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Infinity-free semiclassical evaluation of Casimir effects
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Electromagnetic Casimir energies are a quantum effect proportional to\. We show that in certain cases one
can obtain an exact semiclassical expression for them that depends only on periodic orbits of the associated
classical problem. A great merit of the approach is that infinities never appear if one considers only periodic
orbits that make contact with the boundary surface. This notion is made more precise by classifying the closed
orbits in a phase space with boundaries and identifying the classes that contribute to Casimir effects. A
semiclassical evaluation of the path integral gives a systematic expansion of the Casimir energy in terms of the
lengths of classical periodic orbits. For some simple geometries the semiclassical expansion can be summed
and explicitly shown to reproduce known results. This is the case, for example, for the force per unit area
between parallel plates at a separation small compared to their linear dimensions. A more interesting example
for our purposes is the closely related problem of the force on a conducting sphere arbitrarily close to a
conducting wall. We provide a rigorous proof of Derjaguin’s result for the leading contribution to the force.
The semiclassical approach, which has never been truly exploited in Casimir studies, is relatively simple and
transparent, and should have a wide range of applications. The methods presented, however, do not apply to
cases where diffraction is important; diffraction can, in principle, also be described within this semiclassical
approach, but its implementation presents some technical problems. In cases where diffraction is important,
conventional methods of calculating the Casimir energy may often be simpler.@S1050-2947~98!10305-0#

PACS number~s!: 31.30.Jv, 12.20.2m, 11.10.Gh, 12.20.Ds
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I. INTRODUCTION

An exact expression for a Casimir effect in terms of
integral or infinite sum can normally be given only und
very restricted conditions and simple geometries. Since
effects originate, in one picture, in fluctuations of the ele
tromagnetic field, it can be difficult to devise a perturbati
scheme when the exact form cannot be found. The Cas
energies to leading order in\ do not depend one2/\c, and
often not on any other ‘‘smallness parameter.’’ They are
this case of a geometrical nature and depend on the imp
boundary conditions and the topology. The semiclass
treatment we will present here, however, for certain ca
leads to a systematic expansion of the Casimir energy
terms of the lengths of primitive periodic classical orbi
This allows one to compute the Casimir energy exactly
some cases, and often to high accuracy when the geome
complicated and the exact form cannot be obtained.

It will be useful and illustrative to begin by considering
classic Casimir problem, the determination of the ene
ECas(«,l ) between two uncharged ideal parallel plates of a
A5 l 1l 2 that are separated by a distancel ! l 1 ,l 2, with a
dielectric of uniform permittivity«(v2) between them. It is
known @1,2# that

ECas~«,l !5
A\

2p2E0

`

dj
j2

v2~2j2!
E

1

`

dq

3qln@12e22l jq/v~2j2!#, ~1.1!
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wherev(v2)5c/A«(v2) is the phase velocity in the dielec
tric. Via a contour integration, an integration over the fr
quency v has been replaced by an integration ov
j52 iv in Eq. ~1.1!. For a vacuum between the plates, th
is, «51, the variableq in Eq. ~1.1! can be identified as the
secant of the angle between the direction of a virtual pho
incident on a wall and the normal to the wall.~The more
general Casimir energy for three uniform dielectric slabs c
also be determined in integral form@1#. Letting the permit-
tivities of the outer slabs tend to infinity gives the case un
consideration.!

The physical picture is greatly simplified if one recasts t
two-dimensional integral in Eq.~1.1! as a one-dimensiona
integral, as was only very recently recognized as being p
sible @3#. The result is

ECas~«,l !5
A\

4p2E0

`

dj jS d

dj

j2

v2~2j2!
D

3 ln@12e22l j/v~2j2!#. ~1.2!

If we represent the logarithm in Eq.~1.2! by the infinite sum

ln@12e22l j/v#52 (
n51

`

~1/n!e22nlj/v, ~1.3!

the expanded form of Eq.~1.2! virtually begs for an interpre-
tation as virtual photons traveling perpendicular to the wa
in periodic orbits; the length of a path with 2n reflections is
2nl, and, roughly speaking, the wave numberk for given j
is k5 i j/v(2j2) and the frequency-dependent period
2nl/v(2j2). We also see from Eq.~1.3! that the contribu-
tion to the Casimir energy from periodic paths decrea
935 © 1998 The American Physical Society
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936 PRA 58MARTIN SCHADEN AND LARRY SPRUCH
with their length.@In the final result for the Casimir energy
the contribution of a particular path is inversely proportion
to the third power of its length. The interpretation is una
biguous for«51, but the path-length picture will turn out t
be valid also for frequency-dependent«5«(2j2).#

