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Relativistic optimized-potential method: Exact transverse exchange and Mter-Plesset-based
correlation potential
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Institut fir Theoretische Physik, Universtt&rankfurt, Robert-Mayer-StraRe 8-10, D-60054 Frankfurt-am-Main, Germany
(Received 31 December 1997

We present a fully relativistic extension of the optimized-potential metR@PM), including the transverse
electron-electron interaction and vacuum corrections. Using perturbation theory on the basis of the Kohn-Sham
Hamiltonian an exact representation of the relativistic exchange-correlation dagrigyterms of Kohn-Sham
orbitals and eigenvalues is derived. The most simple, viable approximation tdEthis obtained by a
second-order expansion in powersedf which leads to a Miter-Plesset-type correlation functiorlﬁf) . Due
to this origin E{?) allows a first-principles, seamless description of long-range dispersive forces. The ROPM
integral equation that determines the full exchange-correlation four potetftial presented, and specified in
detail for E(cz). We also analyze the Krieger-Li-lafrai&kLl) approximation to the exact ROPM integral
equation, pointing out an inherent ambiguity of the KLI approximation which arises for eigenvalue-dependent
E,.. The gauge properties &, and the ROPM integral equation are discussed by examining the transver-
sality of the Kohn-Sham current-current response function. It is demonstrated that due to the multiplicative
nature of the total effective potential the density functional definition of the no-pair transverse exchange energy
guarantees gauge invariance, in contrast to the relativistic Hartree-Fock scheme. On the other hand, the
correlation energy is gauge dependent as soon as the no-pair approximation is applied. In addition, we show
that the no-pair approximation automatically implies a definite intrinsic gauge for the spatial components of
vke- The significance of the self-consistent treatment of the transverse interaction for heavy atoms is investi-
gated numerically within the exchange-only limit. By comparing self-consistent with first-order perturbative
inclusion of the transverse exchange it is shown that second-order transverse corrections cannot be neglected
in calculations of ground state or inner-shell transition energies of heavy atoms, if one aims at spectroscopic
accuracy. It is furthermore found that the Breit approximation for the full transverse interaction is not as
accurate for the exchange potential as it is for the exchange energy. Finally, the KLI approximation is exam-
ined numerically, thereby resolving the ambiguity for the case of the transverse exchange.
[S1050-294{@8)07508-9

PACS numbegs): 31.10+2z, 31.30.Jv

I. INTRODUCTION AND SUMMARY OF RESULTS Hartree and exchange energy and leads to a simple virial
relation[16]. Until today, in most applicationis,7] this ex-
Presently, the transition from explicitly density-dependentact E, has been combined with conventional density func-
representations of the exchange-correlatiar) energy func-  tionals for the correlation enerdgy,., i.e., the local density
tional E,. to forms depending on the Kohn-Sham orbitals,approximation(LDA) or the generalized gradient approxi-
i.e., to implicit density functionals analogous to the Kohn-mation(GGA). It is well known, however, that the success of
Sham kinetic energ¥, is developing into a major trend in  LDA or GGA-type functionals relies to some extent on a
density functional theoryDFT) [1-11]. For these function- cancellation of errors between exchange and correlation,
als the corresponding multiplicative xc potentigl. is pro-  which no longer applies if the LDA or GGA fdE, is added
vided by the optimized-potential meth¢®@PM) [12] (for an  to the exacE,. The simplest orbital-dependent form fiag,
extension to time-dependent systems EE®)). While the that treats exchange and correlation on an equal footing is
OPM in its exact form is computationally rather demandingthe self-interaction corrected LDRL7], whose application
and consequently only few full scale applications have beehas also been proposed in the context of the JBB]. As
reported [1,2,6,1Q, orbital-dependentE,. have attracted an alternative, the semiempirical Colle-Salvetti correlation
more and more interest after an efficient approximate varianfunctional[19] has been suggested for use with the eXgct
of the OPM has been presented by Krieger, Li, and lafrat¢8]. Recently, a systematic scheme for the construction of
(KLI) [14]. orbital-dependentE. has been presentel@]. While this
The concept of orbital-dependeBi. has first been sug- scheme yields a formally exact representationEgf, its
gested for the exchange-only enerfy [15]. For E, the  practical implementation requires an expansion in powers of
Fock expression, written in terms of Kohn-Shéis) orbit- €2, To lowest order this leads to a functiorlﬁf), which
als, represents a natural definition within DFT as it guaranalso depends on the KS eigenvalues and the inverse KS re-
tees an exact cancellation of the self-interaction betweegponse function, so that an extension of the original OPM is
necessary for the calculation of the correspondipgWhile
applications ofE!?) are still lacking, its systematic origin
*Permanent address: Department of Theoretical Physics, Kossuttevertheless fosters the hope that now all ingredients for suc-
Lajos University, P.O. Box 5, H-4010 Debrecen, Hungary. cessful quantum chemical applications of the nonrelativistic
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OPM are available. In this contribution we present the fullywhat extent the gauge dependence of the DCB exchange po-
relativistic extension of the OPMROPM), establishing a tential further increases these discrepancies.
relativistic analog of theE,. put forward in[4], which in- Orbital-dependent DFT methods, on the other hand, do

cludes both the transverse electron-electron interaction anf@Pt suffer from this problem, as the KS spinors are associ-
vacuum corrections. ated with a multiplicative single-particle potential, which

During recent years much effort has been devoted to th uarantees gauge invariant results for the no-pair exchange

. o : 8,46 and, if negative energy states are included, also for
formulation of relativistic many-body methods, both in thethe lowest-order correlation energ$7,48. Consequently,

area of quantum che_rmstry, aiming at an appropriate descr_uqhe ROPM put forward in this work represents a self-
tion of molecules with heavy constituents, and in atomicconsistent scheme that allows the inclusion of the transverse
physics, mainly focusing on tests of quantum electrodynammteraction in a gauge invariant form. In addition, it may
ics (QED). Starting from the well-established relativistic serve as a tool to generate an optimal single-particle basis for
Hartree-Fock(RHF) approximation[20-23, a variety of QED-based perturbation theory.

correlated many-body concepts has now been generalized to In [9] we have extended the OPM to the relativistic do-
the relativistic domain on the basis of the no-pair Dirac-main (ROPM), restricting the discussion tg§l) the no-
Coulomb(DC) or Dirac-Coulomb-BreifDCB) Hamiltonian,  (virtual-) pair approximation,(2) purely orbital-dependent
namely, many-body perturbation theofWIBPT) [24—2¢, functionals(i.e., the longitudinal exchange eneygand (3)

the multiconfiguration Hartree-Fock approaf7—29, as  the “density-only” (or “nonmagnetic”) variant of RDFT(in

well as coupled-clustdB0—32 and configuration interaction Which the absence of external magnetic fields is used to for-
methods[33—38. While these schemes are able to ad-mulate RDFT on the basis of only the qlensity, rather than the
equately deal with electron correlation, use of the no-pai€omplete four current The corresponding four current ver-
DC(B) Hamiltonian automatically implies the neglect of Sion has recently been given [ihl]. In this contribution we
(higher ordey photon retardation effects and of all contribu- Présent a completely general form of the ROPM. Working in
tions resulting from negative energy states. Thus, to allowl’® framework of QED, our discussion includes both the

; : ; lectron-electron interaction and vacuum correc-
for a comparison with the extremely accurate experiment jransverse ele : o O
results(see, e.g.[39]), in particular for highly charged ions atlons. In addition, we provide the modifications of the ROPM

for which these QED effects are more important thiaigher necessary to deal with eigenvalue-dependent functionals and

. i i i ear in
ordep electron correlation, one has to go over to QED_base%noccumed excited KS levels, which naturally app !

perturbation theonf40-43 or mixed forms in which the rbital-dependent forms dk.

: Using the auxiliary KS Hamiltonian as a basis for a per-
QED effects are added perturbativéee, e.g.[44]). turbation expansion4,49,50, we first derive a nonlinear

While, from a fundamental point of view, QED-based gpresentation of the relativistiE,, in terms of the KS
perturbation theory represents the most consistent approacfhinors and eigenvalugin Sec. I). This representation is
it is limited to low order(second, at presenand usually  exact in principle, in the sense that it allows the construction
starts from a Furry representation in terms of noninteractingy¢ E,. to all orders of the coupling constaet in a recursive
orbitals that are strictl ic. i . TR .
rictly hydrogenic. Consequently, importantyanner: The contributiore(? of order 2 explicitly de-
xc effects are not included, so that applications are restricte ends on the KS spinors and eigenvalues and onvﬂﬁe
to high-Z ions with only a few electrons. On the other hand, . () i 9 .
resulting from allg;; with k<n. These potentials, however,

also for neutral atoms with high the Breit interaction gives . : .
o g Lare themselves functionals of the KS spinors and eigenval-

a substantial contribution to ground-state energies: For e . . .
ample, for neutral mercury the 22.6 hartree difference beYes: Wh'ch can be eval_uated by_ SOIU.“O” of the ROPM inte-
ral equations. In practice, at this point only the lowest two

tween the DCB-RHF and DC-RHF ground-state energie§J ; . . L
[26] is four times larger tharkE. (for heliumlike mercury orc_jers are !nvestlgza)lted, e, the reIansE;an(_j the corre-
even the second-order Breit contribution of 39 mhartred@tion functionalEg™ correct to second order ie? (details
[41,42is as large as the total Coulomb correlation engrgy 21€ gIVen In Secs. I B,IVA In particular, it is shown that
indicating that at least this QED effect should be taken intdES contains the leading contribution to the van der Waals
account in quantum chemical calculations. However, evaluinteraction between two atoms in a seamless form.

ating the transverse contribution to the xc energy with the The crucial ingredient of thik,. is the KS current-current
optimized DGB) orbitals (which form the basis for most of response functioryy”, which, as a kernel of the ROPM
the approaches mentionedrather than hydrogenic basis integral equation, also determines the gauge dependence of
functions, raises a fundamental problem: Due to the fact thahe ROPM procedure. In Sec. Il we thus analyze the gauge
the DAB) orbitals experience a nonlocal single-particle po-properties ofy5” in some detail, which then allows us to
tential the resulting transverse exchange energy is gauge deeview the corresponding properties Bf. in a particularly
pendent[28,45. Note that gauge-invariant results can alsocoherent form. It is demonstrated that there are two possible
be obtained with RHF orbitals, if a suitable resummation ofsources for gauge dependend®: the nonlocality of the
the perturbation series is usggl7]. As a consequence, in the single-particle potential, which defines the orbitals used to
DCB procedure the exchange potential depends on the gaugealuate E,. (thus recovering the observation $28,45
used for the transverse electron-electron interaction. Whilgvithin an alternative approaghand(ii) the no-pair approxi-
this effect is small for two electron systerfdifferences of mation (compare[48]). In the context of RDFT only the
1-10 mhartree between Coulomb and Feynman gauge efatter is relevant. However, one can explicitly verify that, due
change energies in the high+tegime on the basis of DC to its particular form, the standard no-p&ig is gauge invari-
orbitals [45]), it is nevertheless of the same size as manyant in spite of the omission of the negative energy continuum
higher-order QED corrections. Moreover, it is not clear tostates(Sec. Ill Q. Of course, this is no longer the case for
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the no-pairE., whose gauge dependence is examined quargver, whether complete neglect of the ambigous contribution

titatively in a subsequent papg5i). to the KLI potential also is an option fd*) for which the
The extension of the ROPM necessary to deal with transeigenvalue dependence is much more crucial than for the

verse exchange, second-order correlation and vacuum cdifansverse exchange.

rections is presented in Sec. IV. From the resulting ROPM In Appendix A we provide all technical details required

integral equation, which determines the xc four potentjal for an application of the extended ROPM to spherical sys-

we derive a rigorous identity for an eigenvalue-dependen{ems' On the one hand, this material should allow the incor-

D s G . o . <+ poration of the ROPM in standard relativistic atomic struc-
EX.C. Whlle this !dentlty is auto(rzr;atlcally satisfied by the first ture codes. On the other hand, it is required for the
principles functionald€, andE’,

- X L It represents a necessary discussion of the asymptotic behaviorugfin finite systems,
condition for any semiempirical form d&,;. Furthermore, \nich is substantially complicated by the spinor structure of
using the results of Sec. Ill, the gauge properties of thgne K3 orbitals and the presence of the transverse interaction.
ROPM are discussed. One finds that the gauge used for th@elying on Appendix A, we analyze the ROPM integral
transverse interaction can affectl, only via the equation in the asymptotic regime in Appendix B, deriving
E,.-dependent ingredients of the ROPM integral equationthe relativistic analog of the KLI identity for the highest
i.e., if Ey is gauge invariant the same holds fdf,. Onthe  occupied orbita[14] and verifying explicitly thaw? asymp-
other hand, in the no-pair approximation the ROPM integrakotically approaches-e?/r. Throughout this paper we use
equation is no longer satisfied by a complete classpf  #=1 [x°=ct, dy=a/d(ct)—no distinction is made between
which only differ by static gauge transformations, but ratheffynctions oft andx?, i.e., f(t) = f(x%)].
fixes the intrinsic gauge of the spatial components ff

In Sec. V the KLI approximation for the extended form of
the ROPM is discussed. Comparing the two paths for the
derivation of the KLI approximation suggested in the litera-
ture [1,11,14 we point out an ambiguity that arises for  The appropriate basis for a first-principles, relativistic de-
eigenvalue-dependeit,.. It seems difficult to resolve this scription of many electron systeniatoms, molecules, clus-
ambiguity on a purely formal basis, so that detailed numeriters, solidsis QED. In view of the large difference between
cal studies of a variety of systems and given formsEgf  the electron mass and the nuclear masses, however, it is stan-
seem to be necessary. dard to treat the nuclei as fixed external sources of electro-

As a first application of the ROPM for eigenvalue- magnetic fields, assuming a common rest frame for all nu-
dependent functionals we present self-consistent exchangelei. Here we thus consider a system of electrons bound by
only results for atoms obtained with the full transverse ex-some static external potentiaf,(x), which interact via the
change in Sec. VI within the no-pair approximation. Theexchange of photons. In the Heisenberg-representation the
transverse exchange leads to significant corrections contorresponding Hamiltonian can be directly derived from the
pared with the purely longitudinal results presented9h  standard QED Lagrangian as the 00 component of the
both for the ground-state energies and for inner-shell KSnergy-momentum tensesee, e.g.[53)),
eigenvalues, and thus the inner-shell density. In particular,
by comparing the self-consistent with the first-order pertur- A=H.0) +E,(x%) + (X0, 2.1
bative treatment of the transverse exchange it is demon- ’
strated that second-order transverse corrections to ground-
state or inner-shell transition energies of heavy atoms or io”é*e(xo)=§f d3X[#(x),[—icy- V+mS+ Y00 T3],
are on the 1-eV level, so that they are not negligible from a
spectroscopical point of view. Moreover, this first self- (2.2
consistent application of the full transverse exchange also
shows that the error of the Breit approximation in the case of
the exchange potential is an order of magnitude larger than
the well-known, rather small deviation found for ground . .
state or exchange energig23]. Nevertheless, the Breit ap- +VA,(x)- VA"(x)}, 2.3
proximation captures the main physics of the full transverse
interaction also fov% .

