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An approach is developed for constructing simple analytical formulas accurately approximating solutions to
eigenvalue problems of quantum mechanics. This approach is based on self-similar approximation theory. In
order to derive interpolation formulas valid in the whole range of parameters of considered physical quantities,
the self-similar renormalization procedure is complemented here by boundary conditions which define control
functions guaranteeing correct asymptotic behavior in the vicinity of boundary points. To emphasize the
generality of the approach, it is illustrated by different problems that are typical for quantum mechanics, such
as anharmonic oscillators, double-well potentials, and quasiresonance models with quasistationary states. In
addition, the nonlinear Schidinger equation is considered, for which both eigenvalues and wave functions are
constructed[S1050-29478)03207-1

PACS numbsg(s): 03.65.Ge, 02.30.Lt, 02.30.Mv

I. INTRODUCTION Third, interpolation between two different expansions, by
using two-point Padeapproximants, can be accomplished

A standard problem in quantum mechanics is how tasolely when these two expansions have compatible variables
solve approximately stationary Schiinger equations that do [1-3]. For example, even for such a simple problem as the
not possess exact solutions. In the cases of asymptoticalgnharmonic oscillator, the eigenvalues in the weak-coupling
small and asymptotically large coupling parameters, one magnd strong-coupling expansions have incompatible variables
employ perturbation theory presenting solutions as power sg5].
ries in powers of the corresponding small parameter. How- Fourth, there exists the well-known and annoying prob-
ever, such series are practically always only asymptotic anttm of appearance of poles in Padpproximants, which
quickly diverge for sufficiently small expansion parameters.results in unphysical singularitigd—3]. Eliminating such
Moreover, physical quantities of interest usually correspondingularities in two-point Padapproximants is often impos-
neither to weak-coupling nor to strong-coupling limits, but to sible because of restrictions that are imposed by prescribed
an intermediate region of a coupling parameter. Thus théoundary conditions.
problem arises of how to construct an interpolation formula, Finally, Padeapproximation is rather a numerical tech-
valid in the whole region of physical variables, when only nique, but we keep in mind aanalytical approach that
asymptotic expansions near boundaries are known. would combine relatively simple representation for physical

The most known method of deriving interpolation formu- quantities with their good accuracy. The advantage of having
las is the two-point Padapproximatior{1—-3]. In some cases analytical expressions, as compared to just numbers obtained
the latter yields quite reasonable results. Nevertheless, tifeom a numerical procedure, is in the convenience of analyz-
usage of this method has not become widespread becauseinfl such expressions with respect to physical parameters en-
the following difficulties. tering into them.

First of all, to reach sufficient accuracy by employing In the present paper we develop an analytical approach
Padeapproximants, one needs to have tens of terms in peffor deriving interpolation formulas, which is free of the
turbative expansion$1—3]. But the standard situation in above deficiencies of Padapproximation. This approach
physically interesting problems is when one has in hand onlyorks well when just a few terms of asymptotic expansions
a few terms. In such a case, for the same problem one magre available; it successfully sews power-law with exponen-
construct different two-point Padepproximants, all having tial asymptotic behavior; it does not have at all the problem
correct left-side and right-side limits, but differing from each of compatibility; no unphysical poles arise; it combines ana-
other in the intermediate region by 1000%). This clearly lytical representation with good accuracy. We illustrate the
shows that in the case of short series the two-point” Padapproach by several quantum-mechanical problems that are
approximants cannot provide even qualitative description. usually considered as typical touchstones for any new

Second, two-point Padapproximants can treat at infinity method. These problems include calculation of energy levels
only rational power$1—3] and are not able to describe other for different anharmonic oscillators, for the Hamiltonians
types of behavior, for example, power laws with irrational with double-well potentials, and for quasiresonance models.
powers or exponential functions. However, behavior that isEach of these problems has its own specific calculational
more complicated than the rational-power behavior often ocdifficulties (for review see Refs[5-7]). This is why it is
curs in physical problems. For instance, exponential behaviamportant to show that all of them can be treated by the same
at infinity is constantly exhibited by wave functions. approach. Moreover, we demonstrate that the same method
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is applicable to thenonlinear Schralinger equation, for Transformation inverse to E46) reads

which we find both the energy and wave function of the

ground state. The latter example is interesting not only as an Pi(X,8,Xi) = Yik(Po(X,S,X;),S,X;)- (7)
illustration of wide possibilities of the approach, but it is

important for practical purposes, being related to the descripIhe family{y,} of the endomorphisms defined in E§) is

tion of Bose-condensed particles in traps. We carefully comcalled[11-13 the approximation cascade, because its trajec-
pare the properties of the wave function we have derivedory {y«(¢,s,X;)} is bijective to the sequence of approxima-
with those of the Thomas-Fermi and variational-Gaussiations{P(x,s,X;)}. The cascade velocity can be given by the
approximations. The analysis proves that our wave functiofinite difference

provides the best approximation for a solution to the nonlin-

ear Schrdinger equation considered. Analytical expressions vi(,8:Xi) =Yi(¢,8,%) ~ Yi-1(¢,8,Xi). ®

for the wave function of a vertex filament are also con- . . . . . .
structed, being in good agreement with numerical data. The evolution equation, written in the integral form, is

Il. SELF-SIMILAR INTERPOLATION fpk d—(P:T, ©)
Pk,lvk((PIS!Xi)
Assume that we are interested in finding a functfgr)
in the intervalx; <x<x,. The latter can be finite or infinite. whereP,=P,(x,s,x;), the upper limitP} =P} (x,s,7,X;) is
Let equations defining the functiof(x) be rigorously un-  a self-similar approximation corresponding to a quasifixed
solvable, so that only perturbative asymptotic expansiongoint, andr is an effective time necessary for reaching this
near the boundaries can be derived: near the left boundaryquasifixed point. The latter, in accordance with the inverse

algebraic transforni4), yields

f(X)=p(X,X1), X=X +0 ()
and near the right boundary, Pic (%,8,7 %) =X"°P (X8, 7.X)). (10
f(X)=pi(X,X2), X—X—0 @) To illustrate these steps, consider an asymptotic expan-
sion
wherek=0,1,2 ... . For thetime being, we do not specify .
the physical nature of the functioi(x) and its variablex, _ n
since the general scheme does not depend on these specifi- pk(x,O)—ngo anX (11
cations.

In this section we develop such a general scheme for conp the vicinity of x;,=0. Then, accomplishing the described
structing approximations to the functidifx), so that these procedure, for Eq(10) we find

approximations, interpolating between the asymptotic expan-

sions (1) and (2), could be valid in the whole region

X1<X=<X,. The approach we develop is based on the self- Py (X,s,7,0)=

similar approximation theory8—13 in its algebraically in-

variant formulatior{14—16. Here we show how to construct _ ) )

self-similar approximations so that they be compatible withAN important particular case is whes-»o, then Eq.(12)

the asymptotic boundary conditiori$) and (2). Since all  9IV€sS

theoretical foundation and basic technical details of the 3

method have been expounded in our previous pdjers6], PR _ Gk

we do not repeat them here but only delineate the scheme of im pic (x,,7,0) pkl(x,O)exr< ao ™ ) (13

the approach adapting it to the considered problem of inter-

polation. This shows how exponential functions naturally appear in
Let us take an asymptotic expansion, like E4). or Eq.  our method, together with the radical expressions of type

(2), in the vicinity of a pointx;, with i=1,2. Define the (12).

algebraic transform An expressionp} , given either by Eq(12) or by Eq.

