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Self-similar interpolation in quantum mechanics
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An approach is developed for constructing simple analytical formulas accurately approximating solutions to
eigenvalue problems of quantum mechanics. This approach is based on self-similar approximation theory. In
order to derive interpolation formulas valid in the whole range of parameters of considered physical quantities,
the self-similar renormalization procedure is complemented here by boundary conditions which define control
functions guaranteeing correct asymptotic behavior in the vicinity of boundary points. To emphasize the
generality of the approach, it is illustrated by different problems that are typical for quantum mechanics, such
as anharmonic oscillators, double-well potentials, and quasiresonance models with quasistationary states. In
addition, the nonlinear Schro¨dinger equation is considered, for which both eigenvalues and wave functions are
constructed.@S1050-2947~98!03207-7#

PACS number~s!: 03.65.Ge, 02.30.Lt, 02.30.Mv
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I. INTRODUCTION

A standard problem in quantum mechanics is how
solve approximately stationary Schro¨dinger equations that do
not possess exact solutions. In the cases of asymptotic
small and asymptotically large coupling parameters, one m
employ perturbation theory presenting solutions as power
ries in powers of the corresponding small parameter. Ho
ever, such series are practically always only asymptotic
quickly diverge for sufficiently small expansion paramete
Moreover, physical quantities of interest usually correspo
neither to weak-coupling nor to strong-coupling limits, but
an intermediate region of a coupling parameter. Thus
problem arises of how to construct an interpolation formu
valid in the whole region of physical variables, when on
asymptotic expansions near boundaries are known.

The most known method of deriving interpolation form
las is the two-point Pade´ approximation@1–3#. In some cases
the latter yields quite reasonable results. Nevertheless,
usage of this method has not become widespread becau
the following difficulties.

First of all, to reach sufficient accuracy by employin
Padéapproximants, one needs to have tens of terms in
turbative expansions@1–3#. But the standard situation in
physically interesting problems is when one has in hand o
a few terms. In such a case, for the same problem one
construct different two-point Pade´ approximants, all having
correct left-side and right-side limits, but differing from ea
other in the intermediate region by 1000%@4#. This clearly
shows that in the case of short series the two-point P´
approximants cannot provide even qualitative description

Second, two-point Pade´ approximants can treat at infinit
only rational powers@1–3# and are not able to describe oth
types of behavior, for example, power laws with irration
powers or exponential functions. However, behavior tha
more complicated than the rational-power behavior often
curs in physical problems. For instance, exponential beha
at infinity is constantly exhibited by wave functions.
581050-2947/98/58~1!/96~20!/$15.00
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Third, interpolation between two different expansions,
using two-point Pade´ approximants, can be accomplishe
solely when these two expansions have compatible varia
@1–3#. For example, even for such a simple problem as
anharmonic oscillator, the eigenvalues in the weak-coup
and strong-coupling expansions have incompatible varia
@5#.

Fourth, there exists the well-known and annoying pro
lem of appearance of poles in Pade´ approximants, which
results in unphysical singularities@1–3#. Eliminating such
singularities in two-point Pade´ approximants is often impos
sible because of restrictions that are imposed by prescr
boundary conditions.

Finally, Pade´ approximation is rather a numerical tec
nique, but we keep in mind ananalytical approach that
would combine relatively simple representation for physi
quantities with their good accuracy. The advantage of hav
analytical expressions, as compared to just numbers obta
from a numerical procedure, is in the convenience of ana
ing such expressions with respect to physical parameters
tering into them.

In the present paper we develop an analytical appro
for deriving interpolation formulas, which is free of th
above deficiencies of Pade´ approximation. This approach
works well when just a few terms of asymptotic expansio
are available; it successfully sews power-law with expon
tial asymptotic behavior; it does not have at all the probl
of compatibility; no unphysical poles arise; it combines an
lytical representation with good accuracy. We illustrate t
approach by several quantum-mechanical problems that
usually considered as typical touchstones for any n
method. These problems include calculation of energy lev
for different anharmonic oscillators, for the Hamiltonian
with double-well potentials, and for quasiresonance mod
Each of these problems has its own specific calculatio
difficulties ~for review see Refs.@5–7#!. This is why it is
important to show that all of them can be treated by the sa
approach. Moreover, we demonstrate that the same me
96 © 1998 The American Physical Society
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PRA 58 97SELF-SIMILAR INTERPOLATION IN QUANTUM MECHANICS
is applicable to thenonlinear Schrödinger equation, for
which we find both the energy and wave function of t
ground state. The latter example is interesting not only as
illustration of wide possibilities of the approach, but it
important for practical purposes, being related to the desc
tion of Bose-condensed particles in traps. We carefully co
pare the properties of the wave function we have deri
with those of the Thomas-Fermi and variational-Gauss
approximations. The analysis proves that our wave func
provides the best approximation for a solution to the non
ear Schro¨dinger equation considered. Analytical expressio
for the wave function of a vertex filament are also co
structed, being in good agreement with numerical data.

II. SELF-SIMILAR INTERPOLATION

Assume that we are interested in finding a functionf (x)
in the intervalx1<x<x2. The latter can be finite or infinite
Let equations defining the functionf (x) be rigorously un-
solvable, so that only perturbative asymptotic expansi
near the boundaries can be derived: near the left bound

f ~x!.pk~x,x1!, x→x110 ~1!

and near the right boundary,

f ~x!.pk~x,x2!, x→x220 ~2!

wherek50,1,2, . . . . For thetime being, we do not specify
the physical nature of the functionf (x) and its variablex,
since the general scheme does not depend on these sp
cations.

In this section we develop such a general scheme for c
structing approximations to the functionf (x), so that these
approximations, interpolating between the asymptotic exp
sions ~1! and ~2!, could be valid in the whole region
x1<x<x2. The approach we develop is based on the s
similar approximation theory@8–13# in its algebraically in-
variant formulation@14–16#. Here we show how to construc
self-similar approximations so that they be compatible w
the asymptotic boundary conditions~1! and ~2!. Since all
theoretical foundation and basic technical details of
method have been expounded in our previous papers@8–16#,
we do not repeat them here but only delineate the schem
the approach adapting it to the considered problem of in
polation.

Let us take an asymptotic expansion, like Eq.~1! or Eq.
~2!, in the vicinity of a pointxi , with i 51,2. Define the
algebraic transform

Pk~x,s,xi !5xspk~x,xi !, ~3!

whose inverse, evidently, is

pk~x,xi !5x2sPk~x,s,xi !. ~4!

Introduce an expansion functionx(w,s,xi) by means of the
equation

P0~x,s,xi !5w, x5x~w,s,xi !. ~5!

Substituting this expansion function into Eq.~3!, we obtain

yk~w,s,xi !5Pk„x~w,s,xi !,s,xi…. ~6!
n

p-
-
d
n
n
-
s
-

s
y,

cifi-

n-

n-

f-

e

of
r-

Transformation inverse to Eq.~6! reads

Pk~x,s,xi !5yk„P0~x,s,xi !,s,xi…. ~7!

The family $yk% of the endomorphisms defined in Eq.~6! is
called@11–13# the approximation cascade, because its traj
tory $yk(w,s,xi)% is bijective to the sequence of approxim
tions $Pk(x,s,xi)%. The cascade velocity can be given by t
finite difference

vk~w,s,xi !5yk~w,s,xi !2yk21~w,s,xi !. ~8!

The evolution equation, written in the integral form, is

E
Pk21

Pk* dw

vk~w,s,xi !
5t, ~9!

wherePk5Pk(x,s,xi), the upper limitPk* 5Pk* (x,s,t,xi) is
a self-similar approximation corresponding to a quasifix
point, andt is an effective time necessary for reaching th
quasifixed point. The latter, in accordance with the inve
algebraic transform~4!, yields

pk* ~x,s,t,xi !5x2sPk* ~x,s,t,xi !. ~10!

To illustrate these steps, consider an asymptotic exp
sion

pk~x,0!5 (
n50

k

anxn ~11!

in the vicinity of x150. Then, accomplishing the describe
procedure, for Eq.~10! we find

pk* ~x,s,t,0!5F pk21
2k/s~x,0!2

kakt

sa0
11k/s

xkG2s/k

. ~12!

An important particular case is whens→`, then Eq.~12!
gives

lim
s→`

pk* ~x,s,t,0!5pk21~x,0!expS ak

a0
txkD . ~13!

This shows how exponential functions naturally appear
our method, together with the radical expressions of ty
~12!.

An expressionpk* , given either by Eq.~12! or by Eq.
~13!, as is seen, is a function of a lower-order seriespk21,

pk* 5Fk~pk21!. ~14!

Analogously to the way by which we have come from
asymptotic seriespk to the renormalized expressionpk* , we
can renormalizepk21 entering into relation~14!, which gives

pk** 5Fk~pk21* !5Fk„Fk21~pk22!…. ~15!

