotted as a function of the
gauge parameterl for different values ofb @Eq. ~25!# in Fig.
2. While b'1 corresponds to inner-shell densities of ve
heavy elements,b'0.01 is a typical value for the valenc
regime. As all the functions involved in Eq.~23! are strictly
monotonic, the overall gauge dependence ofec,np

RPA(n,l) is
governed by the factor (12l)/l, which fixes the relative
weight of the two components of the photon propagator~2!.
In fact, the nontransversality ofx0,np

mn , @Eq. ~21!# is irrelevant
in the productDmn

0 x0,np
nr , which determines the RPA energ

via Eqs.~1! and ~6! whenl51. Accordingly, Fig. 2 shows
that in the range of atomic densitiesD is smallest in the
vicinity of l51, i.e., for the FG. On the other hand, whi
the gauge dependence ofec,np

RPA is of the order of a few percen
for l.1, it increases drastically forl,1. This is easily
understood by noting that forl*1 ec,np

RPA is essentially linear

in (12l)/l, as (12l)/lx̄np
T represents only a small contr

bution to the totalDmn
0 x0,np

nr in this regime, so that an expan
sion of ec,np

RPA(n,l) with respect to this term is legitimate. I
any case, for ultrarelativistic values ofb the deviation be-
tween the no-pair and the no-sea approximation beco
arbitrarily large, reflecting the growing importance of virtu
electron-positron pair creation.

Some CG results forD are given in Table I. The overal

d FIG. 2. Relative deviationD @Eq. ~26!# of no-pair correlation
energies with respect to no-sea values as a function of the g
parameterl @Eq. ~2!#.
TABLE I. Relative deviationD @Eq. ~26!# for CG, CGB, FG, and LG@37# for different values ofb @Eq.
~25!#.

D

b CGB CG FG LG

0.01 3.631027 1.431025 7.131026 7.131026

0.1 29.031024 29.131024 21.231023 21.931023

0.5 21.131022 21.331022 21.231022 24.531022

1.0 1.831022 7.131023 3.031022 27.231022

10.0 2.231021 1.731021 2.731021 1.131022
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density dependence ofD in the CG is similar to that ob-
served in the FG. While the CGD is smaller than the FG
result forb*1, neither of the two gauges gives aD that is
consistently smaller than that of the other in the atomic d
sity range. In addition,D has no definite sign, so that it is no
clear at this stage which of the two gauges will lead
smaller gauge errors in atomic RLDA calculations~see Sec.
III B !. In contrast, gauge effects are more pronounced in
LG. Moreover, the error of the Breit approximation~CGB!
with respect to the full transverse interaction~CG! is of the
same order as the deviations between the different gau
An analogous observation has been made by Lindgrenet al.
@5#, analyzing two-electron systems.

The no-pair approximation forx0
mn does not approach th

correct weakly relativistic limit, which is given by a comb
nation of the nonrelativistic paramagnetic current-curr
and spin-spin response functions@43#: This can be verified
directly by taking the weakly relativistic limit of Eq.~15!, in
which the x̄np

T contribution does not vanish. The cons
quences of this deficiency can be seen in Table II: While
resulting large deviation ofec,np

RPA in D for small b is masked
by the very small absolute size of the relativistic correctio
the problem becomes obvious as soon as the difference
tween no-pair and no-sea energies is normalized with res
to the relativistic correctionec,ns

RPA2ec,NR
RPA rather than the tota

correlation energy

d5
ec,np

RPA2ec,ns
RPA

ec,ns
RPA2ec,NR

RPA
. ~27!

TABLE II. Relative deviationd @Eq. ~27!# for CG, FG, and LG
@37# for different values ofb @Eq. ~25!#.

d
b CG FG LG

0.1 24.331021 25.731021 29.131021

0.5 21.531021 21.431021 25.031021

1.0 2.731022 1.231021 22.831021

10.0 1.931021 3.131021 1.331022
-

e

es.

t

e

,
e-
ct

This agrees with a corresponding observation@2# in the con-
text of atomic RHF calculations.

B. No-pair RLDA results for atoms

In this section we discuss the gauge dependence of ato
correlation energies resulting from the no-pair RPA for t
RLDA. In the RLDA @23–25# the xc energy density of the
inhomogeneous system of interest is approximated by the
energy density of the RHEG, evaluated with the local dens
n(r),

Exc
RLDA@n#5E d3r exc

RHEG
„n~r!…. ~28!

The no-pair RPA for the RLDA is defined by insertion o
either Eqs.~23! or ~24!, depending on the gauge chose
Alternatively, use ofec,ns

RPA yields the no-sea RPA for the
RLDA, which again serves as a comparative standard.
order to obtain a correlation functional that is more comple
than the RPA for low~nonrelativistic! densities the various
forms for the RPA are combined with an accurate parame
zation of the nonrelativistic LDA@16#,

Ec
RLDA@n#5Ec

RPA-RLDA@n#2Ec
RPA-LDA@n#1Ec

LDA@n#

~in our calculations we have used the parametrization of@44#
for Ec

LDA@n#). For the present purpose the correspondi
atomic correlation energies have been evaluated pertu
tively by insertion of exact exchange-only densities, obtain
via the relativistic OPM@16,19#, which provides the most
accurate DFT densities available to date. As the correlat
potentialvc represents only a small contribution to the tot
effective Kohn-Sham potential, the neglect ofvc does not
have a significant impact on the resultingEc .