(13), as is seen, is a function of a lower-order sepgs;,

kakT —slk
K k
pkfls(X,O)—WX l . (12

S—

P(X,8,Xi) =X°py(X, X)), 3
whose inverse, evidently, is Pk =Fi(Pk-1)- (14)
PL(X, %) =X"P(X,S,X;). (4)  Analogously to the way by which we have come from an

_ _ asymptotic seriep, to the renormalized expressiqg , we
Introduce an expansion functio{¢,s,x;) by means of the  can renormalizg)_ , entering into relatiori14), which gives
equation

Po(X.5X) =0, X=X(0.S.)). ®) Pk =Fi(Pk-1)=Fk(Fr—1(Pk-2))- (15

Substituting this expansion function into E§), we obtain Repeating such a renormalizatigrimes, we come to

Yi(0,8,%1) = Pi(X(¢,5,%1),8,%)- (6) Pk =F(Fioa(---Fa(po))- - ). (16)
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At eachn step of renormalizatiofil4), two parameterss,  with p;(Xx,) given by Eq.(22). Condition(24) holds true if
and 7,, arise in the resulting expression, according to Egand only if
(12). Therefore thek-times renormalized quantit{i6) con-

. an/ A 1/n
tains X such parameters, s=—n, r=n 2 25
_ a;\ aq
*...*EF*(X,S 17_ ,X'), (17)
Pk “ kot Therefore the first-order self-similar approximant, defined by

where the shorthand notation Eq. (20), becomes

_ _ o Adh A

SkE{Sl,Sz, C ,Sk}, TkE{Tl,Tz, e ,Tk} f:(X'O)_(aOn—’_AlnX)n' (26)
is used. Similarly, starting fromp,(x,0) given in Eq(21), we find

The setss, and ,, are to be defined so that the renormal- the twice renormalized expression

ization procedure would converge to a function satisfying thq:’z*(x,sl,

. 7-113217-210)
boundary conditiong1) and (2). Suppose that we started

from a seriep,(X,X;) written for an asymptotic region of , . o 28,7, —S2f2
with i =1,2. Renormalizing this seriekaimes, we get Eq. =1 [P1(X,81,71,0)]" 2~ —775, X . (27)
(17). In order that the renormalized expressicy) could S28,

satisfy the correct asymptotic behavior at another boundar

point x;, with j#i, we have to require the asymptotic con- Ymposmg the asymptotic boundary condition

dition F3(X,51,71,52, 72,00 = p1(X,2), X—©  (28)
F: (ngk 1?k 1Xi)_> pk(X,XJ'), X_>XJ . (18) we Obta'n
Condition (18) defines the control sets nag/ A\2"
32=—n, To=7_ | — (29)
- - 2a,\ ag
Sk=Sk(X), T=T7K(X) (19
Employing Eq.(29) for Eq. (27), we have
of control functions s;(x),s»(X), ... ,s(X), and ploying =4 a
71(X), 72(X), . . . ,7(X). Substituting these control functions  F3(x,s;,71,S5,72,0)={[p} (X,8;,71,0 12"+ AZMx2} /2,
into Eq.(17), we obtain the final self-similar approximant (30
£ (%,X) = FE(X@(X)E(X),XO- (20) The boundary condition

*
Control functions are called so because of their role of F2(X,81,71,82,72,0) = Pa(X,%),  X— (3D

controlling convergence of the procedure to a function hav-iS satisfied provided that
ing the desired propertigd7]. In general, these functions P

are, really, functions ok, although in particular cases they n ap/ A\ 2ha/ 2B\ 1
can become just parameters. In the latter case, they can be 1=~ 50, ™= _Sla_ P (ﬁ) , (32
called control parameters. 1190
In order to make the above procedure transparent, let Ughere the notation

consider a typical case of two asymptotic expansions,at
=0 andx,=«. Assume that at the left boundary we have a g=2+m-n<2 (n>m) (33
sequence

is used. With the control parameters given by E2p), the

pi(x,0)=ag+a;x, Pa(x,00=ag+tasx+ax ... function p} entering into Eq(30) writes
21
( ) 1/q 1ng/2

of perturbative expansions,(x,0), and at the right bound- p¥ (x,8;,71,0)=| a3+ AZ’”q(m) X (34)
ary, a sequence

Combining Eq.(30) with Eq. (34), we obtain the second-

— n — n m
PX,2)=AX",  Pa(X, @) =AX+BX, ... (2D [ der selfsimilar approximant
of asymptotic expressiong,(x,), with n=m. Starting 19 1q ni2
from p4(x,0), according to Eq(12), we get f;(X’O):[ agfnq+A2/nq = x +A2’”x2] , (35)
—S
a7 . .
p% (%,5,7,0)= ( ag - 11+ l/sx) (23)  defined in Eq(20). In the same way, we may proceed farther
Say calculating ak-order self-similar approximant.

To complete this calculational procedure, we need to an-

As the asymptotic boundary conditi¢t8), we have swer the following question. Assume that we have two

. asymptotic expansions near two boundary points. We may
p1(X,S,7,00—=py(X,0), X—o° (24)  start from one of these expansions, §ayx,x;), imposing
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the boundary condition, as in E¢L8), at another boundary 1d2 1

point, in this case ax,, and thus obtaining the self-similar H=-5—+ §x2+gxm, (41
approximant i (x,x;). The same procedure could be accom- 2 dx

plished, starting fromp,(x,X,) and imposing the boundary

. e .
condition atxy, thus gettingfg (x,x,). The question that rameterg e [0), and the powem=4. These models are

agses 'S ,Wh'Ch of these two approximanty,(x.x,) or classical touchstones from which everyone starts considering
fi (X,X5), is expected to be more accurate? a new method.

The answer to this question can be done from the point of | ot ys be interested in finding the ground-state energy
view of_stability analysiill—l_iﬂ. To th@s e_nd, let us take an e(g) as a function of the coupling parametgr For this
expansionpy(x,x;) near a pointx;, with i=1,2. Suppose fynction, the asymptotic expansions in the weak- and strong-

that po(x,x;) depends orx. If po(x,x;) does not depend on  coypling limits are known. In the weak-coupling limit, per-
X, we have to takep;(x,x;). Define the expansion function tyrphation theory gives

X(¢,X;) by the equation

in which the space variabbee (—«©, +«), the coupling pa-

k
Po(X, X)) =@, X=X(¢,X)). (36) e (g,0)= 20 a,g" (g—0). (42)
n:
Introduce
This series strongly diverges for agy~ 0, since the coeffi-
Yi(@,%) = pr(X(@, %), ), (37 cientsa, grow like n! asn—o [18,19. The coefficients,,
] ] ) o . are, of course, different for different types of oscillators, de-
being a trajectory point of an approximation cascasig pending onm. However, for the sake of simplicity, we do

formed by the family of endomorphisms from E&7). The ot yse the double indexing. In the strong-coupling limit, one
stability of the cascade trajectory is characterized by the lopa5[20] the expansion

cal multipliers
k

J 0) = 2(1-2n)/(m+2) o
il o) =7 y(0.%), (39) ed9.:7)= 2, Aug (g=). (43

whose images in the space are given by the local multipli- Here again the coefficien#, depend orm, that is, on the
kind of oscillator. Not marking this dependence explicitly

ers
will not lead to confusion, since different kinds of oscillators
OPK(X,Xi)  IPR(X, X)X will be considered separately.
M(X,Xi) = aek(Po(X, Xi), Xi) = Do) TP X X)X
LA 17N
(39 A. Quartic oscillator

Start with the quartic oscillator witm=4. For the first

The smaller absolute valugsn,(x,x;)| of the multipliers - .
a3, )| b veral coefficients of the weak-coupling sef4®), one has

correspond to the more stable trajectory of the associate

cascade, and the higher stability implies the better conve 18,19
gence property of the related sequence of approximations 1 3 21 333
[12,13. Therefore, in the asymptotic boundary condition ap= =7, =g, AT g

(18), we must choose that asymptotic expansfmux,x;) 2 8
which corresponds to the more stable cascade trajectory.
If two multipliers, m,(x,x;) and my(x,x,), are equal or
close to each other, then we cannot de@dgriori which of
the self-similar approximants; (x,x;) or 3 (x,Xx5), is pref-

erable. In such a case, it is logical to define the averag

The coefficients of the strong-coupling expansidf) have
been computed by many authors, starting from Hioe and
Montroll [21]. One of the most accurate computations have
been accomplished by Wenig¢22]. The values of the
gtrong-coupling coefficients are Aq=0.667 986, A,

self-similar approximation —0.143669, A,=-0.008628, A,=0.000818, A,
1 =—0.000 082,A;=0.000 008.
fr(x)= E[f’k‘(x,xl)+ fr (X,X2)]. (40) Following the approach described in Sec. Il, we may start

from the weak-coupling seridg2) and define control func-
tions from the asymptotic conditiaf18) with e,(g,) given

Usually, one of the approximatiorfg (x,x;), wherei =1,2, by the strong-coupling expansiga3). In the second order

lies below, and another above the exact functfgw). In

i tpis gives

such a case, the errors of these approximants compensate

each other, essentially improving the accuracy of the average 9a, 43 1/6

approximant(40). e3(9,0=|ag| 1+ 2a. 709 +A892} ,
0

Ill. ANHARMONIC OSCILLATORS with the control parameter
We start illustrating our interpolation approach with the AAGA,[ a3 |V
models of one-dimensional anharmonic oscillators described 0= | GAA =0.660 46.
by the Hamiltonian 3apa; | PAo1
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As a result, we obtain The maximal error of Eq46), with respect to accurate nu-
merical result5] that can be treated as exact, is about
e} (g,00=[a5(1+Cg)*3+A5g?]5, (44 —11%, and the maximal error of E¢47) is about 8%.
In the second order, we find
where L
€3(9.0=5[(1+2Cg)¥*+(2A0)%9?1"%, (49
B GAgAl ag 1/4 2 2 0
a3 |6AGA; _ . . .
0 where C=3.428, with the maximal error-6%. The right

approximant has a comparable accuracy.