Repeating such a renormalizationk times, we come to

pk*
. . . * 5Fk~Fk21„•••F1~p0!…••• !. ~16!
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At eachn step of renormalization~14!, two parameters,sn
and tn , arise in the resulting expression, according to E
~12!. Therefore thek-times renormalized quantity~16! con-
tains 2k such parameters,

pk*
. . . * [Fk* ~x,s̄k ,t̄k ,xi !, ~17!

where the shorthand notation

s̄k[$s1 ,s2 , . . . ,sk%, t̄k[$t1 ,t2 , . . . ,tk%

is used.
The setss̄k and t̄k are to be defined so that the renorm

ization procedure would converge to a function satisfying
boundary conditions~1! and ~2!. Suppose that we starte
from a seriespk(x,xi) written for an asymptotic region ofxi ,
with i 51,2. Renormalizing this series 2k times, we get Eq.
~17!. In order that the renormalized expression~17! could
satisfy the correct asymptotic behavior at another bound
point xj , with j Þ i , we have to require the asymptotic co
dition

Fk* ~x,s̄k ,t̄k ,xi !→pk~x,xj !, x→xj . ~18!

Condition ~18! defines the control sets

s̄k5 s̄k~x!, t̄k5 t̄k~x! ~19!

of control functions s1(x),s2(x), . . . ,sk(x), and
t1(x),t2(x), . . . ,tk(x). Substituting these control function
into Eq. ~17!, we obtain the final self-similar approximant

f k* ~x,xi !5Fk* „x,s̄k~x!,t̄k~x!,xi…. ~20!

Control functions are called so because of their role
controlling convergence of the procedure to a function h
ing the desired properties@17#. In general, these function
are, really, functions ofx, although in particular cases the
can become just parameters. In the latter case, they ca
called control parameters.

In order to make the above procedure transparent, le
consider a typical case of two asymptotic expansions ax1
50 andx25`. Assume that at the left boundary we have
sequence

p1~x,0!5a01a1x, p2~x,0!5a01a1x1a2x2, . . .
~21!

of perturbative expansionspk(x,0), and at the right bound
ary, a sequence

p1~x,`!5Axn, p2~x,`!5Axn1Bxm, . . . ~22!

of asymptotic expressionspk(x,`), with n>m. Starting
from p1(x,0), according to Eq.~12!, we get

p1* ~x,s,t,0!5S a0
21/s2

a1t

sa0
111/s

xD 2s

. ~23!

As the asymptotic boundary condition~18!, we have

p1* ~x,s,t,0!→p1~x,`!, x→` ~24!
.

e

ry

f
-

be

us

with p1(x,`) given by Eq.~22!. Condition~24! holds true if
and only if

s52n, t5n
a0

a1
S A

a0
D 1/n

. ~25!

Therefore the first-order self-similar approximant, defined
Eq. ~20!, becomes

f 1* ~x,0!5~a0
1/n1A1/nx!n. ~26!

Similarly, starting fromp2(x,0) given in Eq.~21!, we find
the twice renormalized expression

F2* ~x,s1 ,t1 ,s2 ,t2,0!

5H @p1* ~x,s1 ,t1,0!#22/s22
2a2t2

s2a0
112/s2

x2J 2s2/2

. ~27!

Imposing the asymptotic boundary condition

F2* ~x,s1 ,t1 ,s2 ,t2,0!→p1~x,`!, x→` ~28!

we obtain

s252n, t25
na0

2a2
S A

a0
D 2/n

. ~29!

Employing Eq.~29! for Eq. ~27!, we have

F2* ~x,s1 ,t1 ,s2 ,t2,0!5$@p1* ~x,s1 ,t1,0!#2/n1A2/nx2%n/2.
~30!

The boundary condition

F2* ~x,s1 ,t1 ,s2 ,t2,0!→p2~x,`!, x→` ~31!

is satisfied provided that

s152
n

2
q, t152s1

a0

a1
S A

a0
D 2/nqS 2B

nAD 1/q

, ~32!

where the notation

q[21m2n,2 ~n.m! ~33!

is used. With the control parameters given by Eq.~32!, the
function p1* entering into Eq.~30! writes

p1* ~x,s1 ,t1,0!5Fa0
2/nq1A2/nqS 2B

nAD 1/q

xGnq/2

. ~34!

Combining Eq.~30! with Eq. ~34!, we obtain the second
order self-similar approximant

f 2* ~x,0!5H Fa0
2/nq1A2/nqS 2B

nAD 1/q

xGq

1A2/nx2J n/2

, ~35!

defined in Eq.~20!. In the same way, we may proceed farth
calculating ak-order self-similar approximant.

To complete this calculational procedure, we need to
swer the following question. Assume that we have tw
asymptotic expansions near two boundary points. We m
start from one of these expansions, saypk(x,x1), imposing
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PRA 58 99SELF-SIMILAR INTERPOLATION IN QUANTUM MECHANICS
the boundary condition, as in Eq.~18!, at another boundary
point, in this case atx2, and thus obtaining the self-simila
approximantf k* (x,x1). The same procedure could be acco
plished, starting frompk(x,x2) and imposing the boundar
condition at x1, thus getting f k* (x,x2). The question that
arises is which of these two approximants,f k* (x,x1) or
f k* (x,x2), is expected to be more accurate?

The answer to this question can be done from the poin
view of stability analysis@11–13#. To this end, let us take a
expansionpk(x,xi) near a pointxi , with i 51,2. Suppose
that p0(x,xi) depends onx. If p0(x,xi) does not depend on
x, we have to takep1(x,xi). Define the expansion functio
x(w,xi) by the equation

p0~x,xi !5w, x5x~w,xi !. ~36!

Introduce

yk~w,xi !5pk„x~w,xi !,xi…, ~37!

being a trajectory point of an approximation cascade$yk
i %

formed by the family of endomorphisms from Eq.~37!. The
stability of the cascade trajectory is characterized by the
cal multipliers

mk~w,xi ![
]

]w
y~w,xi !, ~38!

whose images in thex space are given by the local multipl
ers

mk~x,xi ![mk„p0~x,xi !,xi…5
dpk~x,xi !

dp0~x,xi !
5

]pk~x,xi !/]x

]p0~x,xi !/]x
.

~39!

The smaller absolute valuesumk(x,xi)u of the multipliers
correspond to the more stable trajectory of the associ
cascade, and the higher stability implies the better con
gence property of the related sequence of approximat
@12,13#. Therefore, in the asymptotic boundary conditi
~18!, we must choose that asymptotic expansionpk(x,xj )
which corresponds to the more stable cascade trajectory

If two multipliers, mk(x,x1) and mk(x,x2), are equal or
close to each other, then we cannot decidea priori which of
the self-similar approximants,f k* (x,x1) or f k* (x,x2), is pref-
erable. In such a case, it is logical to define the aver
self-similar approximation

f k* ~x![
1

2
@ f k* ~x,x1!1 f k* ~x,x2!#. ~40!

Usually, one of the approximationsf k* (x,xi), wherei 51,2,
lies below, and another above the exact functionf (x). In
such a case, the errors of these approximants compen
each other, essentially improving the accuracy of the aver
approximant~40!.

III. ANHARMONIC OSCILLATORS

We start illustrating our interpolation approach with t
models of one-dimensional anharmonic oscillators descri
by the Hamiltonian
-

f

-

ed
r-
ns

e

ate
ge

d

H52
1

2

d2

dx2
1

1

2
x21gxm, ~41!

in which the space variablexP(2`,1`), the coupling pa-
rametergP@0,̀ ), and the powerm>4. These models are
classical touchstones from which everyone starts conside
a new method.

Let us be interested in finding the ground-state ene
e(g) as a function of the coupling parameterg. For this
function, the asymptotic expansions in the weak- and stro
coupling limits are known. In the weak-coupling limit, pe
turbation theory gives

ek~g,0!5 (
n50

k

angn ~g→0!. ~42!

This series strongly diverges for anygÞ0, since the coeffi-
cientsan grow like n! as n→` @18,19#. The coefficientsan
are, of course, different for different types of oscillators, d
pending onm. However, for the sake of simplicity, we d
not use the double indexing. In the strong-coupling limit, o
has@20# the expansion

ek~g,`!5 (
n50

k

Ang2~122n!/~m12! ~g→`!. ~43!

Here again the coefficientsAn depend onm, that is, on the
kind of oscillator. Not marking this dependence explicit
will not lead to confusion, since different kinds of oscillato
will be considered separately.

A. Quartic oscillator

Start with the quartic oscillator withm54. For the first
several coefficients of the weak-coupling series~42!, one has
@18,19#

a05
1

2
, a15

3

4
, a252

21

8
, a35

333

16
, . . . .

The coefficients of the strong-coupling expansion~43! have
been computed by many authors, starting from Hioe a
Montroll @21#. One of the most accurate computations ha
been accomplished by Weniger@22#. The values of the
strong-coupling coefficients are A050.667 986, A1
50.143 669, A2520.008 628, A350.000 818, A4
520.000 082,A550.000 008.