The ROPM results are then used to examine the KLI ap-
proximation, exploring its non-uniqueness by comparing ob-

vious variants. The findings suggest that complete neglect Qfiere 7(x) denotes the fermion field operator of the interact-

the ambiguous contribution to the KLI potential is the opti- . inhomogeneous system characterizediby #(x) is the
mal choice in the case of the transverse exchange, as thed: 9 > SY ¥
corresponding fermion four current operator,

resulting error is no larger than that observed for the nonrel-
ativistic or longitudinal exchange. In fact, the deviations for ¢ i -
ground-state energies originating from this KLI potential are 1400 = 3[g(x), y*(X) ], (2.9
roughly a factor of 5 smaller than those introduced by an R

even simpler approximation to the ROPM, i.e., the combinaand A ,(x) represents the field operator of the photons, for
tion of a relativistic GGA(RGGA) potential[52] with the  which the covariant quantization scheme and Feynman
exact energy functional. It remains to be investigated, howgauge have been used. Note, however, that this particular

Il. SYSTEMATIC APPROACH TO THE RELATIVISTIC
EXCHANGE-CORRELATION ENERGY FUNCTIONAL

H,(x%)=— %f d3x{a°A (x) °A”(x)

I:Iim(xo)=ef d3X]H(X)A (). (2.4
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choice is irrelevant for the discussion in this section as the.e., can be understood as a unique functionglof®[j#]).

specific form ofH., will not be used. While the individual As an immediate consequence all ground-state expectation

components of! are time dependent in the Heisenberg rep-ValUeés are unique functionals gf', as, for instance, the
ground-state energfE=E[j*]. Moreover, the minimum

resentation, the total Hamiltonid8.1) is stationary as can be ¥ - -
shown by examining the four divergence of the correspondprInCIple for the(renormalized ground-state energy allows
the determination of both* and E by minimizing E[j#]

ing energy-momentum tensdb3]. The transition to the ' ) | ) :
Schralinger representation, which is more suitable for the™ith respect toj* (for a detailed discussion s¢83]). Rep-

subsequent discussion, is thus straightforward: Choosing tH&S€ntingj* in terms of auxiliary single-particle spinogs
Schralinger representation to coincide with the Heisenberd@SSUming noninteracting representability, as usyal

representation at®=0, the corresponding Hamiltoniaﬁs 1 o o
can be decomposed into a static noninteracting fggg and J“(X)ZELEE (X) 7"¢k(x)—626 Pr(X) 7”¢k(><)},
a static interaction Hamiltoniaﬁmtys, o P (2.11
Hs=H=H,s+H nst Hints, (2.6)  one can decompode as
Hes=He(x°=0), .. .. 2.7 E=T3+f A3, (N VE(X)+Ey+Eye. (212

The componentsl, s, H,.s, andH,, s are easily written in

¥ Here T, denotes the kinetic energy of the “auxiliary par-
terms of Schrdinger-picture field operators using the iden- S 9y yp

) ' . ; , ticles,”

tity with their Heisenberg-picture counterpartxét0, e.g.,

Is(X) = h(x,x°=0). 1 -

In the following we analyze the total binding energy of TSZEJ d* EZ«E Pl —icy-V+mc] gy

the electronsE,,, which is given by the energy difference KoF

between the ground sta@) of the N-electron sector of the - 2

complete Fock space, _eFZsk ol —icy-V+mce] oy, (2.13

H|®)=E|®), (2.8)  E, is their “covariant” Hartree energy,

and the ground state of the zero-charge sector, i.e., the inter- 1( 54 40 ons i

acting vacuun{0), EHZEJ d Xf d*yD,,(X=y,y ) j“(x)j"(y), (2.14
Ewo=(®[H|®)—(0|H|0)+C. (29  with DY, being the noninteracting photon propagafpre-

o o . cisely given in Eq(2.22], and the xc energf,. is defined
Here C indicates the counterterm contributions required topy Eq. (2.12. Minimization of E with respect to theg,
keepE, UV finite in a perturbative treatment of the expec- rather tharj# then leads to the relativistic KS equations, first

tation values involvedsubsequently all counterterms will be ntroduced by Rajagopdl62] and independently by Mac-
suppressed for brevity—their explicit form is not relevant ponaid and Voskd63],

here.

Within the standard many-body framework the individual {—ica-V+Bmc+ o, 0ks(X)} di(X) = €cbi(X),
expectation values in Ed2.9) can either be evaluated via (2.15
the Gell-Mann-Low level shift formuld54] (usually the
symmetric form of Suchdi55] is applied—see, €.g.40,56)  with the multiplicative KS potentiabg consisting of the
or via a coupling constant integration scheme. Two versionsum of v, the Hartree potentiabf; and the xc potential
of the latter approach have been introduced in the context gf~
DFT. While the so-called adiabatic connecti®v,58 has
been particularly useful for the analysis Bf. [16,59,60, Viks(X) = vh(X) +ufi(X) +vi(X), (2.1
the second schenid9,5Q allows a more direct extraction of

orbital-dependent forms foE,.. In the following subsec- " 4 Owp o
tions this second variant will be extended to the relativistic UH(X):J d*y D™ (X=y,y)i . (Y), (217
domain.
OEd ]
A. Relativistic Kohn-Sham theory Vid(X) = (2.18

0j u(X)
According to the relativistic Hohenberg-Kohn theorem i
Of course, in order to construct the full curref211), the

[53,61-63 the (nondegenerateground state|®) of any . s . .
N-electron sector of the complete Fock space is uniquely’€9aiive energy solutions of the KS equations are required.
While the KS approach is based on auxiliary single-

determinedup to gauge transformationby the correspond- . o ! ; .
dup to gaug nby P particle quantities with(almosj no physical meaning, the

ing ground-state four current, " o
total KS potentiab g nevertheless allows the definition of a
() =(D|]H4(x)| D), (2.10  corresponding noninteracting Hamiltonitys,
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. 1 R _ . Using Egs.(2.5), (2.23, and(2.26 the corresponding four
HKSZEJ X[ Ps(X),(—icy- V+mc) gg(X)] current
+J a3 (k) +H(x°=0),  (2.19 J#00 = (Pl #(X)| Pks) (2.27
with ground statédys) and eigenvalu&ys, is given by Eq.(2.11), while for Exs one obtains
Hysl®ks)=Exs|Ps)- (2.20

) EKS=TS+f dxj . (X)vks(X). (2.28
As in Hs electrons and photons do not interact directly they

can be dealt with separately. Thus the KS ground $thte)
factorizes into a product of the photon vacul@y) (no free  In fact, the field theoretical formulation of the KS problem
photons are present in the ground staded an electronic via Egs. (2.19—(2.28 is the actual origin of the forms
ground staté®ys ), (2.11,(2.13 for the KS four current and’s. Note that in
Egs.(2.11),(2.13 the counterterms inherent in any field the-

|Pys)=|Pks,e)X|0,);  (0,|A4(x)|0,)=0, (2.2)  oretical treatment have been suppressed.

where A{)‘(x) denotes the free photon field operator. As a

consequence, in any perturbative approach basefdiK@,rthe . .
standard vacuum QED results can be used for the photon In order to obtain a formula for the energy difference

sector of the KS problem, as, e.g., the free photon propagat&ew"een the complete ground—statg endigynd th'e KS en-
ergyEgs, and thus folE,., the coupling constant integration

DO (Y ) = —i e_2 0 TAAOAZ W0 22 technique is utilized. To this end one decomposes the tbtal
(x=y)=-i c< ATAS()ANY)I0,). (2.22 into Hys and an interaction HamiltoniaRi;, for which a
dimensionless coupling strength paramegtas introduced,
On the other hand, in the electronic sector the presence of
vfs leads to an inhomogeneous reference sysfemry pic- H(g)=Hys+H1s, (2.29
ture). In terms of the KS spinorg, the corresponding non-
interacting field operators are thus given by

B. Perturbation theory on Kohn-Sham basis

. B . oA
Pro(x) = ekl x) e HKs e Hl(XO)—fd3XJM(X)[912eAM(X) guix(X)],

(2.30
= 3 bugxe e
i vl (X)=0ka(X)— vE () =k (X) +ul(x). (2.3D
q —igx0 . . .
+ 2 digxe e (223 Here the scaling of the two perturbations withhas been
e<—mc? adjusted to their dependence on the actual coupling constant

Y n ot o . e? (at least to lowest orderThe original Hamiltoniar(2.1)
where theb, (b,) anddy (d) are annihilation(creation s then obtained from Eq2.29 for g=1. By differentiation

operators for positive and_ negative energy KS_states. Thigs the corresponding-dependent ground-state energy
then allows the construction of the noninteracting electron

propagator, A
o o 0 o E(9)=(®(g)|H(g)|®(g)) (2.32
GT(x,y)=G"(x,y.x"—y")
= —i(Pxs o THo(X) oY) ks o) (224 Wit respect teg one finds
. - Cieu(x9—yO0 J ”
=—I®(X0—y0)€§€k Bi(X) i(y)e eyl @E(Q)ZI d*x3(x°)(P(9)]] ()
; 0_,0 - —ie(x°—yY/c e .
+iO(y"—x )EZJE dr(X) Pr(y)e 'k , % AL(x) — 0t (%) | 9(9)), (2.33
K= €F Zgll
(2.29
where in|®ys.0) the electronic single-particle states are as-Vhere the normalization dt>(g)),
sumed to be filled up to the Fermi level,
(®(9)|P(9))=1, (2.34

[Prse)= IT B [0). (2.26
-mP<e=er has been used. Consequently, integration avirads to
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E(1)—E(0)=E—Ews=E;

N e t
1 T 0, (tt )_HZO = ft,dtl...ft,dtn
_ j dg f X80 (D(Q)]] u(%)

o xexl — e[ty + -+ - +[ty])]

X| A0 =0t ) [ 9(@)). XTAL(L) - Ayt)], (239
291/
(2.39 |:|1|(XO) _ eiﬁKSx"/cﬂlse—iHKSxo/c
In order to obtain a more explicit form of E(R.35), we use ' '
the concept of adiabatic switching fét;. This allows us to :J d3x]o ([ gY2e N4 (x) — guk, (X
relate|®(g)) (assumed to be nondegenejate|ds) (also Jo, (LR A (X) = Gutisc(x)]
assumed to be nondegenejatéa the interaction-picture (2.39
time-evolution operatob,
DY A i U, (0,7 %)|®ys) 23 (for brevity, theg dependence of the various operators and
@)= EILT:)<(I)KS|0I (0 1°°)|¢Ks>’ (2.39 states involved is no longer noted explicitly, whenever it is

not essential Together with the normalization of

(®yg|Prs)=1 the factor(2.37) ensures the validity of Eq.

- (2.34 for all g. Equation(2.36) holds for any charge sector

(CDKS|U,,61(+00,0) of the complete Fock space, i.e., not only for thieelectron
ground stategscharge—Ne), but also for the corresponding
vacua|0) and|0g)=|0¢)x|0,). Insertion of Eq.(2.36 into

, (237 Eq. (2.39 and use of the additivity of the time-evolution
operator gives

_ <(DKS|0|,51(+0010)|(DKS>
A= lim

€1,60—0

- 12
(DU, 6,(0,=)[Dys)

Ul,ez(oy—w)@Ks

1 (=i [ -
E1=IimJ dgj d*x (S(xo)z (=D J dtl"'J dt, e elltl+- - +ta)
0 n=0 — o —

|
€0 n!