In the same way, starting from the strong-coupling expan-  The third-order left approximant is
sion (43) and defining control functions from asymptotic
condition(18) at the left boundary, we find 1
€3(9,0)= 5{[(1+2B10)**+4B,g]"*+ (2A0) g} 14

e5(9,%)=[ ao +( 1Gaoa1 392/3) Yeg v, (45) (49

Numerical calculations show that both approximafdd4)  where B;=4.831 andB,=9.352. The maximal error is
and (45) are close to each other. The accuracy of a selfaround—4%.

similar approximanej (g,X;) can be estimated by compar-  The fourth-order approximant can be written as

ing the values it gives for different coupling parametgrs

with precise numerical calculations accomplished by Hioe . 1 a2 21504 2706
and Montroll[21] for g in the interval 0.0Z g=<20 000. The €2(9,0)= 5 ({[(1+2C19)"*+4C29°]""+8C40"}
maximal percentage error of the left approximdad) is

—2.9% occurring at=0.3, and the largest error of EG5) +(2A0) g%, (50

is 4.2% atg=2. For all g, the left approximani{44) lies
below the exact values of the energy, while the right approxwith C;=6.078,C,=18.143, andC3=22.322. The maximal
imant (45) is above the exact values. The average self-similaerror is about—3%.

approximant In the fifth order, we find
* 1 32 215/4 N 7/6
e;(9)= [ez(g 0)+e3(g,%)] €5(9,00= 5[({[(1+2D19)™"+4D29"]""+8Dsg"}
+16D,9%)%%+ (2A0)*%g°1"% (51

has the maximal error of 1.4% gt=2.

As we see, a quite simple analytical expression provide§vhere D,=7.215, D,=28.848, D,=56.001, and D
sufficiently good accuracy, with the maximal error around_ ;g 39 'Il'he maX|maI2error s 5%3 4
1%. As far as the structure of perturbative series for the For the sixth order, we obtain
guartic anharmonic oscillator is analogous to that of series
for the so-calledp® model of quantum field theor23], we
may hope that for the latter one also could construct analo- et (g,0= —{[({[(1+2K19)3/2+ 4K ,0°]%*+ 8K 93}7/6
gous self-similar approximants.

+ 16K4g4)9/8+ 32K595]11/10+ (2A0)2496}1/24,

B. Sextic oscillator (52)
The sextic oscillatorfi=6) is interesting being a border-

line case between the models whose perturbative series andth the coefficientK;=28.256,K,=41.122,K;=109.122,

Padesummable and those whose series cannot be summeld,=153.119, andKs=104.156. The maximal error of ap-

For the sextic oscillator, Padapproximants converge so proximant(52) is —2%.

slowly that they are computationally usel¢&s24). Equations(46)—(52) show that the accuracy of the self-
Employing the approach of Sec. Il, we use the coefficientsimilar approximants improves with increasing order. To

=0.680 703, A;=0.129464, A,=-0.005512, Aj; demonstrate that there is uniform numerical convergence for

_0 000 328,A,=—0.000 018,A;=0.000 001. We find the all g, we present in Table | the percentage eregdiég,x;) of

first self-similar approximants, from the left, the corresponding approximangs (g,x;), as compared to
exact valuese(g). The accuracy in each order can also be
e¥(g,0)= _(1+ 16A%g) ¥4, (46)  improved by defining the average approximaf§). We

show this for the case of the approximant

and from the right, 1
et (g)=[el(g.0+ef(g.@)], (53

1
* = Z(1+4A2qY?)12 .
€1(9:%) 2(1 4A5g™) “7) whose errors are also presented in Table I.
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TABLE I. Percentage errors of the self-similar approximants for the ground-state energy of the sextic

oscillator, as compared to numerical data €6g).

g e(g)  €1(9.0) e7(9,®) &71(9) &3(9.0) £3(9,0) £4(9,0) 5(9.0) &5(9,0)
0.1 0586945 —8.25 725 —-050 -545 —3.99 —3.06 — 246 —1095
05 0717813 —10.56 588 —234 —471 —248 —144 — 0.88 —053
2 0.915219 —8.47 399 -224 -240 -0.82 -033 -—0.11 -0.06
50 1.858487 —2.47 1.03 -067 -0.16 —0.03 0 0 0
1000 3.850896 —0.59 025 -0.16 -0.01 0 0 0 0

C. Octic oscillator

The case of the octic oscillatom=8) is important to

consider remembering that Paalgproximants are not able to

sum the corresponding perturbation seri@d,25. As we

show below, in our approach we obtain a series of self-
similar approximants exhibiting uniform numerical conver-

gence.
Here we use the following coefficient&,=0.704 046,
A;=0.120 626, A,=—0.004 168, A;=0.000188, A,

= —0.000 007,A5=0.000 001. The first-order left approxi-

mant reads
* 1 5~11/5
el (g9,0= §(1+32A0g) : (54)
while the right approximant is
* 1 22/5\1/2
e1(g,%) =5 (1+4A5g%9)"2 (55)

Comparing this with numerical result§], we find that the

maximal error of Eq.54) is about—13% and that of Eq.

(55) is 8%.
For the second-order left approximant we have

1
€5(9.0)=5[(1+2CQ)**+(2A0)'%*1"",  (56)

with C=5.944, the maximal error being 8%.
In the third order, we get

1
€5(9,0)= 5 {[(1+2B,g)¥+4B,g? 1% (2A0) 1%9°} 1,
(57)

where B;=8.671 andB,=26.807. The maximal error is
—6%.
The fourth-order approximant is

1
€;(9.0)= 5 ({[(1+2C19)**+4C,0%]131% 8C,g°}°

+(2A0) g M2, (58)
with C;=11.151,C,=55.077, andC;=104.667. The maxi-
mal error is—4.5%.

The fifth-order approximant writes

1
€5(9.0)=5[([(1+2D19)%*+4D,g"]"¥% 8D g%}

+ 16D4g4)23/20+ (2A0)2595]1/25, (59)
where D;=13.443, D,=91.126, D;=282.775, andD,
=377.013. The maximal error is 3.5%.

For the sixth order, we obtain

1
€5 (9.0)= S{[(L(1+2K19)%5+ 4K,g?] "%+ 8K 30%) *°

4 16K4g4)23/20+ 32K595]28/25+ (2A0)3096}1/30,
(60)

whereK;=15.508,K,=133.486,K;=581.021,K,=1274,
andK5;=1291. The maximal error is-3%.

As we see, in our approach there is no principal difference
between the types of oscillators, whether it is quartic, sextic,
or octic; for each of them we can easily construct a uni-
formly convergent sequence of self-similar approximants.
The accuracy of the latter in each order can be essentially
improved by composing average approximants, as in Eq.
(53). The errors of the obtained approximants are collected
in Table 11.

Let us emphasize that our aim here was to desivalyti-
cal formulas. The approximants we have constructed are
easier to use than more complicated expressions that follow
from renormalized perturbation thediy7], in which control
functions are introduced into a zero-order Hamiltonian

TABLE II. Percentage errors of the self-similar approximants for the ground-state energy of the octic

oscillator.

g e(9) £1(9,0) e1(9,%) €71(9) &3(9.0) €3(9,0) £3(9.0) &5(9,0) £5(9,0)
0.1 0.620514 —12.01 782 —-210 -790 -572 —427 -330 —2.66
0.5 0.745510 —12.54 6.10 -322 -577 -315 —1.88 -—121 -0.81
2 0.911090 —9.66 439 -264 -313 —-126 -060 -027 —0.17
50 1.594327 —3.38 152 -0.93 -043 -008 —0.02 0 0

1000 2.833102 —1.06 049 —-028 -0.04 0 0 0 0
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[6,7,26—3]. This especially concerns the sextic and octic 1 [+e

oscillators. We think that the possibility to have simple and Z(g)= —j exp{—H (xX)—AH_ (x)}dx
accurate formulas, valid for the whole range of coupling pa- 2w =

rameters, is an advantage of our approach that could be a

useful tool for analyzing the properties of quantum d8&— n 1 fﬂcexp{— H_(x)—AH_(x)}dx, (65)
34]. 2Jm) - '
where
IV. DOUBLE-WELL OSCILLATORS
Models with double-well potentials are notoriously AH.=H(X)—H.(x).

known to be difficult for approximate treatment. For in- . .
stance, perturbation theory in this case results in series that 1N free energy61) is expanded in powers afH..(x),
are not Padeummable. At the same time such potentials argIth the zero-order term

guite common for various problems encountered in physics
and chemistry(see discussion in Ref35]).