Following the approach described in Sec. II, we may s
from the weak-coupling series~42! and define control func-
tions from the asymptotic condition~18! with ek(g,`) given
by the strong-coupling expansion~43!. In the second order
this gives

e2* ~g,0!5Fa0
6S 11

9a1

2a0
t0gD 4/3

1A0
6g2G1/6

,

with the control parameter

t05
4A0

4A1

3a0
4a1

S a0
2

6A0A1
D 1/4

50.660 46.
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As a result, we obtain

e2* ~g,0!5@a0
6~11Cg!4/31A0

6g2#1/6, ~44!

where

C5
6A0

4A1

a0
5 S a0

2

6A0A1
D 1/4

.

In the same way, starting from the strong-coupling exp
sion ~43! and defining control functions from asymptot
condition ~18! at the left boundary, we find

e2* ~g,`!5@a0
41~16a0

6a1
21A0

8g2/3!1/2g#1/4. ~45!

Numerical calculations show that both approximants~44!
and ~45! are close to each other. The accuracy of a s
similar approximantek* (g,xi) can be estimated by compa
ing the values it gives for different coupling parametersg,
with precise numerical calculations accomplished by H
and Montroll@21# for g in the interval 0.02<g<20 000. The
maximal percentage error of the left approximant~44! is
22.9% occurring atg50.3, and the largest error of Eq.~45!
is 4.2% atg52. For all g, the left approximant~44! lies
below the exact values of the energy, while the right appr
imant~45! is above the exact values. The average self-sim
approximant

e2* ~g!5
1

2
@e2* ~g,0!1e2* ~g,`!#

has the maximal error of 1.4% atg52.
As we see, a quite simple analytical expression provi

sufficiently good accuracy, with the maximal error arou
1%. As far as the structure of perturbative series for
quartic anharmonic oscillator is analogous to that of se
for the so-calledw4 model of quantum field theory@23#, we
may hope that for the latter one also could construct an
gous self-similar approximants.

B. Sextic oscillator

The sextic oscillator (m56) is interesting being a border
line case between the models whose perturbative series
Padésummable and those whose series cannot be sum
For the sextic oscillator, Pade´ approximants converge s
slowly that they are computationally useless@5,24#.

Employing the approach of Sec. II, we use the coefficie
A050.680 703, A150.129 464, A2520.005 512, A3
50.000 328,A4520.000 018,A550.000 001. We find the
first self-similar approximants, from the left,

e1* ~g,0!5
1

2
~1116A0

4g!1/4, ~46!

and from the right,

e1* ~g,`!5
1

2
~114A0

2g1/2!1/2. ~47!
-

f-

e

-
r

s

e
s

o-

are
ed.

s

The maximal error of Eq.~46!, with respect to accurate nu
merical results@5# that can be treated as exact, is abou
211%, and the maximal error of Eq.~47! is about 8%.

In the second order, we find

e2* ~g,0!5
1

2
@~112Cg!3/21~2A0!8g2#1/8, ~48!

where C53.428, with the maximal error26%. The right
approximant has a comparable accuracy.

The third-order left approximant is

e3* ~g,0!5
1

2
$@~112B1g!3/214B2g2#5/41~2A0!12g3%1/12,

~49!

where B154.831 andB259.352. The maximal error is
around24%.

The fourth-order approximant can be written as

e4* ~g,0!5
1

2
„$@~112C1g!3/214C2g2#5/418C3g3%7/6

1~2A0!16g4
…

1/16, ~50!

with C156.078,C2518.143, andC3522.322. The maximal
error is about23%.

In the fifth order, we find

e5* ~g,0!5
1

2
†„$@~112D1g!3/214D2g2#5/418D3g3%7/6

116D4g4
…

9/81~2A0!20g5
‡

1/20, ~51!

where D157.215, D2528.848, D3556.001, and D4
549.39. The maximal error is22.5%.

For the sixth order, we obtain

e6* ~g,0!5
1

2
$†„$@~112K1g!3/214K2g2#5/418K3g3%7/6

116K4g4
…

9/8132K5g5
‡

11/101~2A0!24g6%1/24,

~52!

with the coefficientsK158.256,K2541.122,K35109.122,
K45153.119, andK55104.156. The maximal error of ap
proximant~52! is 22%.

Equations~46!–~52! show that the accuracy of the sel
similar approximants improves with increasing order.
demonstrate that there is uniform numerical convergence
all g, we present in Table I the percentage errors«k* (g,xi) of
the corresponding approximantsek* (g,xi), as compared to
exact valuese(g). The accuracy in each order can also
improved by defining the average approximants~40!. We
show this for the case of the approximant

e1* ~g!5
1

2
@e1* ~g,0!1e1* ~g,`!#, ~53!

whose errors are also presented in Table I.
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TABLE I. Percentage errors of the self-similar approximants for the ground-state energy of the
oscillator, as compared to numerical data fore(g).

g e(g) «1* (g,0) «1* (g,`) «1* (g) «2* (g,0) «3* (g,0) «4* (g,0) «5* (g,0) «6* (g,0)

0.1 0.586945 28.25 7.25 20.50 25.45 23.99 23.06 2 2.46 21.95
0.5 0.717813 210.56 5.88 22.34 24.71 22.48 21.44 2 0.88 20.53
2 0.915219 28.47 3.99 22.24 22.40 20.82 20.33 2 0.11 20.06
50 1.858487 22.47 1.03 20.67 20.16 20.03 0 0 0
1000 3.850896 20.59 0.25 20.16 20.01 0 0 0 0
o
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C. Octic oscillator

The case of the octic oscillator (m58) is important to
consider remembering that Pade´ approximants are not able t
sum the corresponding perturbation series@24,25#. As we
show below, in our approach we obtain a series of s
similar approximants exhibiting uniform numerical conve
gence.

Here we use the following coefficientsA050.704 046,
A150.120 626, A2520.004 168, A350.000 188, A4
520.000 007,A550.000 001. The first-order left approx
mant reads

e1* ~g,0!5
1

2
~1132A0

5g!1/5, ~54!

while the right approximant is

e1* ~g,`!5
1

2
~114A0

2g2/5!1/2. ~55!

Comparing this with numerical results@5#, we find that the
maximal error of Eq.~54! is about213% and that of Eq.
~55! is 8%.

For the second-order left approximant we have

e2* ~g,0!5
1

2
@~112Cg!8/51~2A0!10g2#1/10, ~56!

with C55.944, the maximal error being28%.
In the third order, we get

e3* ~g,0!5
1

2
$@~112B1g!8/514B2g2#13/101~2A0!15g3%1/5,

~57!

where B158.671 andB2526.807. The maximal error is
26%.

The fourth-order approximant is
f-

e4* ~g,0!5
1

2
„$@~112C1g!8/514C2g2#13/1018C3g3%6/5

1~2A0!20g4
…

1/20, ~58!

with C1511.151,C2555.077, andC35104.667. The maxi-
mal error is24.5%.

The fifth-order approximant writes

e5* ~g,0!5
1

2
†„$@~112D1g!8/514D2g2#13/1018D3g3%6/5

116D4g4
…

23/201~2A0!25g5
‡

1/25, ~59!

where D1513.443, D2591.126, D35282.775, andD4
5377.013. The maximal error is23.5%.

For the sixth order, we obtain

e6* ~g,0!5
1

2
$†„$@~112K1g!8/514K2g2#13/1018K3g3%6/5

116K4g4
…

23/20132K5g5
‡

28/251~2A0!30g6%1/30,

~60!

whereK1515.508,K25133.486,K35581.021,K451274,
andK551291. The maximal error is23%.

As we see, in our approach there is no principal differen
between the types of oscillators, whether it is quartic, sex
or octic; for each of them we can easily construct a u
formly convergent sequence of self-similar approximan
The accuracy of the latter in each order can be essent
improved by composing average approximants, as in
~53!. The errors of the obtained approximants are collec
in Table II.

Let us emphasize that our aim here was to deriveanalyti-
cal formulas. The approximants we have constructed
easier to use than more complicated expressions that fo
from renormalized perturbation theory@17#, in which control
functions are introduced into a zero-order Hamiltoni
octic
TABLE II. Percentage errors of the self-similar approximants for the ground-state energy of the
oscillator.

g e(g) «1* (g,0) «1* (g,`) «1* (g) «2* (g,0) «3* (g,0) «4* (g,0) «5* (g,0) «6* (g,0)

0.1 0.620514 212.01 7.82 22.10 27.90 25.72 24.27 23.30 22.66
0.5 0.745510 212.54 6.10 23.22 25.77 23.15 21.88 21.21 20.81
2 0.911090 29.66 4.39 22.64 23.13 21.26 20.60 20.27 20.17
50 1.594327 23.38 1.52 20.93 20.43 20.08 20.02 0 0
1000 2.833102 21.06 0.49 20.28 20.04 0 0 0 0
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@6,7,26–31#. This especially concerns the sextic and oc
oscillators. We think that the possibility to have simple a
accurate formulas, valid for the whole range of coupling p
rameters, is an advantage of our approach that could
useful tool for analyzing the properties of quantum dots@32–
34#.

