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Relativistic optimized-potential method: Exact transverse exchange and Mo” ller-Plesset-based
correlation potential

E. Engel, A. Facco Bonetti, S. Keller, I. Andrejkovics,* and R. M. Dreizler
Institut für Theoretische Physik, Universita¨t Frankfurt, Robert-Mayer-Straße 8-10, D-60054 Frankfurt-am-Main, Germany

~Received 31 December 1997!

We present a fully relativistic extension of the optimized-potential method~ROPM!, including the transverse
electron-electron interaction and vacuum corrections. Using perturbation theory on the basis of the Kohn-Sham
Hamiltonian an exact representation of the relativistic exchange-correlation energyExc in terms of Kohn-Sham
orbitals and eigenvalues is derived. The most simple, viable approximation to thisExc is obtained by a
second-order expansion in powers ofe2, which leads to a Mo” ller-Plesset-type correlation functionalEc

(2) . Due
to this originEc

(2) allows a first-principles, seamless description of long-range dispersive forces. The ROPM
integral equation that determines the full exchange-correlation four potentialvxc

m is presented, and specified in
detail for Ec

(2) . We also analyze the Krieger-Li-Iafrate~KLI ! approximation to the exact ROPM integral
equation, pointing out an inherent ambiguity of the KLI approximation which arises for eigenvalue-dependent
Exc . The gauge properties ofExc and the ROPM integral equation are discussed by examining the transver-
sality of the Kohn-Sham current-current response function. It is demonstrated that due to the multiplicative
nature of the total effective potential the density functional definition of the no-pair transverse exchange energy
guarantees gauge invariance, in contrast to the relativistic Hartree-Fock scheme. On the other hand, the
correlation energy is gauge dependent as soon as the no-pair approximation is applied. In addition, we show
that the no-pair approximation automatically implies a definite intrinsic gauge for the spatial components of
vxc

m . The significance of the self-consistent treatment of the transverse interaction for heavy atoms is investi-
gated numerically within the exchange-only limit. By comparing self-consistent with first-order perturbative
inclusion of the transverse exchange it is shown that second-order transverse corrections cannot be neglected
in calculations of ground state or inner-shell transition energies of heavy atoms, if one aims at spectroscopic
accuracy. It is furthermore found that the Breit approximation for the full transverse interaction is not as
accurate for the exchange potential as it is for the exchange energy. Finally, the KLI approximation is exam-
ined numerically, thereby resolving the ambiguity for the case of the transverse exchange.
@S1050-2947~98!07508-8#

PACS number~s!: 31.10.1z, 31.30.Jv
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I. INTRODUCTION AND SUMMARY OF RESULTS

Presently, the transition from explicitly density-depende
representations of the exchange-correlation~xc! energy func-
tional Exc to forms depending on the Kohn-Sham orbita
i.e., to implicit density functionals analogous to the Koh
Sham kinetic energyTs , is developing into a major trend in
density functional theory~DFT! @1–11#. For these function-
als the corresponding multiplicative xc potentialvxc is pro-
vided by the optimized-potential method~OPM! @12# ~for an
extension to time-dependent systems see@13#!. While the
OPM in its exact form is computationally rather demandi
and consequently only few full scale applications have b
reported @1,2,6,10#, orbital-dependentExc have attracted
more and more interest after an efficient approximate var
of the OPM has been presented by Krieger, Li, and Iafr
~KLI ! @14#.

The concept of orbital-dependentExc has first been sug
gested for the exchange-only energyEx @15#. For Ex the
Fock expression, written in terms of Kohn-Sham~KS! orbit-
als, represents a natural definition within DFT as it guar
tees an exact cancellation of the self-interaction betw
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Hartree and exchange energy and leads to a simple v
relation@16#. Until today, in most applications@6,7# this ex-
act Ex has been combined with conventional density fun
tionals for the correlation energyEc , i.e., the local density
approximation~LDA ! or the generalized gradient approx
mation~GGA!. It is well known, however, that the success
LDA or GGA-type functionals relies to some extent on
cancellation of errors between exchange and correlat
which no longer applies if the LDA or GGA forEc is added
to the exactEx . The simplest orbital-dependent form forExc

that treats exchange and correlation on an equal footin
the self-interaction corrected LDA@17#, whose application
has also been proposed in the context of the OPM@18#. As
an alternative, the semiempirical Colle-Salvetti correlati
functional@19# has been suggested for use with the exactEx

@8#. Recently, a systematic scheme for the construction
orbital-dependentEc has been presented@4#. While this
scheme yields a formally exact representation ofEc , its
practical implementation requires an expansion in powers
e2. To lowest order this leads to a functionalEc

(2) , which
also depends on the KS eigenvalues and the inverse KS
sponse function, so that an extension of the original OPM
necessary for the calculation of the correspondingvc . While
applications ofEc

(2) are still lacking, its systematic origin
nevertheless fosters the hope that now all ingredients for
cessful quantum chemical applications of the nonrelativis
th
964 © 1998 The American Physical Society
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OPM are available. In this contribution we present the fu
relativistic extension of the OPM~ROPM!, establishing a
relativistic analog of theExc put forward in @4#, which in-
cludes both the transverse electron-electron interaction
vacuum corrections.

During recent years much effort has been devoted to
formulation of relativistic many-body methods, both in th
area of quantum chemistry, aiming at an appropriate desc
tion of molecules with heavy constituents, and in atom
physics, mainly focusing on tests of quantum electrodyna
ics ~QED!. Starting from the well-established relativist
Hartree-Fock~RHF! approximation@20–23#, a variety of
correlated many-body concepts has now been generalize
the relativistic domain on the basis of the no-pair Dira
Coulomb~DC! or Dirac-Coulomb-Breit~DCB! Hamiltonian,
namely, many-body perturbation theory~MBPT! @24–26#,
the multiconfiguration Hartree-Fock approach@27–29#, as
well as coupled-cluster@30–32# and configuration interaction
methods @33–38#. While these schemes are able to a
equately deal with electron correlation, use of the no-p
DC~B! Hamiltonian automatically implies the neglect
~higher order! photon retardation effects and of all contrib
tions resulting from negative energy states. Thus, to al
for a comparison with the extremely accurate experime
results~see, e.g.,@39#!, in particular for highly charged ions
for which these QED effects are more important than~higher
order! electron correlation, one has to go over to QED-ba
perturbation theory@40–43# or mixed forms in which the
QED effects are added perturbatively~see, e.g.,@44#!.

While, from a fundamental point of view, QED-base
perturbation theory represents the most consistent appro
it is limited to low order ~second, at present! and usually
starts from a Furry representation in terms of noninterac
orbitals that are strictly hydrogenic. Consequently, import
xc effects are not included, so that applications are restric
to high-Z ions with only a few electrons. On the other han
also for neutral atoms with highZ the Breit interaction gives
a substantial contribution to ground-state energies: For
ample, for neutral mercury the 22.6 hartree difference
tween the DCB-RHF and DC-RHF ground-state energ
@26# is four times larger thanEc ~for heliumlike mercury
even the second-order Breit contribution of 39 mhart
@41,42# is as large as the total Coulomb correlation energ!,
indicating that at least this QED effect should be taken i
account in quantum chemical calculations. However, eva
ating the transverse contribution to the xc energy with
optimized DC~B! orbitals ~which form the basis for most o
the approaches mentioned!, rather than hydrogenic bas
functions, raises a fundamental problem: Due to the fact
the DC~B! orbitals experience a nonlocal single-particle p
tential the resulting transverse exchange energy is gauge
pendent@28,45#. Note that gauge-invariant results can al
be obtained with RHF orbitals, if a suitable resummation
the perturbation series is used@87#. As a consequence, in th
DCB procedure the exchange potential depends on the g
used for the transverse electron-electron interaction. W
this effect is small for two electron systems~differences of
1–10 mhartree between Coulomb and Feynman gauge
change energies in the high-Z regime on the basis of DC
orbitals @45#!, it is nevertheless of the same size as ma
higher-order QED corrections. Moreover, it is not clear
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what extent the gauge dependence of the DCB exchange
tential further increases these discrepancies.

Orbital-dependent DFT methods, on the other hand,
not suffer from this problem, as the KS spinors are asso
ated with a multiplicative single-particle potential, whic
guarantees gauge invariant results for the no-pair excha
@28,46# and, if negative energy states are included, also
the lowest-order correlation energy@47,48#. Consequently,
the ROPM put forward in this work represents a se
consistent scheme that allows the inclusion of the transv
interaction in a gauge invariant form. In addition, it ma
serve as a tool to generate an optimal single-particle basis
QED-based perturbation theory.

In @9# we have extended the OPM to the relativistic d
main ~ROPM!, restricting the discussion to~1! the no-
~virtual-! pair approximation,~2! purely orbital-dependen
functionals~i.e., the longitudinal exchange energy!, and ~3!
the ‘‘density-only’’ ~or ‘‘nonmagnetic’’! variant of RDFT~in
which the absence of external magnetic fields is used to
mulate RDFT on the basis of only the density, rather than
complete four current!. The corresponding four current ve
sion has recently been given in@11#. In this contribution we
present a completely general form of the ROPM. Working
the framework of QED, our discussion includes both t
transverse electron-electron interaction and vacuum cor
tions. In addition, we provide the modifications of the ROP
necessary to deal with eigenvalue-dependent functionals
unoccupied excited KS levels, which naturally appear
orbital-dependent forms ofEc .

Using the auxiliary KS Hamiltonian as a basis for a pe
turbation expansion@4,49,50#, we first derive a nonlinear
representation of the relativisticExc in terms of the KS
spinors and eigenvalues~in Sec. II!. This representation is
exact in principle, in the sense that it allows the construct
of Exc to all orders of the coupling constante2 in a recursive
manner: The contributionExc

(n) of order e2n explicitly de-
pends on the KS spinors and eigenvalues and on thevxc

(k)

resulting from allExc
(k) with k,n. These potentials, howeve

are themselves functionals of the KS spinors and eigen
ues, which can be evaluated by solution of the ROPM in
gral equations. In practice, at this point only the lowest t
orders are investigated, i.e., the relativisticEx and the corre-
lation functionalEc

(2) correct to second order ine2 ~details
are given in Secs. II B,IV A!. In particular, it is shown that
Ec

(2) contains the leading contribution to the van der Wa
interaction between two atoms in a seamless form.

The crucial ingredient of thisExc is the KS current-curren
response functionx0

mn , which, as a kernel of the ROPM
integral equation, also determines the gauge dependenc
the ROPM procedure. In Sec. III we thus analyze the ga
properties ofx0

mn in some detail, which then allows us t
review the corresponding properties ofExc in a particularly
coherent form. It is demonstrated that there are two poss
sources for gauge dependence:~i! the nonlocality of the
single-particle potential, which defines the orbitals used
evaluateExc ~thus recovering the observation of@28,45#
within an alternative approach!, and~ii ! the no-pair approxi-
mation ~compare@48#!. In the context of RDFT only the
latter is relevant. However, one can explicitly verify that, d
to its particular form, the standard no-pairEx is gauge invari-
ant in spite of the omission of the negative energy continu
states~Sec. III C!. Of course, this is no longer the case f
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966 PRA 58E. ENGELet al.
the no-pairEc , whose gauge dependence is examined qu
titatively in a subsequent paper@51#.

The extension of the ROPM necessary to deal with tra
verse exchange, second-order correlation and vacuum
rections is presented in Sec. IV. From the resulting RO
integral equation, which determines the xc four potentialvxc

m

we derive a rigorous identity for an eigenvalue-depend
Exc . While this identity is automatically satisfied by the firs
principles functionalsEx andEc

(2) , it represents a necessa
condition for any semiempirical form ofExc . Furthermore,
using the results of Sec. III, the gauge properties of
ROPM are discussed. One finds that the gauge used fo
transverse interaction can affectvxc

m only via the
Exc-dependent ingredients of the ROPM integral equati
i.e., if Exc is gauge invariant the same holds forvxc

m . On the
other hand, in the no-pair approximation the ROPM integ
equation is no longer satisfied by a complete class ofvxc

m ,
which only differ by static gauge transformations, but rath
fixes the intrinsic gauge of the spatial components ofvxc

m .
In Sec. V the KLI approximation for the extended form

the ROPM is discussed. Comparing the two paths for
derivation of the KLI approximation suggested in the liter
ture @1,11,14# we point out an ambiguity that arises fo
eigenvalue-dependentExc . It seems difficult to resolve this
ambiguity on a purely formal basis, so that detailed num
cal studies of a variety of systems and given forms ofExc
seem to be necessary.

As a first application of the ROPM for eigenvalu
dependent functionals we present self-consistent excha
only results for atoms obtained with the full transverse
change in Sec. VI within the no-pair approximation. T
transverse exchange leads to significant corrections c
pared with the purely longitudinal results presented in@9#,
both for the ground-state energies and for inner-shell
eigenvalues, and thus the inner-shell density. In particu
by comparing the self-consistent with the first-order pert
bative treatment of the transverse exchange it is dem
strated that second-order transverse corrections to gro
state or inner-shell transition energies of heavy atoms or
are on the 1-eV level, so that they are not negligible from
spectroscopical point of view. Moreover, this first se
consistent application of the full transverse exchange a
shows that the error of the Breit approximation in the case
the exchange potential is an order of magnitude larger t
the well-known, rather small deviation found for groun
state or exchange energies@23#. Nevertheless, the Breit ap
proximation captures the main physics of the full transve
interaction also forvx

m .
The ROPM results are then used to examine the KLI

proximation, exploring its non-uniqueness by comparing
vious variants. The findings suggest that complete neglec
the ambiguous contribution to the KLI potential is the op
mal choice in the case of the transverse exchange, as
resulting error is no larger than that observed for the non
ativistic or longitudinal exchange. In fact, the deviations
ground-state energies originating from this KLI potential a
roughly a factor of 5 smaller than those introduced by
even simpler approximation to the ROPM, i.e., the combi
tion of a relativistic GGA~RGGA! potential @52# with the
exact energy functional. It remains to be investigated, ho
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ever, whether complete neglect of the ambigous contribu
to the KLI potential also is an option forEc

(2) for which the
eigenvalue dependence is much more crucial than for
transverse exchange.

In Appendix A we provide all technical details require
for an application of the extended ROPM to spherical s
tems. On the one hand, this material should allow the inc
poration of the ROPM in standard relativistic atomic stru
ture codes. On the other hand, it is required for t
discussion of the asymptotic behavior ofvx in finite systems,
which is substantially complicated by the spinor structure
the KS orbitals and the presence of the transverse interac
Relying on Appendix A, we analyze the ROPM integr
equation in the asymptotic regime in Appendix B, derivin
the relativistic analog of the KLI identity for the highes
occupied orbital@14# and verifying explicitly thatvx

0 asymp-
totically approaches2e2/r . Throughout this paper we us
\51 @x05ct, ]05]/](ct)—no distinction is made betwee
functions oft andx0, i.e., f (t)5̂ f (x0)].

II. SYSTEMATIC APPROACH TO THE RELATIVISTIC
EXCHANGE-CORRELATION ENERGY FUNCTIONAL

The appropriate basis for a first-principles, relativistic d
scription of many electron systems~atoms, molecules, clus
ters, solids! is QED. In view of the large difference betwee
the electron mass and the nuclear masses, however, it is
dard to treat the nuclei as fixed external sources of elec
magnetic fields, assuming a common rest frame for all
clei. Here we thus consider a system of electrons bound
some static external potentialvext

m (x), which interact via the
exchange of photons. In the Heisenberg-representation
corresponding Hamiltonian can be directly derived from t
standard QED Lagrangian as the 00 component of
energy-momentum tensor~see, e.g.,@53#!,

Ĥ5Ĥe~x0!1Ĥg~x0!1Ĥ int~x0!, ~2.1!