One of the difficulties of dealing with double-well models

is that the corresponding physical quantities, as functions o
the coupling parameter, can display not two characteristic

Fo(g,w)=Inw—ug, (66)

e first-order term

2
regions of behavior, that is, the weak-coupling and the F.(g w)=lnw—a2—i—3+ a4+3i+i g
strong-coupling regions, but a third region, intermediate be- ’ 202 2 w? 4t
tween weak and strong coupling. This behavior is similar to (67)

that of some models of quantum field theory where in the

transition region instanton effects are crucial, bridging theand so on.

weak- and strong-coupling limifs86,37). The control functiorw(g) is defined from the quasifixed-
point condition

A. Zero-dimensional model

J
Let us, first, consider the so-called zero-dimensional £F1(g,w)=o, (68)
double-well model whose free energy is written as
which gives
f(g)=—InZ(g), (61)
112
(@)= | ——2 (69)
()=
where m_l
1 [+ This control function in the weak-coupling limit, as—0,
Z(g)=—=| exp[—H(x)}dx (62 pehaves as
\/; — 00
3 45
plays the role of a partition function with the Hamiltonian w(g)=\2| 1+ 897 129 (70
H(x)=-x*+gx*, g=0. (63) and in the strong-coupling limit, ag—o~, it has the

asymptotic behavior
The latter has a maximuid(0)=0 atx=0 and two minima 1 1
H(i.a)=—1/4g atx=taft1/@. ' w(g)=(3g)l/4+_(39)71/4_’__(39)73/4. (72)
Direct use of perturbation theory, in powers gfto the 2 8
free energy(61) is impossible, sincd(g)— —o asg—0. _ _ .
Thence, a special procedure is necessary. To this end, wedr ge[0:2), function (69) changes in the interval/2

define the trial Hamiltonians <w(g)<co.
Defining
H=(0=w*(xa)"= s, 69 () =Fi(@,0(9)), (72
in which from Egs.(66) and(67) we have
1 1 fo(g)=I Loy (g)=I t 1.1

andw is a trial parameter to become later a control function.Similarly, calculating-,(g,w), we come in the second order
The partition function62) can be written in the form to



PRA 58 SELF-SIMILAR INTERPOLATION IN QUANTUM MECHANICS 103

1 1 5 14 1f(g)
fal@)=lho———=— _2+Q (74) T T T T T T T

Wishing to estimate the accuracy of the approximations
f1(g) and f,(g), let us notice that the exact functidfl)
changes from-« asg—0 to + o asg—o, crossing zero at
g=9.=2.758, that isf(g.) =0. Therefore we cannot define
the percentage error in the standard way as 180%(9)
—f(9)1/f(g), since such a definition contains zero in the
denominator. Instead of this, we may evaluate the accuracy
of a crossing point given by the corresponding approxima-
tion, that is, the accuracy of the solutigfl” to the equation

fk(g(ck)) =0. (75) 0 0.5 1 1.5 2 2.5 3 35 4

For the first approximation, we hagé"=0.585 which gives FIG. 1. The free energy of the double-well model given by the
the error of—79%, as compared to the exagt=2.758. For  approximantsf,(g) (dashed ling f,(g) (short-dashed line and
the second approximation, we @82)21352, whose error f3(g) (solid line). Crosses correspond to the exact values of func-
is —51%. As is seen, this accuracy is not high, so that it igfion (61).

desirable to improve it.

Introduce the function 1 14
fg(g)zfo(g)—gex 5aex;{—€a) , (80)

a(g)= 1 _ v1+3g—-1 76)
w?(g) 39 where a=a(g) is given by Eq.(76). The obtained self-

. . . ) L similar approximant80) provides much better approxima-
This func_tlon changes in the intervakx(g) <3, with the i to function (61), compared tof,(g) and f,(g). The
asymptotic behavior crossing pointg* =2.858, defined by the conditiof (g*)

=0, is quite close to the exagt. and gives an error 3.6%.
g (g—0) i'lr']h;thql.(SO) is an accurate approximant is also clearly seen

N| =
| W

a(g)= 1 1

\/Tg_ 3 (g—>) B. One-dimensional oscillator

) ) o From the model of the preceding section, we now pass to
Using Eq.(76), we can write for the approximatiorfg(g)  a more realistic case of the double-well oscillator with the

the following expressions: in the zero order, Hamiltonian
1 3a’ 1d2 1 1
f =—zlna— ——5—, 7 e Y 4
o(9)="75 4(1-2a) 77 H=—5 2t 1eg 2% (81)

wherea= «(Qg), in the first order,
in whichx e (—o°,+) andg e[0,%). The problem of find-

1 1 ing the eigenvalues of Hamiltoniai®l) is a challenge for
f1(9)="fo(9) - Z+ Pl (79 any analytical method, although there are several numerical
techniques calculating the eigenvalues with reasonable accu-
and in the second order, racy[38—43. It is especially difficult to calculate the lowest

energy levels. The main problem here is that instanton con-
1 tributions are crucial in the weak-coupling region providing
fa(@)=fo(g)— 5 (1+ 5a—1407). (79 for an exponentially small splitting of energy levels. In ad-
dition, the energy of the ground-state level is not a monotone

weak- and strong-coupling limits of the exact functi@i), the instanton contributions. Below we shall consider the
but it is not accurate in the intermediate region. In this re-most difficult case of the ground-state energy and that of the

gion, the behavior of the approximation first excited level separated from the former, in the weak-
coupling region, by an exponentially small gap.
f(9)=1o(9) +pi(@) To construct interpolation formulas, we need asymptotic

expansions for the weak- and strong-coupling limits. We
is governed by a serigg («) in powers ofa=a(g). Renor-  shall use such expansions derived in Ré#]. The ground-
malizing this series twice, according to the bootstrap procestate energye, (g) corresponds to a symmetric wave func-
dure[16], we obtain tion, while the first excited level, with an energy (g),
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corresponds to an antisymmetric wave function. These ener- A;=1.742 319, B,;=-0.210 539,
gies can be written in the form
C,=0.081 250, D;=-0.070721.

— 1
ei(g)=e(g)I§A(g), (82 Constructing a self-similar approximation from the right
to the left, we have the right approximant
in which 1
_ 1 €31(g.»)=e*(9)¥54%(9), (88)
e(g)=5le+(9)+e-(g9)]. Alg)=e-(9)—e.(9). o
(83) in which
1/4
Let us notice that the Hamiltoniaf81) is shifted, as com- o (9)= A4g4’3ex 4B n Dg
pared to the standard form, by the term Iy1&hich makes Ag*? [g%%+ (5% D)%
the spectrum of Eq(81) everywhere positivg44]. (89)
For the average energy and the gap, defined in(&8),
we have[44] in the weak-coupling limit, wheig—0, The most difficult here is to interpolate between the power-
law expansion(87) for the gap, in the strong-coupling limit,
_ 1 21 and the exponential behavi¢85) in the weak-coupling re-
e(g)= T_ =9 (84 gion. Nevertheless, employing the technique of Sec. I, we
2 64 :
obtain for the gap the form
and, respectively, * *
A*(g)=& (g)exp[ﬁ (g)]’ (©0)

(89)

A(9) 2 ;{bJr
=—exp - +c/,
J g g

describing a renormalized instanton contribution, where

where 213
3B C
a*(g)=| a¥*+ A¥%g2ex L exp( ! ,
38 2 9 2A,0%* 7\ B1g*°
1024 """ o
*(g)= |b|D4
In the strong-coupling limit, wheg—cc, we may derive £ 9)= [|D4]*3+ (|b| A3 7+ g2/3)1/29]3/4’
[44] for the energies
D4 2/3
3 1 13 — 1 _
-2 13_ — 13, =7 -1 7—9(—) =0.224 17.
2705 53 The behavior of two branches of E@8), compared with
~ 325669 the exact numerical data, correctly describes the nonmono-

tonic behavior of the ground-state energy and the exponen-
tial branching ag=0. The accuracy of the constructed for-

9 3 377
e_(g)= §(10)1’3— Zf(lOg)‘1/3+Elr(1Og)‘1 mulas is very good for both the instanton-dominated region
(g<€0.2) and instanton-free regiom#¥ 0.2), with the error
159 139 tending to zero in both these limits. The most difficult for
31 104(109) 513, description is a narrow intermediate region around the point

g~0.2, where an error is about 25%. The accuracy can be
improved taking into account more terms of asymptotic ex-
pansions, but then the formulas become essentially more
complicated.