IV. DOUBLE-WELL OSCILLATORS

Models with double-well potentials are notorious
known to be difficult for approximate treatment. For i
stance, perturbation theory in this case results in series
are not Pade´ summable. At the same time such potentials
quite common for various problems encountered in phys
and chemistry~see discussion in Ref.@35#!.

One of the difficulties of dealing with double-well mode
is that the corresponding physical quantities, as function
the coupling parameter, can display not two characteri
regions of behavior, that is, the weak-coupling and
strong-coupling regions, but a third region, intermediate
tween weak and strong coupling. This behavior is similar
that of some models of quantum field theory where in
transition region instanton effects are crucial, bridging
weak- and strong-coupling limits@36,37#.

A. Zero-dimensional model

Let us, first, consider the so-called zero-dimensio
double-well model whose free energy is written as

f ~g!52 lnZ~g!, ~61!

where

Z~g!5
1

Ap
E

2`

1`

exp$2H~x!%dx ~62!

plays the role of a partition function with the Hamiltonian

H~x!52x21gx4, g>0. ~63!

The latter has a maximumH(0)50 atx50 and two minima
H(6a)521/4g at x56a561/A2g.

Direct use of perturbation theory, in powers ofg, to the
free energy~61! is impossible, sincef (g)→2` as g→0.
Thence, a special procedure is necessary. To this end
define the trial Hamiltonians

H6~x!5v2~x6a!22u0 , ~64!

in which

a5
1

A2g
, u05

1

4g
,

andv is a trial parameter to become later a control functio
The partition function~62! can be written in the form
-
a

at
e
s

of
ic
e
-

o
e
e

l

we

.

Z~g!5
1

2Ap
E

2`

1`

exp$2H1~x!2DH1~x!%dx

1
1

2Ap
E

2`

1`

exp$2H2~x!2DH2~x!%dx, ~65!

where

DH65H~x!2H6~x!.

The free energy~61! is expanded in powers ofDH6(x),
with the zero-order term

F0~g,v!5 lnv2u0 , ~66!

the first-order term

F1~g,v!5 lnv2a22
1

2v2
2

1

2
1S a41

3a2

v2
1

3

4v4D g,

~67!

and so on.
The control functionv(g) is defined from the quasifixed

point condition

]

]v
F1~g,v!50, ~68!

which gives

v~g!5S 3g

A113g21
D 1/2

. ~69!

This control function in the weak-coupling limit, asg→0,
behaves as

v~g!.A2S 11
3

8
g2

45

128
g2D , ~70!

and in the strong-coupling limit, asg→`, it has the
asymptotic behavior

v~g!.~3g!1/41
1

2
~3g!21/41

1

8
~3g!23/4. ~71!

For gP@0,̀ ), function ~69! changes in the intervalA2
<v(g),`.

Defining

f k~g![Fk„g,v~g!…, ~72!

from Eqs.~66! and ~67! we have

f 0~g!5 lnv2
1

4g
, f 1~g!5 lnv2

1

4g
2

1

4
1

1

2v2
.

~73!

Similarly, calculatingF2(g,v), we come in the second orde
to
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f 2~g!5 lnv2
1

4g
2

1

3
2

5

3v2
1

14

3v4
. ~74!

Wishing to estimate the accuracy of the approximatio
f 1(g) and f 2(g), let us notice that the exact function~61!
changes from2` asg→0 to 1` asg→`, crossing zero at
g5gc52.758, that is,f (gc)50. Therefore we cannot defin
the percentage error in the standard way as 100%3@ f k(g)
2 f (g)#/ f (g), since such a definition contains zero in t
denominator. Instead of this, we may evaluate the accu
of a crossing point given by the corresponding approxim
tion, that is, the accuracy of the solutiongc

(k) to the equation

f k~gc
~k!!50. ~75!

For the first approximation, we havegc
(1)50.585 which gives

the error of279%, as compared to the exactgc52.758. For
the second approximation, we getgc

(2)51.352, whose error
is 251%. As is seen, this accuracy is not high, so that i
desirable to improve it.

Introduce the function

a~g![
1

v2~g!
5

A113g21

3g
. ~76!

This function changes in the interval 0<a(g)< 1
2, with the

asymptotic behavior

a~g!.5
1

2
2

3

8
g ~g→0!

1

A3g
2

1

3g
~g→`!

.

Using Eq.~76!, we can write for the approximationsf k(g)
the following expressions: in the zero order,

f 0~g!52
1

2
lna2

3a2

4~122a!
, ~77!

wherea5a(g), in the first order,

f 1~g!5 f 0~g!2
1

4
1

1

2
a, ~78!

and in the second order,

f 2~g!5 f 0~g!2
1

3
~115a214a2!. ~79!

The zero-order approximation~77! correctly describes the
weak- and strong-coupling limits of the exact function~61!,
but it is not accurate in the intermediate region. In this
gion, the behavior of the approximation

f k~g!5 f 0~g!1pk~a!

is governed by a seriespk(a) in powers ofa5a(g). Renor-
malizing this series twice, according to the bootstrap pro
dure @16#, we obtain
s

cy
-

s

-

-

f 2* ~g!5 f 0~g!2
1

3
expH 5aexpS 2

14

5
a D J , ~80!

where a5a(g) is given by Eq.~76!. The obtained self-
similar approximant~80! provides much better approxima
tion to function ~61!, compared tof 1(g) and f 2(g). The
crossing pointgc* 52.858, defined by the conditionf 2* (gc* )
50, is quite close to the exactgc and gives an error 3.6%
That Eq.~80! is an accurate approximant is also clearly se
in Fig. 1.

B. One-dimensional oscillator

From the model of the preceding section, we now pas
a more realistic case of the double-well oscillator with t
Hamiltonian

H52
1

2

d2

dx2
1

1

16g
2

1

2
x21gx4, ~81!

in which xP(2`,1`) andgP@0,̀ ). The problem of find-
ing the eigenvalues of Hamiltonian~81! is a challenge for
any analytical method, although there are several numer
techniques calculating the eigenvalues with reasonable a
racy @38–43#. It is especially difficult to calculate the lowes
energy levels. The main problem here is that instanton c
tributions are crucial in the weak-coupling region providin
for an exponentially small splitting of energy levels. In a
dition, the energy of the ground-state level is not a monoto
function of the coupling parameterg, which is also related to
the instanton contributions. Below we shall consider t
most difficult case of the ground-state energy and that of
first excited level separated from the former, in the wea
coupling region, by an exponentially small gap.

To construct interpolation formulas, we need asympto
expansions for the weak- and strong-coupling limits. W
shall use such expansions derived in Ref.@44#. The ground-
state energye1(g) corresponds to a symmetric wave fun
tion, while the first excited level, with an energye2(g),

FIG. 1. The free energy of the double-well model given by t
approximantsf 1(g) ~dashed line!, f 2(g) ~short-dashed line!, and
f 2* (g) ~solid line!. Crosses correspond to the exact values of fu
tion ~61!.
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corresponds to an antisymmetric wave function. These e
gies can be written in the form

e6~g!5ē~g!7
1

2
D~g!, ~82!

in which

ē~g![
1

2
@e1~g!1e2~g!#, D~g![e2~g!2e1~g!.

~83!

Let us notice that the Hamiltonian~81! is shifted, as com-
pared to the standard form, by the term 1/16g, which makes
the spectrum of Eq.~81! everywhere positive@44#.

For the average energy and the gap, defined in Eq.~83!,
we have@44# in the weak-coupling limit, wheng→0,

ē~g!.
1

A2
2

21

64
g ~84!

and, respectively,

D~g!.
a

g
expS b

g
1cD , ~85!

where

a5
303

1024
, b52

A2

4
, c5

9

4
.

In the strong-coupling limit, wheng→`, we may derive
@44# for the energies

e1~g!.
3

8
~6g!1/32

1

4
~6g!21/31

13

12
~6g!21

2
2705

3456
~6g!25/3,

e2~g!.
9

8
~10!1/32

3

4
~10g!21/31

377

144
~10g!21

2
159 139

31 104
~10g!25/3.

From here, for the average energy we get

ē~g!.Ag1/31Bg21/31Cg211Dg25/3, ~86!

where

A51.552 580, B520.242 850,

C50.221 181, D520.074 868.

And for the gap, we find

D~g!.A1g1/31B1g21/31C1g211D1g25/3, ~87!

where
r- A151.742 319, B1520.210 539,

C150.081 250, D1520.070 721.

Constructing a self-similar approximation from the rig
to the left, we have the right approximant

e4* ~g,`!5ē* ~g!7
1

2
D* ~g!, ~88!

in which

ē* ~g!5F1

4
1A4g4/3expS 4B

Ag2/3D G 1/4

1
Dg

@g2/31( 64
21 uDu)1/4#4

.

~89!