Ĥe~x0!5
1

2E d3x†cC ~x!,@2 icg•“1mc21gmvext
m ~x!#ĉ~x!‡,

~2.2!

Ĥg~x0!52
1

8pE d3x$]0Ân~x!]0Ân~x!

1“Ân~x!•“Ân~x!%, ~2.3!

Ĥ int~x0!5eE d3x ĵm~x!Âm~x!. ~2.4!

Hereĉ(x) denotes the fermion field operator of the intera
ing, inhomogeneous system characterized byĤ, ĵ m(x) is the
corresponding fermion four current operator,

ĵ m~x!5 1
2 @cC ~x!,gmĉ~x!#, ~2.5!

and Âm(x) represents the field operator of the photons,
which the covariant quantization scheme and Feynm
gauge have been used. Note, however, that this partic
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choice is irrelevant for the discussion in this section as
specific form ofĤg will not be used. While the individua
components ofĤ are time dependent in the Heisenberg re
resentation, the total Hamiltonian~2.1! is stationary as can b
shown by examining the four divergence of the correspo
ing energy-momentum tensor@53#. The transition to the
Schrödinger representation, which is more suitable for t
subsequent discussion, is thus straightforward: Choosing
Schrödinger representation to coincide with the Heisenb
representation atx050, the corresponding HamiltonianĤS

can be decomposed into a static noninteracting partĤ0,S and
a static interaction HamiltonianĤ int,S ,

ĤS5Ĥ5Ĥe,S1Ĥg,S1Ĥ int,S , ~2.6!

Ĥe,S5Ĥe~x050!, . . . . ~2.7!

The componentsĤe,S , Ĥg,S , andĤ int,S are easily written in
terms of Schro¨dinger-picture field operators using the ide
tity with their Heisenberg-picture counterparts atx050, e.g.,
ĉS(x)5ĉ(x,x050).

In the following we analyze the total binding energy
the electrons,Etot , which is given by the energy differenc
between the ground stateuF& of theN-electron sector of the
complete Fock space,

ĤuF&5EuF&, ~2.8!

and the ground state of the zero-charge sector, i.e., the i
acting vacuumu0&,

Etot5^FuĤuF&2^0uĤu0&1C. ~2.9!

Here C indicates the counterterm contributions required
keepEtot UV finite in a perturbative treatment of the expe
tation values involved~subsequently all counterterms will b
suppressed for brevity—their explicit form is not releva
here!.

Within the standard many-body framework the individu
expectation values in Eq.~2.9! can either be evaluated vi
the Gell-Mann-Low level shift formula@54# ~usually the
symmetric form of Sucher@55# is applied—see, e.g.,@40,56#!
or via a coupling constant integration scheme. Two versi
of the latter approach have been introduced in the contex
DFT. While the so-called adiabatic connection@57,58# has
been particularly useful for the analysis ofExc @16,59,60#,
the second scheme@49,50# allows a more direct extraction o
orbital-dependent forms forExc . In the following subsec-
tions this second variant will be extended to the relativis
domain.

A. Relativistic Kohn-Sham theory

According to the relativistic Hohenberg-Kohn theore
@53,61–63# the ~nondegenerate! ground stateuF& of any
N-electron sector of the complete Fock space is uniqu
determined~up to gauge transformations! by the correspond-
ing ground-state four current,

j m~x!5^Fu ĵ m~x!uF&, ~2.10!
e
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-
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i.e., can be understood as a unique functional ofj m, uF@ j m#&.
As an immediate consequence all ground-state expecta
values are unique functionals ofj m, as, for instance, the
ground-state energyE5E@ j m#. Moreover, the minimum
principle for the~renormalized! ground-state energy allow
the determination of bothj m and E by minimizing E@ j m#
with respect toj m ~for a detailed discussion see@53#!. Rep-
resentingj m in terms of auxiliary single-particle spinorsfk
~assuming noninteractingv representability, as usual!,

j m~x!5
1

2F (
ek<eF

fk~x!gmfk~x!2 (
eF,ek

fk~x!gmfk~x!G ,
~2.11!

one can decomposeE as

E5Ts1E d3x jm~x!vext
m ~x!1EH1Exc . ~2.12!

Here Ts denotes the kinetic energy of the ‘‘auxiliary pa
ticles,’’

Ts5
1

2E d3xH (
ek<eF

fk@2 icg•“1mc2#fk

2 (
eF,ek

fk@2 icg•“1mc2#fkJ , ~2.13!

EH is their ‘‘covariant’’ Hartree energy,

EH5
1

2E d3xE d4yDmn
0 ~x2y,y0! j m~x! j n~y!, ~2.14!

with Dmn
0 being the noninteracting photon propagator@pre-

cisely given in Eq.~2.22!#, and the xc energyExc is defined
by Eq. ~2.12!. Minimization of E with respect to thefk
rather thanj m then leads to the relativistic KS equations, fir
introduced by Rajagopal@62# and independently by Mac
Donald and Vosko@63#,

$2 ica•“1bmc21amvKS
m ~x!%fk~x!5ekfk~x!,

~2.15!

with the multiplicative KS potentialvKS
m consisting of the

sum of vext
m , the Hartree potentialvH

m and the xc potential
vxc

m ,

vKS
m ~x!5vext

m ~x!1vH
m~x!1vxc

m ~x!, ~2.16!

vH
m~x!5E d4yD0,mn~x2y,y0! j n~y!, ~2.17!

vxc
m ~x!5

dExc@ j #

d j m~x!
. ~2.18!

Of course, in order to construct the full current~2.11!, the
negative energy solutions of the KS equations are requir

While the KS approach is based on auxiliary sing
particle quantities with~almost! no physical meaning, the
total KS potentialvKS

m nevertheless allows the definition of

corresponding noninteracting HamiltonianĤKS,
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ĤKS5
1

2E d3x@cC S~x!,~2 icg•“1mc2!ĉS~x!#

1E d3x ĵS,m~x!vKS
m ~x!1Ĥg~x050!, ~2.19!

with ground stateuFKS& and eigenvalueEKS,

ĤKSuFKS&5EKSuFKS&. ~2.20!

As in ĤKS electrons and photons do not interact directly th
can be dealt with separately. Thus the KS ground stateuFKS&
factorizes into a product of the photon vacuumu0g& ~no free
photons are present in the ground state! and an electronic
ground stateuFKS,e&,

uFKS&5uFKS,e&3u0g&; ^0guÂ0
m~x!u0g&50, ~2.21!

where Â0
m(x) denotes the free photon field operator. As

consequence, in any perturbative approach based onĤKS the
standard vacuum QED results can be used for the ph
sector of the KS problem, as, e.g., the free photon propag

D0,mn~x2y!52 i
e2

c
^0guTÂ0

m~x!Â0
n~y!u0g&. ~2.22!

On the other hand, in the electronic sector the presenc
vKS

m leads to an inhomogeneous reference system~Furry pic-
ture!. In terms of the KS spinorsfk the corresponding non
interacting field operators are thus given by

ĉ0~x!5eiĤ KSx0/cĉS~x!e2 iĤ KSx0/c

5 (
2mc2,ek

b̂kfk~x!e2 i ekx0/c

1 (
ek<2mc2

d̂k
†fk~x!e2 i ekx0/c, ~2.23!

where theb̂k (b̂k
†) and d̂k (d̂k

†) are annihilation~creation!
operators for positive and negative energy KS states. T
then allows the construction of the noninteracting elect
propagator,

G0~x,y![G0~x,y,x02y0!

52 i ^FKS,euTĉ0~x!cC 0~y!uFKS,e& ~2.24!

52 iQ~x02y0! (
eF,ek

fk~x!fk~y!e2 i ek~x02y0!/c

1 iQ~y02x0! (
ek<eF

fk~x!fk~y!e2 i ek~x02y0!/c,

~2.25!

where inuFKS,e& the electronic single-particle states are a
sumed to be filled up to the Fermi leveleF ,

uFKS,e&5 )
2mc2,ek<eF

b̂k
† u0e&. ~2.26!
y

on
tor

of

is
n

-

Using Eqs.~2.5!, ~2.23!, and ~2.26! the corresponding four
current

j m~x!5^FKSu ĵ m~x!uFKS& ~2.27!

is given by Eq.~2.11!, while for EKS one obtains

EKS5Ts1E d3x jm~x!vKS
m ~x!. ~2.28!

In fact, the field theoretical formulation of the KS proble
via Eqs. ~2.19!–~2.28! is the actual origin of the forms
~2.11!,~2.13! for the KS four current andTs . Note that in
Eqs.~2.11!,~2.13! the counterterms inherent in any field th
oretical treatment have been suppressed.

B. Perturbation theory on Kohn-Sham basis

In order to obtain a formula for the energy differen
between the complete ground-state energyE and the KS en-
ergyEKS, and thus forExc , the coupling constant integratio
technique is utilized. To this end one decomposes the totaĤ

into ĤKS and an interaction HamiltonianĤ1, for which a
dimensionless coupling strength parameterg is introduced,

Ĥ~g!5ĤKS1Ĥ1,S , ~2.29!

Ĥ1~x0!5E d3x ĵm~x!@g1/2eÂm~x!2gvHxc
m ~x!#,

~2.30!

vHxc
m ~x![vKS

m ~x!2vext
m ~x!5vH

m~x!1vxc
m ~x!. ~2.31!

Here the scaling of the two perturbations withg has been
adjusted to their dependence on the actual coupling cons
e2 ~at least to lowest order!. The original Hamiltonian~2.1!
is then obtained from Eq.~2.29! for g51. By differentiation
of the correspondingg-dependent ground-state energy

E~g!5^F~g!uĤ~g!uF~g!& ~2.32!

with respect tog one finds

]

]g
E~g!5E d4xd~x0!^F~g!u ĵ m~x!

3F e

2g1/2
Âm~x!2vHxc

m ~x!G uF~g!&, ~2.33!

where the normalization ofuF(g)&,

^F~g!uF~g!&51, ~2.34!

has been used. Consequently, integration overg leads to
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E~1!2E~0!5E2EKS[E1

5E
0

1

dgE d4xd~x0!^F~g!u ĵ m~x!

3F e

2g1/2
Âm~x!2vHxc

m ~x!G uF~g!&.

~2.35!

In order to obtain a more explicit form of Eq.~2.35!, we use
the concept of adiabatic switching forĤ1. This allows us to
relateuF(g)& ~assumed to be nondegenerate! to uFKS& ~also
assumed to be nondegenerate! via the interaction-picture
time-evolution operatorÛI ,e ,

uF&5A lim
e→0

ÛI ,e~0,7`!uFKS&

^FKSuÛI ,e~0,7`!uFKS&
, ~2.36!

A5 lim
e1 ,e2→0

F ^FKSuÛI ,e1
~1`,0!uFKS&

^FKSuÛI ,e1
~1`,0!

3
^FKSuÛI ,e2

~0,2`!uFKS&

ÛI ,e2
~0,2`!uFKS

G 1/2

, ~2.37!
ÛI ,e~ t,t8!5 (
n50

`
~2 i !n

n! E
t8

t

dt1•••E
t8

t

dtn

3exp@2e~ ut1u1•••1utnu!#

3T@Ĥ1,I~ t1!•••Ĥ1,I~ tn!#, ~2.38!

Ĥ1,I~x0!5eiĤ KSx0/cĤ1,Se2 iĤ KSx0/c

5E d3x ĵ0,m~x!@g1/2eÂ0
m~x!2gvHxc

m ~x!#

~2.39!

~for brevity, theg dependence of the various operators a
states involved is no longer noted explicitly, whenever it
not essential!. Together with the normalization o
^FKSuFKS&51 the factor~2.37! ensures the validity of Eq
~2.34! for all g. Equation~2.36! holds for any charge secto
of the complete Fock space, i.e., not only for theN-electron
ground states~charge2Ne), but also for the correspondin
vacuau0& and u00&5u0e&3u0g&. Insertion of Eq.~2.36! into
Eq. ~2.35! and use of the additivity of the time-evolutio
operator gives
tor

the
E15 lim
e→0

E
0

1

dgE d4x d~x0! (
n50

`
~2 i !n

n! E
2`

`

dt1•••E
2`

`

dtn e2e~ ut1u1•••1utnu!

3
^FKSuT ĵ0,m~x!@~e/2g1/2!Âm~x!2vHxc

m ~x!#Ĥ1,I~ t1!•••Ĥ1,I~ tn!uFKS&

^FKSuÛI ,e~1`,2`!uFKS&
, ~2.40!

where, as usual, it has been assumed that alle limits involved can be combined to a single limiting procedure. With Eq.~2.30!
one then obtains a perturbative expansion ofE1 in powers ofe,

E15 lim
e→0

E
0

1

dg(
n50

`
~2 i !n

n!cn (
k50

n S n

kD gn2k/2E d4xd~x0!E d4x1•••E d4xne2e~ ux1
0u1•••1uxn

0u!

3^FKS,euT ĵ0
m~x! ĵ 0

m1~x1!••• ĵ 0
mn~xn!uFKS,e&c~21!n2kvHxc,mk11

~xk11!•••vHxc,mn
~xn!

3ekH e

2g1/2
^0guTÂ0,m~x!Â0,m1

~x1!•••Â0,mk
~xk!u0g&2vHxc,m~x!^0guTÂ0,m1

~x1!•••Â0,mk
~xk!u0g&J , ~2.41!

where the indexc indicates that only those diagrammatic contributions are to be included in which all verticesx1•••xn are
connected to the vertexx @the remaining terms are exactly canceled by the denominator of Eq.~2.40!#. The expansion~2.41!
can be reordered as an explicit expansion in powers ofe2 by eliminating all photon operators in favor of the photon propaga
~2.22!, using the fact that due to Eq.~2.21! the vacuum expectation value of an odd number ofÂ0 vanishes, while for an even
number all possible contractions, i.e., permutations of theÂ0, are obtained by

^0guTÂ0
m1~x1!•••Â0

m2n~x2n!u0g&5 (
k52

2n

^0guTÂ0
m1~x1!Â0

mk~xk!u0g&^0guTÂ0
m2~x2!•••Â0

mk/ ~xk!•••Â0
m2n~x2n!u0g& ~2.42!

@hereÂ0
mk/ (xk) indicates that this operator has to be dropped from the seriesk52, . . . ,2n#. As a consequence of Eq.~2.21! k

must be odd in the first term inside the curly brackets in Eq.~2.41! and even in the second. In order to separate
contributions with even from those with oddk, it is convenient to interchange the summation order ofk andn. Subsequently
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the photon vacuum expectation values are evaluated using Eq.~2.42!. Taking into account the multiplicity originating from th
number of possible contractions of theÂ0 ~Wick’s theorem! this leads to

E15 lim
e→0

E
0

1

dg(
l 50

`
~ ig ! l

l !cl (
k50

l S l

kD S 2
1

2D kE d4x d~x0!E d4x1•••E d4xl 1ke
2e~ ux1

0u1•••1uxl 1k
0 u!

3Dm1m2

0 ~x12x2!•••Dm2k21m2k

0 ~x2k212x2k!vHxc,m2k11
~x2k11!•••vHxc,m l 1k

~xl 1k!H 1

2E d4y e2euy0uDmn
0 ~x2y!

3^FKS,euT ĵ0
m~x! ĵ 0

n~y! ĵ 0
m1~x1!••• ĵ 0

m l 1k~xl 1k!uFKS,e&c2vHxc,m~x!^FKS,euT ĵ0
m~x! ĵ 0

m1~x1!••• ĵ 0
m l 1k~xl 1k!uFKS,e&cJ .