From here, for the average energy we get

E(g):Ang_'_ Bg*1/3+cg*1+ Dg*5/31 (86)
where C. Quasistationary states

Quasistationary or resonance states are encountered in a
variety of studies in atomic and molecular physics. A good
discussion and many references are given in Ri§]. Sev-
C=0.221181, D=-0.074 868. eral numerical calculations are known for this problem
[6,42,45,48. Here we derive analytical formulas for both the
real and imaginary parts of the spectrum of the Hamiltonian

A(g)=A;0*+B,g *+Cig7 1 +Dyg % (87 1d 1

H=—7—+> x— x4, 91
where 2 dx? g (9)

A=1.552 580, B=-0.242 850,

And for the gap, we find
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in which xe (—,+0) andge[0,). From three solutions of Eq96) we need to choose that
First, we have to analyze the asymptotic behavior of thevhich satisfies the boundary conditiar{g) —1, asg—0.

spectrum in the weak- and strong-coupling limits. To thisSuch a solution is
end, we invoke perturbation theory starting from the Hamil-

tonian

H0=—§d—x+7x (92)

u(g)=

1 1/3
5\/7297292— 3- 3yg)

-1/3

+3 %\/7297797—3—%9) . (99)

in which u is a trial parameter to be converted into a controlThe control function99) is real forg<g,,, where

function. Introducing, for convenience, the notation

E(g,u)=|n+ 5 |F(g,u) (93

Jo n+1/2

O9h="—7="7% .9 9=

3
— =0.064 150.
Y n?2+n+1/2 27

(100

of ak-order perturbative expression for the energy of a levelComplex roots of Eq(99) appear only afteg>g,. The fact

n=0,1,2..., we find

Fo(g,u)=u, Fi(g,u)=u- ;(2(1—,3),

u
Fa(g,u)=Fa(g,u)— g(az—ZaBJr 2p%5), (94

and so on, analogously to the case of the anharmonic oscil-

lator [[13,31]], with the notation

. 1 _ 6yg _ n?+n+1/2
e PR e vz
17n%+17n+21
(67)?

The control functionu=u(g) can be defined from the

fixed-point condition

In the first order, we get the equation
ul—u+6yg=0, (96)

as a result of which

Substituting the solutioni(g) to Eq. (96) into Eq. (94),
we define

f(9)=Fy(g,u(9)). 97

Then, from Eq.(94) we have

1
fl(g)+§(1—25)a2u.
(98

3 1
fi(9)= ZU+ au’ fo(9)=

that Imu,(g)=0 for g=<g, leads to Imf,(g)=0, wheng
=<0n-

Asymptotic expansions in the weak- and strong-coupling
limits can be written for arbitrary energy levels. For illustra-
tive purpose, we shall write down expansions for the ground
state =0) and the first excited state€1).

For the ground state, when=0 andy= 1, function(98)
yields for the real parts

Re f 1 3 9 P 1701
efi(g)= —5—59 9° ——g,
3 21 153 , 729
Refy(g)=1-79- 4 0*~ ,-¢°~—-¢* (n=0),
(101
while the imaginary parts are
Im f;(g)=Im f5(g)=0, g—0. (102

For the first excited level, for which=1 andy=5/3, for
the real parts of Eq98) we find

5 25, , 13125,
5 55, 625 . 9375
Refy(g)=1-59- ¢*~ -0¢°~——¢* (n=1),

(103

while their imaginary parts are again as in E402).
In the strong-coupling limit, wheg— o, for the ground
state we obtain the real parts

3 1 1
~ 1/3, — -1/3, — -1
Ref,(g)= 8(69) + 4(69) +12(6g)

5/3_ 7/3
108(69) 3 48(69)
35 17
" 13, -0 —13, —° -1
1944(69) "2 328(69)77/3’ (104
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and the imaginary parts

3[ Xl V3

~ 1/3 1/3_ 5/3
Im 11(g)=— —5—(69)%+7-(6g) ¥~ 7-(69)
\/_(6 ) 7/3
648
353 77
Im f5(g)=— —J_(Sg)”3 J— e
96 288
_ 43\/_ ) 5/3__ 211\/—( ) 7/3
1944 23328
(105

For the strong-coupling limit, in the case of the first ex-

cited level =1), we find the real parts

Re f4(0)= 5 (109)1%+ 7 (10) %+ - (10g)
(1%) 5/3_ 1 (1%) 7/3
108 648

Re f2(0)= 15(100) 1+ o2(10g) 12+ 2 (109) !

11 47
+ 5a5(100) - ooz (109) R (108

and imaginary parts

013 3 3

Im f1(g)=~ —g~(109)*+ = (10g) M2~ 7 (10g) "%
f
648(10g) ",
Im f5(g)= 51(!; (10g) 3+ 5[<1Og> v
113 47\3
_m(lm) 5/3__ 7776(1%) 7/3

(107
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—2u*+16gu+u2—16gu+70g°= (109

The solution to Eq(109 will be denoted byu* (g), in order

to distinguish it from that of Eq(96). Among the solutions

of Eqg. (109 it is necessary to choose that which satisfies the
asymptotic boundary condition* (g)— 1, asg— 0. Substi-
tuting u*(g) into

21g°®

3g 1 +39
sud 2ut aud’

3 3
Fa(g,u)= P 7z

we come to
f5(9)=F,(g,u*(9)). (110

Defining the real and imaginary parts of H4.10), we take
those of them for which

Refy(g)>0, Imf;(g)<O.

To solve Eq.(109, we introduce a new variable
A=u(u?-1), (111

for which Eq.(109 reduces to a much simpler equation
A2+ 16g\ +70g%=0 (112

From two solutions to this equatioR, ,= — (8*i J6)g, we
need to choose such that, together with Bd.1), gives the
control functionu*(g) satisfying the conditions discussed
above. The desired solution to Ed.12) is

Mg)=—(8+i6)g.

Then from the equation®—u—\=0 we find

(113

N 1 1/3
u*(g)= +— 8I\2— )
1/ \ 1 —-1/3
+—| =+ —y8I\%-12 , (114
32 18

wherex =\(g) is defined in Eq(113).
In the weak-coupling limit, wherg—0 together with
NA—0, approximant(110 has the following asymptotic ex-

The accuracy of the real parts of the approximations irfP@nsions for the real part:
Eq. (98) is sufficiently good; the maximal error in the first 3 14 157
order is—3.3% and that of the second order is 2%. In the Ref%(g)=1- ~g— —g?—41g3———-—g*—5547°
case of the corresponding imaginary parts, the maximal error 2 32
for g>g, is on the order of 10%. However, fay<g,,

imaginary parts are identically zero, because of which their — Mgg , (115
weak-coupling expansions do not exist. 128
To correct the described deficiency, let us consider the
fixed-point condition(95) of second order. Then, the equa- and for the imaginary part
tion for the control function becomes of the form
Im £ (g)=— E\/Eg3—27\/€g4—1413\/— 64 779
—2u*+ 16ygud+u?— 16ygu+ 120y2592=0. 2 4
(108 (116)

In the strong-coupling limit, wheg— o and|\|—, for
the real part of Eq(110), we have

For the ground-state level,
6=7112, Eq.(108 reduces to

for which=0, y=1, and
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TABLE IIl. The double energyfs(g)=2E*(g) of the lowest
quasistationary state, as compared to numerical vdl(gs

g Ref(9) Ref3 (9) —Imf(g)  —Imf3(g)
0.01 0.984428  0.984429  0.000000 0.000003
0.02 0.967451  0.967477  0.000001 0.000035
0.05 0.900673  0.901116  0.006693 0.004888
0.1 0.794881  0.791404  0.089412 0.090883
0.2 0.72882  0.728985 0.27735 0.281642
0.5 0.7477 0.751513 0.6100 0.613077
1.0 0.8297 0.834876 0.9097 0.911547
2.0 0.964 0.971001 1.260 1.261483
5.0 1.23 1.238149 1.84 1.832649

Re f3(g)=0.672 43¢+ 0.145 203 3+ 0.016 735!
+0.000 608~ >3- 0.000 088~ "2

—0.000 01@ 3-0.7x10 'g 3 (117
and for its imaginary part, we find
Im f3(g)=—1.155 93@+0.246 594 13
—0.000 75@*—0.001 364 5°
—0.000 103~ "3+0.000 00g 3
+0.000 00~ 1% (118

The approximant{110 possesses the weak-coupling ex-
pansion for its imaginary part, thus correcting the deficiency

SELF-SIMILAR INTERPOLATION IN QUANTUM MECHANICS
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Re f(g)

0.5 1 ! Lo ) ! 1 I 1
0 156 2 25 3 35 4 45 5

g

FIG. 2. The real part of the double energy for the lowest qua-
siresonance state represented by the approximants (R©)
(dashed lingand Ré% (g,0) (solid line), compared to exact values
marked by diamonds.