The semiclassical approximation will be seen to rep
duce the term of order\ of the Casimir energy for a larg
class of geometries. For metallic objects in a vacuum, thi
often the whole effect. Corrections from interactions of t
order of the electromagnetic couplinga;1/137 of higher
order in \, which can in principle be computed perturb
tively, will not be considered. We wish to stress, howev
that the semiclassical approach in many cases gives an
pansion of the leading contribution, of order\, in terms of
the lengths of periodic classical orbits that contribute. This
a purely geometrical expansion of the leading term of
Casimir energy, which does not require the existence o
intrinsically small parameter in the problem and that allo
us to compute formally exact~to order\) answers also in
geometries for which an expansion in terms of eigenmo
of the electromagnetic field appears unmanagable~see Sec.
III !. Other simple applications of this approach for whi
exact solutions are not easily derived may also be e
sioned, such as for the case of a dielectric with a permittiv
«(v,xW ) that depends on the location as well as t
frequency—the case of slabs of different permittivity being
special case@4#.

For «51, the Casimir energy densityU has been ob-
tained for a rectangular parallelopiped with ideal walls
arbitrary dimensionsl 1 ,l 2, and l 3 @5#. It is given by

U~ l 1 ,l 2 ,l 3!52
\c

16p2F( 8
1

~n1
2l 1

21n2
2l 2

21n3
2l 3

2!2

2
p3

3l 1l 2l 3
S 1

l 1
1

1

l 2
1

1

l 3
D G , ~1.4!

where(8 denotes the sum over all triplets of integers, po
tive, negative, and zero, other than (n1 ,n2 ,n3)5(0,0,0).
Note the presence in Eq.~1.4! of the lengths

L~n1 ,n2 ,n3!52~n1
2l 1

21n2
2l 2

21n3
2l 3

2!1/2 ~1.5!

of classical periodic paths in the box with 2n1, 2n2, and 2n3
reflections off the three pairs of parallel walls. Note too th
as in all cases where there is only a free electromagn
field, the Casimir energy density~1.4! is strictly proportional
to \. We will see that Eq.~1.4! is not reproduced by the
semiclassical approximation. If one of the dimensions of
box is much larger than the others, the second term in
~1.4! is negligible, and we will see that the whole effectcan
be described semiclassically. If, for example,l 3@ l 1 and l 2,
Eq. ~1.4! reduces to@6#

U~ l 3@ l 1 ,l 2!52
\c

p2 ( 8 @L~n1 ,n2!#24, ~1.6!

where (8 in this case is the sum over all pairs of intege
(n1 ,n2) other than (0,0) and
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L~n1 ,n2!52~n1
2l 1

21n2
2l 2

2!1/2. ~1.7!

Since the only lengths that appear in Eq.~1.6! are those of
classical periodic paths~in the plane perpendicular to th
axis associated withl 3), one strongly suspects that the
classical paths will be of importance in a semiclassical c
culation. If, further,l 2@ l 1, the square bracket in Eq.~1.4! is
reduced to the sum over alln1.0 of 2/(l 1

4n1
4), and one

readily obtains the standard Casimir energy per unit area
two nearby plates in a vacuum@7#,

ECas/~ l 2l 3!52
p2

720

\c

l 1
3

. ~1.8!