~2.43!

Finally, the binomial structure of Eq.~2.43! can be utilized to eliminate the summation overk. Extracting the xc contribution
to E1 via Eqs.~2.12!, ~2.28!, and~2.35! and introducing the interaction operator

Ŵ~x0!5
1

2E d3xE d4y e2e~ ux0u1uy0u! ĵ 0
m~x!Dmn

0 ~x2y! ĵ 0
n~y!2E d3x e2eux0u$vH,m~x!1vxc,m~x!% ĵ 0

m~x!, ~2.44!

the final result forExc can be written as

Exc5
1

2E d4x d~x0!E d4y e2euy0u Dmn
0 ~x2y!$^FKSuT ĵ0

m~x! ĵ 0
n~y!uFKS&2 j m~x! j n~y!%

1 lim
e→0

(
n51

`
~2 i !n

~n11!! E2`

`

dt1•••E
2`

`

dtn^FKSuTŴ~0!Ŵ~ t1!•••Ŵ~ tn!uFKS&c, ~2.45!

with the understanding that, in analogy to the time evolution operator, the time ordering in Eq.~2.45! also applies inside Eq
~2.44!, i.e., before performing the time integrations in the individualŴ the overall time ordering of Eq.~2.45! has to be
established.

Equation~2.45! can be further evaluated by applying Wick’s theorem to the electronic sector, utilizing the KS propa
~2.25!. Taking into account the explicit form~2.17! for vH

m @64#, Eq. ~2.45! thus provides an exact representation ofExc in
terms of the KS orbitals, the KS eigenvalues, andvxc

m , Exc@fk
(†) ,ek ,vxc

m #. However, thefk
(†) , ek as well asvxc

m are functionals
of the four current, so thatExc is in fact an implicit functional ofj m. As via Eq.~2.18! vxc

m is itself defined as the functiona
derivative ofExc with respect toj m, Eq. ~2.45! is a highly nonlinear equation forExc . Nevertheless, this equation allows a
iterative solution after an expansion in powers ofe2,

Exc5(
i 51

`

e2iExc
~ i ! ; vxc

m 5(
i 51

`

e2ivxc
m,~ i !. ~2.46!

In fact, after insertion of Eq.~2.46! in Eq. ~2.45! one notices that the lowest-order contribution ine2, the exchange energ
Ex5e2Exc

(1) , does not depend onvxc
m . ThusEx is a well-defined functional of thefk

(†) andek only, so that the correspondin
exchange potentialvx

m can be evaluated using the ROPM~see Sec. IV! to ordere2. This then defines thee4 contribution to
Exc , as onlyvx

m5e2vxc
m,(1) enters in this order@65#,

Ec
~2!5

i

2c
lim
e→0

E d4xd~x0!E d4y e2euy0uH 2vx,m~x!vx,n~y!tr@gmG0~x,y!gnG0~y,x!#1 i E d4ze2euz0u@Dmr
0 ~x2z!vx,n~y!

1Dnr
0 ~y2z!vx,m~x!#tr@gmG0~x,y!gnG0~y,z!grG0~z,x!#2

1

2E d4zE d4ue2e~ uz0u1uu0u!Dmn
0 ~x2z!Drl

0 ~y2u!

3$tr@gmG0~x,y!grG0~y,x!#tr@gnG0~z,u!glG0~u,z!#22 tr@gmG0~x,z!gnG0~z,u!glG0~u,y!grG0~y,x!#

2tr@gmG0~x,y!grG0~y,z!gnG0~z,u!glG0~u,x!#%J . ~2.47!
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This procedure can be repeated to all orders asExc
(n) only

depends on thevxc
m,(i ) with i ,n, establishing a recursive

definition of Exc as a functional of thefk andek .
While the expansion~2.46! immediately shows that Eq

~2.45! represents a practically viable approach toExc , Eq.
~2.46! is not really required for establishing the ROPM
which can be based directly on the general nonlinear fo
~2.45! for Exc . We just remark that a representation ofExc
that is equivalent to Eq.~2.45! can be derived from the Gell
Mann-Low-Sucher level shift formula@54,55#.

III. GAUGE PROPERTIES OF THE
EXCHANGE-CORRELATION ENERGY

A. Basic definitions

The relativistic DF exchange energyEx is most suitably
defined as the lowest order contribution to Eq.~2.45!. Intro-
ducing the time-ordered KS current-current response fu
tion,

x0
mn~x,y![x0

mn~x,y,x02y0!

52 i @^FKSuT ĵ0
m~x! ĵ 0

n~y!uFKS&2 j m~x! j n~y!#,

~3.1!

Ex can be written as

Ex5
i

2E d3xE d4yDmn
0 ~x2y,y0!x0

mn~x,y,y0!. ~3.2!

x0
mn can be easily expressed in terms of KS orbitals via

KS propagator~2.25!,

x0
mn~x,y,x02y0!

52 i tr@gmG0~x,y,x02y0!gnG0~y,x,y02x0!# ~3.3!

52 i H Q~x02y0! (
e l<eF,ek

1 Q~y02x0! (
ek<eF,e l

J
3f l~x!gmfk~x!fk~y!gnf l~y!

3exp @2 i ~ek2e l !~x02y0!/c#. ~3.4!

While Eqs. ~3.1!–~3.4! define the exchange energy in th
context of DFT, these expressions are equally valid for
case of the standard HF exchange, as soon as thefk are
understood as HF spinors. Thus, in order to allow a dir
comparison of the gauge properties of DF and HF exchan
we consider a more general form of single-particle orbitals
this section: Thefk definingx0

mn via Eq. ~3.4! are assumed
to satisfy the single-particle equations

05$2 ica•“1bmc22ek%fk~x!1E d3z Vk~x,z!fk~z!,

~3.5!

with either a given or a self-consistently determined, Herm
ian potential, which can be both nonlocal and state dep
dent,
m

c-

e

e

t
e,
n

-
n-

Vk
†~x,z!5Vk~z,x! ~3.6!

~we here use the term ‘‘state dependent’’ to indicate t
each orbital experiences a different potential, in distinction
the term ‘‘orbital dependent,’’ which refers to the fact that
potential or energy can be expressed as functional of
orbitals!. In particular, in the DF contextVk(x,z) would be
the multiplicative, non-state-dependent Kohn-Sham poten
vKS,

Vk~x,z!5amvKS
m ~x!d~3!~x2z!. ~3.7!

Alternatively, Vk(x,z) could be a self-consistent relativisti
HF potential. Restricting the self-consistent calculation to
instantaneous Coulomb interaction and utilizing the no-p
approximation its exchange component is nonlocal, but
state dependent,

Vx
HF,C~x,z!52e2 (

2mc2,e l<eF

f l~x!f l
†~z!

ux2zu
. ~3.8!

On the other hand, the HF exchange potential becomes
dependent if the complete transverse interaction is taken
account self-consistently. For instance, in the Feynm
gauge for the photon propagator one has

Vx,k
HF,C1T~x,z!52e2 (

2mc2,e l<eF

cos~vklux2zu!
ux2zu

3g0gmf l~x!f l~z!gm, ~3.9!

with the single-particle transition frequencies

vkl5uek2e l u/c. ~3.10!

However, forDmn
0 a number of gauges are in use: While t

Feynman and Landau gauge forms ofDmn
0 correspond to the

l51 andl5` limits of

Dmn
0,F or L~x2y!5E d4q

~2p!4 e2 iq~x2y!Dmn
0,F or L~q!,

~3.11!

Dmn
0,F or L~q!5D~q2!S gmn2

l21

l

qmqn

q2 D , ~3.12!

D~q2!5
24pe2

q21 ih
, ~3.13!

in Coulomb gauge~usually applied in quantum chemistry!
Dmn

0 reads

Dmn
0,C~q!5S D~2q2! 0

0 D~q2!S gi j 1
qiqj

q2 D D . ~3.14!

Furthermore, in most applications only the~weakly relativis-
tic! Breit limit,



e
-

-

’

al

-
tly

972 PRA 58E. ENGELet al.
Dmn
0,C,B~q!5D~2q2!S 1 0

0 gi j 1
qiqj

q2
D ,

of the Coulomb gauge propagator~3.14! is used.
The exchange energy~3.2! remains independent of th

gauge chosen forDmn
0 as long asx0

mn satisfies the transver
sality relation

]mx0
mn~x,y,x02y0!50. ~3.15!

Moreover,Dmn
0 x0

nl is not only the basic ingredient ofEx , but
also appears inEc

(2) , Eq. ~2.47!, and all higher-order corre
lation contributions to Eq.~2.45!. For instance, a RPA-like
resummed expression forEc could be based on the ‘‘RPA’
response function
xRPA
mn ~x,y!5x0

mn~x,y!1
1

cE d4z d4ux0
mr~x,z!

3Drk
0 ~z2u!xRPA

kn ~u,y!. ~3.16!

In addition,x0
mn represents the kernel of the ROPM integr

equation for the xc potentialvxc
m ~see Sec. IV!. In order to

determine the gauge properties of bothExc andvxc
m it is thus

necessary to investigate the transversality ofx0
mn in some

detail.

B. Transversality of the current-current response function

Starting from Eq.~3.4! and using the single-particle equa
tions ~3.5! as well as their Hermitian conjugate one direc
obtains
tials
ond

ess of the

Eq.
of Eq.

ener-

tive
out these
]mx0
mn~x,y,x02y0!5H Q~x02y0! (

eF,ek
(

e l<eF

1Q~y02x0! (
ek<eF

(
eF,e l

J 1

c
fk~y!gnf l~y!

3exp@2 i ~ek2e l !~x02y0!/c#E d3z@f l
†~z!Vl~z,x!fk~x!2f l

†~x!Vk~x,z!fk~z!#

2 id~x02y0! H (
eF,ek

(
e l<eF

2 (
ek<eF

(
eF,e l

J f l
†~x!fk~x!fk~y!gnf l~y!. ~3.17!

Equation ~3.17! clearly demonstrates thatx0
mn in general violates the transversality relation~3.15! as long asVk(x,z) is

nonlocal or state dependent. In particular, this is the case for the RHF potentials~3.8! and~3.9!, as can be explicitly shown by
insertion of Eq.~3.8! or Eq. ~3.9! into Eq. ~3.17!. Thus, if one used the RHF orbitals resulting from the exchange poten
~3.8!,~3.9! to calculate either the completeEx ~which would amount to a perturbative evaluation of the contributions bey
the no-pair approximation! or Ec

(2) the results would be gauge dependent@28,46,47#.
On the other hand, as soon as the single-particle potential is not state dependent one can use the completen

single-particle spectrum,

(
k

fk~x!fk
†~y!5d~3!~x2y! ~3.18!

@after rewriting the sums in Eq.~3.17! via (eF,ek
5(k2(ek<eF

] to show that the second term on the right-hand side of
~3.17! vanishes. Finally, for local, non-state-dependent single-particle potentials the first term on the right-hand side
~3.17! automatically vanishes, so that the resultingx0

mn in fact satisfies the transversality requirement~3.15!. Note that this
result not only holds for given~external! local potentials, but also for local, non-state-dependent potentials, which are g
ated by some self-consistent procedure.

This last statement, however, is only correct if inx0
mn the complete single-particle spectrum is used, i.e., if the nega

energy continuum states are included. As soon as the no-pair approximation is applied, which amounts to projecting
states completely,

x0,np
mn ~x,y,x02y0!52 i H Q~x02y0! (

2mc2,e l<eF,ek

1Q~y02x0! (
2mc2,ek<eF,e l

J f l~x!gmfk~x!fk~y!gnf l~y!

3exp@2 i ~ek2e l !~x02y0!/c#, ~3.19!

the completeness relation~3.18! no longer allows the elimination of the second term on the right-hand side of Eq.~3.17!. In
the case of a local, non-state-dependent single-particle potential one then obtains

]mx0,np
mn ~x,y,x02y0!52 id~x02y0!H (

e l<2mc2,ek<eF

2 (
ek<2mc2,e l<eF

J f l
†~x!fk~x!fk~y!gnf l~y!, ~3.20!
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so thatx0,np
mn violates the transversality condition even for t

relativistic KS potential~3.7! @66#. One thus concludes that
gauge dependence of the crucial productDmn

0 x0
nr can origi-

nate from two sources:~i! the state dependence and non
cality of the single-particle potential, on whichx0

mn is based,
and ~ii ! from the no-pair approximation.

For the subsequent discussion it is useful to examine
components ofx0

mn individually. Decomposing the single
particle propagator as

G0~x,y!5GV
0~x,y!1GD

0 ~x,y!, ~3.21!

GV
0~x,y!52 i H Q~x02y0! (

2mc2,ek

2Q~y02x0! (
ek<2mc2 J

3fk~x!fk~y!e2 i ek~x02y0!/c, ~3.22!

GD
0 ~x,y!5 i (

2mc2,ek<eF

fk~x!fk~y!e2 i ek~x02y0!/c,

~3.23!

one can writex0
mn as

x0
mn5xVV

mn1xDV
mn 1xVD

mn 1xDD
mn , ~3.24!

with

xDD
mn ~x,y!52 i tr@gmGD

0 ~x,y!gnGD
0 ~y,x!# ~3.25!

and analogous definitions forxVV
mn and xDV

mn @xDV
mn (x,y)

5xVD
nm (y,x)#. xVV

mn agrees with the fullx0
mn in the limit eF

52mc2. The preceding statements on the transversality
x0

mn thus also apply toxVV
mn . On the other hand, forxDD

mn one
finds

c]mxDD
mn ~x,y,x02y0!

52 (
2mc2,ek ,e l<eF

fk~y!gnf l~y!e2 i ~ek2e l !~x02y0!/c

3E d3z@f l
†~z!Vl~z,x!fk~x!2f l

†~x!Vk~x,z!fk~z!#.

~3.26!

Consequently the transversality ofxDD
mn does not depend on

the completeness of the states involved, but only relies on
structure ofVk(x,z). Any non-state-dependent, local pote
tial thus leads to a gauge invariantxDD

mn .

C. Gauge dependence of the no-pair exchange energy

While the transversality of the completex0
mn determines

the gauge properties of the full exchange energy~3.2!, in
practice the no-pair approximation toEx is of particular in-
terest. In order to define the no-pair approximation, one
composes the completeEx according to Eq.~3.24!. Introduc-
ing the vacuum self-energy,

SV~x,y!5 iD mn
0 ~x2y!gmGV

0~x,y!gn, ~3.27!

one can writeEx as
-

e

f

he

-

Ex5
i

2E d3x d4y$Dmn
0 ~x2y!@xDD

mn ~x,y!1xVV
mn~x,y!#

22 tr@SV~x,y!GD
0 ~y,x!#%. ~3.28!

The no-pair approximation forEx is obtained by neglecting
all radiative corrections~which automatically eliminates the
need for renormalization!,

Ex,np5
i

2E d3xE d4y Dmn
0 ~x2y!xDD

mn ~x,y!. ~3.29!

The gauge dependence ofEx,np is thus determined by Eq
~3.26!, so that any local, non-state-dependent single-part
potential will lead to a gauge invariantEx,np @28,46,47#. Con-
sequently, in contrast to the case of the HF approximat
the no-pair DF exchange based on the KS orbitals does
introduce a gauge dependence ofEx,np @67#. The gauge de-
pendence of the no-pair correlation energy is studied wit
the relativistic LDA @58# in a subsequent paper@51#.