The behavior of these approximants is shown in Fig. 2. The
maximal percentage error df;(g,0) is 24% and that of
2(9,0) is 9%.
To reach good accuracy for the imaginary part, we need
to consider higher-order approximations. For the imaginary
part we find the following sequence of self-similar approxi-

mants:
3b 3/4 —4/3
X [ —
€ p( 4a

a

e 2

+ A g ,
(122

Im %(g,00=—ag®

of the approximations in Eq98). The values of the real and wherea= 26, b=276, andA=1.155 930

imaginary parts of (g) for differentg, as compared to the

precise numerical calculatiofi$2,47], are given in Table Ill.

The maximal percentage error of the real part is 0.7%. The

27 27B 27’6
ex _Eg +2—8 10

Im f¥(g,00= —ag3[

percentage error of the imaginary part cannot be correctly

defined, since Inf(g)—0 asg—0. Recall that the ground-
state energ¥(g) for Hamiltonian(91) is related, according

to Eq.(93), with the functionf(g) as
1
E(9)=51(9). (119

To write an analytical formula approximatirfgg) in the

whole range of the parametere [0,2), we may use the
asymptotic expansions derived above. Employing the tech-
nique of Sec. I, we can obtain for the real part the approxi-

mants
Re f%(g,0)=[exp — 6a,g) + ASg?]*5, (120
Re f%(g,0)=[exp{ —6(a;+a,) g} +ASg?]"®
3/2 2/3
+a,g/1+|—| g?| , (121
A,

in which

a,;=15, a,=—0.548, A,=0.672436, A,=0.145 202.

a 9/8 —8/9
A 93] : (123
where a, b, and A are the same as in Eql22 and B,
=0.477 045,
Im f%(g,0)=—ag® 5 )+ Se 2|
m 5(95 )_ ag eX 70ag 70 Zg
27 10/9 a 3/2 —2/3
+55Bs0°  +| % g“) . (129

whereB,=0.178 716 and;=0.496 502,
[ 4 243
exp —

716
[
* 182549 }

. , 24%
Im f§5(9,0)=—ag

182 Y

81 10/9 45 13/12
- 3 - 4
a 15/8 —8/15
*la 95} : (129

whereB,=0.073 553,B5=0.196 401, andBg=0.552 922.
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~Im f(g) consider here the one-dimensional case which serves as an
2 — T T T T T T T illustration of the applicability of the method.
18 F A It is worth emphasizing that the coupling paramegen
16 L i Eq. (126), when a system o condensed atoms is consid-
14l ] ered, is proportional tdN. Because of this, foN>1, the
’ T coupling parameter can become large and, consequently, per-
12r i turbation theory in powers off is of no sense. Although
Ll P 7 some thermodynamic characteristics of trapped atoms can be
08t /7 = approximately analyzed disregarding their interactions, that
06 L7 # S is, nonlinearity[64—67), but a correct description certainly
0.4 _ i has to take into account these interactip®g8], i.e., nonlin-
earity, since for the cases related to experimésdt-57 the
O's 4 o ] effective coupling is strongy>1.

To derive analytical formulas for the spectrum of the
Hamiltonian (126), we need to find appropriate asymptotic
expansions. Let us start with the Hamiltonian

FIG. 3. The modulus of the imaginary part of the double energy
for the lowest quasiresonance state given by the approximants 1d*> u 5
Imf%(g,0) (short-dashed line Imf*(g,0) (dashed ling and Ho=—zﬁ+ - X5 (127)
Imf% (g,0) (solid line). Exact data are shown by diamonds. X

0 05 1 15 2 25 3 35 4 45 5
g

2

_ o i in which u is a trial parameter. Employing perturbation
The behavior of the self-similar approximan($22)- theory with respect to the perturbation
(125 is displayed in Fig. 3. The curves corresponding to

Egs.(124) and(125 almost coincide in this picture. Figure 3 N 5
clearly demonstrates the convergence of the sequence AH=Z(1-u9)x"+ gy (x),
{Im f§ (g,0)} to exact data marked by diamonds.

we may find thek-order approximation

V. NONLINEAR HAMILTONIANS

L2
v

Ex(g,u)= Fr(g,u) (128

Here we show that our approach is applicable not only to

linear problems of quantum mechanics but to nonlinear prob-
lems as well. for the energy levels labeled by=0,1,2 ... . For the

function F defined in Eq(128 we have

A. One-dimensional case 1 1 Jn
Consider the nonlinear Hamiltonian Folg.)=u,  Fa(g,u)=7| u+ 7+ 1/29\/5’
(129
H= 1d2+12+ 2 126
=22 2 gy(x), (126 where
1 [+= .
in whichx e (—,+%), ge (—,+%), andy(x) is a wave In= 2”n|f exp(— 2x*)Ha(x)dx,
v Y T®

function.
The Hamiltonian(126) is a prototype of thep* model of H,(x) being a Hermite polynomial. In particular

quantum field theory. There exists a controversy in the inter- " '

pretation of the so-called “triviality” of this theorysee dis- 1 3 41

cussion in Refs[48-5(). Therefore, developing methods Jo=m=—, N

that could successfully deal with nonlinear Hamiltonians of V2m

the type(126) could be useful for* quantum field theories,

as well as for those field theories that include scalar-fieldf.

terms, like Eq.(126), in their Lagrangians, e.g., as in the X

Higgs mode[51]. Another important application of the non- P

linear Hamiltonian of the forn{126) is for describing prop- —F4(g,u)=0. (130

erties of atoms confined in magnetic traf§2—54. Such u

magnetically trapped atoms &fRb, *Na, and’Li, as has  The |atter. with the notation

been observed recenfl§5—57, can exhibit the phenomenon ’

of Bose-Einstein condensation. The possibility of the direct J,

observation of Bose condensation distinguishes these alkali- a= T 7p9 (131

metal gases from liquidHe where this condensation could

be investigated only indirectl{see the related discussion in yields

Refs.[58—63). The system of condensed trapped atoms cor-

responds to the ground state of the Hamilton{aB6). We u?+u¥2a—1=0. (132

- 3=
427 "% 642w

The control functionu=u(g) can be found from the
ed-point condition




PRA 58

Substituting the solution(g) to Eq.(132) into Eq.(129), we
get

fi(9) =F(g,u(9)). (133

For instance,

, u=u(9). (134

1/3
fl(g)=§<a—u

In the weak-coupling limita—0 wheng—0, according
to Eq.(131). Then Eq.(134) gives
1 1 1 3
~ -2, 3 __~— 4, ~ 5
fi(g)=1+a g +32a 128% + 5048% -
(139

In the strong-coupling limit, whemy—o together with
a—, Eqg. (134 leads to

3 1 1 7
fi(g)= §a2/3+ —a B2 —¢

-103
2 6 54 '

(136)

In the case of a negative coupling paramegez0, the
weak-coupling limit, wherg— —0 and a— —0, gives the
same asymptotic expansion as HG.35. However, the
strong-coupling limit, whemg— —« and a— —, is differ-
ent from Eq.(136). If a— —«, then Eq.(134) behaves as

a? 1 1 3
fi(g)=——+ 56

13

2a10 2al4'

2a? (137

In the region of negativg<0, the energy128) is posi-

tive for small|g|, and, asgy diminishes, the energy becomes
zero at a critical valug,. The latter can be found from the

definition
f1(g9c)=0. (138

The form (134 shows that equalit(138 holds true for
u2=3. Then, Eq(132 immediately gives

2
a.=— ﬁt: —0.877 38. (139
Because of the relatiof1.31), one has
B 140
gc=—(N 5 ‘J_n ( )

For example, for the ground-state level, witk 0, one finds

g.=—-1.09964 (n=0). (141
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FIG. 4. The self-similar approximants («,0) (solid line) and
5 (a,%) (dashed lingfor «=0 and the approximantt; («a,—0)
(solid line) and f3 (a, —) (dashed lingfor a<0, in the region
—l=sa<l.
f5(a,00=[(1+a;A}V8AS)?*+Aja?]", (142
wherea;=1, A;=3/2, andA,=1/2. Similarly, we can write
down

16A,
1+A%a 1o+ o , (143
1 5A1 2

5/411/4
f5(a,»)= }

whereA; andA, are the same as before and

aj
12p 11
21201

5

1/5

For =<0, we may construct
p( 2a,
exp ——a
a;
(144

with a,= —1/8 andB,= —1/2. Another approximant is

16B3 7141 —-1/4
7B, 2

f5(a,—0)=1+a,

3 (a,—©)=B,a?+B,| B3+|a|| a*—

(145
whereB,=1/2,B;=—1/2, and

! a‘l‘B§3 . 0.198
7'3—@ 220 = V. .