The most difficult here is to interpolate between the pow
law expansion~87! for the gap, in the strong-coupling limit
and the exponential behavior~85! in the weak-coupling re-
gion. Nevertheless, employing the technique of Sec. II,
obtain for the gap the form

D* ~g!5
a* ~g!

g
expH b* ~g!

g J , ~90!

describing a renormalized instanton contribution, where

a* ~g!5Fa3/21A1
3/2g2expH 3B1

2A1g3/2
expS C1

B1g2/3D J G 2/3

,

b* ~g!5
ubuD1

@ uD1u4/31~ ubuA1!4/3~t1g2/3!1/2g#3/4
,

t[9S D1
4

A1
4ubu7D

2/3

50.224 17.

The behavior of two branches of Eq.~88!, compared with
the exact numerical data, correctly describes the nonmo
tonic behavior of the ground-state energy and the expon
tial branching atg50. The accuracy of the constructed fo
mulas is very good for both the instanton-dominated reg
(g!0.2) and instanton-free region (g@0.2), with the error
tending to zero in both these limits. The most difficult f
description is a narrow intermediate region around the po
g'0.2, where an error is about 25%. The accuracy can
improved taking into account more terms of asymptotic e
pansions, but then the formulas become essentially m
complicated.

C. Quasistationary states

Quasistationary or resonance states are encountered
variety of studies in atomic and molecular physics. A go
discussion and many references are given in Ref.@45#. Sev-
eral numerical calculations are known for this proble
@6,42,45,46#. Here we derive analytical formulas for both th
real and imaginary parts of the spectrum of the Hamilton

H52
1

2

d2

dx2
1

1

2
x22gx4, ~91!
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in which xP(2`,1`) andgP@0,̀ ).
First, we have to analyze the asymptotic behavior of

spectrum in the weak- and strong-coupling limits. To th
end, we invoke perturbation theory starting from the Ham
tonian

H052
1

2

d2

dx2
1

u2

2
x2, ~92!

in which u is a trial parameter to be converted into a cont
function. Introducing, for convenience, the notation

Ek~g,u![S n1
1

2DFk~g,u! ~93!

of a k-order perturbative expression for the energy of a le
n50,1,2, . . . , we find

F0~g,u!5u, F1~g,u!5u2
u

4
~2a2b!,

F2~g,u!5F1~g,u!2
u

8
~a222ab12b2d!, ~94!

and so on, analogously to the case of the anharmonic o
lator @@13,31##, with the notation

a[12
1

u2
, b[2

6gg

u3
, g[

n21n11/2

n11/2
,

d[
17n2117n121

~6g!2
.

The control functionu5u(g) can be defined from the
fixed-point condition

]

]u
Fk~g,u!50. ~95!

In the first order, we get the equation

u32u16gg50, ~96!

as a result of which

a5b5
u221

u2
.

Substituting the solutionu(g) to Eq. ~96! into Eq. ~94!,
we define

f k~g![Fk„g,u~g!…. ~97!

Then, from Eq.~94! we have

f 1~g!5
3

4
u1

1

4u
, f 2~g!5 f 1~g!1

1

8
~122d!a2u.

~98!
e

-

l

l

il-

From three solutions of Eq.~96! we need to choose tha
which satisfies the boundary conditionu(g)→1, asg→0.
Such a solution is

u~g!5S 1

9
A729g2g22323ggD 1/3

1
1

3S 1

9
A729g2g22323ggD 21/3

. ~99!

The control function~99! is real forg<gn , where

gn[
g0

g
5

n11/2

n21n11/2
g0 , g0[

A3

27
50.064 150.

~100!

Complex roots of Eq.~99! appear only afterg.gn . The fact
that Im uk(g)50 for g<gn leads to Imf k(g)50, wheng
<gn .

Asymptotic expansions in the weak- and strong-coupl
limits can be written for arbitrary energy levels. For illustr
tive purpose, we shall write down expansions for the grou
state (n50) and the first excited state (n51).

For the ground state, whenn50 andg51, function~98!
yields for the real parts

Re f 1~g!.12
3

2
2

9

2
g2227g32

1701

8
g4,

Re f 2~g!.12
3

2
g2

21

4
g22

153

4
g32

729

2
g4 ~n50!,

~101!

while the imaginary parts are

Im f 1~g!5Im f 2~g!50, g→0. ~102!

For the first excited level, for whichn51 andg55/3, for
the real parts of Eq.~98! we find

Re f 1~g!.12
5

2
g2

25

2
g22125g32

13 125

8
g4,

Re f 2~g!.12
5

2
g2

55

4
g22

625

4
g32

9375

4
g4 ~n51!,

~103!

while their imaginary parts are again as in Eq.~102!.
In the strong-coupling limit, wheng→`, for the ground

state we obtain the real parts

Re f 1~g!.
3

8
~6g!1/31

1

4
~6g!21/31

1

12
~6g!21

1
1

108
~6g!25/32

1

648
~6g!27/3,

Re f 2~g!.
35

96
~6g!1/31

77

288
~6g!21/31

17

144
~6g!21

1
43

1944
~6g!25/32

211

23 328
~6g!27/3, ~104!
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and the imaginary parts

Im f 1~g!.2
3A3

8
~6g!1/31

A3

4
~6g!21/32

A3

108
~6g!25/3

2
A3

648
~6g!27/3,

Im f 2~g!.2
35A3

96
~6g!1/31

77A3

288
~6g!21/3

2
43A3

1944
~6g!25/32

211A3

23 328
~6g!27/3.

~105!

For the strong-coupling limit, in the case of the first e
cited level (n51), we find the real parts

Re f 1~g!.
3

8
~10g!1/31

1

4
~10g!21/31

1

12
~10g!21

1
1

108
~10g!25/32

1

648
~10g!27/3,

Re f 2~g!.
59

160
~10g!1/31

25

96
~10g!21/31

5

48
~10g!21

1
11

648
~10g!25/32

47

7776
~10g!27/3, ~106!

and imaginary parts

Im f 1~g!.2
3A3

8
~10g!1/31

A3

4
~10g!21/32

A3

108
~10g!25/3

2
A3

648
~10g!27/3,

Im f 2~g!.2
59A3

160
~10g!1/31

25A3

96
~10g!21/3

2
11A3

648
~10g!25/32

47A3

7776
~10g!27/3.

~107!

The accuracy of the real parts of the approximations
Eq. ~98! is sufficiently good; the maximal error in the firs
order is23.3% and that of the second order is 2%. In t
case of the corresponding imaginary parts, the maximal e
for g.gn is on the order of 10%. However, forg<gn ,
imaginary parts are identically zero, because of which th
weak-coupling expansions do not exist.

To correct the described deficiency, let us consider
fixed-point condition~95! of second order. Then, the equ
tion for the control function becomes of the form

u622u4116ggu31u2216ggu1120g2dg250.
~108!

For the ground-state level, for whichn50, g51, and
d57/12, Eq.~108! reduces to
n

or

ir

e

u622u4116gu31u2216gu170g250. ~109!

The solution to Eq.~109! will be denoted byu* (g), in order
to distinguish it from that of Eq.~96!. Among the solutions
of Eq. ~109! it is necessary to choose that which satisfies
asymptotic boundary conditionu* (g)→1, asg→0. Substi-
tuting u* (g) into

F2~g,u!5
3

8
u1

3

4u
2

3g

u2
2

1

8u3
1

3g

2u4
2

21g2

4u5
,

we come to

f 2* ~g![F2„g,u* ~g!…. ~110!

Defining the real and imaginary parts of Eq.~110!, we take
those of them for which

Re f k* ~g!.0, Im f k* ~g!<0.

To solve Eq.~109!, we introduce a new variable

l[u~u221!, ~111!

for which Eq.~109! reduces to a much simpler equation

l2116gl170g250. ~112!

From two solutions to this equation,l1,252(86 iA6)g, we
need to choose such that, together with Eq.~111!, gives the
control functionu* (g) satisfying the conditions discusse
above. The desired solution to Eq.~112! is

l~g!52~81 iA6!g. ~113!

Then from the equationu32u2l50 we find

u* ~g!5S l

2
1

1

18
A81l2212D 1/3

1
1

3
S l

2
1

1

18
A81l2212D 21/3

, ~114!

wherel5l(g) is defined in Eq.~113!.
In the weak-coupling limit, wheng→0 together with

l→0, approximant~110! has the following asymptotic ex
pansions for the real part:

Re f 2* ~g!.12
3

2
g2

21

4
g2241g32

14 157

32
g425547g5

2
9 441 289

128
g6, ~115!

and for the imaginary part

Im f 2* ~g!.2
3

4
A6g3227A6g42

1413

2
A6g52

64 779

4
A6g6.

~116!

In the strong-coupling limit, wheng→` andulu→`, for
the real part of Eq.~110!, we have
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Re f 2* ~g!.0.672 436g1/310.145 202g21/310.016 735g21

10.000 603g25/320.000 088g27/3

20.000 010g2320.731027g211/3, ~117!

and for its imaginary part, we find

Im f 2* ~g!.21.155 930g1/310.246 594g21/3

20.000 750g2120.001 364g25/3

20.000 101g27/310.000 003g23

10.000 001g211/3. ~118!