IV. RELATIVISTIC OPTIMIZED-POTENTIAL METHOD

The ROPM can either be formulated within the field th
oretical framework or on the basis of the no-pair approxim
tion. The starting point for the derivation of the former ve
sion is the ground-state energy~2.12!, using the DF
representations~2.13!,~2.14!,~2.45! for the individual compo-
nents. The resulting ROPM equations, however, differ fro
their no-pair limit only by the inclusion of the negative co
tinuum states in the quantities involved. We will thus simu
taneously discuss the full ROPM and its no-pair approxim
tion, giving all explicit formulas for the more practical no
pair form and just noting the modifications necessary for
general variant~for brevity, the index np is dropped from
now on!.

A. No-pair limit of RDFT

The no-pair limit of RDFT is obtained by consistent
eliminating all vacuum effects, i.e., by suppressing the c
ation of virtual electron-positron pairs. In the case of the K
four current ~2.11! and the KS kinetic energy~2.13! this
leads to

j m~r!5 (
2mc2,ek<eF

fk
†~r!amfk~r!, ~4.1!

Ts5E d3r (
2mc2,ek<eF

fk@2 icg•“1mc2#fk. ~4.2!

Performing the time integration in both the no-pair Hartr
energy, obtained by insertion of Eq.~4.1! into Eq.~2.14!, and
in the no-pair exchange energy~3.29!, using Eqs.~3.23!,
~3.25!, one finds

EH5
e2

2 E d3r E d3r 8
j m~r! j m~r8!

ur2r8u
, ~4.3!
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Ex52
e2

2 E d3r E d3r 8

3 (
2mc2,ek ,e l<eF

cos~vklur2r8u!

ur2r8u

3fk
†~r!amf l~r!f l

†~r8!amfk~r8!, ~4.4!

where vkl5uek2e l u/c is now defined in terms of the KS
eigenvalues. In Eq.~4.4! we have chosen to work in Feyn
man gauge, which is technically simplest to handle. T
choice does not introduce any gauge dependence, as de
strated in Sec. III. In order to facilitate comparison with sta
dard many-body methods and for later reference, we a
note the decompositions of the total Hartree and excha
energies,~4.3!,~4.4!, into their longitudinal ~Coulomb, C!
and transverse~retarded Breit, T! components,

EH
C5

e2

2 E d3r E d3r 8
n~r!n~r8!

ur2r8u
, ~4.5!

EH
T 52

e2

2 E d3r E d3r 8
j~r!• j~r8!

ur2r8u
, ~4.6!
e

t
tu
H
on
ve

hu

e-
on

a

e

a-
s
on-
-
o

ge

Ex
C52

e2

2 E d3r E d3r 8 (
2mc2,ek ,e l<eF

3
fk

†~r!f l~r!f l
†~r8!fk~r8!

ur2r8u
, ~4.7!

Ex
T5Ex2Ex

C, ~4.8!

where the densityj 0 has been denoted by the more familiarn
@note that due to Eq.~4.1! j differs from the standard curren
by a factor of 1/c]. The Breit limit Ex

B of Ex
T is obtained from

Eq. ~4.8! by keeping only the leading contribution in 1/c. As
a correlation functional to be used with Eqs.~4.1!–~4.4! the
no-pair limit of Eq.~2.47! suggests itself: While the no-pa
approximation can be introduced for the completeExc , Eq.
~2.45!, without further approximations, for practical purpos
either a low-order expansion or a partial resummation ofExc

is imperative. In addition, one would expect the transve
interaction to play only a minor role inEc , so that we restrict
ourselves to giving the longitudinal limit ofEc

(2) at this point,
Ec
~2!,C5

e4

2 (
2mc2,e i ,e j<eF,ek ,e l

1

e i1e j2ek2e l
E d3r 1E d3r 2

f i
†~r1!fk~r1!f j

†~r2!f l~r2!

ur12r2u E d3r 3E d3r 4

3H fk
†~r3!f i~r3!f l

†~r4!f j~r4!

ur32r4u
2

fk
†~r3!f j~r3!f l

†~r4!f i~r4!

ur32r4u J 1 (
2mc2,ek<eF,e l

1

ek2e l

3U E d3r 1fk
†~r1!amf l~r1!vx,m

C ~r1!1e2 (
2mc2,e j<eF

E d3r 1E d3r 2

fk
†~r1!f j~r1!f j

†~r2!f l~r2!

ur12r2u U2

. ~4.9!
ng

ic
be

e-

s
e
p

, in

re-
Eq.
The approximation~4.9! consists of two contributions: Th
first term is formally identical to the second-order Mo” ller-
Plesset energy, derived as a perturbative correction to
total HF energy. The second term reflects the concep
difference between the exchange-only ROPM and the R
approach. However, the differences between exchange-
ROPM and RHF ground-state energies are comparati
small, at least for atoms~see@9# and Table I!. In fact, for
heliumlike systems both energies coincide. One would t
expect the second term in Eq.~4.9! to contribute much less
than the Mo” ller-Plesset-type correction. Although no corr
sponding estimate of the quantitative impact of the sec
term on the self-consistentvc

(2) is available~cf. Sec. IV C!,
this suggests that neglect of the second term is a reason
approximation to~4.9!. This would eliminate thevx depen-
dence ofEc

(2),C.
In view of the origin of the approximation~4.9! one

would expect thatEc
(2),C includes long-range dispersiv

forces. In order to verify this important property ofEc
(2),C we

consider two neutral atomsA andB, whose centers are sep
he
al
F
ly
ly

s

d

ble

rated by a distanceR large enough so that the correspondi
electronic densities have no substantial overlap~i.e., the
overlap vanishes exponentially withR). The KS single-
particle orbitals are then localized around the two atom
centers~if required, degenerate molecular orbitals can
combined to generate localized atomic orbitals!. Each sum in
Eq. ~4.9! can thus be split into two sums over orbitals b
longing to the centersA andB,

(
e i

→(
e i A

1(
e i B

.

As a consequence, in the Mo” ller-Plesset-type term the sum
over i andk and those overj andl are restricted to the sam
atom by ther1,r2 integrations, due to the vanishing overla
of orbitals that correspond to different centers. Moreover
the exchange contribution to the Mo” ller-Plesset-type term the
r3,r4 integrations in addition require thati and l as well asj
andk belong to the same atom, so that all four sums cor
spond to the same atom. Similarly, in the second term of
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TABLE I. Self-consistent exchange-only ground-state energies from ROPM and RHF calculatio
neutral atoms with closed subshells: Coulomb~C! and Coulomb-Breit~C1B! limit in comparison with
complete transverse exchange~C1T!. For the RHF approximation the energy difference with respect to
ROPM is given,DE5Etot(RHF)2Etot(ROPM), providing results both from fully numerical calculations~a!
@74# and from a basis set expansion~b! @26#. Note that in contrast to all other calculations reported in t
paper here a speed of light of 137.037 a.u. has been used and the nuclear radii have been set acc
Rnuc52.267731025A1/3 bohr in order to allow a comparison with@26# ~all energies in mhartree!.

Atom 2Etot
C DEC DEC 2Etot

C1B DEC1B 2Etot
C1T

ROPM RHFa RHFb ROPM RHFb ROPM

He 2862 0 0 2862 0 2862

Be 14575 21 14575 14575

Ne 128690 22 22 128674 22 128674

Mg 199932 23 199900 199900

Ar 528678 25 25 528546 25 528546

Ca 679704 26 679513 679513

Zn 1794599 214 212 1793838 212 1793841

Kr 2788849 213 212 2787423 212 2787431

Sr 3178069 213 3176350 3176360

Pd 5044388 216 5041074 5041101

Cd 5593303 220 217 5589466 215 5589500

Xe 7446882 219 26 7441115 23 7441179

Ba 8135632 219 8129091 8129168

Yb 14067635 248 14053517 14053764

Hg 19648836 239 213 19626225 9 19626715

Rn 23601947 235 219 23572625 11 23573332

Ra 25027992 234 24996118 24996912

No 36740241 257 36685157 36686790
th
o
th
s

y
E
er

tion

be

re-

he
~4.9! j , k, and l are restricted to the same center. Thus
Mo” ller-Plesset-type exchange term and the complete sec
term can be decomposed into additive contributions of
two atoms. However, only terms that involve both atom
i.e., that depend onR, contribute to the interaction energ
between the atoms. Taking into account the symmetry of
~4.9!, one obtains as a correlation contribution to the int
action energy for largeR,

Ec,int
~2!,C5 (

2mc2,e i A
<eF,ekA

3 (
2mc2,e j B

<eF,e l B

e4

e i A
1e j B

2ekA
2e l B

3E d3r 1E d3r 2

f i A
† ~r1!fkA

~r1!f j B

† ~r2!f l B
~r2!

ur12r2u

3E d3r 3E d3r 4

fkA

† ~r3!f i A
~r3!f l B

† ~r4!f j B
~r4!

ur32r4u
.

~4.10!
e
nd
e
,

q.
-

Now one can use the time-ordered KS response func
~3.4! of the individual atoms to rewrite Eq.~4.10! as

Ec,int
~2!,C52

e4

2 E d3r 1•••d3r 4

3E dv

2p i

x0,A
00 ~r1 ,r3 ,v!x0,B

00 ~r4 ,r2 ,v!

ur12r2uur32r4u
.

~4.11!

For time-reversal invariant systems this expression can
given a more familiar form@68#,

Ec,int
~2!,C52e4E

0

` du

2pE d3r 1•••d3r 4

3
x0,A

R,00~r1 ,r3 ,iu !x0,B
R,00~r2 ,r4 ,iu !

ur12r2uur32r4u
, ~4.12!

where x0,A
R,mn denotes the retarded KS current-current

sponse function. Choosing the center of atomA as origin for
the r1 andr3 integrations and the center of atomB as origin
for the r2 and r4 integrations, one can easily expand t
Coulomb interaction,
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1

ur12r2u
→

1

uR1r12r2u
5

1

RH 12
~r12r2!•R

R2 1
3@~r12r2!•R#2

2R4

2
~r12r2!2

2R2 1•••J .

The two leading terms of this expansion, however, do
contribute to Eq.~4.12! due to charge conservation, so tha

Ec,int
~2!,C52

e4

R6E
0

` du

2p S gi j 13
RiRj

R2 D
3S gkl13

RkRl

R2 DaA,ik~ iu !aB, j l ~ iu !, ~4.13!

whereaA,ik is the atomic KS polarizability tensor,

aA
ik~v!5E d3r 1E d3r 2r 1

i r 2
kx0,A

R,00~r1 ,r2 ,v!. ~4.14!

Equation ~4.13! explicitly shows thatEc
(2),C contains the

leading contribution to the van der Waals interaction b
tween the two atoms, the deviation from the full van d
Waals interaction resulting from the difference between
KS and the complete response function. One would thus
pectEc

(2),C to be particularly useful for a seamless DFT d
scription of van der Waals binding. Of course, if the tran
verse interaction is included,Ec,int

(2) approaches the Casimir
Polder form proportional to 1/R7 for very large separations

B. Complete nonlinear ROPM equation

In contrast to approximations like the LDA or GGA, Eq
~2.45!, ~4.4!, ~4.9! provide Exc as a functional of the KS
orbitals and eigenvalues, rather than as a functional ofj m.
However, as long as thefk and ek satisfy single-particle
equations with a multiplicative potential they are uniq
ec

s

t

-
r
e
x-
-
-

functionals ofj m by virtue of the Hohenberg-Kohn theorem
for noninteracting particles, the functional dependen
fk(@ j #;r) andek@ j # being established implicitly via solution
of the single-particle equations. This fact allows the deriv
tion of the standard KS equations~2.15! as in the case of an
explicitly current dependentExc .

Given an orbital- and eigenvalue-dependent xc-ene
functional in the nonlinear formExc@fk

(†) ,ek ,vxc
m # the next

task is to explicitly construct the xc potential~2.18!. This is
achieved by the optimized-potential method~OPM!, which
has first been introduced in the context of nonrelativis
DFT @12,15,50,69# and recently been extended to the relat
istic domain@9,70#. Although this procedure originally had
been suggested for the exchange-only limit of DFT it can
applied to any functional of the KS orbitals and eigenvalu
Two equivalent derivations of the OPM formalism are ava
able @4,12#, both relying on the unique correspondence b
tween the ground-state density~here, four current! and the
associated KS potential. We follow here the more direct
proach, in which the functional derivative ofExc with respect
to j m is replaced by derivatives with respect to those qua
ties on whichExc explicitly depends, using the chain rule fo
functional differentiation.

Again two variants are possible: One can either base
discussion on the recursive solution of Eq.~2.45! via Eq.
~2.46!, i.e., expand in powers ofe2 before introducing the
OPM. The OPM equation for the lowest order, in whichExc

only depends on thefk
(†) andek , then allows the elimination

of the lowest-order potential, i.e., the exchange potentialvx
m ,

from all higher orders inExc in favor of thefk
(†) andek . As

a consequence, the second-order contribution toExc is a
functional of thefk

(†) andek only, allowing one to repeat the
procedure. Alternatively, the expansion in powers ofe2 can
be introduced after the derivation of the ROPM equation.
this caseExc is a functional of thefk

(†) andek as well as of
vxc

m , so that
dExc@fk
~†! ,ek ,vxc

m #

d j n~r!
5E d3r 8

dvKS
r ~r8!

d j n~r!
(

k H E d3r 9F dfk
†~r9!

dvKS
r ~r8!

dExc

dfk
†~r9!

U
expl.

1c.c.G1
dek

dvKS
r ~r8!

]Exc

]ek
U

expl.
J

1E d3r 8
dvxc

r ~r8!

d j n~r!

dExc

dvxc
r ~r8!

U
expl.

, ~4.15!
on
where the unique correspondence betweenj m and vKS
m has

been used to insert the functional differentiation with resp
to vKS

m ~in the following the derivatives ofExc are always
understood with respect to the explicit dependence onfk

(†) ,
ek , andvxc

m , so that we drop the index expl. from now on!.
The k summation on the right-hand side of Eq.~4.15! runs
over all KS levels, including the negative continuum. A
soon as the no-pair approximation is used forExc , however,
it effectively reduces to the states withek.2mc2. The vari-
ous ingredients of Eq.~4.15! require the evaluation of the
t
linear response of thefk

(†) and ek to a variation ofvKS
r ,

which can be directly obtained from first-order perturbati
theory,

dfk
†~r!

dvKS
r ~r8!

52fk
†~r8!arGk~r8,r!, ~4.16!

Gk~r,r8!5(
lÞk

f l~r!f l
†~r8!

e l2ek
, ~4.17!



s

th

tio

al

fu
.
de
th

im
ld

n

ity

to
an
us
fi-
d
r

-

al
ed

the

m

nd
xi-

e

ull

ons

f

-

PRA 58 977RELATIVISTIC OPTIMIZED-POTENTIAL METHOD: . . .
dek

dvKS
r ~r!

5fk
†~r!arfk~r!. ~4.18!

Equation~4.15! can be recast, using the static KS respon
function, as

x0
mn~r,r8!5

d j m~r!

dvKS,n~r8!
5E

2`

`

dt x0
mn~r,r8,t!

52 (
2mc2,ek<eF

fk
†~r!amGk~r,r8!anfk~r8!1c.c.,

~4.19!

where the no-pair form~4.1! has been used forj m. Multiply-
ing Eq. ~4.15! by x0

mn and integrating overr leads to the
ROPM integral equations for the xc potential,

E d3r 8x0
mn~r,r8!vxc,n~r8!5Lxc

m ~r!, ~4.20!

with the inhomogeneity

Lxc
m ~r!52(

k
E d3r 8Ffk

†~r!amGk~r,r8!
dExc

dfk
†~r8!