The behavior of approximantd42)—(145 is such that
f3 («,0) practically coincides withi} («,) for =0, while

For g<g., the energy becomes negative, which implies thef’z*(a,—O) coincides withf% (o, — ) for a<0. A slight dif-

instability of the system.
Note that invoking the notatiofiL31), we have managed
to write the asymptotic expansior$35), (136), and (137)

ference between these approximants is noticeable only in the

region—1<qa=<1, as is shown in Fig. 4.

for arbitrary energy levels. Using the derived expansions, we
can construct analytical formulas for the whole spectrum of
the considered nonlinear Hamiltonian. Thus, following the
standard way of Sec. Il, we find far=0 the approximant

B. Radial model

In the preceding section we considered a one-dimensional
nonlinear problem. It is straightforward to apply the same
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approach to nonlinear problems of higher dimensionalitieslet us analyze several lower levels of the spect@s0). In
As an illustration, we consider a spherically symmetricthe weak-coupling limit we may find
model with the nonlinear radial Hamiltonian

3 g 5 79
1 d2 | |+1 1 eooz_ 1+ ), 6012—(14——),
po—t & MED +5r2HgR(D), (149 2\" Vew 2\ 122w
2dr2 2r2
7 21 7 3
in which re[0~*), n=0,1,2...,1=0,12..., thecou- €10= —( g ) €= —( 1+ _3g> g—0
pling parameterge (—«,+«), and R, is a radial wave 64y2 2 80v2m
function. . L
Starting from the trial Hamiltonian while for the strong-coupling limit, we have
- 23 - 23
i@ ey e o eoo9)=1.219 334?53, e,4(g)=1.353 50823
= — — — —r s
T 24 22 2 oy(0)=1.418 788%%, eu(g)=1576 57523, g—os.

with a trial parameteu, we invoke perturbation theory with As is seen, at smadj the energy levegy, is lower thane;,
respect to the perturbatiahH =H —H,. For thek-order ap-  but at largeg, vice versa, the leved;; becomes lower than
proximation of the spectrum we may write €01-

Another difference with the one-dimensional nonlinear
case is the value of the critical coupling constgpat which
the energy levek, (g) crosses zero. This critical parameter
is defined as in Eq(138) and gives the same, as in Eq.
Introduce the effective coupling parameter (139. But, because of the different relatiob49) betweena

andg, we now get, instead of E¢140), the critical coupling

Ex(g,u)= F(g,u). (148

+1+ =
2n|2

‘]nl

a=———-—-0, (149 3\ a
2n+1+3/2 go—— 2”+|+§)J_C-

[

in which "

, For the ground-state level, instead of E#41), we find
2n!
- 4(1+1) —2r2r 1+1/2 2 4
= Finr i3 J e Ly ) I, gc=—2.19927 (n=1=0),

. . - . so that|g.| is about twice larger than that for the one-
whereI" is a gamma function antl, is an associated La- dimensional case.

guerre polynomial. For the part|cular cases that will be ana-

lyzed in what follows, we have
VI. WAVE FUNCTIONS

3 3 35 3 147 In this section we show that the approach we have devel-
00~ 227 01~ 2427 10— 12827 oped permits us to construct analytigal expressions not only

for energy levels but for wave functions as well. We shall

concentrate our attention on the most interesting, from our

231 point of view, case of nonlinear equations.

Jopp=———.
0z 160y27

Accomplishing the same steps as in the preceding section,
we can find the spectrum

A. Nonlinear Schrodinger equation

Consider the equation

1d%y

3 1
en(@)=| 2n+1+ 3| f1(0), (150 —3 g T2 Y=Y, (15

in which f,(g) is defined identically to Eq133). The con-  in whichxe (—,+=) andge[0). The nonlinear Schro
trol functionu(g) is given by the solution of Eq132), only ~ dinger equations of this type are used for describing Bose-
with « introduced in Eq(149). With this renotation for the condensed atoms in magnetic trg{—57. This kind of
parametera, all asymptotic expansions fdf;(g) are the equations is also often called the Gross-Ginzburg-Pitaevskii
same as in Sec. VII. Therefore the corresponding approxiequation [69-72. Condensed atoms correspond to the
mantsf# will have the same form&l42)—(145). ground state of E(q151), which is assumed in what follows.

What differentiates the considered nonlinear radial model The wave function=y(x) is normalized by the condi-
from the one-dimensional nonlinear case is that the energ{on
levels are labeled now by two quantum indicesandl. For o
some combinations of these indices, the specific effect of J | (x)|2dx=1. (152
level crossingwhen varyingg, may occur. To illustrate this,

— oo
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From Eq.(15)) it follows that the wave function is an even showing that among four parametess,b, A, andE, only
function, so thaty(x) = ¢/(—x). Because of this, it has an two are independent. Two additional equations for defining

expansion all parameters are the normalization conditi@®2 and the
definition of the energy
PY(X)=Cq+ Cox2+ C x4, (153
E*(9)=(¢* ,Hy), (158

asx—0, in even powers af. For largex, the harmonic term o , )
in Eq. (151) becomes predominant, and the wave function’/here the*Ham|Iton|a|h1 is the same as in E¢126) and the
has the asymptotic behavior notation E (g)E_E_ stresses Fhat the energy is obtained by
using the self-similar approximari55).
The values ofa, b, andE* depend on the coupling pa-
(154  rameterg. Thus, for the weak-coupling limgg—0 we have

1 2
P(X)=Aex _EX

asx—oo, Our aim is to find an analytical expression ffx) E*(g)==+ g, A’= ngi_
valid in the whole region ok e (—%,+=). Note that Pade 2 \2x \
approximants are not able to interpolate between such differ- . .

ent types of behavior as the power law in E453 and  'nen, relationg156) give

exponential in Eq(154). But using the self-similar interpo-

lation of Sec. Il, we easily obtain the self-similar approxi- 2:_ EJF \/5—19 3:_ \/5_19
mant Co 2 277 ¢ bymr

1 Respectively, from Eqg(157) we get
w*(x)=Aexp{—§x2+ax2exp(—bx2) , (155 P y 157 we g

V21 =0.16524 b ! =0.235702
where ¢* (x)= 3 (x,0) and a= NvX 9= o _3\/5_ ' '
1 ¢ C4 This demonstrates that the functidt55 reduces to the
A=cg, a=§+ o ==—. Gaussian form wheg—0.
0 aco The variational Gaussian function
Expression(155 acquires a transparent physical meaning va u,
when written in the form Ye(x)=|—| exp — 35X (159
N x? is often used not only for smath<<1 but for arbitraryg
Y (x)=Aexp — x|’ e[0,0), with the effective frequency=u(g) defined by

the minimum of the energyis ,H #g), which gives

in which >
ul+ u3’2\/:g— 1=0.
1 o

-1/2
£(x)=| 5 —aexp{ - bxz})

Such a variational energy is very close, with a deviation not

, ) more than several percent, to the energy
plays the role of an effective correlation length.