X<(DKS|T]O,,u(x)[(elzgllz)AM(X)_vﬁxc(x)]ﬂl,l(tl)' - Hyy(ty)| ®ks)

— (2.40
(PygU) o+, —0)|Dyg)

where, as usual, it has been assumed that lathits involved can be combined to a single limiting procedure. With 30
one then obtains a perturbative expansiorEgfin powers ofe,

1 2 (=" /n
E1=Iimf dg>, (=1 > (k)g“k’zf d4x5(x0)fd4xl...jd4xne*e<\xfl+'~+lxg\)

e-0J0 n=0 nlc"k=0
X (P el TIEOOTEH) -+ 16" (%) [ Pks,e)el = 1" Vhixo g, ,(Xicr 1)+ Uhixey, (Xn)

e

x ek 291,2<0y|TZ\O,M<x>Ao,,L1<x1>---Ao,ﬂk<xk)loy>—vHXC,M<x><ole2\o,ﬂl<xl>---Ao,ﬂk<xk>|0y> . (241

where the index indicates that only those diagrammatic contributions are to be included in which all vedices, are
connected to the vertex[the remaining terms are exactly canceled by the denominator a2Etf) |. The expansior2.41)
can be reordered as an explicit expansion in powegg by eliminating all photon operators in favor of the photon propagator

(2.22), using the fact that due to E(R.21) the vacuum expectation value of an odd numbeAgfanishes, while for an even
number all possible contractions, i.e., permutations ofﬁtbw,eare obtained by

2n
(O, TAGH) -+ RS 0x]0,) = 3 (0, TAE (X)L (010,00, TAG(Xo)- - B (xy)-  Aln(xgpl0,) (242

[hereﬁlgk(xk) indicates that this operator has to be dropped from the sk#€ . . . ,21]. As a consequence of E.21) k
must be odd in the first term inside the curly brackets in E41) and even in the second. In order to separate the
contributions with even from those with odd it is convenient to interchange the summation ordet ahdn. Subsequently
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the photon vacuum expectation values are evaluated usin@Bg. Taking into account the multiplicity originating from the
number of possible contractions of tﬁ@ (Wick’s theorem this leads to

)|
E1=limJ dgE ('g) ( )(——) Jd“x 8(x°) fd“ .jd4xl+ke—e<|x2\+--,+|x.°+k|>
e—0

XD, (X;—Xp)- -

1 0
4y o 0
Byt MZk 1M2k(X2kl_x2k)Uch,M2k+l(X2k+l)'"Uch,,u,Hk(XlJrk){zf dly e VDY (x—y)

X<®Ks,e|T]5(X)jg(Y)jgl(Xl)' : 'jg'+k(xl+k)|¢Ks,e>c_UchM X)(Ps, e|TJ (X)l oH(Xq) - - 'jg'+k(xl+k)|‘st,e>c

(2.43

Finally, the binomial structure of E¢2.43 can be utilized to eliminate the summation okerExtracting the xc contribution
to E; via Egs.(2.12), (2.28), and(2.395 and introducing the interaction operator

Wixt) =5 [ ate [ aty e 000 G000, -y~ [ @ o, 00+ v, 00NEC), (244

the final result forE,, can be written as
1 4 0 4 76‘ 0‘ 0 ':,U- p . sy
=5 ] d% 80C) | dfy e ¥ D, (x=y){(Pusl TIEO)Io(Y)| Pks) = 1#()i"(V)}

rim 3 g at@d T Wt @) (249

e—0 n=1

with the understanding that, in analogy to the time evolution operator, the time ordering (8.88).also applies inside Eq.
(2.44), i.e., before performing the time integrations in the individWiélthe overall time ordering of Eq2.45 has to be
established.

Equation(2.45 can be further evaluated by applying Wick’s theorem to the electronic sector, utilizing the KS propagator
(2.25. Taking into account the explicit forrt2.17) for vf; [64], Eq. (2.45 thus provides an exact representationsf in
terms of the KS orbitals, the KS eigenvalues, atid E,J ¢\, e, v/]. However, thep(”, €, as well aw“ are functionals
of the four current, so the,, is in fact an implicit functional of #. As via Eq.(2.18 v, is itself defined as the functional
derivative ofE,. with respect tg*, Eq.(2.45 is a highly nonlinear equation fd£,.. Nevertheless, this equation allows an
iterative solution after an expansion in powersedf

o

:21 e”E); vf;czi; eZpi), (2.46

In fact, after insertion of Eq(2.46 in Eq. (2.45 one notices that the lowest-order contributionefy the exchange energy
E,=e?E(}), does not depend an’.. ThusE, is a well-defined functional of the"’ and e, only, so that the corresponding
exchange potential” can be evaluated using the RORBke Sec. IYto ordere?. This then defines the* contribution to
Ec. as onlyv’=e? ™ enters in this ordef65],

E(CZ)=2|—CIim f d*x5(x°) f d“ye—”"'[—vx,ﬂ<x>vx,y(y>tr[wG°<x,y>y”G"(y,x)]+i f d*ze”#I[DY, (x—2)vy, (y)

e—0

+D (Y= 2)vy () ¥*GO(x,y) y"G (y,2) "Gz, X) ] -5 f d*z j d*ue<IZ1+1°°Dp (x—2)DY (y—u)

XL y*Go(x,y) y* Gy ) T ¥'G(z,u) Y* G(u,2)] - 2 t] ¥*G°(x,2) y"G%(2,u) Y*G(u,y) "Gy, X)]

—t[y*GO(x,y) " G°(y,2) y"G%(z,u) VAGO(U,X)]}] : (2.47)
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This procedure can be repeated to all orderEZS only Vi(x,2)=V(z,x) (3.6
depends on the’® with i<n, establishing a recursive
definition of E,; as a functional of theb, and e, . (we here use the term “state dependent” to indicate that

While the expansiori2.46) immediately shows that Eq. each orbital experiences a different potential, in distinction to
(2.45 represents a practically viable approachig, Eq. the term “orbital dependent,” which refers to the fact that a
(2.46 is not really required for establishing the ROPM, potential or energy can be expressed as functional of the
which can be based directly on the general nonlinear fornorbitalg. In particular, in the DF contex¥,(x,2) would be
(2.45 for E,.. We just remark that a representationEf. ~ the multiplicative, non-state-dependent Kohn-Sham potential
that is equivalent to Eq2.45 can be derived from the Gell- vgs,

Mann-Low-Sucher level shift formulgs4,55.

Vi(X,2) = a,vis(X) 8 (x—2). (3.7
Ill. GAUGE PROPERTIES OF THE , , o
EXCHANGE-CORRELATION ENERGY Alternatively, Vi(x,2) could be a self-consistent relativistic
_ o HF potential. Restricting the self-consistent calculation to the
A. Basic definitions instantaneous Coulomb interaction and utilizing the no-pair

The relativistic DF exchange enerd is most suitably ~aPproximation its exchange component is nonlocal, but not
defined as the lowest order contribution to E245. Intro-  State dependent,
ducing the time-ordered KS current-current response func-
tion,

s &1(%) ¢F(z>_

VAFC(x,2) = — €2 =1

(3.9
14 14 - C2 €= €
X6 OGY)=XE" Xy, X =y°) mesass
= (D e TIE) 2 [P ) — 1400 ()], On the other hand, the HF exchange potential becomes state
[(Prsl TIEOT GV Pres) = (" (Y)] dependent if the complete transverse interaction is taken into
(3.1)  account self-consistently. For instance, in the Feynman
gauge for the photon propagator one has
E, can be written as

co X—
i V)I:i,CJrT(X,Z) —_g2 E S-((1)k|| ZI)
EX=§J d3xJ d*yDO,(x=y, YO x5 (x.y.y°). (3.2 —m<e=er [x—2
. . o X Y2, () (274, (3.9
x4" can be easily expressed in terms of KS orbitals via the
KS propagator2.25), with the single-particle transition frequencies
XgV(X:y,XO_yO) wk|=|ek— €||/C. (31@

— i 0 0_ 0,730 0_ 0
= TGy X =y Y Gy Xy = X)) (33 However, foerw a number of gauges are in use: While the

Feynman and Landau gauge formd)ﬁv correspond to the

=—j @(XO_yO) z + (yO_XO) E A=1 and\ =« limits of
€S €p<é€y E S EE<€)
- - OF orL d4q —ig(x—y)yO,F orL

X 1) ¥ $i(X) B(¥) ¥ b1 (¥) Dy} =)= | E &Y @),

xexp[—i(e—€)(x°—y°)/c]. (3.4 (3.11
While Egs. (3.1)—(3.4) define the exchange energy in the OF orlL, .\ _ 2 B A—-14q,9,
context of DFT, these expressions are equally valid for the D ™ (@ =D(a)| 9™ —— ) (3.12
case of the standard HF exchange, as soon aspthare
understood as HF spinors. Thus, in order to allow a direct —4me?
comparison of the gauge properties of DF and HF exchange, D(g?) = (3.13

2 ’
we consider a more general form of single-particle orbitals in q~+in
this section: Thap, defining x5” via Eq. (3.4) are assumed

to satisfy the single-particle equations in Coulomb gaugdusually applied in quantum chemistry

0
D, reads

O={—ica-V+,8mcz—ek}¢>k(x)+J d3z Vi(x,2) d(2), D(—¢) 0
(3.5 DY) =

aig;| |- (3.19
0 D(g?)| gi;+ #)

with either a given or a self-consistently determined, Hermit-

ian potential, which can be both nonlocal and state deperi-urthermore, in most applications only theeakly relativis-

dent, tic) Breit limit,
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1 0

0C.B/ ) — N[ — (2 a:
Dy (@)=D(-a)| 4 gij+q_.<21_J :
q
of the Coulomb gauge propagat@.14) is used.
The exchange energ§B.2) remains independent of the
gauge chosen fd'r)f”, as long asy$” satisfies the transver-
sality relation

(3.15

Moreover,waXg is not only the basic ingredient &, , but
also appears irEgz), Eqg. (2.47), and all higher-order corre-
lation contributions to Eq(2.45. For instance, a RPA-like
resummed expression f&,, could be based on the “RPA”
response function

9u,X5" (%Y, x°—y?)=0.

E. ENGELet al.
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v v 1 4
XA = xt o)+ ¢ [ 0z durgrin)

X DY, (2 u) xpa(UY). (3.16
In addition, x5 represents the kernel of the ROPM integral
equation for the xc potentiall, (see Sec. V. In order to
determine the gauge properties of b&f andv, it is thus
necessary to investigate the transversalityygf in some
detail.

B. Transversality of the current-current response function

Starting from Eq(3.4) and using the single-particle equa-
tions (3.5 as well as their Hermitian conjugate one directly
obtains

+0(y°—x% X

E S €EE

>

€E<€

>

EE<€y € S€p

1 —
x5 (%Y, x°—y%) = [®(X°—y°) ]E de(Y) Y di(y)

xexd —i(e—€)(xX°—y%)/c] f d32[ ¢/ (2Vi(2,X) pi(X) — B (X)Vi(X,2) ()]

>

€E<€

>

ep<é€y

> -2

€|S€Ep  €S€ER

—i8(x°—y0) [ ]¢F(x>¢k(x>5k<y> Y hi(y). (3.17

Equation(3.17) clearly demonstrates thaty” in general violates the transversality relati@15 as long asV(x,2) is
nonlocal or state dependent. In particular, this is the case for the RHF poté8iland(3.9), as can be explicitly shown by
insertion of Eq.(3.8) or Eqg.(3.9) into Eq.(3.17). Thus, if one used the RHF orbitals resulting from the exchange potentials
(3.8),(3.9) to calculate either the compleEg, (which would amount to a perturbative evaluation of the contributions beyond
the no-pair approximatioror E? the results would be gauge dependi&,46,47.

On the other hand, as soon as the single-particle potential is not state dependent one can use the completeness of the
single-particle spectrum,

g () di(y)= 6D (x—y) (3.18

[after rewriting the sums in Eq3.17) via 2<q =2k D =er ] to show that the second term on the right-hand side of Eq.
(3.17 vanishes. Finally, for local, non-state-dependent single-particle potentials the first term on the right-hand side of Eq.
(3.17 automatically vanishes, so that the resultiff in fact satisfies the transversality requireméhtl5. Note that this
result not only holds for givefexterna) local potentials, but also for local, non-state-dependent potentials, which are gener-
ated by some self-consistent procedure.

This last statement, however, is only correct ifyff* the complete single-particle spectrum is used, i.e., if the negative
energy continuum states are included. As soon as the no-pair approximation is applied, which amounts to projecting out these
states completely,

>

—MC™<e<ep<g€

>

—mP<e=ep<eq

XERd X,y x0—y0) = —i | 0(x°-y°) +0(y°—x°) ]%(x) YA bi(X) (Y)Y i (y)

X exd —i(e— ¢€)(x°—y%)/c], (3.19

the completeness relatidB.18 no longer allows the elimination of the second term on the right-hand side df8Eg). In
the case of a local, non-state-dependent single-particle potential one then obtains

2 —

g =—MC <e€s<ep

>

egsS—Mc <€ <e€p

3, XEnd XY, X0—y0) = —i 5(X°—y°)[ ] B (X) (¥ DY) ¥ i (Y), (3.20
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so thaty , violates the transversality condition even for the
relativistic KS potential3.7) [66]. One thus concludes that a
gauge dependence of the crucial prodDﬁtVXOP can origi-
nate from two sourcedi) the state dependence and nonlo-
cality of the single-particle potential, on whigf§” is based,
and (i) from the no-pair approximation. The no-pair approximation foE, is obtained by neglecting
For the subsequent discussion it is useful to examine thell radiative correctiongwhich automatically eliminates the

stxd4y{D (X—y) XEB (Y + XX Y)]

— 2t Sy(X,y)GR(Y,X)1}. (3.28

components ofyf
particle propagator as

GOx,y)=GY(x,y)+ G (x,y), (3.21)
GYxy)=—i{O(x—y%) X -0(y°-x0 X
—mco<ey ekS7m

X h(X) di(y)e 1k yle (3.22

GIxy)=i X d(0(ye i a’ I
-m <ekSeF
(3.23
one can writeys” as
x6"=x{vt xovt+ xUot+ xbo (3.29
with
XBhxy)=—i t[y*GR(x,y)¥"G3(y.x)] (3.29

and analogous definitions fox{y, and Xg;
=xvb(Y,X)]. x{v agrees with the fully”
=-m
x5 thus also apply toe/
finds

[xov(x.y)
in the limit eg

v. On the other hand, foyhp, one

C&MXSB(X!y!XO_ yO)

>

7m02<ek V€IS EF

Y)Y di(y)e e &) (x°-y%)/c

X J A3 B/ (2 V)(2X) d(X) — Bl ) Vi(X,2) (D) ].
(3.26

Consequently the transversality gf 5, does not depend on
the completeness of the states involved, but only relies on the
structure ofV,(x,2). Any non-state-dependent, local poten-

tial thus leads to a gauge invariagtp .