1c.c.G
1(

k
fk

†~r!amfk~r!
]Exc

]ek

1E d3r 8E d3r 9x0
mn~r,r8!

dvxc
r ~r9!

d j n~r8!

dExc

dvxc
r ~r9!

.

~4.21!

Note that the ROPM concept can be directly extended to
field theoretical level by using the full current~2.11!, rather
than its no-pair limit: In this case Eq.~4.19! has to be re-
placed by the corresponding full static KS response func
@obtained by Fourier transformation of~3.4!#.

Equations~4.19!–~4.21! differ from previous forms of the
ROPM given in@9,11# by the appearance of the function
derivatives ofExc with respect to both theek as well asvxc

m .
Of course, for the orbital-dependentExc considered previ-
ously, i.e., the longitudinal exchange~4.7! and the Colle-
Salvetti correlation functional@19#, Eqs. ~4.19!–~4.21! re-
duce to the published forms. On the other hand, the
exchange~4.4! depends on theek due to photon retardation
Moreover, as soon as some first-principles, orbital-depen
Ec based on the approach of Sec. II is to be applied, also
static xc kernel

dvxc
m ~r!

d j n~r8!
5 f xc

mn~r,r8!

has to be evaluated in accordance with the actual approx
tion used forExc . Two strategies are conceivable: One cou
either hope that this ingredient ofLxc

m is only of minor im-
portance for the solution of the ROPM integral equatio
thus allowing the use of some approximation forf xc

mn , as,
e.g., the LDA. This would immediately open the possibil
e

e

n

ll

nt
e

a-

,

to deal with larger classes of diagrammatic contributions
Eq. ~2.45!, as, e.g., the ring diagrams, thus establishing
RPA-type approximation. On the other hand, a rigoro
treatment off xc

mn requires some well-defined recursive de
nition of Exc that allows the iteration of the left-hand an
right-hand sides of Eq.~4.20!, as discussed in Sec. IV C fo
the expansion in powers ofe2.

The ROPM integral equation~4.20! has to be solved self
consistently together with the KS equations~2.15!. In this
procedure one also has to fix the gauge ofvxc

m . First of all,
analogous to the situation without magnetic fields,vxc

0 is only
defined up to a global constant, as

E d3r 8x0
m0~r,r8!5E d3r x0

0m~r,r8!50 ~4.22!

~charge conservation!. This constant, however, is not a re
problem. For instance, for finite systems it is usually defin
by requiring that

vxc
0 ~r! ——→

uru→`
0. ~4.23!

As far as the spatial components ofvxc
m are concerned, the

situation is somewhat more complicated. In particular, in
no-pair approximation not only the ‘‘external’’k summation
in Eq. ~4.19! is restricted toek.2mc2, but also thel sum-
mation insideGk does not include the negative continuu
states. Consequently Eq.~3.26! applies, i.e., in the static limit
one has

] ix0
in~r,r8!Þ0. ~4.24!

Thus three-vector potentialsvxc , which differ by static gauge
transformations, lead to different results for the left-ha
side of Eq.~4.20!. As a consequence, in the no-pair appro
mation there is only one unique solution of Eq.~4.20! for the
spatial components ofvxc

m , i.e., the no-pair ROPM procedur
automatically fixes the gauge ofvxc . On the other hand, the
field theoretical version of the ROPM is based on the f
response function~3.4!, which satisfies Eq.~3.15!. In this
case Eq.~4.20! determinesvxc only up to an arbitrary static
gauge transformation, so that the gauge ofvxc has to be fixed
by some additional requirement.

It should be emphasized, however, that in both situati
the gauge used for the photon propagator~not to be confused
with the gauge ofvxc

m ) only enters Eq.~4.20! via the Exc

dependence ofLxc
m . Thusvxc

m is independent of the gauge o
Dmn

0 as long asExc is gauge invariant.
A rigorous condition forExc@fk

(†) ,ek ,vxc
m # is obtained by

integrating the zeroth component of Eq.~4.20! over r. Using
the projection property of the Greens function,

E d3rfk
†~r!Gk~r,r8!50, ~4.25!

one finds

(
k

]Exc

]ek
50. ~4.26!

Equation ~4.26! can be directly verified for the exchange
only energy~4.4! and for the second-order expression~4.9!.
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For approximate correlation functionals, on the other hand
provides an important consistency criterion.

Equations~4.19!–~4.21! can also be used to extract th
behavior of the xc potential in the asymptotic regime of fin
systems. Unfortunately, the spinor structure of the quanti
involved substantially complicates the discussion even in
exchange-only limit. Nevertheless, restricting the analysis
spherically averaged systems, a somewhat tedious ana
~of which the essential points are given in Appendix B! leads
to a relativistic variant of the KLI identity for the highes
occupied orbitalfh @14#,

E d3rfh
†~r!H fh~r!vx

0~r!2
dEx

dfh
†~r!

J 1c.c.50,

~4.27!

and the expected behavior ofvx
0 ,

vx
0~r ! ;

r→`
2 e2

r
. ~4.28!

C. Second-order ROPM equations

In order to provide a practical computational scheme,
general ROPM equation~4.20! is now specialized to the
second-order xc energy functional

Exc→Ex1Ec
~2!. ~4.29!

Expanding the corresponding xc potential in powers ofe2

allows the separation of the orderse2 and e4 also in the
ROPM equation,

E d3r 2x0
mn~r1 ,r2!vx,n~r2!5Lx

m~r1!, ~4.30!

E d3r 2x0
mn~r1 ,r2!vc,n

~2!~r2!5Lc
~2!,m~r1!, ~4.31!

where the inhomogeneities are given by

Lx
m~r1!52(

k
E d3r 2Ffk

†~r1!amGk~r1 ,r2!
dEx

dfk
†~r2!

1c.c.G
1(

k
fk

†~r1!amfk~r1!
]Ex

]ek
, ~4.32!

Lc
~2!,m~r1!52(

k
E d3r 2

3Ffk
†~r1!amGk~r1 ,r2!

dEc
~2!

dfk
†~r2!

1c.c.G
1(

k
fk

†~r1!amfk~r1!
]Ec

~2!

]ek

1E d3r 2

dvx
n~r2!

dvKS,m~r1!

dEc
~2!

dvx
n~r2!

~4.33!

@the unique correspondence betweenj m and vKS
m has been

used to simplify the last term in Eq.~4.33!#. The evaluation
it

s
e
o
sis

e

of the functional derivatives ofEx and Ec
(2) is lengthy but

straightforward, so that we limit ourselves to giving an e
plicit formula for the only nontrivial term in Eq.~4.33!, i.e.,
dvx

n/dvKS,m . Taking the functional derivative of Eq.~4.30!
with respect tovKS

m one finds~after subsequent multiplication
with the inverse KS response functionx0

21,nl and integration
over r1)

dvx
n~r2!

dvKS
m ~r1!

5E d3r 3x0
21,nl~r2 ,r3!H dLx,l~r3!

dvKS
m ~r1!

2E d3r 4

dx0,lr~r3 ,r4!

dvKS
m ~r1!

vx
r~r4!J . ~4.34!

The first term on the right-hand side of Eq.~4.34! can be
evaluated using the standard OPM replacement of functio
derivatives@utilizing Eqs.~4.16!–~4.18!#,

dLx
l~r2!

dvKS
m ~r1!

52(
k
E d3r 3

3Ffk
†~r1!amGk~r1 ,r3!

dLx
l~r2!

dfk
†~r3!

1c.c.G
1(

k
fk

†~r1!amfk~r1!
]Lx

l~r2!

]ek
. ~4.35!

The second term on the right-hand side of Eq.~4.34! con-
tains the quadratic response function,

dx0,m1m2
~r1 ,r2!

dvKS
m3~r3!

5
d2 j m1

~r1!

dvKS
m3~r3!dvKS

m2~r2!

5 (
2mc2,ek<eF

Hk,m1m2m3
~r1 ,r2 ,r3!

1 all permutations ofr1m1↔r2m2↔r3m3,

~4.36!

with

Hk,m1m2m3
~r1 ,r2 ,r3!

5fk
†~r1!am1

Gk~r1 ,r2!am2
Gk~r2 ,r3!am3

fk~r3!

2fk
†~r1!am1

fk~r1!fk
†~r2!am2

3E d3r 4Gk~r2 ,r4!Gk~r4 ,r3!am3
fk~r3!. ~4.37!

Equations~4.30!–~4.37! together with ~4.4!, ~4.9!, ~4.17!,
and ~4.19! provide all the necessary ingredients for the d
termination ofvx andvc

(2) .
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V. KRIEGER-LI-IAFRATE APPROXIMATION

The numerical solution of the integral equation~4.20! is
computationally rather demanding. Thus an approxim
analytical solution is of great interest. In the nonrelativis
context such an analytical scheme has been suggeste
Krieger, Li, and Iafrate@14#. Very recently the KLI approxi-
mation has also been extended to the relativistic dom
~RKLI ! @11#. For the derivation of the KLI approximation fo
the OPM integral equation two different routes have be
followed in the literature: One can either rely on a closu
approximation for the Greens function~4.17! @14# or rewrite
the OPM integral equation in a form that suggests neglec
certain complicated ‘‘higher-order’’ contributions@1,11#.

Both approaches, however, have so far only been for
lated for purely orbital-dependentExc . In the general situa-
tion discussed in Secs. II and IVExc also depends on theek
and may even be specified in the nonlinear fo
Exc@fk

(†) ,ek ,vxc
m #. As a consequence of thevxc

m dependence
of Exc any approximation forvxc

m also affects the associate
Exc , and thus has to be consistently applied todvxc

m /d j n .
This problem is most easily resolved by the recursive pro
dure of Sec. IV C, i.e., by successively addressing excha
and correlation of the second-order functionalEx1Ec

(2) .
Starting from Eqs.~4.30! and ~4.32!, a KLI approximation
for vx

m can be devised, which itself is an implicit function
of thefk

(†) andek , vx
m@fk

(†) ,ek#. This vx
m@fk

(†) ,ek# can then
be used to construct a KLI approximation forvc

(2),m via Eqs.
~4.31! and ~4.33!. Alternatively, after insertion of
vx

m@fk
(†) ,ek# into Ec

(2) the KLI approximation forvc
(2),m can

be derived from the ROPM integral equation for function
of the linear typeExc@fk

(†) ,ek#, so that for brevity we restric
ourselves to formulating the RKLI scheme for functionals
this form.

For purely orbital-dependentExc the KLI approximation
is most easily obtained via the closure approach: Repla
the denominator in Eq.~4.17! by some average eigenvalu
differenceDē one has

Gk~r,r8!'(
lÞk

f l~r!f l
†~r8!

Dē
5

d~3!~r2r8!2fk~r!fk
†~r8!

De
.

~5.1!

Insertion into Eq.~4.20! ~reduced to functionals of the typ
Exc@fk

(†) ,ek# and within the no-pair approximation! leads to

(
2mc2,ek<eF

fk
†~r!$am,an%fk~r!vxc,n~r!

5(
k

H fk
†~r!am

dExc

dfk
†~r!

2 j k
m~r!ēk1c.c.J

12 (
2mc2,ek<eF

j k
m~r!v̄k2De(

k
j k
m~r!

]Exc

]ek
,

~5.2!

with
te

by

in

n

g

u-

-
ge

f

g

ēk5E d3r fk
†~r!

dExc

dfk
†~r!

, ~5.3!

v̄k5E d3r j k,l~r!vxc
l ~r!, ~5.4!

j k
m~r!5fk

†~r!amfk~r!. ~5.5!

Inversion of the tensor on the left-hand side of Eq.~5.2! then
gives

vxc
m ~r!5

1

2 j 0~r!H 2gn
m1gm0gn01

j m~r! j n~r!

j r~r! j r~r! J
3H (

k
Ffk

†~r!an
dExc

dfk
†~r!

2 j k
n~r!ēk1c.c.G

12 (
2mc2,ek<eF

j k
n~r!v̄k2De(

k
j k
n~r!

]Exc

]ek
J .

~5.6!

While for purely orbital-dependent xc functionals~as the
Coulomb exchange! the term proportional toDē vanishes,
this is no longer the case for eigenvalue-dependent funct
als @as the transverse exchange~4.4! or the correlation~4.9!#.
In order to reinstall the universality of the approximatio
~5.6!, one has to specifyDē as a functional of theek andfk
~leaving Dē as a parameter to be adjusted by hand wo
explicitly introduce a characteristic energy scale of the s
tem into the functional!.

Such a universal representation forDē automatically
emerges from the second approach to the KLI approxim
tion: Following exactly the steps given in@11# and neglecting
the same terms one ends up with

vxc
m ~r!5

1

2 j 0~r!H 2gn
m1gm0gn01

j m~r! j n~r!

j r~r! j r~r! J
3H (

k
Ffk

†~r!an
dExc

dfk
†~r!

2 j k
n~r!ēk1c.c.G

12 (
2mc2,ek<eF

j k
n~r!v̄k2vKS

0 ~r!(
k

j k
n~r!

]Exc

]ek
J ,

~5.7!

which suggests the use ofvKS
0 as the characteristic energ

scale which multiplies]Exc /]ek . Indeed,vKS
0 is a rough

measure of theek for the individual shells, as long as thes
shells are localized. However, while the ‘‘derivation’’ of Eq
~5.7! is straightforward, it is by no means clear whether E
~5.7! represents a physically reasonable extension of
RKLI approximation to eigenvalue-dependent functionals

In fact, consistency with the approximation~5.1! might
require that one also drops the term with]Exc /]ek in the
ROPM integral equation. In addition, there is an indicati
that thevKS

0 scale may not be appropriate, as it can be sho
that for neutral, closed-subshell atoms an incorr
asymptotic form ofvx

0 emerges. In this case one has
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vxc
0 5

1

2 j 0
H (

k
Ffk

† dExc

dfk
†

2 j k
0ēk1c.c.G

12 (
2mc2,ek<eF

j k
0v̄k2vKS

0 (
k

j k
0]Exc

]ek
J , ~5.8!

as the spatial components of the current vanish andj 0, vKS
0 ,

and vxc
0 are spherical. In the asymptotic regime the corr

vKS
0 (r ) then approaches2e2/r , thus adding an additional

2
vKS

0

2 j 0
(

k
j k
0]Exc

]ek
;

r→`

e2

2r

]Exc

]eh

(h here denotes the highest occupied level! to the 2e2/r
resulting from

1
2 j 0

(
k

Ffk
† dExc

dfk
†

1c.c.G ;
r→`

2 e2

r

on the right-hand side of Eq.~5.8!. Thus vxc
0 and, via Eq.

~2.16!, alsovKS
0 no longer have the correct asymptoticr de-

pendence.
The quality of the approximation~5.7! depends on the

explicit functional form ofExc as well as on the specifi
system under consideration. As a consequence, the que
of whether to use Eq.~5.7! with or without the]Exc /]ek
contribution can only be answered on the basis of exp
results, which are given in Sec. VI for the case of the tra
verse exchange.

Notwithstanding the question of the]Exc /]ek contribu-
tion, Eq. ~5.7! still represents an integral equation, whic
however, is much more easily solved than Eq.~4.20!: The
vxc

n dependence on the right-hand side can either be el

nated by solving a set of linear equations for thev̄k @obtained
by multiplication of Eq.~5.7! with j l ,m(r) and subsequen
summation overl and integration overr]. Alternatively, Eq.
~5.7! can be solved iteratively, using the left-hand side
iteration numbern to evaluatev̄k ~andvKS

0 , if required! on
the right-hand side of iteration numbern11 ~and some suit-
able starting guesses forv̄k and vKS

0 ). Note that this proce-
dure is most easily implemented in any iteration towa
self-consistency.