The approximant~110! possesses the weak-coupling e
pansion for its imaginary part, thus correcting the deficien
of the approximations in Eq.~98!. The values of the real an
imaginary parts off 2* (g) for differentg, as compared to the
precise numerical calculations@42,47#, are given in Table III.
The maximal percentage error of the real part is 0.7%. T
percentage error of the imaginary part cannot be corre
defined, since Imf (g)→0 asg→0. Recall that the ground
state energyE(g) for Hamiltonian~91! is related, according
to Eq. ~93!, with the functionf (g) as

E~g!5
1

2
f ~g!. ~119!

To write an analytical formula approximatingf (g) in the
whole range of the parametergP@0,̀ ), we may use the
asymptotic expansions derived above. Employing the te
nique of Sec. II, we can obtain for the real part the appro
mants

Re f 2* ~g,0!5@exp~26a1g!1A1
6g2#1/6, ~120!

Re f 3* ~g,0!5@exp$26~a11a2!g%1A1
6g2#1/6

1a2gF11S a2

A2
D 3/2

g2G2/3

, ~121!

in which

a151.5, a250.548, A150.672 436, A250.145 202.

TABLE III. The double energyf 2* (g)52E* (g) of the lowest
quasistationary state, as compared to numerical valuesf (g).

g Ref (g) Ref 2* (g) 2Imf (g) 2Imf 2* (g)

0.01 0.984428 0.984429 0.000000 0.000003
0.02 0.967451 0.967477 0.000001 0.000035
0.05 0.900673 0.901116 0.006693 0.004888
0.1 0.794881 0.791404 0.089412 0.090883
0.2 0.72882 0.728985 0.27735 0.281642
0.5 0.7477 0.751513 0.6100 0.613077
1.0 0.8297 0.834876 0.9097 0.911547
2.0 0.964 0.971001 1.260 1.261483
5.0 1.23 1.238149 1.84 1.832649
y

e
ly

h-
i-

The behavior of these approximants is shown in Fig. 2. T
maximal percentage error off 2* (g,0) is 24% and that of
f 3* (g,0) is 9%.

To reach good accuracy for the imaginary part, we ne
to consider higher-order approximations. For the imagin
part we find the following sequence of self-similar appro
mants:

Im f 3* ~g,0!52ag3FexpS 2
3b

4a
gD1S a

AD 3/4

g2G24/3

,

~122!

wherea5 3
4 A6, b527A6, andA51.155 930,

Im f 4* ~g,0!52ag3H FexpS 2
27b

28a
gD1

27

28
B1g2G7/6

1S a

AD 9/8

g3J 28/9

, ~123!

where a, b, and A are the same as in Eq.~122! and B1
50.477 045,

Im f 5* ~g,0!52ag3S H FexpS 2
81b

70a
gD1

81

70
B2g2G7/6

1
27

20
B3g3J 10/9

1S a

AD 3/2

g4D 22/3

, ~124!

whereB250.178 716 andB350.496 502,

Im f 6* ~g,0!52ag3F S H FexpS 2
243b

182a
gD1

243

182
B4g2G7/6

1
81

52
B5g3J 10/9

1
45

26
B6g4D 13/12

1S a

AD 15/8

g5G28/15

, ~125!

whereB450.073 553,B550.196 401, andB650.552 922.

FIG. 2. The real part of the double energy for the lowest q
siresonance state represented by the approximants Ref 2* (g,0)
~dashed line! and Ref 3* (g,0) ~solid line!, compared to exact value
marked by diamonds.
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The behavior of the self-similar approximants~122!–
~125! is displayed in Fig. 3. The curves corresponding
Eqs.~124! and~125! almost coincide in this picture. Figure
clearly demonstrates the convergence of the seque
$Im f k* (g,0)% to exact data marked by diamonds.

V. NONLINEAR HAMILTONIANS

Here we show that our approach is applicable not only
linear problems of quantum mechanics but to nonlinear pr
lems as well.

A. One-dimensional case

Consider the nonlinear Hamiltonian

H52
1

2

d2

dx2
1

1

2
x21gc2~x!, ~126!

in which xP(2`,1`), gP(2`,1`), andc(x) is a wave
function.

The Hamiltonian~126! is a prototype of thew4 model of
quantum field theory. There exists a controversy in the in
pretation of the so-called ‘‘triviality’’ of this theory~see dis-
cussion in Refs.@48–50#!. Therefore, developing method
that could successfully deal with nonlinear Hamiltonians
the type~126! could be useful forw4 quantum field theories
as well as for those field theories that include scalar-fi
terms, like Eq.~126!, in their Lagrangians, e.g., as in th
Higgs model@51#. Another important application of the non
linear Hamiltonian of the form~126! is for describing prop-
erties of atoms confined in magnetic traps@52–54#. Such
magnetically trapped atoms of87Rb, 23Na, and 7Li, as has
been observed recently@55–57#, can exhibit the phenomeno
of Bose-Einstein condensation. The possibility of the dir
observation of Bose condensation distinguishes these al
metal gases from liquid4He where this condensation cou
be investigated only indirectly~see the related discussion
Refs.@58–63#!. The system of condensed trapped atoms c
responds to the ground state of the Hamiltonian~126!. We

FIG. 3. The modulus of the imaginary part of the double ene
for the lowest quasiresonance state given by the approxim
Imf 3* (g,0) ~short-dashed line!, Imf 4* (g,0) ~dashed line!, and
Imf 6* (g,0) ~solid line!. Exact data are shown by diamonds.
ce

o
-

r-

f

d

t
li-

r-

consider here the one-dimensional case which serves a
illustration of the applicability of the method.

It is worth emphasizing that the coupling parameterg in
Eq. ~126!, when a system ofN condensed atoms is consid
ered, is proportional toN. Because of this, forN@1, the
coupling parameter can become large and, consequently,
turbation theory in powers ofg is of no sense. Although
some thermodynamic characteristics of trapped atoms ca
approximately analyzed disregarding their interactions, t
is, nonlinearity@64–67#, but a correct description certainl
has to take into account these interactions@68#, i.e., nonlin-
earity, since for the cases related to experiment@55–57# the
effective coupling is strong,g@1.

To derive analytical formulas for the spectrum of th
Hamiltonian ~126!, we need to find appropriate asymptot
expansions. Let us start with the Hamiltonian

H052
1

2

d2

dx2
1

u2

2
x2, ~127!

in which u is a trial parameter. Employing perturbatio
theory with respect to the perturbation

DH5
1

2
~12u2!x21gc2~x!,

we may find thek-order approximation

Ek~g,u!5S n1
1

2DFk~g,u! ~128!

for the energy levels labeled byn50,1,2, . . . . For the
function Fk defined in Eq.~128! we have

F0~g,u!5u, F1~g,u!5
1

2S u1
1

uD1
Jn

n11/2
gAu,

~129!

where

Jn5
1

p2nn!
E

2`

1`

exp~22x2!Hn
4~x!dx,

Hn(x) being a Hermite polynomial. In particular,

J05
1

A2p
, J15

3

4A2p
, J25

41

64A2p
.

The control functionu5u(g) can be found from the
fixed-point condition

]

]u
F1~g,u!50. ~130!

The latter, with the notation

a[
Jn

n11/2
g, ~131!

yields

u21u3/2a2150. ~132!

y
ts
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Substituting the solutionu(g) to Eq.~132! into Eq.~129!, we
get

f k~g!5Fk„g,u~g!…. ~133!

For instance,

f 1~g!5
1

2S 3

u
2uD , u5u~g!. ~134!

In the weak-coupling limit,a→0 wheng→0, according
to Eq. ~131!. Then Eq.~134! gives

f 1~g!.11a2
1

8
a21

1

32
a32

1

128
a41

3

2048
a5.

~135!

In the strong-coupling limit, wheng→` together with
a→`, Eq. ~134! leads to

f 1~g!.
3

2
a2/31

1

2
a22/32

1

6
a221

7

54
a210/3. ~136!

In the case of a negative coupling parameterg,0, the
weak-coupling limit, wheng→20 anda→20, gives the
same asymptotic expansion as Eq.~135!. However, the
strong-coupling limit, wheng→2` anda→2`, is differ-
ent from Eq.~136!. If a→2`, then Eq.~134! behaves as

f 1~g!.2
a2

2
1

1

2a2
2

1

2a6
1

3

2a10
2

13

2a14
. ~137!

In the region of negativeg,0, the energy~128! is posi-
tive for small ugu, and, asg diminishes, the energy become
zero at a critical valuegc . The latter can be found from th
definition

f 1~gc!50. ~138!

The form ~134! shows that equality~138! holds true for
uc

253. Then, Eq.~132! immediately gives

ac52
2

33/4
520.877 38. ~139!

Because of the relation~131!, one has

gc52S n1
1

2Dac

Jn
. ~140!

For example, for the ground-state level, withn50, one finds

gc521.099 64 ~n50!. ~141!