C. Gauge dependence of the no-pair exchange energy

While the transversality of the complejg” determines

the gauge properties of the full exchange enef@y?), in

practice the no-pair approximation B, is of particular in-

. The precedlng statements on the transversality o

¥ individually. Decomposing the single- need for renormalization

i
Ex,npzzf d3><f d%y D), (x—y)xbp(x.y). (3.29

The gauge dependence Bf , is thus determined by Eq.
(3.26), so that any local, non-state-dependent single-particle
potential will lead to a gauge invariakt ,,[28,46,47. Con-
sequently, in contrast to the case of the HF approximation
the no-pair DF exchange based on the KS orbitals does not
introduce a gauge dependencekf,, [67]. The gauge de-
pendence of the no-pair correlation energy is studied within
the relativistic LDA[58] in a subsequent papgsl].

IV. RELATIVISTIC OPTIMIZED-POTENTIAL METHOD

The ROPM can either be formulated within the field the-
oretical framework or on the basis of the no-pair approxima-
tion. The starting point for the derivation of the former ver-
sion is the ground-state energ{2.12), using the DF
representation.13,(2.14),(2.45 for the individual compo-
nents. The resulting ROPM equations, however, differ from
their no-pair limit only by the inclusion of the negative con-
finuum states in the quantities involved. We will thus simul-
taneously discuss the full ROPM and its no-pair approxima-
tion, giving all explicit formulas for the more practical no-
pair form and just noting the modifications necessary for the
general varian{for brevity, the index np is dropped from
now on.

A. No-pair limit of RDFT

The no-pair limit of RDFT is obtained by consistently
eliminating all vacuum effects, i.e., by suppressing the cre-
ation of virtual electron-positron pairs. In the case of the KS
four current(2.11) and the KS Kkinetic energy2.13 this
leads to

j“h= >

—MCc <egsep

LN a (1), (4.)

fd3 dl—icy V+mE]o,. (4.2
-mé? <€k\€F

Performing the time integration in both the no-pair Hartree

terest. In order to define the no-pair approximation, one de€nergy, obtained by insertion of E@.1) into Eq.(2.14), and

composes the compleEg, according to Eq(3.24). Introduc-
ing the vacuum self-energy,
Sv(x,y)=iD,(x=y)¥*Gy(x.y)y",  (3.27)

one can writeg, as

in the no-pair exchange enerd$.29, using Egs.(3.23,
(3.25, one finds

:_f ' fda, |:)—Jr |r S

4.3
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e? . e
EX=——fd3rJd3r’ EX=——Jd3rfd3r’ >
2 2 7mcz<5k,e|$5|:
« s cosedrmr AN B (1) wn
7mc2<ek,e|se,: |r_rl| |r_r/| ! :
X (N g (NG (1 arp ('), (4.9
where w,=|e,— €|/c is now defined in terms of the KS El=E,—ES, 4.9

eigenvalues. In Eq4.4) we have chosen to work in Feyn-
man gauge, which is technically simplest to handle. This
choice does not introduce any gauge dependence, as dem@phere the density° has been denoted by the more familiar
strated in Sec. llIl. In order to facilitate comparison with stan-[note that due to Eq4.1) j differs from the standard current
dard many-body methods and for later reference, we alsByafactor of 1¢]. The Breit limit EZ of E; is obtained from
gEq. (4.8) by keeping only the leading contribution incl/As
a correlation functional to be used with E¢$.1)—(4.4) the
no-pair limit of Eq.(2.47) suggests itself: While the no-pair
. e? , , n(rHn(r’) approximation can be introdyceq for the complE;g—g, Eq.
EH:? d°r [ d°r'——, (4.5 (2.45), without further approximations, for practical purposes
r=r| either a low-order expansion or a partial resummatiok Qf
5 o is imperative. In addition, one would expect the transverse
ET—_ e_f dsrf d3r’J(r) ) (4.6) interaction to play only a minor role i&;, so that we restrict
H 2 ourselves to giving the longitudinal limit cﬁgz) at this point,

energies,(4.3),(4.4), into their longitudinal (Coulomb, G
and transverséretarded Breit, T components,

=

4 T T
E(CZ)'C:e > I stflf d3r2¢.(r1)¢k(r1)¢1(rz)¢|(rz)Jd3r3J d&r,

7m02<ei,ejS5,:<5k,E| 6i+6j_6k_ € |rl_r2|

y [ $i(ra) $i(r3) Bl (ra) i(ra)  dilrs) y(rs) (1) ¢i(r4>] .S 1

|r3—r4 [r3—r4]

N

7m<:2<eks eg<e €k €

Pi(r1) $j(r1) ] (r2) ¢i(r2)| >

X . 4.9
[ri—rol ‘ “9

fd3r1¢l(r1)a“¢|(r1)v§M(rl)+e2 > fdgrlf d3r,

—m02<ejSeF

The approximation4.9) consists of two contributions: The rated by a distancB large enough so that the corresponding
first term is formally identical to the second-order/lMo-  electronic densities have no substantial overlap., the
Plesset energy, derived as a perturbative correction to theverlap vanishes exponentially witR). The KS single-
total HF energy. The second term reflects the conceptudlarticle orbitals are then localized around the two atomic
difference between the exchange-only ROPM and the RHEenters(if required, degenerate molecular orbitals can be
approach. However, the differences between exchange-onfPmbined to generate localized atomic orbitasach sum in
ROPM and RHF ground-state energies are comparativelfzd- (4.9 can thus be split into two sums over orbitals be-
small, at least for atomésee[9] and Table ). In fact, for ~ longing to the centeré andB,

heliumlike systems both energies coincide. One would thus

expect the second term in E@L.9) to contribute much less E HE +2

than the Mdler-Plesset-type correction. Although no corre- = '
sponding estimate of the quantitative impact of the second

term on the self-consistent?) is available(cf. Sec. VO,  ag a consequence, in the /Mter-Plesset-type term the sums
this suggests that neglect of the second term is a reasonaligeri andk and those ovey and| are restricted to the same
approximation to(4.9). This would eliminate the, depen-  4iom by ther,,r, integrations, due to the vanishing overlap
dence ofEX) . of orbitals that correspond to different centers. Moreover, in
In view of the origin of the approximatiort4.9) one  the exchange contribution to the/Mer-Plesset-type term the

would expect thatE{(*© includes long-range dispersive r,r, integrations in addition require thand| as well asj
forces. In order to verify this important property EEZ)'Cwe andk belong to the same atom, so that all four sums corre-
consider two neutral aton® andB, whose centers are sepa- spond to the same atom. Similarly, in the second term of Eq.

€ €
A B
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TABLE I. Self-consistent exchange-only ground-state energies from ROPM and RHF calculations for
neutral atoms with closed subshells: Couloi@) and Coulomb-Breit(C+B) limit in comparison with
complete transverse exchand@e+T). For the RHF approximation the energy difference with respect to the
ROPM is given AE = E,(RHF)— E,,(ROPM), providing results both from fully numerical calculatidas
[74] and from a basis set expansifl) [26]. Note that in contrast to all other calculations reported in this
paper here a speed of light of 137.037 a.u. has been used and the nuclear radii have been set according to
Rpuc=2.2677 10~ 5AY2 bohr in order to allow a comparison wif26] (all energies in mhartrée

Atom -ES, AEC AEC —ESIB AEC'E —-EST
ROPM RHF RHFP ROPM RHP ROPM
He 2862 0 0 2862 0 2862
Be 14575 -1 14575 14575
Ne 128690 -2 -2 128674 -2 128674
Mg 199932 -3 199900 199900
Ar 528678 -5 -5 528546 -5 528546
Ca 679704 -6 679513 679513
Zn 1794599 —14 -12 1793838 -12 1793841
Kr 2788849 -13 -12 2787423 -12 2787431
Sr 3178069 -13 3176350 3176360
Pd 5044388 —-16 5041074 5041101
cd 5593303 -20 -17 5589466 —-15 5589500
Xe 7446882 -19 -6 7441115 -3 7441179
Ba 8135632 -19 8129091 8129168
Yb 14067635 —48 14053517 14053764
Hg 19648836 -39 -13 19626225 9 19626715
RN 23601947 -35 -19 23572625 11 23573332
Ra 25027992 —34 24996118 24996912
No 36740241 —-57 36685157 36686790

(4.9 j, k, andl are restricted to the same center. Thus theNow one can use the time-ordered KS response function
Mdller-Plesset-type exchange term and the complete secori@.4) of the individual atoms to rewrite E¢4.10 as
term can be decomposed into additive contributions of the

two atoms. However, only terms that involve both atoms, 2. e? . .
i.e., that depend o, contribute to the interaction energy EGm =~ ?f d°ry---dry
between the atoms. Taking into account the symmetry of Eq.
(4.9), one obtains as a correlation contribution to the inter- J do ng(rl,r&w)xg%(u,rz,w)
action energy for larg®, 2 1= 1o][rz—r4]
(4.11
E(@.C_ 2 For time-reversal invariant systems this expression can be
eint e — given a more familiar fornj68],
4
e =du
N E E(Z-)’C:_eélf _f d3r1...d3r4
—mc2<sjB$eF<e|B EiA+ 6]5_ Ek/.\_ €|B eint 0 277
R,00, : R,00, H
Xoa (I1,13,1U) X0 (I2,14,iU)
1,11 i, (1) b, (12) i (12) x ==t . (412
X | d3y | d3r, | | 17 M2l|T3— T
ri—rp
where Y47 denotes the retarded KS current-current re-
i i 0A
3 3 ¢kA(r3)¢iA(r3) ¢’IB(r4)¢iB(r4) sponse function. Choosing the center of ataras origin for
X[ drg | d’ry [r3—r ' ther,; andr; integrations and the center of atd8nas origin

for the r, andr, integrations, one can easily expand the
(4.10 Coulomb interaction,
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1 1 1 (ry—ry)-R 3[(r;—ry)-R]? functionals ofj* by virtue of the Hohenberg-Kohn theorem
ri—ro|  [REr—1y :§{ - RZ 2R% for noninteracting particles, the functional dependences
d([j];r) andeg ] being established implicitly via solution
(r1=rp)? of the single-particle equations. This fact allows the deriva-
TRz Tl tion of the standard KS equatiof2.15 as in the case of an

_ . _ explicitly current dependert,,.
The two leading terms of this expansion, however, do not Given an orbital- and eigenvalue-dependent xc-energy
contribute to Eq(4.12 due to charge conservation, so that f,nctional in the nonlinear fOf”Exc[ﬁb(kT) e, v™] the next

o task is to explicitly construct the xc potenti@.18. This is
iy SRI R/ achieved by the optimized-potential methe@PM), which
g RZ has first been introduced in the context of nonrelativistic
R DFT [12,15,?0,693and recently been extended to the relativ-
ki . . istic domain[9,70]. Although this procedure originally had
9" +3 R )aA"k(lu)aB'“(lu)’ 413 peen suggested for the exchange-only limit of DFT it can be
applied to any functional of the KS orbitals and eigenvalues.
Two equivalent derivations of the OPM formalism are avail-
able[4,12], both relying on the unique correspondence be-
tween the ground-state densitiyere, four currentand the
associated KS potential. We follow here the more direct ap-
proach, in which the functional derivative Bf, with respect
Equation (4.13 explicitly shows thatE{”© contains the g j» is replaced by derivatives with respect to those quanti-

leading contribution to the van der Waals interaction beies on whichE,, explicitly depends, using the chain rule for
tween the two atoms, the deviation from the full van derfynctional differentiation.

Waals interaction resulting from the difference between the Again two variants are possib]e: One can either base the
KS and the complete response function. One would thus eXiscussion on the recursive solution of Eg.45 via Eq.
pectE(cz)’cto be particularly useful for a seamless DFT de-(2.46), i.e., expand in powers ad® before introducing the
scription of van der Waals binding. Of course, if the trans-OPM. The OPM equation for the lowest order, in whigp,
verse interaction is include&(), approaches the Casimir- only depends on the(") ande,, then allows the elimination
Polder form proportional to R’ for very large separations. of the lowest-order potential, i.e., the exchange potentfal
from all higher orders irk,. in favor of the¢(k” andey . As
B. Complete nonlinear ROPM equation a consequence, the second-order contributiorEfp is a
In contrast to approximations like the LDA or GGA, Egs. functional of theg{"” ande, only, allowing one to repeat the
(2.45, (4.4), (4.9 provide E,. as a functional of the KS procedure. Alternatively, the expansion in powersedfcan
orbitals and eigenvalues, rather than as a functiongl“of ~be introduced after the derivation of the ROPM equation. In
However, as long as the, and €, satisfy single-particle this caseE, is a functional of thes{) and ¢, as well as of
equations with a multiplicative potential they are uniquev;, so that
expl}

, (4.19

4 e
g@.c__ & [~du
= A

X

wherea, i is the atomic KS polarizability tensor,

aiAk(w)=J d3r1f dCrorirsx bRy, ,0).  (4.19

SPL(r")  SEy.
SuRs(r') SPi(r")

5€k &EXC

+—
Sus(r') €

5EXC[¢E.<T)’6I(’UQC]:] d3r’5v?8(r,)z fdgr,,
8j"(r) oj"(r) 'k

expl.

o [ o 2D O
8j"(r) dvl(r")

expl.

where the unique correspondence betwgérandvis has  linear response of the{’ and ¢, to a variation ofv&s,

been used to insert the functional differentiation with respecfyhich can be directly obtained from first-order perturbation
to vis (in the following the derivatives of,; are always  theory,

understood with respect to the explicit dependencesgh,

€, andvi,, so that we drop the index expl. from now)on Spi(r)
The k summation on the right-hand side of BE¢.15 runs 5,,—,

over all KS levels, including the negative continuum. As Vks(r")

soon as the no-pair approximation is usedEgQt, however, t,

it effectively reduces to the states wigh> —mc?. The vari- Gu(rr')= ()b (r') , 4.17

ous ingredients of Eq(4.15 require the evaluation of the ik €~ €

= —ph(r)a,Gy(r',r), (4.16
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o
2 gl a, (D).