Results for the neon isoelectronic series, which allow t
extraction of theZ dependence of relativistic correction
most easily, as well as results for some neutral atoms
listed in Tables III and IV. The RLDA values are compare
with relativistic second-order many-body perturbation theo
data@28#, calculated on the basis of the Dirac-Coulomb-Bre
Hamiltonian~i.e., the CGB interaction!. The totalEc

RLDA is-
and
TABLE III. Relativistic correlation energy (Ec
R) for the Ne isoelectronic series: Comparison of no-pair RLDA values for FG, CG,

CGB @37# with no-sea RLDA and RMBPT2 results@28#. The totalEc
R is decomposed into the nonrelativistic correlation energyEc

NR and the
relativistic correctionEc

R2Ec
NR ~all energies are in mhartree!.
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TABLE IV. Relativistic correlation energy (Ec
R) for neutral atoms: Comparison of no-pair RLDA value

for FG, CG, and CGB@37# with no-sea RLDA and RMBPT2 results@28#. The totalEc
R is decomposed into

the nonrelativistic correlation energyEc
NR and the relativistic correctionEc

R2Ec
NR ~all energies are in mhar

tree!.
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split into the corresponding nonrelativistic energy, obtain
by insertion of the nonrelativisticx-only OPM densitynNR

into Ec
LDA@n# and the relativistic correction

DEc5Ec
RLDA@nR#2Ec

LDA@nNR#. ~29!

DEc has been calculated for both the FG and CG. In ad
tion, for the CG the results obtained with the Breit appro
mation ~CGB! are also given, allowing a direct compariso
with the RMBPT2 data.

As is well known, the nonrelativistic LDA results, whic
are here given as a measure of the absolute size of the g
dependence of the no-pair energies, overestimate atomiEc
drastically. Compared with the total error of the nonrelat
istic LDA, the differences between its various relativis
forms are rather small: While for lowZ the no-pair approxi-
mation clearly underestimates the no-seaDEc , the percent-
age deviation being roughly 40% for Ne, the relation is
versed for highZ, with the error reducing to about 10%. Th
tendency is somewhat more pronounced in the FG tha
the CG, as expected from Tables I and II. Furthermore,
Breit approximation accurately reproduces the results
tained with the full transverse interaction: It overestima
the full transverse results by only 1–3 %, the error increas
slowly with Z. Nevertheless, for heavy elements this error
as large as the differences between the various gauges.

Compared with theDEc found with RMBPT2, the corre-
sponding RLDA results for the Ne isoelectronic series de
ate by about a factor 2–4 for lowZ, but seem to become
more accurate with increasingZ. However, the agreemen
for heavy neonlike ions has to be regarded as fortuitous,
is not found for neutral atoms~see Table IV!: For example,
for neutral Hg the no-pair CGB RLDA yieldsDEc52301
mhartree, compared with the RMBPT2 value ofDEc52486
mhartree@28#. Tables III and IV should thus only be unde
stood as an indication of the size of gauge effects in fin
many-electron systems. Nevertheless, these gauge effec
smaller than the differences observed between stan
many-body methods: For Xe CGB RMBPT2 gives aDEc of
146 mhartree@28#, which may be compared with the CG
coupled-cluster value of 103 mhartree@29#, whereas Table
IV suggests that the gauge dependence of thisDEc is of the
order of 10 mhartree. On the other hand, theEc obtained
with the two most widely used GGAs forEc@n#, from Lee,
Yang, and Parr@9# ~2749 mhartree! and Perdew@10# ~3145
d
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s
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it

e
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mhartree!, differ by 396 mhartree, which is more than a
order of magnitude larger than the gauge uncertainty.

The importance of gauge effects for the physically mo
relevant energy differences depends on the type of pro
investigated: While for the ionization of inner-shell electro
or inner-shell transitions in highly charged ions the gau
errors resulting from the no-pair approximation are roug
as large as for total energies, they are much smaller for
ionization potential~IP! of valence electrons. As in the latte
process the core density, for which relativity and thus gau
effects are important, remains essentially unchanged,
gauge error in the neutral atom is more or less identica
that in the corresponding ion. In fact, the IPs obtained w
the various versions of the RPA discussed here differ only
the mhartree level. An analogous statement applies to ra
tive corrections, i.e., the creation of virtual electron-positr
pairs in the field of the nucleus: While for elements such
nobelium the absolute size of the resulting energy shifts
larger than the total correlation energy~compare, e.g.,@4,5#!,
both their direct and indirect~via the rearrangement ofK-
and L-shell electrons! impacts on the valence electrons a
rather small. Thus radiative corrections must be included
all those processes in whichK- and L-shell electrons are
involved, but can be safely neglected in the standard dens
functional applications to quantum chemical and conden
matter problems.
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APPENDIX: INDEPENDENT COMPONENTS OF THE
NO-PAIR LINDHARD FUNCTION

After evaluating the frequency integration in Eq.~14! the
q integration can be done directly in spherical coordinat
For the calculation we have proceeded as outlined in
Appendix of Ref.@38#, after suitably rearranging the terms
the integrands. The division into a real and an imaginary p
is achieved using the Dirac identity

1

v6 i e
5PS 1

v D7 ipd~v!

~P symbolizes the Cauchy principal value!. One finally ob-
tains for the three independent components ofx0,np

mn ,
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and

Q~a,b!5Q~b2a!, Q~a,b,c!5Q~a,b!Q~b,c!. ~A5!
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