The parametera, b, andA in Eq. (155 are not indepen- 1 2
dent. The relation between them can be found if we expand E5(g)= Ef’z‘(a,O), a= ;g,
Eq. (155 in powers ofx and substitute this expansion into
Eq. (151). For smallx, Eq. (159 gives corresponding to E¢142), which results in

P (X)=Co+Cox?+cx*  (x—0), o7 \# o7
1+ ——g| +—
_ ) o o 4,/2,,7g 47-rg
where c,= 4+ C5/2cy. Substituting this into Eq(151) and
equating the terms at like powers xfwe find the relations Another very often used approximation for treating Bose-
condensed atoms in harmonic traps is the Thomas-Fermi ap-

2

1
E3(9)=5 (160

c . - .
B 2 _Co 2 g2 proximation(see, e.g/|,73—75), which for Eq.(151) leads to
C,=Co(gCcG—E), c4= 12(1+4gc0E 4E“°). (156 the wave function
2 2\ 1/2
The latter yield the equalities 0~ X
y : 'ﬂTF(X):<T) . XI=xo

1 , b_2(1—2a)E—1
a=5+gA~E, b= ——p 1 —— (157 Jre(¥)=0, |x|=x, (161
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n(x)

1.2 T T T T

0& 1 1 1 1 1 1
0 1 2 3 4 5 6 7 25
g X
FIG. 5. The ground-state energy for the nonlinear Stimger FIG. 6. The density163) for the corresponding wave functions
equation(151) for the self-similar approximant&* (g) (solid ling ~ in the self-similar approximatioit155) (solid line), Gaussian ap-
andE} (g) (dashed lingand for the Thomas-Fermi approximation Proximation(159 (short-dashed ling and Thomas-Fermi approxi-
Er(9) (short-dashed line mation (dashed lingfor g=0.2.
in which the densityng(x) =|¥s(x)|? of the Gaussian approximation
(159, as it should be in the weak-coupling limit. In this
3\ limit, the behavior of the densitpg(x)=|y7r(x)|? of the
Xo=V2Ere= §9 Thomas-Fermi approximation is not correct. As is known

[73,79, the latter approximation is incorrect near the bound-

The energy in the Thomas-Fermi approximation is obtainediry even in the strong-coupling case. Then the demg(ky)
from the normalization conditiofil52) giving in the self-similar approximation is close, except near the
- boundary, to that of the Thomas-Fermi approximation. The

Ere(g)= E § self-similar approximatiom* (x) coincides withng(x) for

THI)= 5129 small x and smoothes the incorrect behavior f(x)
around the boundary. In the strong-coupling limit, the den-

The Thomas-Fermi approximation is assumed to be valid fogity ns(X) of the Gaussian approximation is not accurate.

(162

largeg—. However, even then the wave functi¢t61) is The direct evaluation of the accuracy of each approxima-
correct only forx<x,, where it has an expansion tion can be done by calculating the residual term
Yre(X)=Co+ Cox*+Cax?, RO)=Hy(x) = (¢,Hy) (164
with the coefficients for Eq. (151), whereH is defined in Eq(126) and(x) is a
wave function of the corresponding approximation. The re-
e Xo e — Co o= — Co sidual term forg>1 for the self-similar approximatiofi55)
0 J2g’ 2= 2x2’ 4= 8x4’ is practically zero, meaning that E@.55) is an almost exact

solution of Eq.(151). For the Gaussian approximati¢h59),

The behavior of the functior{161) near the boundary the residual term is much larger, telling that this approxima-
=X, is not correct. Also, this function is not appropriate to tion is much less accurate. And the residual for the Thomas-
evaluate the mean kinetic energy, producing a divergence fdrermi approximation is divergent at the boundary poignt
any g (see discussion ifi73,75). In order to understand though far from this point it is close to zero.
when the total energyl62) for the Thomas-Fermi approxi- The integral characteristic of accuracy of the correspond-
mation starts giving reasonable results, we present in Fig. B9 solutions is the dispersion
the energie$158), (160, and(162). The first two energies,
E*(g) andE3 (g), almost coincide with each other, having o(y)=
correct asymptotic behavior in the weak- as well as in the
strong-coupling limits. The Thomas-Fermi enerBy(9)
possesses an incorrect weak-coupling limit and becomes
reasonable approximation starting frays7.

The density

12

f R0 (169

\ag(e calculated this quantity for ©g=<100. The maximal

ispersion for the self-similar approximatiéb55) is around

1, for the Gaussian approximati¢h59) it is about 20, and

for the Thomas-Fermi approximation it is divergent.
n(x)=|y(x)|? (163 In this way, the self-similar wave functio(155) is the

most accurate solution of the nonlinear Sainger equation

for the corresponding wave functions amd=0.2 is pre- (151), as compared to the Gaussian and Thomas-Fermi ap-

sented in Fig. 6, where the density (x)=|¢* (x)|? of the  proximations. This functiori155) represents the exact solu-

self-similar approximation(155 practically coincides with tion very well for allx andg. In the weak-coupling limig
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—0, it becomes close to the Gaussian form, and in the
strong-coupling limit, it approaches the Thomas-Fermi wave
function for allx except the boundary where it smoothes the
incorrect behavior of the latter function. The crossover point
between the weak-coupling and strong-coupling regimes oc-
curs, as numerical calculations show, at arognre5. This
crossover point can also be evaluated, by an order of magni-
tude, analytically as follows. Notice that the characteristic
length for the Gaussian functiofl59 is xg= v2/u with u

~1, and that such a length for the Thomas-Fermi function
(161) is xo=(39/2)'. These characteristic lengths, typical
of the weak-coupling and strong-coupling regimes, respec-
tively, coincide, that isxg=Xx,, atg~2%%3~2.

B. Vortex filament equation r

Now we shall show that our approach permits us to find FIG. 7. The self-similar approximants (r,0), defined in Eq.
accurate analytical approximations for the function describ{169), describing the structure of a vortex filament. The solid line is
ing the structure of vortex filaments. Considering an un-for f3(r,0), long-dashed line is fai3 (r,0), short-dashed line is for
bounded Bose system and making in the nonlinear ‘Schrd’z(r,0), and the dotted line is fofz(r,0). Diamonds represent

dinger equation the substitution(r)="f(r)e', in whichr  €xact numerical data.
and ¢ are dimensionless polar coordinates, one comes 3 3 16
[70,72 to the equation S22 4.~ 6

1+4r +16r +16r ,

f3(r,0)=cyr

d2f+1 ar_ 1 +f—f3=0 166)
dr2 rdr y2 o (169 % r O =cur| 1412 9 4.1 o, 1 G

5(|", )=Csr|{ 1+r +%r +3—5r +mr ,
The solution to this equation is usually obtained numerically (169
[70,76,71. Here we shall construct a sequence of analytical i o . .
approximations for the solution to E4166) and compare in Which the coefficients, defined so as to give the correct
them with the known numerical data. Note that the equation@Symptotic expansions, are

similar to Eq.(166) have been considered as well for de-

scribing magnetic solitong78], isomeric states of quantum c,=4"%=05, cz=4"1"=0.707,
fields[79], and vortices of complex scalar fielf80]. There-
fore the possibility of deriving accurate analytical solutions c,=16"Y6=0.630, c5=140 8=0.539. (170

to these equations is important for many applications, such

as condensed Bose gas, superfluid helium, magnets in strofge pehavior of the approximartt§(r,0) is shown in Fig. 7,

magnetic fields, and different models of quantum fields. compared with numerical daf¥0,76,77. As can be con-
At small r—0, the solution to Eq.(166) has the ¢,qed from this figuref? (r,0) is a very accurate solution.

asymptotic expansion

VIl. CONCLUSION
f(r)y=cr

1- §r2)' (167 We have developed an approach for obtaining analytical
solutions of quantum-mechanical problems. This approach
makes it possible, starting from asymptotic expansions hav-
ing sense only in the vicinity of limiting points, to derive
interpolation formulas valid in the whole range of variables.
1, 9, 169 ¢ The developed method is rather general and can be applied
f(O)=1-3r"=gr == = (168 {5 various problems. We demonstrated its applicability to
several quantum-mechanical models, such as different anhar-
monic oscillators, double-well potentials, resonance models
with quasistationary states, and nonlinear Hamiltonians. The
method permits one to construct accurate analytical expres-
sions for energy levels as well as for wave functions. It is
important that this method provides a regular procedure for
deriving a convergent sequence of subsequent approxima-
tions, so that it is possible to reach the desired accuracy by
1 calculat_ing higher-order apprpxi_mations. T_he iglea of the ap-
% (r.0)=c r( 14 }r2+ Er“) proach is based on the self-similar approximation th¢8ry
CRN 3 2 4 ’ 17]]; this is why we call the method developed in the present

wherec is a constant. At large—«, one gets

Employing the approach of Sec. Il, we easily obtain the fol-
lowing sequence of self-similar approximants:

—1/2
f5(r,00=cyr 1+Zr2) ,
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