(4.18

Equation(4.195 can be recast, using the static KS respons

function, as
=2t ‘F dr x"(rr',7)
0 ! - N 0 [
Ovks (1) i
== 2 dL(N @ Gy(r,r")a’ ¢y (r') +c.c.,
-m <ekSeF

(4.19

where the no-pair forn4.1) has been used fqr‘. Multiply-
ing Eg. (4.19 by x§" and integrating over leads to the
ROPM integral equations for the xc potential,

f a3 X6 (r,r )vye,(r') = AL(r), (4.20

with the inhomogeneity

OE,.
Sei(r')

qbl(r)a“Gk(r,r’) +c.c.

— 3,7
AL(r)= ; fdr

IEyc
k

2 gt pn

Svl (1) SE,.
Siv(r') svl(r")
(4.20)

+f d3r’f d3rxA¥(r,r")

Note that the ROPM concept can be directly extended to th

field theoretical level by using the full curre(®.12), rather
than its no-pair limit: In this case Ed4.19 has to be re-
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to deal with larger classes of diagrammatic contributions to
Eq. (2.45, as, e.g., the ring diagrams, thus establishing an
RPA-type approximation. On the other hand, a rigorous
treatment off%” requires some well-defined recursive defi-
Sition of E,. that allows the iteration of the left-hand and
right-hand sides of Eq4.20, as discussed in Sec. IV C for
the expansion in powers &f.

The ROPM integral equatio@.20 has to be solved self-
consistently together with the KS equatiot&s159. In this
procedure one also has to fix the gauge{if. First of all,
analogous to the situation without magnetic fieldfs,is only
defined up to a global constant, as

f d3r’x6‘°(r,r’)=fd3r Xo“(rr)=0 (4.2

(charge conservatigonThis constant, however, is not a real
problem. For instance, for finite systems it is usually defined
by requiring that

(4.23

As far as the spatial components @f. are concerned, the
situation is somewhat more complicated. In particular, in the
no-pair approximation not only the “externak summation

in Eq. (4.19 is restricted toe,> —m¢c?, but also thd sum-
mation insideG, does not include the negative continuum
states. Consequently E@.26) applies, i.e., in the static limit
one has

Ugc(r) — 0.

‘f‘—mo

aixy (r,r')#0. (4.24
Thus three-vector potentials., which differ by static gauge
transformations, lead to different results for the left-hand
side of Eq.(4.20. As a consequence, in the no-pair approxi-
Qwation there is only one unique solution of £4.20 for the
spatial components eff., i.e., the no-pair ROPM procedure
automatically fixes the gauge of.. On the other hand, the

placed by the corresponding full static KS response functiofield theoretical version of the ROPM is based on the full

[obtained by Fourier transformation (3.4)].

response functior{3.4), which satisfies Eq(3.15. In this

Equations(4.19—(4.21) differ from previous forms of the Case Eq(4.20 determines, only up to an arbitrary static
ROPM given in[9,11] by the appearance of the functional 9auge transformation, so that the gauge,gfhas to be fixed

derivatives ofE,. with respect to both the, as well asv;.

Of course, for the orbital-dependeBRt,. considered previ-

ously, i.e., the longitudinal exchangd.7) and the Colle-
Salvetti correlation functional19], Egs. (4.19—(4.21) re-

by some additional requirement.

It should be emphasized, however, that in both situations
the gauge used for the photon propagétmt to be confused
with the gauge ofv’,) only enters Eq.(4.20 via the E,

duce to the published forms. On the other hand, the fuldependence oki.. Thusvj. is independent of the gauge of
exchange4.4) depends on the, due to photon retardation. D, as long asE, is gauge invariant.

Moreover, as soon as some first-principles, orbital-dependent A rigorous condition forEXC[g/;(kT),ek,v{{C] is obtained by
E. based on the approach of Sec. Il is to be applied, also thimtegrating the zeroth component of E4.20 overr. Using

static xc kernel

Svk(r)
8j,(r")

=fer(r,r')

the projection property of the Greens function,

has to be evaluated in accordance with the actual approxima-

tion used forE,.. Two strategies are conceivable: One could

either hope that this ingredient df,. is only of minor im-

fd3r¢l(r)ek(r,r')=o, (4.25
one finds
IExe
g &Ek_o. (4.26)

portance for the solution of the ROPM integral equation,

thus allowing the use of some approximation fdf’, as,

Equation (4.26) can be directly verified for the exchange-

e.g., the LDA. This would immediately open the possibility only energy(4.4) and for the second-order expressi@no).
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For approximate correlation functionals, on the other hand, ibf the functional derivatives oE, and EEZ) is lengthy but

provides an important consistency criterion.

straightforward, so that we limit ourselves to giving an ex-

Equations(4.19—(4.21) can also be used to extract the piicit formula for the only nontrivial term in Eq4.33), i.e.,
behavior of the xc potential in the asymptotic regime of finite vyl dvys,, - Taking the functional derivative of Eq4.30
systems. Unfortunately, the spinor structure of the quantitie§ i, respéct to ' one finds(after subsequent multiplication

involved substantially complicates the discussion even in th
exchange-only limit. Nevertheless, restricting the analysis t
spherically averaged systems, a somewhat tedious analysis

(of which the essential points are given in AppendiX&ads

to a relativistic variant of the KLI identity for the highest

occupied orbitakp;, [14],

J dr ¢E(r)[ dn(Nvd(r)— 55* ] +c.c=0,
S¢pn(T)
(4.27
and the expected behavior of ,
vl(r) ~, — %2 (4.29

C. Second-order ROPM equations

fith the inverse KS response functiqy

51" and integration

verr,)

O (1)

oA, \(13)

51) fés( I’l)

ZJ dsrsX(;l'V}\(rz,rs)

) ra,r
_f &, Xoxp(r3.:74)
dvis(ry)

The first term on the right-hand side of E@.34 can be
evaluated using the standard OPM replacement of functional
derivatives[utilizing Eqgs.(4.16—(4.18)],

vﬁ(u)] . (439

In order to provide a practical computational scheme, the

general ROPM equatio4.20 is now specialized to the

second-order xc energy functional

E—E+E?. (4.29

Expanding the corresponding xc potential in powersedf
allows the separation of the ordeed and e* also in the
ROPM equation,

f d3roxb " (r1,r2)vy (1) = A4(ry), (4.30
fd3r2x5”(r1,r2>vé?y(rz>=A§2>'“(rl>. (4.3)
where the inhomogeneities are given by
A“(rl)z—z fd3r2 di(r1) oGy (ry rz)iJrc.c.
" ; - " selry)

JE
+2 dlr)ar gy(r)—_—, (4.32

K €k

T

X| h(r)) ahGy(ry,rp)

2)
TC +c.c.
Opy(r3)

3d

&Ek

+§ Pl(r) a*dy(ry)

f , Ou(r) SED
+ | d°r, ”
6vKS,M(rl) 5Ux(r2)

(4.33

[the unique correspondence betwegénand vis has been
used to simplify the last term in E@4.33)]. The evaluation

SAX(rp)
- = d3
Suks(r1) ; f &
SA(13)
f G i A
X| y(ry) @, G(ry,rz) 501(ra) +
JAX(r2)
+3 dlad()— = (439

The second term on the right-hand side of E434 con-
tains the quadratic response function,

5X0,M1p2(r1 ’ r2)

5U ll:g( r3)

5, (1)

61) lKLg( I’3) 5U ';:é( rz)

= X

7m62<ekSe,:

H k,/.Ll,uz;Ls(rl T2 1r3)

+ all permutations ofryu; < rouyrams,

(4.39
with
Higupny(T1:72:7s)
= pi(r) e, Gul(r1.12)a,, G2, rs) @, di(rs)
— i), dr) i) e,
x f A*r4G(12.14) Gilra,13) @, bilT3). (4.37)

Equations(4.30—(4.37) together with(4.4), (4.9, (4.17),
and (4.19 provide all the necessary ingredients for the de-
termination ofv, andv?.



PRA 58 RELATIVISTIC OPTIMIZED-POTENTIAL METHOD: ... 979

V. KRIEGER-LI-IAFRATE APPROXIMATION

. . . . . d3r l(r ) (5.3
The numerical solution of the integral equati@h20 is 5¢k( )’
computationally rather demanding. Thus an approximate
analytical solution is of great interest. In the nonrelativistic _
context such an analytical scheme has been suggested by vk=J dr jk,A(r)vﬁc(r), (5.9
Krieger, Li, and lafratd 14]. Very recently the KLI approxi-
mation has also been extended to the relativistic domain sy — gt n
Ji(r) = (1) a* dy(r). (5.9

(RKLI) [11]. For the derivation of the KLI approximation for

the OPM integral equation two different routes have beennyersion of the tensor on the left-hand side of E%j2) then

followed in the literature: One can either rely on a closureg;yeg

approximation for the Greens functidd.17) [14] or rewrite

the OPM integral equation in a form that suggests neglecting 1 0 GIFG

certain complicated “higher-order” contributiori4,11]. Uffc(f)zzj (r)(—g’y“rg“ 9wt ooy 70,1

Both approaches, however, have so far only been formu- 0

lated for purely orbital-dependeft,.. In the general situa-

tion discussed in Secs. Il and IK,, also depends on the, x{ 2 | di(n e

and may even be specified in the nonlinear form . 5¢’k( )
E.d o, €, vk]. As a consequence of the, dependence ]

—jk(r)ek+cc

of E,. any approximation fov; also affects the associated +2 2 J'E(f)v_k— AZE in
E,.. and thus has to be consistently applieddg/dj, . -mP<e=er K

This problem is most easily resolved by the recursive proce- (5.6)

dure of Sec. IV C, i.e., by successively addressing exchange

and correlation of the second-order functiorig]+ Eﬁz’. While for purely orbital-dependent xc functionalas the

Starting from Eqs(4.30 and (4.32, a KLI approximation ~Coulomb exchangethe term proportional ta\e vanishes,

for v# can be devised, which itself is an implicit functional this is no longer the case for eigenvalue-dependent function-

of the ¢V andey, v4[ &7, €. Thisv“[ (", €] can then als[as the transverse exchar@le4) or the correlatior(4_.9)]. _

be used to construct a KLI approximation @2),# via Egs. In order to reinstall the_unlversallty of the approximation

(43) and (4.33. Alternatively, after insertion of (-6, one has to specife as a functional of they and ¢,

Uff[d’(kﬂ,fk] into Egz) the KLI approximation forv((:z),ﬂ can (leaving Ae as a parameter to be adjusted by hand would

be derived from the ROPM integral equation for functionalsexmi.Citly introducc_a a characteristic energy scale of the sys-
of the linear typeE,J ¢\, €], so that for brevity we restrict tem into the function|

ourselves to formulating the RKLI scheme for functionals of Such a universal representation fdre automatically
this form 9 emerges from the second approach to the KLI approxima-

For purely orbital-dependeri,, the KLI approximation tion: Following exactly the steps given|iil] and neglecting

the same terms one ends up with
is most easily obtained via the closure approach: Replacing P

the denominator in Eg4.17) by some average eigenvalue 1 o i“(Nj(r)
differenceA e one has E(r)== [— Kt ghog ot
¢ Ul om | 99T
ANGl) V) D) [ { L=
Gul(r.r > | dina’———jinec-tc.c.
drr)= gk Ae Ae 5¢k( )
(5.2
+2 X jNue ]
Insertion into Eq.(4.20 (reduced to functionals of the type -mP<e=er
E.d ¢\, €] and within the no-pair approximatipteads to 5.7
which suggests the use oﬁs as the characteristic energy
D diD{ak, @ (N vy (T) scale which multipliesiE,./de,. Indeed,vls is a rough
—mP<e=ep measure of the for the individual shells, as long as these

shells are localized. However, while the “derivation” of Eq.
ZE ¢k(r)aﬂ OBy —jp (r)EkJrc.c. (5.7 is straightforward, it is by no means clear whether Eq.
K Si(r) (5.7) represents a physically reasonable extension of the
RKLI approximation to eigenvalue-dependent functionals.
In fact, consistency with the approximati@f.1) might
require that one also drops the term witk,./de in the
ROPM integral equation. In addition, there is an indication
(5.2  that thevﬂs scale may not be appropriate, as it can be shown
that for neutral, closed-subshell atoms an incorrect
with asymptotic form ofvg emerges. In this case one has

+2 2t

—m(:2<ek\e,:
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analyze the impact of the transverse interaction on a variety

o_ 1 > 1%k oo f iti icular, while the size of
Vxe™ 51 b7 —lk&TC.C. of quantities. In particular, while the size of transverse cor-
Jo[ 'k Oy rections to ground-state energies has already been known

from first-order perturbation theory on DC basis for quite
+2 > 02> j(k)EXCJ , (5.8 some timg23], the ROPM allows an explicit examination of
K dey microscopidglocal) quantities such as single-particle energies
or the xc potential, and therefore of higher-order transverse
as the spatial components of the current vanishjgnd 25, corrections to ground-state energies.
andv?, are spherical. In the asymptotic regime the correct Within the framework of DFT the role of the transverse
U&S(r) then approaches e?/r, thus adding an additional exchange potential has first been investigated by Das, Raja-
gopal, and co-workell1-73 on the basis of the relativistic
o7Exc e 9E,, LDA (RLDA) [62,63. However, while the RLDA provides a
~ 57 gauge invariant approach to the transverse exchange, it mis-
represents atomi&, substantially[63,71,73. Thus, to ob-
tain conclusive results, the ROPM, which gives very accu-
rate exchange and ground-state energies in the C [@hijt
has to be used.
We have performed self-consistent exchange-only ROPM
LE [ﬂﬁi’m—c.c} . _€ calculations for closed subshell atoms, including the trans-
2jo St Fmee I verse interaction either completely or in its Breit approxima-

) ) 0 ] tion (throughout this section we restrict ourselves to
on the right-hand side of Ed5.8). Thusv,. and, via Eq.  exchange-only DFT and the no-pair approximation, so that
(2.16), alsovys no longer have the correct asymptotidle-  E=E,—all subsequent statements are to be understood
pendence. within these limitg. The technical details are given in Ap-

The quality of the approximatioit5.7) depends on the pendix A. All ROPM results in this paper have been obtained
explicit functional form ofE,; as well as on the specific by coupled solution of the relativistic KS equatiofs31)
system under consideration. As a consequence, the questignd the integral equation specified in E¢838)—(A40) and
of whether to use Eq(5.7) with or without the JE,./dex  (A54) with standard finite differences methods on a grid of
contribution can only be answered on the basis of explici800—1600 mesh poin{svithout any further approximation
results, which are given in Sec. VI for the case of the trans- We start our analysis by a comparison of ROPM and RHF
verse exchange. results, both on the C and the CB level, in order to show that

Notwithstanding the question of théE,./de, contribu-  the local ROPM potential is physically equivalent to the non-
tion, Eq. (5.7) still represents an integral equation, which, local RHF potential. In Table | we list self-consistent
however, is much more easily solved than E420: The  exchange-only ground-state energies for closed subshell at-
vy dependence on the right-hand side can either be elimiems(in Table | we have used a different nuclear radius and

nated by solving a set of linear equations for thdobtained ~ speed of light as in all other tables of this paper antinin

by multiplication of Eq.(5.7) with j, ,(r) and subsequent order to allow a comparison witf26)). In the case of the C
summation ovet and integration over]. Alternatively, Eq.  interaction two different sets of RHF energies are given, re-
(5.7 can be solved iteratively, using the left-hand side ofsulting from(a) a completely numerical solution of the DC-
iteration numben to evaluatey, (and v, if required on RHF equation$74], and from(b) a basis set expansi¢a6].