For g,gc , the energy becomes negative, which implies
instability of the system.

Note that invoking the notation~131!, we have managed
to write the asymptotic expansions~135!, ~136!, and ~137!
for arbitrary energy levels. Using the derived expansions,
can construct analytical formulas for the whole spectrum
the considered nonlinear Hamiltonian. Thus, following t
standard way of Sec. II, we find fora>0 the approximant
e

e
f

f 2* ~a,0!5@~11a1A1
3A8A2

3a!2/31A1
3a2#1/3, ~142!

wherea151, A153/2, andA251/2. Similarly, we can write
down

f 2* ~a,`!5F11A1
4aS 16A2

5A1
t21a4/3D 5/4G1/4

, ~143!

whereA1 andA2 are the same as before and

t25
5

A2
S a1

4

212A1
11D 1/5

50.776.

For a<0, we may construct

f 2* ~a,20!511a1aFexpS 2
2a2

a1
a D1

B1
2

a1
2

a2G 1/2

,

~144!

with a2521/8 andB1521/2. Another approximant is

f 3* ~a,2`!5B1a21B2FB2
41uauS a42

16B3

7B2
t3D 7/4G21/4

,

~145!

whereB251/2, B3521/2, and

t35
7

uB3uS a1
4B2

23

220 D 1/7

50.198.

The behavior of approximants~142!–~145! is such that
f 2* (a,0) practically coincides withf 2* (a,`) for a>0, while
f 2* (a,20) coincides withf 3* (a,2`) for a<0. A slight dif-
ference between these approximants is noticeable only in
region21<a<1, as is shown in Fig. 4.

B. Radial model

In the preceding section we considered a one-dimensio
nonlinear problem. It is straightforward to apply the sam

FIG. 4. The self-similar approximantsf 2* (a,0) ~solid line! and
f 2* (a,`) ~dashed line! for a>0 and the approximantsf 2* (a,20)
~solid line! and f 3* (a,2`) ~dashed line! for a<0, in the region
21<a<1.
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approach to nonlinear problems of higher dimensionalit
As an illustration, we consider a spherically symmet
model with the nonlinear radial Hamiltonian

H52
1

2

d2

dr2
1

l ~ l 11!

2r 2
1

1

2
r 21gRnl

2 ~r !, ~146!

in which r P@0,̀ ), n50,1,2, . . . , l 50,1,2, . . . , the cou-
pling parametergP(2`,1`), and Rnl is a radial wave
function.

Starting from the trial Hamiltonian

H052
1

2

d2

dr2
1

l ~ l 11!

2r 2
1

u2

2
r 2, ~147!

with a trial parameteru, we invoke perturbation theory with
respect to the perturbationDH5H2H0. For thek-order ap-
proximation of the spectrum we may write

Ek~g,u![S 2n1 l 1
3

2DFk~g,u!. ~148!

Introduce the effective coupling parameter

a[
Jnl

2n1 l 13/2
g, ~149!

in which

Jnl5F 2n!

G~n1 l 13/2!G
2E

0

`

r 4~ l 11!e22r 2
@Ln

l 11/2~r 2!#4dr,

whereG is a gamma function andLn
l is an associated La

guerre polynomial. For the particular cases that will be a
lyzed in what follows, we have

J005
3

2A2p
, J015

35

24A2p
, J105

147

128A2p
,

J025
231

160A2p
.

Accomplishing the same steps as in the preceding sec
we can find the spectrum

enl~g!5S 2n1 l 1
3

2D f 1~g!, ~150!

in which f 1(g) is defined identically to Eq.~133!. The con-
trol functionu(g) is given by the solution of Eq.~132!, only
with a introduced in Eq.~149!. With this renotation for the
parametera, all asymptotic expansions forf 1(g) are the
same as in Sec. VII. Therefore the corresponding appr
mantsf k* will have the same forms~142!–~145!.

What differentiates the considered nonlinear radial mo
from the one-dimensional nonlinear case is that the ene
levels are labeled now by two quantum indices,n and l . For
some combinations of these indices, the specific effec
level crossing, when varyingg, may occur. To illustrate this
s.

-

n,

i-

el
y

of

let us analyze several lower levels of the spectrum~150!. In
the weak-coupling limit we may find

e00.
3

2S 11
g

A2p
D , e01.

5

2S 11
7g

12A2p
D ,

e10.
7

2S 11
21g

64A2p
D , e02.

7

2S 11
33g

80A2p
D , g→0

while for the strong-coupling limit, we have

e00~g!.1.219 334g2/3, e10~g!.1.353 502g2/3,

e01~g!.1.418 783g2/3, e02~g!.1.576 577g2/3, g→`.

As is seen, at smallg the energy levele01 is lower thane10,
but at largeg, vice versa, the levele10 becomes lower than
e01.

Another difference with the one-dimensional nonline
case is the value of the critical coupling constantgc at which
the energy levelenl(g) crosses zero. This critical paramet
is defined as in Eq.~138! and gives the sameac as in Eq.
~139!. But, because of the different relation~149! betweena
andg, we now get, instead of Eq.~140!, the critical coupling

gc52S 2n1 l 1
3

2D ac

Jnl
.

For the ground-state level, instead of Eq.~141!, we find

gc522.199 27 ~n5 l 50!,

so that ugcu is about twice larger than that for the on
dimensional case.

VI. WAVE FUNCTIONS

In this section we show that the approach we have de
oped permits us to construct analytical expressions not o
for energy levels but for wave functions as well. We sh
concentrate our attention on the most interesting, from
point of view, case of nonlinear equations.

A. Nonlinear Schrödinger equation

Consider the equation

2
1

2

d2c

dx2
1

1

2
x2c1gc35Ec, ~151!

in which xP(2`,1`) andgP@0,̀ ). The nonlinear Schro¨-
dinger equations of this type are used for describing Bo
condensed atoms in magnetic traps@55–57#. This kind of
equations is also often called the Gross-Ginzburg-Pitaev
equation @69–72#. Condensed atoms correspond to t
ground state of Eq.~151!, which is assumed in what follows

The wave functionc5c(x) is normalized by the condi-
tion

E
2`

1`

uc~x!u2dx51. ~152!
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From Eq.~151! it follows that the wave function is an eve
function, so thatc(x)5c(2x). Because of this, it has a
expansion

c~x!.c01c2x21c4x4, ~153!

asx→0, in even powers ofx. For largex, the harmonic term
in Eq. ~151! becomes predominant, and the wave funct
has the asymptotic behavior

c~x!.AexpS 2
1

2
x2D ~154!

asx→`. Our aim is to find an analytical expression forc(x)
valid in the whole region ofxP(2`,1`). Note that Pade´
approximants are not able to interpolate between such di
ent types of behavior as the power law in Eq.~153! and
exponential in Eq.~154!. But using the self-similar interpo
lation of Sec. II, we easily obtain the self-similar approx
mant

c* ~x!5AexpH 2
1

2
x21ax2exp~2bx2!J , ~155!

wherec* (x)[c3* (x,0) and

A5c0 , a5
1

2
1

c2

c0
, b52

c4

ac0
2

.

Expression~155! acquires a transparent physical mean
when written in the form

c* ~x!5AexpH 2
x2

j2~x!
J ,

in which

j~x!5S 1

2
2aexp$2bx2% D 21/2

plays the role of an effective correlation length.
The parametersa, b, andA in Eq. ~155! are not indepen-

dent. The relation between them can be found if we exp
Eq. ~155! in powers ofx and substitute this expansion in
Eq. ~151!. For smallx, Eq. ~155! gives

c* ~x!.c01c2x21 c̄4x4 ~x→0!,

where c̄45c41c2
2/2c0. Substituting this into Eq.~151! and

equating the terms at like powers ofx, we find the relations

c25c0~gc0
22E!, c45

c0

12
~114gc0

2E24E2!. ~156!

The latter yield the equalities

a5
1

2
1gA22E, b5

2~122a!E21

12aA
~157!
n

r-

d

showing that among four parameters,a, b, A, and E, only
two are independent. Two additional equations for defin
all parameters are the normalization condition~152! and the
definition of the energy

E* ~g!5~c* ,Hc* !, ~158!

where the HamiltonianH is the same as in Eq.~126! and the
notation E* (g)[E stresses that the energy is obtained
using the self-similar approximant~155!.

The values ofa, b, andE* depend on the coupling pa
rameterg. Thus, for the weak-coupling limitg→0 we have

E* ~g!.
1

2
1

1

A2p
g, A25c0

2.
1

Ap
.

Then, relations~156! give

c2

c0
.2

1

2
1

A221

A2p
g,

c4

c0
.2

A221

bAp
g.

Respectively, from Eq.~157! we get

a.
A221

A2p
g50.165 247g, b.

1

3A2
50.235 702.

This demonstrates that the function~155! reduces to the
Gaussian form wheng→0.

The variational Gaussian function

cG~x!5S u

p D 1/4

expS 2
u

2
x2D ~159!

is often used not only for smallg!1 but for arbitraryg
P@0,̀ ), with the effective frequencyu5u(g) defined by
the minimum of the energy (cG ,HcG), which gives

u21u3/2A2

p
g2150.