VI. EXCHANGE-ONLY RESULTS FOR CLOSED
SUBSHELL ATOMS

A. ROPM including transverse interaction

Standard relativisticab initio calculations for many-
electron systems are usually based on either the no-pair
or the no-pair DCB Hamiltonian. Consequently, as soon
the transverse xc energy is not completely neglected,
resulting ground-state energies are gauge dependent, ev
the exchange-only limit@28,45#. The ROPM, on the othe
hand, can be applied self-consistently for all three relev
forms of the electron-electron interaction, i.e., the instan
neous Coulomb~C!, the Coulomb-Breit~CB!, and the full
~CT! interaction, without introducing a gauge dependence
Ex

T . The ROPM thus offers the possibility to unambiguous
t

ion

it
-

i-

f

s

C
s
e

n in

nt
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n

analyze the impact of the transverse interaction on a var
of quantities. In particular, while the size of transverse c
rections to ground-state energies has already been kn
from first-order perturbation theory on DC basis for qu
some time@23#, the ROPM allows an explicit examination o
microscopic~local! quantities such as single-particle energ
or the xc potential, and therefore of higher-order transve
corrections to ground-state energies.

Within the framework of DFT the role of the transvers
exchange potential has first been investigated by Das, R
gopal, and co-workers@71–73# on the basis of the relativistic
LDA ~RLDA! @62,63#. However, while the RLDA provides a
gauge invariant approach to the transverse exchange, it
represents atomicEx

T substantially@63,71,73#. Thus, to ob-
tain conclusive results, the ROPM, which gives very ac
rate exchange and ground-state energies in the C limit@9#,
has to be used.

We have performed self-consistent exchange-only RO
calculations for closed subshell atoms, including the tra
verse interaction either completely or in its Breit approxim
tion ~throughout this section we restrict ourselves
exchange-only DFT and the no-pair approximation, so t
E5Etot—all subsequent statements are to be underst
within these limits!. The technical details are given in Ap
pendix A. All ROPM results in this paper have been obtain
by coupled solution of the relativistic KS equations~A31!
and the integral equation specified in Eqs.~A38!–~A40! and
~A54! with standard finite differences methods on a grid
800–1600 mesh points~without any further approximation!.

We start our analysis by a comparison of ROPM and R
results, both on the C and the CB level, in order to show t
the local ROPM potential is physically equivalent to the no
local RHF potential. In Table I we list self-consiste
exchange-only ground-state energies for closed subshe
oms ~in Table I we have used a different nuclear radius a
speed of light as in all other tables of this paper and in@9#, in
order to allow a comparison with@26#!. In the case of the C
interaction two different sets of RHF energies are given,
sulting from ~a! a completely numerical solution of the DC
RHF equations@74#, and from~b! a basis set expansion@26#.
Focusing on the fully numerical RHF data first, one obser
that throughout the periodic system the RHF energies
slightly below the corresponding ROPM results, reflecti
the somewhat larger variational freedom of the RHF sche
Nevertheless, the differences between ROPM and RHF
ues are only on the 1-eV level, which clearly supports
DFT concept of multiplicative potentials. One also notic
that for heavy atoms the differences between the fully
merical RHF results and those obtained by finite basis
pansion@26# are of the same order of magnitude as the d
ferences between the fully numerical ROPM and RHF da
For instance, for Hg, which we use as a prototype for
heavy atoms considered, the former difference amounts t
mhartree, while the latter is 39 mhartree. Note that in spite
the similarity of the ground-state energies the single-part
energies of the ROPM are quite different from their RH
counterparts~see Table II!, just as in the nonrelativistic cas
@2# ~and within the RLDA@71#!.

Table I also gives a corresponding comparison for the
interaction, for which, however, only RHF results obtain
with a basis set expansion@26# are available. In this case th
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TABLE II. Exchange-only single-particle energies (2enl j ) for neutral Hg from self-consistent ROPM, RHF, and RKLI calculation
using~i! the complete relativistic exchange-only potential~C1T!, ~ii ! its Coulomb-Breit approximation~C1B!, and~iii ! its longitudinal~C!
limit. For the RKLI approximation two variants are shown:~a! Eq. ~5.7! without the]Ex /]ek contribution, ~b! Eq. ~5.7! including the
]Ex /]ek contribution. Also given are RGGA results that have been obtained with the relativistic extension of the Becke parametrizat@52#,
either in exchange-only mode~RB! or including the Lee-Young-Parr correlation GGA~RBLYP! @76# ~all energies in hartree@86#!.

Level ROPM RHF RKLIa RKLIb RB RBLYP

C1T C1B C C C1T C1T C1T C1T

1s1/2 3036.871 3032.278 3047.431 3074.229 3037.244 3029.982 3036.453 3036.
2s1/2 538.444 537.853 540.057 550.251 538.343 536.425 538.051 538.0
2p1/2 516.198 515.546 518.062 526.855 516.083 513.925 516.097 516.1
2p3/2 445.422 445.013 446.683 455.157 445.302 443.541 445.276 445.3
3s1/2 127.956 127.858 128.273 133.113 127.906 127.163 127.703 127.7
3p1/2 117.994 117.885 118.351 122.639 117.966 117.178 117.857 117.8
3p3/2 102.302 102.236 102.537 106.545 102.274 101.583 102.152 102.1
3d3/2 86.069 86.036 86.202 89.437 86.062 85.387 85.959 85.994
3d5/2 82.692 82.665 82.808 86.020 82.687 82.036 82.582 82.617
4s1/2 28.361 28.351 28.428 30.648 28.303 27.986 28.037 28.072
4p1/2 24.090 24.075 24.162 26.124 24.050 23.724 23.819 23.854
4p3/2 20.321 20.315 20.364 22.189 20.269 19.967 20.024 20.059
4d3/2 13.397 13.397 13.412 14.797 13.372 13.083 13.151 13.186
4d5/2 12.689 12.690 12.701 14.053 12.663 12.380 12.441 12.476
4 f 5/2 3.766 3.770 3.757 4.473 3.764 3.509 3.571 3.607
4 f 7/2 3.613 3.616 3.603 4.312 3.611 3.358 3.417 3.453
5s1/2 4.394 4.394 4.404 5.103 4.399 4.251 4.278 4.313
5p1/2 3.004 3.002 3.013 3.538 3.004 2.870 2.886 2.920
5p3/2 2.360 2.360 2.364 2.842 2.348 2.236 2.219 2.253
5d3/2 0.507 0.507 0.506 0.650 0.496 0.417 0.367 0.399
5d5/2 0.440 0.441 0.440 0.575 0.430 0.354 0.300 0.332
6s1/2 0.330 0.330 0.330 0.328 0.332 0.283 0.222 0.249
tra
s
i

ac
as
e
o
in
y
G

kl
b

e
e

s
e

en
rs
In

n-
ree
of

o

,

the
rgy

elf-
ntial
the

is

the
of

nly

on
nge
CB ROPM ground-state energies become even more at
tive than their CB-RHF counterparts for very heavy atom
While for Hg the basis set expansion loses 26 mhartree w
respect to the finite differences calculation for the C inter
tion, this difference increases to 48 mhartree in the CB c
Whether this fact is an indication of the gauge dependenc
the DCB-RHF data or is just due to a particular sensitivity
the Breit term to the basis chosen is not clear at this po
Nevertheless, the order of magnitude of this discrepanc
consistent with the gauge dependencies observed by
ceix, Indelicato, and Desclaux@28,45# in the case of two
electron systems: For example, for the 1s2p3P0 state they
found differences of 1.2 mhartree forZ554 and 3.3 mhar-
tree forZ592 between the expectation values of the wea
relativistic limits of the transverse interaction in Coulom
and Feynman gauge, when using C-RHF orbitals.

In addition toEtot
C andEtot

C1B also the completeEtot
C1T are

shown in Table I, so that one can extract the absolute siz
the Breit and beyond Breit corrections to ground-state en
gies. For example for HgEtot

C1T is more attractive by 490
mhartree thanEtot

C1B , which is 22.6 hartree aboveEtot
C . Thus,

as far as ground-state energies are concerned, the
consistent ROPM results show the same trend as the w
known perturbative RHF results@23#.

We now turn to an analysis of the exchange-only pot
tial, addressing in particular the importance of its transve
componentvx

T for ground-state and excitation energies.
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Table III we again list total exchange-only ground-state e
ergies for closed subshell atoms, this time comparing th
ROPM variants~and using the nuclear shape and the value
the speed of light of@9#—for completeness and in order t
correct some slightly incorrect numbers@75# in Table VI of
@9# the correspondingEx

T are recorded in Table IV!. First of
all, the fully self-consistent ROPM energiesEtot

C1T are given,
obtained by solution of Eqs.~2.15! and ~4.20! for the com-
plete exchange energy~4.4!. In addition, we show theEtot

C1T

obtained by restrictingvx to either the C or the CB limit, i.e.
by only including Eq.~4.7! or the Breit limit of Eq.~4.4! in
Eq. ~4.21! and evaluating the remainder of Eq.~4.4! by first-
order perturbation theory. As the ROPM procedure yields
multiplicative exchange potential that minimizes the ene
expression of interest, theEtot

C1T resulting from the C or CB
exchange potentials are somewhat above the fully s
consistent values. Nevertheless, the CB-exchange pote
leads to energies that are only a few mhartree away from
self-consistentEtot

C1T , demonstrating that the CB potential
a rather accurate approximation of the fullvx for atomic
systems. In other words, the second-order contribution of
transverse corrections not included in the B interaction are
the order of 5–10 mhartree. On the other hand, treating o
the C interaction self-consistently producesEtot

C1T , which, for
heavy atoms, differ from the fully self-consistent results
the 1-eV level. In fact, the second-order transverse excha
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TABLE III. Exchange-only ground-state energies from ROPM, RHF, RKLI, and RGGA calculation
neutral atoms with closed subshells: In the case of the ROPM the self-consistent (s) treatment of the
complete transverse exchange~T! is compared with a self-consistent inclusion of only its Breit~B! limit
@together with a perturbative (p) calculation of the beyond Breit contributions — T2B# as well as a fully
perturbative evaluation ofEx

T . The latter procedure has also been used for the RHF calculations@74#. For the
RKLI approximation two variants are shown:~a! Eq. ~5.7! without the]Ex /]ek contribution,~b! Eq. ~5.7!
including the]Ex /]ek contribution. The RGGA results have been obtained with the relativistic extensio
the Becke parametrization~RB! @52# for vx , while using Eq.~4.4! for the calculation ofEx ~all energies in
mhartree@86#!.

Atom 2Etot
C1T Etot

C1T2Etot
C1T@ROPM: s(C1T)#

ROPM ROPM ROPM RHF RKLIa RKLIb RB
s: C1T C1B C C C1T C1T C1T
p: T2B T T

He 2862 0 0 0 0 0 2
Be 14575 0 0 21 0 0 2
Ne 128674 0 0 22 1 1 13
Mg 199900 0 0 23 1 1 9
Ar 528546 0 0 25 2 2 10
Ca 679513 0 0 26 2 2 8
Zn 1793840 0 1 214 4 4 40
Kr 2787429 0 2 212 3 3 21
Sr 3176359 0 2 211 3 5 18
Pd 5041098 0 5 213 4 6 35
Cd 5589496 1 6 216 6 9 30
Xe 7441173 1 10 211 6 16 22
Ba 8129161 1 11 29 6 39 21
Yb 14053750 3 29 221 11 82 74
Hg 19626705 6 50 8 10 118 51
Rn 23573354 8 68 29 9 224 45
Ra 24996946 9 75 38 9 44
No 36687173 16 140 82 13 87
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contributions are of the same order of magnitude as the
ergy gain from the additional variational freedom of the no
local RHF potential, so that the fully self-consistent ROP
energies are below the perturbative RHF energies for he
atoms~also given in Table III!.

While this is a negligible energy contribution in the qua
tum chemical context, it has to be corrected by second-o
perturbation theory to achieve spectroscopic accuracy@39#:
This is most easily seen from Tables V and VI in whi
some ionization potentials~IPs! and inner-shell excitation
energies are given. For none of the atoms considered do
IPs from the first order perturbative and the self-consist
treatment ofEx

T differ by more than 1 mhartree, reflecting th
fact that the transverse corrections essentially cancel ou
all chemically relevant energy differences. On the oth
hand, for the (1s1/2)

2→1s1/22p3/2 transition in heliumlike
uranium one finds a difference of 0.68 eV between the t
schemes. However, this effect is reduced substantially
soon as no K electron participates in the excitation proc
For the (1s1/2)

22s1/2→(1s1/2)
22p3/2 transition energy in

lithiumlike uranium the deviation only amounts to 0.18 eV
These observations are corroborated by the correspon

single-particle energies and the exchange potentials th
selves. In Figs. 1 and 2 we analyze the relative importanc
the transverse exchange, i.e., the relativistic treatment of
electron-electron interaction, and the relativistic correctio
to the Coulomb exchange, i.e., the relativistic treatment
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TABLE IV. Transverse exchange-only energies (Ex
T) for closed

subshell atoms: Self-consistent ROPM results (s) in comparison
with values obtained perturbatively (p) with orbitals from longitu-
dinal ROPM and RHF~Coulomb gauge forEx

T) calculations@75#
~all energies in hartree@86#!.

Atom ROPM:s ROPM: p RHF: p

He 0.000064 0.000064 0.000064
Be 0.00070 0.00070 0.00070
Ne 0.0167 0.0167 0.0166
Mg 0.0318 0.0319 0.0318
Ar 0.132 0.132 0.132
Ca 0.191 0.191 0.191
Zn 0.758 0.759 0.759
Kr 1.417 1.420 1.419
Sr 1.706 1.711 1.710
Pd 3.282 3.291 3.290
Cd 3.797 3.809 3.808
Xe 5.693 5.712 5.711
Ba 6.453 6.475 6.473
Yb 13.842 13.900 13.898
Hg 22.071 22.171 22.168
Rn 28.547 28.683 28.680
Ra 31.006 31.156 31.153
No 53.313 53.593 53.591
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the electrons, forvx , again using Hg. While Fig. 1 gives a
idea of the absolute size of these corrections, their rela
impact is most clearly seen in Fig. 2, where the percent
relativistic correction

Dvx~r !5
vx

ROPM~r !2vx
NROPM~r !

vx
NROPM~r !

~6.1!

is plotted. For all three variants ofvx one observes an osci
latory behavior ofDvx(r ), reflecting the shell structure o
the atom. The specific structure results from the contrac

TABLE V. Ionization potentials of neutral atoms calculate
from ground-state energy differences: For the ROPM the s
consistent inclusion of the transverse exchange~C1T! is compared
with complete neglect ofEx

T ~C!. The RGGA data have been ob
tained by combining the relativistic extension of the Becke para
etrization ~RB! @52# for vx with Eq. ~4.4! for Ex ~all energies in
mhartree@86#!.

Atom ROPM RKLIa RB

C1T C C1T C1T

Li 196 196 196 195
Be 296 296 295 296
Na 181 181 181 181
Mg 243 243 243 243
K 147 147 147 147
Ca 189 189 189 189
Cu 234 234 232 229
Zn 284 284 283 279
Rb 139 139 139 139
Sr 175 175 175 174
Ag 229 229 228 227
Cd 269 269 268 267
Cs 127 127 127 127
Ba 157 157 157 157
Au 279 280 278 279
Hg 312 313 312 312
Fr 132 132 131 131
Ra 161 161 161 160

TABLE VI. Transition energies of He- and Li-like ions from
exchange-only ROPM calculations: Self-consistent~ST! versus
first-order perturbative~PT! treatment ofEx

T ~all energies in hartree
@86#!.