- . . . . Focusing on the fully numerical RHF data first, one observes
the right-hand side of iteration numbe-1 (and some suit that throughout the periodic system the RHF energies are

. _— O .
able starting guesses fog anduvgs). Note that this proce-  gjightly below the corresponding ROPM results, reflecting
dure is most easily implemented in any iteration towardshe somewhat larger variational freedom of the RHF scheme.

—Mmc<egsep

0
UK -
Zjozk Jk (9€k r o 2I’ (96h

(h here denotes the highest occupied lgvel the —e?/r
resulting from

self-consistency. Nevertheless, the differences between ROPM and RHF val-
ues are only on the 1-eV level, which clearly supports the

VI. EXCHANGE-ONLY RESULTS FOR CLOSED DFT concept of multiplicative potentials. One also notices
SUBSHELL ATOMS that for heavy atoms the differences between the fully nu-

merical RHF results and those obtained by finite basis ex-
pansion[26] are of the same order of magnitude as the dif-
Standard relativisticab initio calculations for many- ferences between the fully numerical ROPM and RHF data.
electron systems are usually based on either the no-pair DEor instance, for Hg, which we use as a prototype for all
or the no-pair DCB Hamiltonian. Consequently, as soon asieavy atoms considered, the former difference amounts to 26
the transverse xc energy is not completely neglected, thenhartree, while the latter is 39 mhartree. Note that in spite of
resulting ground-state energies are gauge dependent, eventhre similarity of the ground-state energies the single-particle
the exchange-only limif28,45. The ROPM, on the other energies of the ROPM are quite different from their RHF
hand, can be applied self-consistently for all three relevantounterpart§see Table I), just as in the nonrelativistic case
forms of the electron-electron interaction, i.e., the instantaf2] (and within the RLDA[71]).
neous CoulomiC), the Coulomb-Breit(CB), and the full Table | also gives a corresponding comparison for the CB
(CT) interaction, without introducing a gauge dependence irinteraction, for which, however, only RHF results obtained
E!. The ROPM thus offers the possibility to unambiguouslywith a basis set expansi¢@6] are available. In this case the

A. ROPM including transverse interaction
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TABLE Il. Exchange-only single-particle energies €,;) for neutral Hg from self-consistent ROPM, RHF, and RKLI calculations,
using(i) the complete relativistic exchange-only potenti@ah-T), (ii) its Coulomb-Breit approximatiofC+B), and(iii ) its longitudinal(C)
limit. For the RKLI approximation two variants are showi@ Eq. (5.7) without the JE,/de, contribution, (b) Eq. (5.7) including the
JE, I de contribution. Also given are RGGA results that have been obtained with the relativistic extension of the Becke paramgb@zation
either in exchange-only mod&B) or including the Lee-Young-Parr correlation GGRBLYP) [76] (all energies in hartreg36]).

Level ROPM RHF RKLIla RKLIb RB RBLYP

C+T C+B C C C+T C+T C+T C+T
1s1/2 3036.871 3032.278 3047.431 3074.229 3037.244 3029.982 3036.453 3036.485
2s1/2 538.444 537.853 540.057 550.251 538.343 536.425 538.051 538.085
2pl/2 516.198 515.546 518.062 526.855 516.083 513.925 516.097 516.132
2p3/2 445.422 445.013 446.683 455.157 445.302 443.541 445.276 445.311
3s1/2 127.956 127.858 128.273 133.113 127.906 127.163 127.703 127.738
3pl/2 117.994 117.885 118.351 122.639 117.966 117.178 117.857 117.893
3p3/2 102.302 102.236 102.537 106.545 102.274 101.583 102.152 102.187
3d3/2 86.069 86.036 86.202 89.437 86.062 85.387 85.959 85.994
3d5/2 82.692 82.665 82.808 86.020 82.687 82.036 82.582 82.617
4s1/2 28.361 28.351 28.428 30.648 28.303 27.986 28.037 28.072
4p1/2 24.090 24.075 24.162 26.124 24.050 23.724 23.819 23.854
4p3/2 20.321 20.315 20.364 22.189 20.269 19.967 20.024 20.059
4d3/2 13.397 13.397 13.412 14.797 13.372 13.083 13.151 13.186
4d5/2 12.689 12.690 12.701 14.053 12.663 12.380 12.441 12.476
4§5/2 3.766 3.770 3.757 4.473 3.764 3.509 3.571 3.607
4712 3.613 3.616 3.603 4.312 3.611 3.358 3.417 3.453
5s1/2 4.394 4.394 4.404 5.103 4.399 4.251 4.278 4.313
5pl1/2 3.004 3.002 3.013 3.538 3.004 2.870 2.886 2.920
5p3/2 2.360 2.360 2.364 2.842 2.348 2.236 2.219 2.253
5d3/2 0.507 0.507 0.506 0.650 0.496 0.417 0.367 0.399
5d5/2 0.440 0.441 0.440 0.575 0.430 0.354 0.300 0.332
6s1/2 0.330 0.330 0.330 0.328 0.332 0.283 0.222 0.249

CB ROPM ground-state energies become even more attrad-able Ill we again list total exchange-only ground-state en-
tive than their CB-RHF counterparts for very heavy atoms:ergies for closed subshell atoms, this time comparing three
While for Hg the basis set expansion loses 26 mhartree witlROPM variantgand using the nuclear shape and the value of
respect to the finite differences calculation for the C interacthe speed of light of9]—for completeness and in order to
tion, this difference increases to 48 mhartree in the CB caseorrect some slightly incorrect numbdfzs] in Table VI of
Whether this fact is an indication of the gauge dependence g8 the corresponding] are recorded in Table IV First of

the DCB-RHF data or is just due to a particular sensitivity ofa”' the fully self-consistent ROPM energie$; ™ are given,

the Breit term to the basis chosen is not clear at this point,, . . .
Nevertheless, the order of magnitude of this discrepancy i(s)b'[alned by solution of Bq¢2.15 and (4.20 for the com

consistent with the gauge dependencies observed by GoP\St€ exchange enerdg.4). In addition, we show t_hE_t%?T
ceix, Indelicato, and Desclauj28,45 in the case of two obtalneq by restricting, to either the_C _or_the CB limit, e,
electron systems: For example, for the2p3P, state they bPY only including Eq.(4.7) or the Breit limit of Eq.(4.4) in
found differences of 1.2 mhartree f@=>54 and 3.3 mhar- EQ.(4.21 and evaluating the remainder of Hg.4) by first-
tree forZ=92 between the expectation values of the weaklyorder perturbation theory. As the ROPM procedure yields the
relativistic limits of the transverse interaction in Coulomb Multiplicative exchange potential that minimizes the energy

and Feynman gauge, when using C-RHF orbitals. expression of interest, tHeS, ' resulting from the C or CB

In addition toES, andES, B also the complet&S, " are  exchange potentials are somewhat above the fully self-
shown in Table I, so that one can extract the absolute size afonsistent values. Nevertheless, the CB-exchange potential
the Breit and beyond Breit corrections to ground-state enereads to energies that are only a few mhartree away from the

gies. For example for HES, T is more attractive by 490 self-consistenES, T, demonstrating that the CB potential is

mhartree thafE$, ©, which is 22.6 hartree abo\&},. Thus, a rather accurate approximation of the ful} for atomic

as far as ground-state energies are concerned, the seffystems. In other words, the second-order contribution of the

consistent ROPM results show the same trend as the weltransverse corrections not included in the B interaction are of

known perturbative RHF resulf23]. the order of 5-10 mhartree. On the other hand, treating only
We now turn to an analysis of the exchange-only potenthe C interaction self-consistently produdg; T which, for

tial, addressing in particular the importance of its transverséeavy atoms, differ from the fully self-consistent results on

componenty] for ground-state and excitation energies. Inthe 1-eV level. In fact, the second-order transverse exchange
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TABLE lll. Exchange-only ground-state energies from ROPM, RHF, RKLI, and RGGA calculations for
neutral atoms with closed subshells: In the case of the ROPM the self-consisyetredtment of the
complete transverse exchan@® is compared with a self-consistent inclusion of only its Bi@) limit
[together with a perturbativep] calculation of the beyond Breit contributions —B] as well as a fully
perturbative evaluation cEI. The latter procedure has also been used for the RHF calcul@fidhd-or the
RKLI approximation two variants are show(a) Eq. (5.7) without the JE, /de, contribution,(b) Eq. (5.7)
including thedE, /de, contribution. The RGGA results have been obtained with the relativistic extension of
the Becke parametrizatioiiRB) [52] for v,, while using Eq.(4.4) for the calculation of, (all energies in

mhartre€ 86]).
Atom -EGT ES T—ES TROPM: s(C+T)]

ROPM ROPM ROPM RHF RKLIa RKLIb RB

s: C+T C+B C C C+T C+T C+T

p: T-B T T
He 2862 0 0 0 0 0 2
Be 14575 0 0 -1 0 0 2
Ne 128674 0 0 -2 1 1 13
Mg 199900 0 0 -3 1 1 9
Ar 528546 0 0 -5 2 2 10
Ca 679513 0 0 ~6 2 2 8
Zn 1793840 0 1 —-14 4 4 40
Kr 2787429 0 2 -12 3 3 21
Sr 3176359 0 2 -11 3 5 18
Pd 5041098 0 5 -13 4 6 35
Cd 5589496 1 6 -16 6 9 30
Xe 7441173 1 10 -11 6 16 22
Ba 8129161 1 11 -9 6 39 21
Yb 14053750 3 29 -21 11 82 74
Hg 19626705 6 50 8 10 118 51
Rn 23573354 8 68 29 9 224 45
Ra 24996946 9 75 38 9 44
No 36687173 16 140 82 13 87

contributions are of the same order of magnitude as the en- tag| E |v. Transverse exchange-only energi&) for closed
ergy gain from the additional variational freedom of the non-g pshell atoms: Self-consistent ROPM resuly i comparison
local RHF potential, so that the fully self-consistent ROPMith values obtained perturbatively) with orbitals from longitu-

energies are below the perturbative RHF energies for heawinal ROPM and RHRCoulomb gauge foE]) calculations[75]

atoms(also given in Table II). (all energies in hartregs6]).
While this is a negligible energy contribution in the quan-
tum chemical context, it has to be corrected by second-ordektom ROPM:s ROPM: p RHF: p

perturbation theory to achieve spectroscopic accufasy.

This is most easily seen from Tables V and VI in which He 0.000064 0.000064 0.000064

some ionization potential§lPs) and inner-shell excitation 0.00070 0.00070 0.00070
energies are given. For none of the atoms considered do e 0.0167 0.0167 0.0166
IPs from the first order perturbative and the self-consistentd 0.0318 0.0319 0.0318
treatment oEI differ by more than 1 mhartree, reflecting the Ar 0.132 0.132 0.132
fact that the transverse corrections essentially cancel out éa 0.191 0.191 0.191
all chemically relevant energy differences. On the otherZn 0.758 0.759 0.759
hand, for the (%,,,)?—1s1,,2pg, transition in heliumlike K 1.417 1.420 1.419
uranium one finds a difference of 0.68 eV between the two>" 1.706 1711 1.710
schemes. However, this effect is reduced substantially aBd 3.282 3.291 3.290
soon as no K electron participates in the excitation proces$:d 3.797 3.809 3.808
For the (15,)22s1,— (181)%2ps, transition energy in Xe 5.693 5.712 5.711
lithiumlike uranium the deviation only amounts to 0.18 eV. Ba 6.453 6.475 6.473
These observations are corroborated by the corresponding 13.842 13.900 13.898
single-particle energies and the exchange potentials thentg 22.071 22.171 22.168
selves. In Figs. 1 and 2 we analyze the relative importance akn 28.547 28.683 28.680
the transverse exchange, i.e., the relativistic treatment of thra 31.006 31.156 31.153
electron-electron interaction, and the relativistic correctiongyo 53.313 53.593 53.591

to the Coulomb exchange, i.e., the relativistic treatment of
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TABLE V. lonization potentials of neutral atoms calculated

from ground-state energy differences: For the ROPM the self-

consistent inclusion of the transverse exchaf@eT) is compared
with complete neglect oE] (C). The RGGA data have been ob-

tained by combining the relativistic extension of the Becke param-

etrization (RB) [52] for v, with Eq. (4.4) for E, (all energies in
mhartre€ 86]).