Such a variational energy is very close, with a deviation
more than several percent, to the energy

E2* ~g!5
1

2
f 2* ~a,0!, a[A2

p
g,

corresponding to Eq.~142!, which results in

E2* ~g!5
1

2F S 11
27

4A2p
gD 2/3

1
27

4p
g2G 1/3

. ~160!

Another very often used approximation for treating Bos
condensed atoms in harmonic traps is the Thomas-Ferm
proximation~see, e.g.,@73–75#!, which for Eq.~151! leads to
the wave function

cTF~x!5S x0
22x2

2g D 1/2

, uxu<x0

cTF~x!50, uxu>x0 ~161!
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in which

x0[A2ETF5S 3

2
gD 1/3

.

The energy in the Thomas-Fermi approximation is obtain
from the normalization condition~152! giving

ETF~g!5
1

2S 3

2
gD 2/3

. ~162!

The Thomas-Fermi approximation is assumed to be valid
largeg→`. However, even then the wave function~161! is
correct only forx!x0, where it has an expansion

cTF~x!.c01c2x21c4x4,

with the coefficients

c05
x0

A2g
, c252

c0

2x0
2

, c452
c0

8x0
4

.

The behavior of the function~161! near the boundaryx
5x0 is not correct. Also, this function is not appropriate
evaluate the mean kinetic energy, producing a divergence
any g ~see discussion in@73,75#!. In order to understand
when the total energy~162! for the Thomas-Fermi approxi
mation starts giving reasonable results, we present in Fi
the energies~158!, ~160!, and~162!. The first two energies
E* (g) andE2* (g), almost coincide with each other, havin
correct asymptotic behavior in the weak- as well as in
strong-coupling limits. The Thomas-Fermi energyETF(g)
possesses an incorrect weak-coupling limit and becom
reasonable approximation starting fromg57.

The density

n~x!5uc~x!u2 ~163!

for the corresponding wave functions andg50.2 is pre-
sented in Fig. 6, where the densityn* (x)5uc* (x)u2 of the
self-similar approximation~155! practically coincides with

FIG. 5. The ground-state energy for the nonlinear Schro¨dinger
equation~151! for the self-similar approximantsE* (g) ~solid line!
andE2* (g) ~dashed line! and for the Thomas-Fermi approximatio
ETF(g) ~short-dashed line!.
d

r

or

5

e

a

the densitynG(x)5ucG(x)u2 of the Gaussian approximatio
~159!, as it should be in the weak-coupling limit. In th
limit, the behavior of the densitynTF(x)5ucTF(x)u2 of the
Thomas-Fermi approximation is not correct. As is know
@73,75#, the latter approximation is incorrect near the boun
ary even in the strong-coupling case. Then the densityn(x)
in the self-similar approximation is close, except near
boundary, to that of the Thomas-Fermi approximation. T
self-similar approximationn* (x) coincides withnTF(x) for
small x and smoothes the incorrect behavior ofnTF(x)
around the boundary. In the strong-coupling limit, the de
sity nG(x) of the Gaussian approximation is not accurate

The direct evaluation of the accuracy of each approxim
tion can be done by calculating the residual term

R~x![Hc~x!2~c,Hc! ~164!

for Eq. ~151!, whereH is defined in Eq.~126! andc(x) is a
wave function of the corresponding approximation. The
sidual term forg@1 for the self-similar approximation~155!
is practically zero, meaning that Eq.~155! is an almost exact
solution of Eq.~151!. For the Gaussian approximation~159!,
the residual term is much larger, telling that this approxim
tion is much less accurate. And the residual for the Thom
Fermi approximation is divergent at the boundary pointx0,
though far from this point it is close to zero.

The integral characteristic of accuracy of the correspo
ing solutions is the dispersion

s~c![F E
2`

1`

uR~x!u2dxG1/2

. ~165!

We calculated this quantity for 0<g<100. The maximal
dispersion for the self-similar approximation~155! is around
1, for the Gaussian approximation~159! it is about 20, and
for the Thomas-Fermi approximation it is divergent.

In this way, the self-similar wave function~155! is the
most accurate solution of the nonlinear Schro¨dinger equation
~151!, as compared to the Gaussian and Thomas-Fermi
proximations. This function~155! represents the exact solu
tion very well for all x andg. In the weak-coupling limitg

FIG. 6. The density~163! for the corresponding wave function
in the self-similar approximation~155! ~solid line!, Gaussian ap-
proximation~159! ~short-dashed line!, and Thomas-Fermi approxi
mation ~dashed line! for g50.2.
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→0, it becomes close to the Gaussian form, and in
strong-coupling limit, it approaches the Thomas-Fermi wa
function for allx except the boundary where it smoothes t
incorrect behavior of the latter function. The crossover po
between the weak-coupling and strong-coupling regimes
curs, as numerical calculations show, at aroundg'5. This
crossover point can also be evaluated, by an order of ma
tude, analytically as follows. Notice that the characteris
length for the Gaussian function~159! is xG5A2/u with u
'1, and that such a length for the Thomas-Fermi funct
~161! is x05(3g/2)1/3. These characteristic lengths, typic
of the weak-coupling and strong-coupling regimes, resp
tively, coincide, that is,xG5x0, at g'25/2/3'2.

B. Vortex filament equation

Now we shall show that our approach permits us to fi
accurate analytical approximations for the function desc
ing the structure of vortex filaments. Considering an u
bounded Bose system and making in the nonlinear Sc¨-
dinger equation the substitutionc(rW)5 f (r )eiw, in which r
and w are dimensionless polar coordinates, one com
@70,72# to the equation

d2f

dr2
1

1

r

d f

dr
2

f

r 2
1 f 2 f 350. ~166!

The solution to this equation is usually obtained numerica
@70,76,77#. Here we shall construct a sequence of analyti
approximations for the solution to Eq.~166! and compare
them with the known numerical data. Note that the equati
similar to Eq. ~166! have been considered as well for d
scribing magnetic solitons@78#, isomeric states of quantum
fields @79#, and vortices of complex scalar fields@80#. There-
fore the possibility of deriving accurate analytical solutio
to these equations is important for many applications, s
as condensed Bose gas, superfluid helium, magnets in s
magnetic fields, and different models of quantum fields.

At small r→0, the solution to Eq.~166! has the
asymptotic expansion

f ~r !.crS 12
1

8
r 2D , ~167!

wherec is a constant. At larger→`, one gets

f ~r !.12
1

2
r 222

9

8
r 242

169

16
r 26. ~168!

Employing the approach of Sec. II, we easily obtain the f
lowing sequence of self-similar approximants:

f 2* ~r ,0!5c2r S 11
1

4
r 2D 21/2

,

f 3* ~r ,0!5c3r S 11
1

2
r 21

1

4
r 4D 21/4

,

e
e

t
c-

ni-
c

n

c-

d
-
-
o

s

y
l

s

h
ng

-

f 4* ~r ,0!5c4r S 11
3

4
r 21

3

16
r 41

1

16
r 6D 21/6

,

f 5* ~r ,0!5c5r S 11r 21
9

70
r 41

1

35
r 61

1

140
r 8D 21/8

,

~169!

in which the coefficients, defined so as to give the corr
asymptotic expansions, are

c25421/250.5, c35421/450.707,

c451621/650.630, c5514021/850.539. ~170!

The behavior of the approximantsf k* (r ,0) is shown in Fig. 7,
compared with numerical data@70,76,77#. As can be con-
cluded from this figure,f 5* (r ,0) is a very accurate solution

VII. CONCLUSION

We have developed an approach for obtaining analyt
solutions of quantum-mechanical problems. This appro
makes it possible, starting from asymptotic expansions h
ing sense only in the vicinity of limiting points, to deriv
interpolation formulas valid in the whole range of variable
The developed method is rather general and can be app
to various problems. We demonstrated its applicability
several quantum-mechanical models, such as different an
monic oscillators, double-well potentials, resonance mod
with quasistationary states, and nonlinear Hamiltonians.
method permits one to construct accurate analytical exp
sions for energy levels as well as for wave functions. It
important that this method provides a regular procedure
deriving a convergent sequence of subsequent approx
tions, so that it is possible to reach the desired accuracy
calculating higher-order approximations. The idea of the
proach is based on the self-similar approximation theory@8–
17##; this is why we call the method developed in the pres

FIG. 7. The self-similar approximantsf k* (r ,0), defined in Eq.
~169!, describing the structure of a vortex filament. The solid line
for f 2* (r ,0), long-dashed line is forf 3* (r ,0), short-dashed line is fo
f 4* (r ,0), and the dotted line is forf 5* (r ,0). Diamonds represen
exact numerical data.
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paper the self-similar interpolation. The method can find
merous practical applications, for example, for analyz
spectral properties of atoms and molecules, for studying
physics of quantum dots, and for investigating the behav
of Bose-condensed gases in magnetic traps.
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