Ion ST PT

(1s1/2)
2→1s1/22p3/2

Hg781 2666.819 2666.805
U901 3704.916 3704.891
No1001 4793.688 4793.652

(1s1/2)
22s1/2→(1s1/2)

22p1/2

Hg771 9.061 9.065
U891 11.895 11.901
No991 14.077 14.087
e
e

n

of most orbitals~in particular thes1/2 andp1/2 orbitals! when
going from a nonrelativistic to a relativistic description: A
there is a unique correspondence between the densityn(r )
and the exchange potential,Dvx(r ) is a direct measure of the
inward shifts of the maxima of the radial densityr 2n(r )
caused by the orbital contraction. This effect originates fr
the relativistic treatment of the electron kinetic energy,
that the oscillatory structure inDvx(r ) is independent of the
transverse interaction. The latter starts to show up invx(r )
for the M shell, although becoming sizable only for theL
and K shells: While the 3p3/2 level is destabilized by 235
mhartree when going from the C to the CT level, the 2p3/2
eigenvalue already experiences a 1.26-hartree shift~see
Table II!. On the other hand, the corresponding percent
correction of the eigenvalues, i.e., the ratio between
transverse exchange and the total KS potential, is similar
all levels: It amounts to 0.35% for the 1s1/2, 0.23% for the
3p3/2, 0.28% for the 4f 7/2, and 0.15% for the 6s1/2 orbital.
Even for the 4f levels the 10-mhartree shift due tovx

T is of
the same order of magnitude as the effect ofvc : The inclu-
sion of vc via the LYP-GGA @76# leads to a 36 mhartree
correction of the 4f 7/2 eigenvalue. Correlation completel
dominates over transverse exchange only for the vale
electrons.

The impact ofvx
T on the density can be extracted fro

Fig. 3, where the percentage deviations of self-consistent

f-

-

FIG. 1. ROPM exchange-only potentials for neutral Hg: Se
consistent Coulomb~C!, Coulomb-Breit ~C1B!, and fully trans-
verse~C1T! results in comparison with nonrelativistic limit~NR!.

FIG. 2. Relativistic contribution to the ROPM exchange-on
potential for neutral Hg: Percentage correction~6.1! from self-
consistent calculations, using~i! the complete relativisticx-only
potential~C1T!, ~ii ! its Coulomb-Breit approximation~C1B!, and
~iii ! its longitudinal~C! limit.
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and CB densities from the pure C result are plotted for H
One observes direct shifts of roughly 0.4% for the innerm
shell and indirect effects of the order of 0.1% for all oth
shells. The increasing deviation for very larger reflects the
0.5 mhartree change of the 6s eigenvalue, resulting from the
inclusion ofvx

T .
Finally, Figs. 1–3 and Table II show that the Breit a

proximation is reasonably accurate also on the local level
in the case of the exchange energies, the Breit correction
vx and the eigenvalues overshoot the exact transverse re
However, while forEx

T the error of the Breit approximation
is 2% for Hg, it, e.g., amounts to 36% for the 2s1/2 eigen-
value. Obviously,vx

T is much more sensitive to the retard
tion corrections to the Breit interaction thanEx

T .

B. RKLI approximation

By definition of the exchange-only limit of RDFT, th
ROPM results represent the exact exchange-only ener
within RDFT, given some form of the relativistic electron
electron interaction. On the basis of the ROPM results
can thus examine approximations, both on the glo
~ground-state energies! and on the local~eigenvalues, poten
tials! level. In the following we investigate the ambiguity i
the treatment of the eigenvalue dependence ofEx

T within the
RKLI scheme. We compare two RKLI variants, namely, E
~5.7! without the ]Ex /]ek contribution ~RKLIa! and Eq.
~5.7! including the]Ex /]ek contribution~RKLIb!.

Table III shows that the RKLIa potential is an accura
representation of the exact ROPM potential: The differen
between theEtot

C1T found with RKLIa and ROPM are smalle
than those between ROPM and RHF energies, the RK
energies always being slightly above the ROPM values~con-
sistent with the variational character of the ROPM potenti!.
As a further measure for the quality of the RKLI exchan
potential one can use theEtot

C1T obtained by combining the
exact representation ofEx , Eq. ~4.4!, with one of the avail-
able explicit density functionals forvx . In Table III we thus
give the Etot

C1T , resulting from a RGGA forvx , using the
relativistic extension of the Becke GGA~RB! @52,77#. The
error in these numbers is roughly a factor of 5 larger th
that of the RKLIa energies, while still being of the sam
order of magnitude as the differences between ROPM

FIG. 3. Percentage deviations of fully transverse~C1T! and
Coulomb-Breit~C1B! densities from purely longitudinal~C! result
for neutral Hg.
.
t

r

s
to
lts.

ies

e
l

.

s

Ia

n

d

RHF results. A similar picture emerges from the IPs of Ta
V. The error resulting from the RKLIa potential is in th
range of 0.2–1.5 mhartree, thus being roughly a factor o
smaller than that found with the RGGA potential. We rema
that, in contrast to the RKLIa potential, the exchange-o
RGGA potential does not give stable negative ions due
incorrect asymptotic behavior@78# ~compare Fig. 4!.

The RKLIb version, on the other hand, yields energ
that for heavy elements differ significantly from the ROP
standard. In fact, we have not found converged soluti
with this scheme for the heaviest atoms~Ra, No!, which
suggests that the inclusion of the]Ex /]ek contribution in the
form ~5.7! is not appropriate.

This conclusion is confirmed in Table II and Fig. 4 from
more microscopic point of view. While the single-partic
energies from the RKLIa are in good agreement with th
ROPM counterparts, the RKLIb eigenvalues deviate subs
tially, with even the valence levels being destabilized.
analogous observation can be made on the basis of Fig
where the percentage deviation of the RKLI approximatio
from the exact exchange-only potential,

dvx~r !5
vx

Test~r !2vx
ROPM~r !

vx
ROPM~r !

, ~6.2!

is shown. The RKLIb potential is shifted upward by th
]Ex /]ek contribution even for shells that should not be a
fected by the transverse exchange.

At first glance one might think that this is a consequen
of the incorrect asymptotic behavior of the RKLIb potentia
as discussed in Sec. V. In order to resolve this question,
have examined a RKLI variant in whichvKS

0 in Eq. ~5.7! had
been replaced byvKS

0 2vx
0 , thus correcting the asymptoti

behavior. Thisad hoc procedure seems legitimate as n
really systematic derivation of the energy scale in front
]Ex /]ek seems to be possible, thus allowing ‘‘educat
guesses.’’ However, the results obtained with this modifi
RKLIb approximation are only marginally different from th

FIG. 4. Self-consistent RKLI and RGGA exchange-only pote
tials for neutral Hg: Percentage deviation~6.2! from ROPM result.
For the RKLI approximation two variants are shown:~a! Eq. ~5.7!
without the ]Ex /]ek contribution, ~b! Eq. ~5.7! including the
]Ex /]ek contribution. Also plotted is the deviation of the nonrel
tivistic KLI potential from the nonrelativistic OPM potentia
~NRKLI !. The RGGA results have been obtained with the RB p
rametrization@52#.
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original RKLIb data, so that the failure of the RKLIb schem
cannot be attributed to the asymptotic behavior.

The RKLIa potential, on the other hand, is as accurate
its Coulomb@11# or nonrelativistic limit ~see Fig. 4!. It is
superior to the RGGA potential, in particular, in th
asymptotic regime. This fact is also reflected by the cor
sponding eigenvalues: While for the innermost levels
RGGA is essentially as accurate as RKLIa, the valence le
are much better reproduced by RKLIa, as a consequenc
the correct asymptotic behavior ofvx(r ) ~see Table II!. Al-
though there are exceptional cases in which the RKLI
proximation predicts an incorrect eigenvalue ordering in
valence regime~as, e.g., for neutral Yb!, one thus concludes
that, at least for the transverse exchange, the neglect o
]Ex /]ek contribution in Eq.~5.7! is superior to any inclusion
of this term. It remains to be investigated whether the sa
holds true for correlation functionals asEc

(2) , in which the
eigenvalue dependence is expected to play a more prom
role than inEx .

VII. OUTLOOK

In this paper we have established a first-principl
parameter-free density functional scheme in which
exchange-correlation effects are consistently represente
terms of the Kohn-Sham orbitals and eigenvalues, rather
the density~four current! used in the conventional Kohn
Sham approach. Due to its perturbative origin the pract
version of the scheme provided here should be particul
suited for atomic physics and quantum chemical appli
tions. One would, for instance, expect that the correlat
potential resulting from this systematic approach has the
rect sign in the asymptotic regime of atoms@79#, in contrast,
e.g., to the Colle-Salvetti potential. On the other hand,
ability of the nonempirical, orbital-dependent functional
deal with van der Waals bonds in a seamless form ope
whole new range of applications.

A possible path to an approximate treatment of resumm
forms of the orbital-dependent exchange-correlation ene
functional, which should be more appropriate for the desc
tion of solids, has been sketched. The proposed approxim
handling of the exchange-correlation kernelf xc may also be
useful for applications to complex molecules, as the rigor
evaluation of the correlation potential requires knowledge
the quadratic response function. Alternatively, the improv
description of atoms could be utilized to construct more
curate pseudopotentials@80#.

The procedure has been formulated in a fully relativis
form, indicating that a consistent inclusion of quantum el
trodynamical effects is possible. While we have given e
plicit self-consistent results for the transverse electr
s
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electron interaction, the statement also applies to vacu
corrections. This should, e.g., allow a study of ‘‘overcri
cal’’ atomic systems@81,82# in a self-consistent fashion.
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APPENDIX A: ROPM FOR SPHERICAL SYSTEMS

The ROPM equations for spherical systems can either
obtained by directly reducing Eqs.~4.19!–~4.21! to spherical
systems or by evaluating the spherical limit of the groun
state energy and subsequently rederiving the ROPM inte
equation. In fact, the second procedure is somewhat sim
as the spherical form of the xc energy is required for E
~4.21! in any case. We thus briefly summarize the spheri
average for both the Hartree and the exchange energy~in
A 1! and then discuss the resulting ROPM equations~in
A 2!, in order to provide the technical details necessary
the inclusion of the exchange-only ROPM in standard co
and for the examination of the behavior of the exchan
potential in the asymptotic regime of finite systems~in Ap-
pendix B!.

1. Relativistic exchange-only energy for spherical systems

For spherical systems the KS four spinors can be writ
as

fnl jm~r!5
1

r S anl j~r ! V j lm~u,w!

ibnl j~r ! V j l̄ m~u,w!
D , ~A1!

where the quantum numbers are defined as usual@ l̄ 52 j
2 l , k522( j 2 l )( j 11/2)# and the angular momentum
eigenfunctionsV j lm agree with the convention of Rose@83#.
In the following, we will frequently use a shorthand notatio
for the quantum numbersnl j ,

nl j 5q, n8l 8 j 85q8.

Due to the different angular momentum coupling schem
the complete relativistic exchange-only energy~4.4! ~in
Feynman gauge! is most conveniently decomposed into
‘‘retarded Coulomb’’ ~RC! and a ‘‘retarded Gaunt’’~RG!
contribution,

Ex
C1T5Ex,RC1Ex,RG, ~A2!
Ex,RC
qm,q8m852

e2

2 E d3r E d3r 8
cos~vqq8ur2r8u!

ur2r8u
fqm

† ~r!fq8m8~r!fq8m8
†

~r8!fqm~r8!, ~A3!

Ex,RG
qm,q8m85

e2

2 E d3r E d3r 8
cos~vqq8ur2r8u!

ur2r8u
fqm

† ~r!afq8m8~r!•fq8m8
†

~r8!afqm~r8! ~A4!
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(vq,q85ueq2eq8u/c). The corresponding matrix elements of the Hartree energy read

EH,C
qm,q8m85EH,RC

qm,q8m85
e2

2 E d3r E d3r 8
1

ur2r8u
fqm

† ~r!fqm~r!fq8m8
†

~r8!fq8m8~r8!, ~A5!

EH,T
qm,q8m85EH,RG

qm,q8m852
e2

2 E d3r E d3r 8
1

ur2r8u
fqm

† ~r!afqm~r!•fq8m8
†

~r8!afq8m8~r8!. ~A6!

The matrix elements~A3!–~A6! can be evaluated@20–22# by using the multipole expansion of the retarded interaction,

cos~vqq8ur2r8u!

ur2r8u
5 (

L50

`
4p

2L11
Uqq8,L~r ,r 8! (

M52L

L

YLM* ~u,w!YLM~u8,w8!, ~A7!

Uqq8,L~r ,r 8!5
r ,

L

r .
L11

j̃ L~vqq8r ,!ỹL~vqq8r .!, ~A8!

where j̃ L(x) and ỹL(x) represent spherical Bessel functions of first and second kind@84#, normalized to 1 atx50,

j̃ L~x!5
~2L11!!!

xL j L~x!,

ỹL~x!52
xL11

~2L21!!!
yL~x!.

However, before providing xplicit formulas for the individual matrix elements~A3!–~A6! we restrict the discussion to th
spherical average. In the case of open shells only the average over all possibilities to distribute theQq<2 j 11 electrons over
the 2j 11 availablem states lead to a spherical KS potential. For thism average one has to distinguish between diagonal
off-diagonal matrix elements for both the exchange-only and the Hartree energy@85#. In the more simple off-diagonal case
i.e., for qÞq8, one is led to consider two independent averages for the two relevant shells, so that one ends up with

Ēqq85
Qq

2 j 11

Qq8

2 j 811
(

m52 j

j

(
m852 j 8

j 8

Eqm,q8m8. ~A9!

On the other hand, for them average of the diagonal matrix elements one has to take into account the reduced probab
find two electrons in the two distinct statesm andm8 @85#,

Ēqq5
Qq

2 j 11S 12
Qq21

2 j D (
m52 j

j

Eqm,qm1
Qq~Qq21!

~2 j 11!2 j (
m52 j

j

(
m852 j

j

Eqm,qm8. ~A10!

Equations~A9! and ~A10! apply to the individual components~A3!–~A6! of both the exchange and the Hartree energy. T
DFT Hartree energy~4.3!, however, is defined in terms of the four current~4.1!, and thus them average of its matrix element
is given by Eq.~A9! also forq5q8,

ĒH
qq5S Qq

2 j 11D 2

(
m52 j

j

(
m852 j

j

EH
qm,qm8. ~A11!

As a consequence, the difference between the truem-averaged Hartree energy of the form~A10! and its DFT counterpar
~A11! has to be interpreted as part of them-averaged exchange energy. UsingEH

qm,qm52Ex
qm,qm one obtains as diagona

exchange matrix elements

Ēx
qq5

Qq~Qq21!

~2 j 11!2 j (
m52 j

j

(
m852 j

j

Ex
qm,qm81

Qq~Qq22 j 21!

2 j ~2 j 11!2 (
m52 j

j

(
m852 j

j

EH
qm,qm8. ~A12!