Atom ROPM RKLIa RB
C+T C C+T C+T

Li 196 196 196 195
Be 296 296 295 296
Na 181 181 181 181
Mg 243 243 243 243
K 147 147 147 147
Ca 189 189 189 189
Cu 234 234 232 229
Zn 284 284 283 279
Rb 139 139 139 139
Sr 175 175 175 174
Ag 229 229 228 227
Cd 269 269 268 267
Cs 127 127 127 127
Ba 157 157 157 157
Au 279 280 278 279
Hg 312 313 312 312
Fr 132 132 131 131
Ra 161 161 161 160

the electrons, foo,, again using Hg. While Fig. 1 gives an

vi(r) -30
[ hartree]-40

0.001 0.01 0.1 1
r [bohr]

FIG. 1. ROPM exchange-only potentials for neutral Hg: Self-
consistent CoulomiC), Coulomb-Breit(C+B), and fully trans-
verse(C+T) results in comparison with nonrelativistic limiNR).

of most orbitalqin particular thes;;, andp,,, orbitalg when
going from a nonrelativistic to a relativistic description: As
there is a unique correspondence between the denéity
and the exchange potentidlp,(r) is a direct measure of the
inward shifts of the maxima of the radial densityn(r)
caused by the orbital contraction. This effect originates from
the relativistic treatment of the electron kinetic energy, so
that the oscillatory structure iAv,(r) is independent of the
transverse interaction. The latter starts to show up,fr)

for the M shell, although becoming sizable only for the
and K shells: While the 3, level is destabilized by 235
mhartree when going from the C to the CT level, the;2
eigenvalue already experiences a 1.26-hartree ke
Table Il). On the other hand, the corresponding percentage
correction of the eigenvalues, i.e., the ratio between the
transverse exchange and the total KS potential, is similar for

idea of the absolute size of these corrections, their relativell levels: It amounts to 0.35% for thesy,, 0.23% for the
impact is most clearly seen in Fig. 2, where the percentag8p,,, 0.28% for the 4,,, and 0.15% for the €, orbital.

relativistic correction

UEOPM(r) _ v)l:lROPM(r)

Avy(r)=

UNROPM(r) (61)

is plotted. For all three variants of one observes an oscil-
latory behavior ofAv,(r), reflecting the shell structure of
the atom. The specific structure results from the contractio

TABLE VI. Transition energies of He- and Li-like ions from
exchange-only ROPM calculations: Self-consistéSfT) versus
first-order perturbativéPT) treatment OEI (all energies in hartree
[86]).

lon ST PT
(1512 —15122pP3
Hg'®" 2666.819 2666.805
oot 3704.916 3704.891
Not0* 4793.688 4793.652
(181192251~ (151)%2pyys

Hg'™* 9.061 9.065
yser 11.895 11.901
No®* 14.077 14.087

Even for the 4 levels the 10-mhartree shift due ¢q is of
the same order of magnitude as the effect of The inclu-
sion of v via the LYP-GGA[76] leads to a 36 mhartree
correction of the 4., eigenvalue. Correlation completely
dominates over transverse exchange only for the valence
electrons.

The impact ofv; on the density can be extracted from

nFig. 3, where the percentage deviations of self-consistent CT

PRI B AR ETTT BT T T B W T
0.001 0.01 0.1 1 10
r [bohr]

FIG. 2. Relativistic contribution to the ROPM exchange-only
potential for neutral Hg: Percentage correctihl) from self-
consistent calculations, usin@ the complete relativisticc-only
potential(C+T), (ii) its Coulomb-Breit approximatiofC+B), and
(iii ) its longitudinal(C) limit.
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FIG. 4. Self-consistent RKLI and RGGA exchange-only poten-
tials for neutral Hg: Percentage deviati?2) from ROPM result.
For the RKLI approximation two variants are showa) Eq. (5.7)
without the JE,/de, contribution, (b) Eq. (5.7) including the

ities f h | | f JdE, [/ de, contribution. Also plotted is the deviation of the nonrela-
and CB densities from the pure C result are plotted for Hgtivistic KLI potential from the nonrelativistic OPM potential

One observes direct shifts of roughly 0.4% for the iNNerMOoS{\RrKL|). The RGGA results have been obtained with the RB pa-
shell and indirect effects of the order of 0.1% for all other ;ametrization52].
shells. The increasing deviation for very lamgeeflects the

0.5 mhartree change of thes @igenvalue, resulting from the RHF results. A similar picture emerges from the IPs of Table

|ncIu_5|on Oflfl' . V. The error resulting from the RKLIa potential is in the
Finally, Figs. 1-3 and Table Il show that the Breit ap- ,nqe of 0.2-1.5 mhartree, thus being roughly a factor of 3
proximation is reasonably accurate also on the local level. A§ . Jiier than that found with the RGGA potential. We remark
in the case of the exchange energies, the Breit corrections Eﬂat, in contrast to the RKLIa potential, the exchange-only
vy and the eigenvalues overshoot the exact transverse resuliss potential does not give stable negative ions due its

However, while forEy the error of the Breit approximation incorrect asymptotic behavi¢78] (compare Fig. %

FIG. 3. Percentage deviations of fully transvekge+T) and
Coulomb-Breit(C+B) densities from purely longitudin&C) result
for neutral Hg.

is 2% for Hg, it, €.g., amounts to 36% for the,s, eigen- The RKLIb version, on the other hand, yields energies
value. Obviouslyp, is much more sensitive to the retarda- that for heavy elements differ significantly from the ROPM
tion corrections to the Breit interaction th&j . standard. In fact, we have not found converged solutions

with this scheme for the heaviest atorfiRa, N9, which
suggests that the inclusion of th&, /e, contribution in the
o o form (5.7) is not appropriate.

By definition of the exchange-only limit of RDFT, the  Thijs conclusion is confirmed in Table Il and Fig. 4 from a
ROPM results represent the exact exchange-only energiefore microscopic point of view. While the single-particle
within RDFT, given some form of the relativistic electron- energies from the RKLIa are in good agreement with their
electron interaction. On the basis of the ROPM results ongopm counterparts, the RKLIb eigenvalues deviate substan-
can thus examine approximations, both on the globalig|ly, with even the valence levels being destabilized. An
(ground-state energipand on the localeigenvalues, poten- analogous observation can be made on the basis of Fig. 4,

tials) level. In the following we investigate the ambiguity in where the percentage deviation of the RKLI approximations
the treatment of the eigenvalue dependencEijithin the  from the exact exchange-only potential,

RKLI scheme. We compare two RKLI variants, namely, Eq.

B. RKLI approximation

(5.7) without the JE,/de, contribution (RKLIa) and Eq. vres(r)—vRoPMr)
(5.7) including thedE, /Je, contribution(RKLIb). dux(r)= ROPY 1) : (6.2
Table 11l shows that the RKLIa potential is an accurate Ux

representation of the exact ROPM potential: The differences

between theES,t+T found with RKLIa and ROPM are smaller is shown. The RKLIb potential is shifted upward by the
than those between ROPM and RHF energies, the RKLI&E,/de, contribution even for shells that should not be af-
energies always being slightly above the ROPM valwes- fected by the transverse exchange.

sistent with the variational character of the ROPM potential At first glance one might think that this is a consequence
As a further measure for the quality of the RKLI exchangeof the incorrect asymptotic behavior of the RKLIb potential,
potential one can use tHes, ' obtained by combining the as discussed in Sec. V. In order to resolve this question, we
exact representation @&, , Eq. (4.4), with one of the avail- have examined a RKLI variant in whiais in Eq. (5.7) had
able explicit density functionals far,. In Table Ill we thus  been replaced byo&s—vg, thus correcting the asymptotic
give the ES)TT, resulting from a RGGA fow,, using the behavior. Thisad hoc procedure seems legitimate as no
relativistic extension of the Becke GGIRB) [52,77. The really systematic derivation of the energy scale in front of
error in these numbers is roughly a factor of 5 larger tharvE,/de, seems to be possible, thus allowing “educated
that of the RKLIa energies, while still being of the same guesses.” However, the results obtained with this modified
order of magnitude as the differences between ROPM an&KLIb approximation are only marginally different from the
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original RKLIb data, so that the failure of the RKLIb scheme electron interaction, the statement also applies to vacuum

cannot be attributed to the asymptotic behavior. corrections. This should, e.g., allow a study of “overcriti-
The RKLIa potential, on the other hand, is as accurate asal” atomic system$81,82 in a self-consistent fashion.

its Coulomb[11] or nonrelativistic limit(see Fig. 4. It is

superior to the RGGA potential, in particular, in the ACKNOWLEDGMENTS

asymptotic regime. This fact is also reflected by the corre- i . .

sponding eigenvalues: While for the innermost levels the We would like to thank R. N. Schmid and A. il for
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proximation predicts an incorrect eigenvalue ordering in the

valence regiméas, e.g., for neutral Yp one thus concludes APPENDIX A: ROPM FOR SPHERICAL SYSTEMS

that, at least for the transverse exchange, the neglect of the

JE,/de, contribution in Eq(5.7) is superior to any inclusion

of this term. It remains to be myesugate% whethey the sam«gystems or by evaluating the spherical limit of the ground-
holds true for correlation functionals &), in which the g i energy and subsequently rederiving the ROPM integral
eigenvalue dependence is expected to play a more promineg,ation. In fact, the second procedure is somewhat simpler
role than inE, . as the spherical form of the xc energy is required for Eq.
(4.2 in any case. We thus briefly summarize the spherical
VII. OUTLOOK average for both the Hartree and the exchange enéngy

In this paper we have established a first—principles,A 1) and then discuss the resulting ROPM equatigins

parameter-free density functional scheme in which aIIA 2), in order to provide the technical details necessary for

exchange-correlation effects are consistently represented medlr;clui,kl}on of thg eﬁphan?i—honlyl; F‘;]OP.M mfs:ﬁndardhcodes
terms of the Kohn-Sham orbitals and eigenvalues, rather tha '@ 'or the examination of the benhavior of the exchange
the density(four currenj used in the conventional Kohn- poter_mal in the asymptotic regime of finite syste(irs Ap-
Sham approach. Due to its perturbative origin the practicapend'x B.

version of the scheme provided here should be particularly o _

suited for atomic physics and quantum chemical applica- 1. Relativistic exchange-only energy for spherical systems
tions. One would, for instance, expect that the correlation For spherical systems the KS four spinors can be written
potential resulting from this systematic approach has the corag

rect sign in the asymptotic regime of atofi7®], in contrast,

The ROPM equations for spherical systems can either by
obtained by directly reducing Eqgt.19—(4.21) to spherical

e.g., to the Colle-Salvetti potential. On the other hand, the 1/ ani(r) Q;m(0,¢)

ability of the nonempirical, orbital-dependent functional to d’nljm(r):F iboi(r) Qim(0,0)) (A1)
deal with van der Waals bonds in a seamless form opens a " m

whole new range of applications. where the quantum numbers are defined as uplL@l2j

A possible path to an approximate treatment of resummed. I, k=—2(j—1)(j+1/2)] and the angular momentum

forms of the orbital-dependent exchange-correlation e”erg¥igenfunction§)j,m agree with the convention of Ro§&3].

functional, which should be more appropriate for the descripy, he following, we will frequently use a shorthand notation
tion of solids, has been sketched. The proposed approximatg, the quantum numbers!j

handling of the exchange-correlation kerifigl may also be

useful for applications to complex molecules, as the rigorous nlj=q, n’l'j’=q’.

evaluation of the correlation potential requires knowledge of

the quadratic response function. Alternatively, the improvedDue to the different angular momentum coupling schemes

description of atoms could be utilized to construct more acthe complete relativistic exchange-only ener@y.4) (in

curate pseudopotentigl80]. Feynman gaugeis most conveniently decomposed into a
The procedure has been formulated in a fully relativistic"retarded Coulomb” (RC) and a ‘“retarded Gaunt'(RG)

form, indicating that a consistent inclusion of quantum eleccontribution,

trodynamical effects is possible. While we have given ex- CiT

plicit self-consistent results for the transverse electron- Ex" =ExrctExre: (A2)

ront e2 COS(w r|r_r’|)
EfRe ™ =—— f d’r f d3r'“qj—r,qsém(r)¢q/ml<r>¢;,m,(r'>¢>qm<r'>, (A3)

o €2 cog wgq|r—r'[)
EYRE ™ = f or f d3r'|fj—r,|¢$m<r>a¢qrmr<r>-¢;m/(r'>a¢qm<r'> (A%)
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(wq’qr=|eq— equlc). The corresponding matrix elements of the Hartree energy read

e e -5 [ o [ e )0 () by, (n5)

B =BT =——f d’r st ’ (1) €q(1) - gy (1) @ (1), (A6)

The matrix element§A3)—(A6) can be evaluatef20-22 by using the multipole expansion of the retarded interaction,

oS (wqq |r—r'])

S 4w . L,
r—r| _E S 1 Yaa.L(rr’ :E_L Yim(0,@)Yim(6' 0), (A7)

L
re -~ ~
quf,ur,r'>=—r:11L<wqq/r<)yL<wqqfr>), (A8)

>

where] (x) andy, (x) represent spherical Bessel functions of first and second[l4l normalized to 1 ak=0,

- (2L+1)!!
JL(X)—X—JL(X)

L+1

YL(X)=— WVL(X)-

However, before providing xplicit formulas for the individual matrix eleme#8)—(A6) we restrict the discussion to the
spherical average. In the case of open shells only the average over all possibilities to distritge<thiet 1 electrons over
the 2j +1 availablem states lead to a spherical KS potential. For thisverage one has to distinguish between diagonal and
off-diagonal matrix elements for both the exchange-only and the Hartree ef@5yn the more simple off-diagonal case,
i.e., forg#q’, one is led to consider two independent averages for the two relevant shells, so that one ends up with