Decomposing Eqs.~A9!, ~A11!, and ~A12! into the retarded Coulomb and retarded Gaunt contributions one finally end
with

ĒH,RC
qq8 5

e2

2
QqQq8E

0

`

drE
0

`

dr8
1

r .
$aq~r !21bq~r !2%$aq8~r 8!21bq8~r 8!2%, ~A13!
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ĒH,RG
qq8 50 ~A14!

for the Hartree energy, while forEx one has to distinguish betweenqÞq8,

Ēx,RC
qq8 52

e2

2
QqQq8E

0

`

drE
0

`

dr8 (
L50

`

Uqq8,L~r ,r 8!$aq~r !aq8~r !1bq~r !bq8~r !%$aq~r 8!aq8~r 8!1bq~r 8!bq8~r 8!%B̄j l , j 8 l 8,L,

~A15!

Ēx,RG
qq8 5

e2

2
QqQq8E

0

`

drE
0

`

dr8 (
L50

`

Uqq8,L~r ,r 8!$2aq~r !bq8~r !aq8~r 8!bq~r 8!F̄ j l , j 8 l 8,L1aq~r !bq8~r !aq~r 8!bq8~r 8!Ēj l , j 8 l̄ 8,L

1aq8~r !bq~r !aq8~r 8!bq~r 8!Ēj 8 l 8, j l̄ ,L%, ~A16!

andq5q8,

Ēx,RC
qq 52

e2

2 E0

`

drE
0

`

dr8 (
L50

`

Uqq,L~r ,r 8!$aq~r !21bq~r !2% $aq~r 8!21bq~r 8!2%

3H Qq~Qq21!~2 j 11!

2 j
B̄ j l , j l ,L1

Qq~2 j 112Qq!

2 j
Ā j l , j l ,LJ , ~A17!

Ēx,RG
qq 5

e2

2 E0

`

drE
0

`

dr8 (
L50

`

Uqq,L~r ,r 8!2aq~r !bq~r !aq~r 8!bq~r 8!
Qq~Qq21!~2 j 11!

2 j
$F̄ j l , j l ,L1Ēj l , j l̄ ,L%. ~A18!

The angular momentum coupling coefficients in Eqs.~A15!–~A18! are given by@20–22#

Āj l , j 8 l 8,L5dL0 , ~A19!

B̄j l , j 8 l 8,L5
11~21! l 1 l 81L

2~2L11!
CS j j 8L;

1

2
,2

1

2
,0D 2

, ~A20!

Ēj l , j 8 l̄ 8,L55
11~21! l 1 l̄ 81L

2~2L11!~ j 811!
F j 8CS j , j 8,L;

1

2
,2

1

2
,0D 2

1~2 j 813!CS j , j 811,L;
1

2
,2

1

2
,0D 2G if j 85 l̄ 82

1

2
,

11~21! l 1 l̄ 81L

2~2L11! j 8
F ~ j 811!CS j , j 8,L;

1

2
,2

1

2
,0D 2

1~2 j 821!CS j , j 821,L;
1

2
,2

1

2
,0D 2G if j 85 l 8̄1

1

2
,

~A21!

F̄ j l , j 8 l 8,L5
11~21! l 1 l 81L11

2~2L11!
CS j j 8L;

1

2
,2

1

2
,0D 2

. ~A22!
re
d

n

We just remark that the Clebsch-Gordan coefficients
quired for Eqs.~A19!–~A22! can be expressed in close
form @70#.

2. ROPM integral equation for spherical systems

For spherically averaged systems the total energy fu
tional thus reads

E5Ts1E
0

`

dr@4pr 2n~r !#v~r !1EH1Exc , ~A23!

Ts5(
nl j

Qnl jE
0

`

dr wnl j
T ~r !TW l j ~r !wnl j~r !, ~A24!
-

c-

EH5
1

2E0

`

dr@4pr 2n~r !#vH~r !, ~A25!

vH54pe2H 1

r E0

r

dr8r 82n~r 8!1E
r

`

dr8r 8n~r 8!J ,

~A26!

Ex5 (
nl j ,n8 l 8 j 8

$Ēx,RC
nl j ,n8 l 8 j 81Ēx,RG

nl j ,n8 l 8 j 8%, ~A27!

n5(
nl j

Qnl jwnl j
T ~r !wnl j~r !, ~A28!

where we have used the abbreviations
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wnl j~r !5S anl j~r !

bnl j~r !
D , ~A29!

TW l j ~r !5cS 0 2]W r1
k

r

]W r1
k

r
22mc

D ~A30!

and the rest mass has been subtracted fromTs . While the
transverse Hartree energy vanishes due to Eq.~A14!, Ec can
be any explicit or implicit functional of the densityn(r ). The
spherical KS equations may be obtained by minimizingE
with respect to the radial spinorswnl j , taking into account
that the latter are implicit functionals ofn(r ),
r

ns

s

$TW l j ~r !1vKS~r !%wnl j~r !5enl jwnl j~r !, ~A31!

vKS~r !5v~r !1vH~r !1vxc~r !, ~A32!

vxc~r !5
dExc

d@4pr 2n~r !#
. ~A33!

In the case of orbital- and eigenvalue-dependent function
given in the nonlinear formExc@w,e,vxc#, the functional de-
rivative with respect to the radial density 4pr 2n(r ) is re-
placed by functional derivatives with respect to the real
dial orbitalswnl j , the eigenvaluesenl j , and the xc potential
vxc , using the chain rule for functional differentiation,
n

dExc@w,e,vxc#

d@4pr 2n~r !#
5E

0

`

dr8
dvKS~r 8!

d@4pr 2n~r !#
(
nl j

E
0

`

dr9
dwnl j

T ~r 9!

dvKS~r 8!

dExc

dwnl j
T ~r 9!

1(
nl j

denl j

dvKS~r 8!

]Exc

]enl j

1E
0

`

dr8
dvxc~r 8!

d@4pr 2n~r !#

dExc

dvxc~r 8!
.

Multiplication with d@4pr 2n(r )#/dvKS(x) and subsequent integration overr then yields an integral equation for the unknow
potentialvxc ,

E
0

`

dr
d@4pr 2n~r !#

dvKS~x!
vxc~r !5(

nl j
E

0

`

dr9
dwnl j

T ~r 9!

dvKS~x!

dExc

dwnl j
T ~r 9!

1(
nl j

denl j

dvKS~x!

]Exc

]enl j
1E

0

`

dr9
dvxc~r 9!

dvKS~x!

dExc

dvxc~r 9!
. ~A34!
is-

fi-
on
g

r,
Defining the Greens function

Gnl j~r ,r 8!5 (
n8Þn

wn8 l j ~r !wn8 l j
T

~r 8!

en8 l j 2enl j

, ~A35!

the linear response of the orbitals and eigenvalues with
spect to a variation ofvKS can be written as

dwnl j~r !

dvKS~r 8!
52Gnl j~r ,r 8!wnl j~r 8!, ~A36!

denl j

dvKS~r !
5wnl j

T ~r !wnl j~r !, ~A37!

d@4pr 2n~r !#

dvKS~r 8!
522(

nl j
Qnl jwnl j

T ~r !Gnl j~r ,r 8!wnl j~r 8!

[22K~r ,r 8!, ~A38!

whereK(r ,r 8) essentially represents the radial KS respo
function. Insertion of Eqs.~A36!–~A38! into Eq. ~A34! then
leads to the ROPM integral equation for spherical system
e-

e

,

E
0

`

dr8K~r ,r 8!vxc~r 8!5Qxc~r !, ~A39!

Qxc~r !5
1

2H (nl j
E

0

`

dr8wnl j
T ~r !Gnl j~r ,r 8!

dExc

dwnl j
T ~r 8!

2(
nl j

wnl j
T ~r !wnl j~r !

]Exc

]enl j

2E
0

`

dr8
dvxc~r 8!

dvKS~r !

dExc

dvxc~r 8!
J . ~A40!

As in the general situation discussed in Sec. IV, further d
cussion of Eqs.~A39! and ~A40! requires an explicit ap-
proximation at least fordvxc(r 8)/dvKS(r ). While using the
LDA for dvxc(r 8)/dvKS(r ) in the ROPM equation for some
orbital-dependentExc might represent an accurate and ef
cient approximation to the exact ROPM, we here focus
the more systematice2-expansion scheme of Sec. IV. Usin
the fact that the exchange energy~A27! does not depend on
vxc , Eqs.~A39! and~A40! can be examined order by orde
so that only the functional derivative ofvx with respect to
vKS is required in the ordere4,
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dvx~r !

dvKS~r 8!
5E

0

`

dr9K21~r ,r 9!

3H dQx~r 9!

dvKS~r 8!
2E

0

`

dr-
dK~r 9,r-!

dvKS~r 8!
vx~r-!J ,

~A41!

where

dQx~r !

dvKS~r 8!
52(

nl j
E

0

`

dr9wnl j
T ~r 8!Gnl j~r 8,r 9!

dQx~r !

dwnl j
T ~r 9!

1(
nl j

wnl j
T ~r 8!wnl j~r 8!

]Qx~r !

]enl j
, ~A42!

andK21 is the inverse response function. Utilizing secon
order perturbation theory one easily obtains an expres
for the quadratic response function,

dK~r ,r 8!

dvKS~r 9!
52

1

2

d2@4pr 2n~r !#

dvKS~r 9!dvKS~r 8!

52(
nl j

Qnl j$Hnl j~r ,r 8,r 9!1Hnl j~r 8,r 9,r !

1Hnl j~r 9,r ,r 8!%, ~A43!

with

Hnl j~r ,r 8,r 9!5wnl j
T ~r !Gnl j~r ,r 8!Gnl j~r 8,r 9!wnl j~r 9!

2wnl j
T ~r !wnl j~r !wnl j

T ~r 8!

3E
0

`

dr-Gnl j~r 8,r-!Gnl j~r-,r 9!wnl j~r 9!.

~A44!

The Greens function~A35! can equivalently be defined b
the differential equation

$TW l j ~r !1vKS~r !2enl j%Gnl j~r ,r 8!

5d~r 2r 8!2wnl j~r !wnl j
T ~r 8!, ~A45!

with the boundary conditions

E
0

`

dr8Gnl j~r ,r 8!wnl j~r 8!50, ~A46!

Gnl j
T ~r ,r 8!5Gnl j~r 8,r !, ~A47!

where Eq.~A46! is required to enforce the normalization
wnl j ,

E
0

`

dr wnl j
T ~r !dwnl j~r !50.
-
n

As a practically useful alternative to the formal solutio
~A35! of Eqs.~A45!–~A47!, one can thus expressGnl j (r ,r 8)
in terms of the complementary, non-normalizable solutio
xnl j of ~A31! @70#,

$TW l j ~r !1vKS~r !%xnl j~r !5enl jxnl j~r !, ~A48!

] r@wnl j
T ~r !isyxnl j~r !#50. ~A49!

Normalizingxnl j so that

cwnl j
T ~r !isyxnl j~r !51, ~A50!

one has the matrix relation

wnl j~r !xnl j
T ~r !2xnl j~r !wnl j

T ~r !5
isy

c
. ~A51!

This allows the definition of the auxiliary Greens functio
Gnl j (r ,r 8),

Gnl j~r ,r 8!5Q~r 2r 8!wnl j~r !xnl j
T ~r 8!

1Q~r 82r !xnl j~r !wnl j
T ~r 8!, ~A52!

which, using Eq.~A51!, satisfies

$TW l j ~r !1vKS~r !2enl j%Gnl j~r ,r 8!5d~r 2r 8!. ~A53!

With Eq. ~A52! Gnl j (r ,r 8) can finally be written as

Gnl j~r ,r 8!5Gnl j~r ,r 8!1Cnl jwnl j~r !wnl j
T ~r 8!

2E
0

`

dr9Gnl j~r ,r 9!wnl j~r 9!wnl j
T ~r 8!

2E
0

`

dr9wnl j~r !wnl j
T ~r 9!Gnl j~r 9,r 8!,

~A54!

Cnl j5E
0

`

drE
0

`

dr8wnl j
T ~r !Gnl j~r ,r 8!wnl j~r 8!.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF V X

FOR FINITE SYSTEMS

The discussion of the asymptotic behavior of t
exchange-only potential for finite, spherical systems is ba
on the large-r limit of the ROPM integral equation~A39!,
which can be analyzed using the asymptotic forms ofwnl j
andxnl j ,

wnl j~r ! ;
r→`

anl j

cgnl j
S cgnl j

enl j
D r bnl je2gnl j r , ~B1!

xnl j~r ! ;
r→`

21
2canl jenl j

S cgnl j

2enl j
D r 2bnl jegnl j r , ~B2!

where
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gnl j5F2enl j S 2m1
enl j

c2 D G 1/2

,

and the precise form ofbnl j depends on the asymptotic d
cay of the KS potential. Using Eqs.~B1! and ~B2! in Eqs.
~A38!–~A40! and ~A54! one can explicitly verify that for
large r only the highest occupied orbital is relevant in E
~A39!. Dropping the indexnl j one thus finds as asymptot
ROPM equation,

05H wT~r !w~r !F E
0

r

dr8xT~r 8!1CE
0

`

dr8wT~r 8!

2E
0

r

dr9xT~r 9!w~r 9!E
0

`

dr8wT~r 8!

2E
0

`

dr8E
0

r 8
dr9wT~r 9!G~r 9,r 8!G1xT~r !w~r !

3F E
r

`

dr8wT~r 8!2E
r

`

dr9wT~r 9!w~r 9!E
0

`

dr8wT~r 8!G J
3H Qw~r 8!vx~r 8!2

1

2

dEx

dwT~r 8!
J 1wT~r !w~r !

1

2

]Ex

]e
.

~B3!

Now the individual terms in Eq.~B3! have to be examined
First of all, due to the selection rules for the retarded Ga
term, Eqs.~A20!–~A22!, only multipoles withLÞ0 contrib-
ute to Eq.~A18!, so thatdEx /dwT is asymptotically domi-
nated by the Coulomb exchange,

dEx

dwT~r !
;

r→`
22Q e2

r
w~r !, ~B4!

all corrections decaying faster by at least a factor 1/r . Using

wT~r !w~r ! ;
r→`

a2F11 S e
cg D 2Gr 2be22gr ,

xT~r !w~r ! ;
r→`

2
g
2eF12 S e

cg D 2G
and the fact thatvx(r ) asymptotically approaches zero, on
finds
s.
.

t

E
r

`

dr8wT~r 8!w~r 8!;wT~r !w~r !,

E
0

r

dr8xT~r 8!w~r 8!;r ,

E
r

`

dr8wT~r 8!FQw~r 8!vx~r 8!2
1

2

dEx

dwT~r 8!
G;wT~r !w~r !,

and that

E
0

r

dr8xT~r 8!H Qw~r 8!vx~r 8!2
1

2

dEx

dwT~r 8!
J

asymptotically increases more slowly thanr . The leading
term in Eq.~B3! is thus given by

052wT~r !w~r !E
0

r

dr9xT~r 9!w~r 9!E
0

`

dr8wT~r 8!

3H Qw~r 8!vx~r 8!2
1

2

dEx

dwT~r 8!
J ,

all other contributions being suppressed by at least so
small power ofr or a factor of ln(r)/r. This directly leads to
the relativistic extension of the KLI identity@14#,

05E
0

`

dr wT~r !H Qw~r !vx~r !2
1

2

dEx

dwT~r !J ~B5!

(w is the highest occupied orbital!. Insertion of Eq.~B5! into
Eq. ~B3! then leaves as a leading term

05wT~r !w~r !E
0

r

dr8xT~r 8!H Qw~r 8!vx~r 8!2
1

2

dEx

dwT~r 8!
J

5QwT~r !w~r !E
0

r

dr8xT~r 8!w~r 8!H vx~r 8!1
e2

r 8
J .

Consequently, one finds the same asymptotic behavior a
the nonrelativistic case,

vx~r ! ;
r→`

2 e2

r
. ~B6!
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