_ 0, 0, & L
L - gama’'m’, (A9)
2]+1 2J/—|—1 m=—j m/:E_J-/

On the other hand, for thea average of the diagonal matrix elements one has to take into account the reduced probability to
find two electrons in the two distinct statesandm’ [85],

041
2j

j
04(04— .

gamamg 49 gamam’ A10

mzz—j (2j+1)2j m—E—J mg i (A10)

Equations(A9) and (A10) apply to the individual component&3)—(A6) of both the exchange and the Hartree energy. The
DFT Hartree energy4.3), however, is defined in terms of the four curréstl), and thus then average of its matrix elements
is given by Eq.(A9) also forq=q’,

2 E Egmam’ (A11)

m==j m'=—j

o[

2j+1

As a consequence, the difference between the rimeveraged Hartree energy of the fof#l0) and its DFT counterpart
(A11) has to be interpreted as part of theaveraged exchange energy. Usiaf™9"= —EJ™™ one obtains as diagonal
exchange matrix elements

. O(0,—

(04—2]
EYd—= Eqmqm % Eqmqm A12
X (2j+1)2j mZJ mE_Z 2j(2j+1)? mgj mz_:, (AL2)

Decomposing Eq9A9), (Al11), and(A12) into the retarded Coulomb and retarded Gaunt contributions one finally ends up
with

qq’ e2 - ” ’ 1 2 2 2 "2
EJ RC:?(%@Q'L drfO dr r—{aq(r) +bg(r)Hag (r")*+bg (r')7}, (A13)
>
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Ef're=0 (A14)
for the Hartree energy, while fdg, one has to distinguish betweerq’,

_ e? @ @ * _
Eg,qRCZ—?@q(@qrfo drfo dr'zo Uqga L (1 1) {ag(r)ag (r) +bg(r)bg (r)Hag(rag (r')+bg(r )bg (r')}Bji j1r.L,
(A15)

L= 5 ® q9q J er dr’ E Uggr,L(r.r"){2aq(r)bg:(r)aq (r')bg(r’ )F“ Lt ag(rbg(rag(r’)bg (r' )E“ L

+aq,(r)bq(r)aqr(r’)bq(r')qu,,jT_L}, (A16)
andq=q’,

Ed%c =——f drf dr’ 2 UgaL(r,r){aq(r)?+by(r)? {aq(r')2+bg(r')2

(0q—1)(2j+1)— 0,2j+1-0,)—
X[ ! 2] '-’JI jl,L i 2] ! Ajl jl,L( (A17)
, O4(0,—1)(2j+1) —
Elke= Zf drf dr’ E Uga(11")28q(1)bg(r)ag(r)by(r)———"—. {FiarEpjidd.  (A18)
The angular momentum coupling coefficients in E¢sl5)—(A18) are given by[20-22
AJ| L= (5|_0, (Alg)
o 1+(_1)|+| +L ., 1 1 2
Biin ="k Cli'b3 29 (A20)
1+(_1)|+|/+W"c(' 'L 2+(2"+3)c<' TR ﬂ it =T
1 1 ;_5__1 1 1 ;_!__! I = __!
_eetengenl W22 J = 2" 2 J 2
Ejij . = 1+(_1)|+T’+L ("+1)C(' oL 1 102+(2_, 1)0(_ T 1 10)2} - I'+1
- 1 1 ;_l__l - L - 3 ;_l__l I = _l
22L+1)’ ] J] 27> J I 27> J 2
(A21)
o 1+(_1)|+|’+L+1 1 1 2
|
We just remark that the Clebsch-Gordan coefficients re- 1
quired for Egs.(A19)—(A22) can be expressed in closed En= ZJ dr[4mr2n(r)Jou(r), (A25)
form [70].
1 112 ! < It ’
2. ROPM integral equation for spherical systems UH™ 4me® f drir’“n(r )+fr drir'n(r’) .
For spherically averaged systems the total energy func- (A26)

tional thus reads

. E= > {EfR&'VHENRETY (A27)
E:Ts+f dr[4mr?n(r)Ju(r)+Ey+Ey, (A23) nij,n’1'j’
0

n=nEIj O nijem; (D nij(r), (A28)

Tsz% @)nljf:dr ‘P-rl;lj(r)flj(r)(Pnlj(r)a (A24)

where we have used the abbreviations
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omi(F)= 2::j§:;) (A29) 1T () +oks(r)}enij(r) = €njjen;(r), (A31)
vks(r) =v(r) +oy(r) +oy(r), (A32)
0 —i+§
Tj(r)=c ok (A30) Del1) = OExe (A33)
Gt — —-2mc slamr3n(r)]

and the rest mass has been subtracted flgmWhile the  In the case of orbital- and eigenvalue-dependent functionals,
transverse Hartree energy vanishes due to(Et4), E. can  given in the nonlinear fornk, ¢,€,v4], the functional de-

be any explicit or implicit functional of the density(r). The  rivative with respect to the radial densitym4?n(r) is re-
spherical KS equations may be obtained by minimizihg placed by functional derivatives with respect to the real ra-
with respect to the radial spinoks,;, taking into account dial orbitals¢,;, the eigenvalues,;, and the xc potential
that the latter are implicit functionals of(r), Uy, Using the chain rule for functional differentiation,

5Exc|:(Pv€ach:|:fOO / ovks(r’) focdl’"&P:”(r”) OEyc " Senij  IEc
Sam?n(n)]  Jo  s[Amrn(n)]m Jo o Sugs(r') Sep;(r”) N Sugs(r’) Jenij

!

0 S[4mrAn(r)] Svy(r')

+f0cdr Ovy(r'") OB ¢

Multiplication with 8[4rr2n(r)]/ dvks(x) and subsequent integration ovethen yields an integral equation for the unknown
potentialv .,

= SlAmrn(r Sl (r")  SE Sen;  JE ©  Su,dr") OE
f r [5 ( chr 2 f é\nl] - xc” + 5 nlj ; xc+J' ,,5 xc( ) xc” . (A34)
0 vis(X) nlj Jo vis(X) Spn;;(r") i vks(X) deny; 0 vks(X) Sv, (1)
|
Defining the Greens function o
fO dl”K(r,I")UXC(I’/)ZQXC(Y), (A39)
T
, (Pn’lj(r)‘P r|'(r )
Guij(r.r)= 2 ———————, (A35)
n’#n €n’lj ~ €nlj
QM) = |2 j dr’ (Pnlj(r nlj(r r )
the linear response of the orbitals and eigenvalues with re- nIJ(r )
spect to a variation of kg can be written as JE
=2 emi(Den(r—
A nlj nlj Je J
Senij(r) , ,
L{:—Gn”(r,r )Qij(r ), (A36) o 5vxc(rr) 6Exc
duks(r') - f r' (A40)
o Ouks(l) Su(r')
S€ni; T
= @nij(N @nij(r), (A37) . L . .
Sugs(r) TN As in the general situation discussed in Sec. IV, further dis-
cussion of Eqs(A39) and (A40) requires an explicit ap-
S[4mrin(r)] proximation at least fobv,(r')/Svks(r). While using the
oarm I =22, 0400 (NGui(r.r ) en;(r’) LDA for v, (r')/dvks(r) in the ROPM equation for some
dvks(r’) nlj orbital-dependenE,, might represent an accurate and effi-
. , cient approximation to the exact ROPM, we here focus on
=—2K(r,r'), (A38) the more systematie?-expansion scheme of Sec. IV. Using

the fact that the exchange ener@27) does not depend on
whereK(r,r') essentially represents the radial KS response., Egs.(A39) and(A40) can be examined order by order,
function. Insertion of Eqs(A36)—(A38) into Eq.(A34) then  so that only the functional derivative of, with respect to
leads to the ROPM integral equation for spherical systemsps is required in the ordeg?,
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Su, (1) o As a practically useful alternative to the formal solution
;,:f dr’K = (r,r" (A35) of Egs.(A45)—(A47), one can thus express,;(r,r')
dvks(r') Jo in terms of the complementary, non-normalizable solutions

i of (A31) [70],

y { Q") fwd KT oy of (3D {70

— r — N
dugs(r’) Jo Sus(r’) 1T () +vks(M xnii (1) = €nijxnij(r), (A48)
(Ad1) o
[ @nij(r)ioyxm;(r)]=0. (A49)
where
Normalizing xn; so that

0Qy(r 0 r :

RO _ s [Carely e, 220 2%1) cely(Nioyxmi(N=1, (A50)
ovks(r’) nlj Jo nu(r )

50 (r) one has the matrix relation
24 eni(eny (152 (A42)

nIJ T T iO'y
‘ij(r)ij(r)—Xn|j(r)<Pn|j(r):T- (A51)
andK 1 is the inverse response function. Utilizing second-

order perturbation theory one easily obtains an expressiofthis allows the definition of the auxiliary Greens function

for the quadratic response function, Toy(r.r’),
SK(rr) 1 &[4mr®n(r)] Lo (r,r ) =0 =r")@n(N) xa;(r')
" 2 ’ ’
Suks(r") dugs(r") Svks(r') +O(r =) xnj(Den(r'),  (A52)
:_Z On{Hny(ror ", r") +Hp(r',r",r) which, using Eq(A51), satisfies
nij
+Hn|j(r”,r,r,)}, (A43) {f|j(r)+UK5(r)_En”}rmj(r,r'):5(r_r’). (A53)
with With Eq. (A52) G;(r,r’) can finally be written as
" — ’ T ’
Hoy (1,171 = @115 (1) Gy (1,8 ) Gy (117 iy () Gr (1) =L (1) % Coijeenii(F) eny (1)
—oni(eni(Nen;(r’) —f AP T (1. F ) @t (1) @l (1)
0

Xf dr”'Gnlj(r,,r”,)Gan(r,,/’r”)¢n|j(r”). % , T , . ,
0 1/, dr’@ni(r) @n(r")Ta;(r’,r’),

(A44)
(A54)
The Greens functiofA35) can equivalently be defined by
the differential equation * L, , ,
a ij:fo drfo dr @Iu(r)rmj(r,r Jenij(r’).
{Ti (N +vks(r) = €nj} Gy (r.r")
=8(r=1") = @ny(Den(r"), (A45) APPENDIX B: ASYMPTOTIC BEHAVIOR OF V 4
FOR FINITE SYSTEMS
with the boundary conditions The discussion of the asymptotic behavior of the
exchange-only potential for finite, spherical systems is based
<, , N on the larger limit of the ROPM integral equatioA39),
fo dr'Gp(r,r")en;(r')=0, (A48)  \\hich can be analyzed using the asymptotic formspgf
anan” y
Grij(r.r")=Gpyj(r',1), (A47) .
(pn”(r)r:x%g( ’yn-|J)anlje7'ynljr, (B1)
where EQ.(A46) is required to enforce the normalization of Yoli €nij
‘Pnlj 1 ( Cc .
) =1 [l - Biavnit
r r—Pnlig”nlj’, B2
Xn']( )r—wc 2Can|]€n|J _En“‘ ( )

“dr oT (1) 8eni(r)=0.
fO (Pﬂ”( ) (Pnlj( ) where
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1/2 0
Ynlj= —6n|j(2m+% ] , Jr dre™(r')e(r')~e'(r)e(r),
and the precise form g8,,; depends on the asymptotic de- frdr’ Ty e(r')~r
cay of the KS potential. Using Eq$B1) and (B2) in Egs. o AR)E :

(A38)—(A40) and (A54) one can explicitly verify that for

larger only the highest occupied orbital is relevant in Eq. 1 E,
(A39). Dropping the indexlj one thus finds as asymptotic f drie(r')| ®@e(r")vy(r')— 5T ~e'(re(r),
ROPM equation, ' S (r')

r % and that
0=[¢>T(r)¢>(r) f dr’XT(r’)+CJ drieT(r’)

0 O frd’TW)@(')(' - =

r r Fv(r'y—=
0 X (P X 2 5(PT(I',)

r )
_f dr//XT(r,,)@(r,/)f dr,QDT(r,)
° ° asymptotically increases more slowly than The leading
term in Eq.(B3) is thus given by

—fwdr’fr,dr”goT(r”)F(r",r') +xT(Ne(r)
0 0

0=—qu(r)go(r)fodr"xT<r">¢(r">f:dr'ﬂr')
X

frwdr’¢T(r’)_erdr”@T(f”W(r”)Jomdr,(PT(r,)”

X‘@ —— 1 SE, ]
e(ruv(r—= ,
1(9EX 25 T(pr
]+¢T(r)<p(r)§—. e (r)

Ex

Se'(r')

1
X[(‘)@(r i) =3 e o .
all other contributions being suppressed by at least some
(B3) small power ofr or a factor of Inf)/r. This directly leads to

S ) ) the relativistic extension of the KLI identityl4],
Now the individual terms in Eq(B3) have to be examined.

First of all, due to the selection rules for the retarded Gaunt o T 1 X
term, Eqs(A20)—(A22), only multipoles withL # 0 contrib- 0= fo dr @ (1) Oe(r)uvy(r)— 23070 (BS)
ute to Eq.(A18), so thatsE,/d¢" is asymptotically domi-
nated by the Coulomb exchange, (¢ is the highest occupied orbijalnsertion of Eq(B5) into
, Eqg. (B3) then leaves as a leading term
B - —20€¢(), (B84)
6()0T(r)r*>Oc r T ' 1 T ’ ’ 1 5EX

_ . _ 0=¢ (Ne(r) | drix (r')) Oe(r o r’)—5 ——=

all corrections decaying faster by at least a factor Lfsing 0 Sp'(r")
T 2 €\? 2Ba-2 T ' T e’
e (Ne(r) ~ a 1+(5) r#fe 2, =00 (r)qo(r)fodr’x (r')e(r’) vx(r’)+r—, -
T(r)e(r) ~ — Y 1_(i)2 Consequently, one finds the same asymptotic behavior as in
X P T 2¢ Ccy the nonrelativistic case,

and the fact thab,(r) asymptotically approaches zero, one _e?
finds s (B6)
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