A more interesting example from the semiclassical point
view is that of a metallic sphere of radiusR and a metallic
wall a distancel !R from the nearest point on the sphe
embedded in a vacuum. Making very reasonable assu
tions, the leading contribution to the forceF between the
sphere and the wall forl !R has been determined theore
cally @8# using the fact that the force per unit area betwe
walls, the derivative with respect to the separation ofECas, is
known. ~A very recent measurement@9# of F was in good
agreement with the theoretical result.! A determination of
this force from the electromagnetic eigenmodes has, h
ever, never been accomplished. ForR@ l , the only classical
periodic orbits of finite length are traversals, arbitrary
number, between the two nearest points of the wall a
sphere. Diffraction effects in the semiclassical approach
represented by periodic orbits that pass around the sph
these have lengths that are of the order of 2l plus multiples
of R and can be neglected forR/ l;`. We will show in Sec.
III that the contribution from periodic orbits in the semicla
sical approach reproduce the leading expression for
force. F has also been calculated forl @R; the dipole ap-
proximation for the interaction of the sphere with the fluct
ating electric field is then valid. We will see that semiclas
cally the contribution from classical periodic paths th
‘‘creep’’ @10# around the sphere can no longer be neglec
in this limit. Although we do not obtain the solution in thi
limit, there are reasons to believe that the semiclassical
proach could describe the forceF for arbitrary values ofl /R.
The exact semiclassical description of the caseR! l is, how-
ever, easily seen to be far more cumbersome than the
conventional one. Thus, the semiclassical method of ca
lating Casimir energies we propose below, while forma
exact in certain cases, is generally superior to conventio
approaches in applications only when relatively few and s
ficiently simple classical periodic orbits are relevant. Ho
ever, this includes the important application to complica
geometries for which a systematicapproximationto the Ca-
simir energy is sought, and where the shortest classical p
odic orbits can be found~at least numerically!.

The possibility of evaluating Casimir energies by a sem
classical approach~though not in terms of periodic orbits!
has often been pointed out in particular cases. Thus, for
ample, the Casimir-Polder interaction between atoms a
separation arbitrarily large compared to either of their dim
sions@11# can be obtainedexactlyby proceeding classically
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and, in the very last step, replacing the volume integral of
square of a component of the electric field of frequencyv by
(1)/8p(\v/2) @12#.

In one of the methods we will now consider, one fin
that contributions toECascome only from fluctuations aroun
periodic classical orbits that make contact with the bound
surface; infinities never appear in the semiclassical eva
tion of the Casimir energy in this case. This is appeali
since in most Casimir studies one must evaluate differen
between infinities, or throw away infinite energy contrib
tions that do not depend on the boundary surfacesafter hav-
ing calculated formal expressions. In the semiclassical
proach described below it will become clear that the
infinities arise due to classical paths of arbitrarily sh
length that do not depend on relative variations of the bou
ary surfaces and therefore do not contribute to any forc
These contributions can therefore be isolated and igno
from the outset and the semiclassical evaluation of the
simir energy is then finite at every stage.
a

-
-

te
n

g
on

er

he

of

ro
n

e

y
a-
,
es

p-
e
t
d-
s.
ed
a-

Although the expression~1.2! for the Casimir energy in
the case of two parallel conductors can be directly compa
to the result of the semiclassical determination of this ene
in the next section, we will derive an expression for t
Casimir energy associated with two spheres in Sec. III t
does not depend on the derivative]/]j(j/v). It is therefore
perhaps illustrative that Eq.~1.2! can also be cast in such
form after a few elementary manipulations, a point missed
@3#. To this end we combine Eqs.~1.2! and ~1.3!, use
]/]j(j/v)252(j/v)]/]j(j/v) and

2e22nlj/v
j

v
]

]jS j

v D5
]

] l

]

]j

e22nlj/v

2n2l
, ~1.9!

and integrate by parts. The Casimir energy~1.2! for two
parallel conducting plates can then also be expressed as
ECas~«,l !5
A\

8p2

]

] l (
n51

`
1

n3l
E

0

`

dj e22nlj/v~2j2!52
A\

4p2l
(
n51

`
1

n2 E0

`

djF j

v~2j2!
1

1

2nlGe22nlj/v~2j2!, ~1.10!
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a derivative-free form. For numerical estimates of the C
simir energy~1.10! is eminently better suited than Eq.~1.2!,
since it suffices in Eq.~1.10! to approximate the monotoni
cally increasing functionj/v(2j2). The sum converges rap
idly and poses no numerical complication.

II. GENERAL FORMALISM AND THE CASE
OF INFINITE PARALLEL PLATES

Mainly for pedagogical reasons, we will first recalcula
in an unconventional fashion the Casimir energy per u
area for two ideal parallel plates, one atz50 and one atz
5 l , with a uniform medium between them andl very much
smaller than the linear dimensions of the plates. We be
with a discussion of the relevant formalism in a broader c
text.

A. Some general formalism

We determine the Casimir energy in terms of the diff
encerosc(E) between the spectral densityr(E,l ) for a pho-
ton in a uniform medium with boundary conditions and t
spectral densityr0(E) in the uniform medium without
boundaries,

rosc~E,l !5r~E,l !2r0~E!. ~2.1!

The parameterl here symbolically represents a collection
shape parameters defining the boundaries.~In the case of two
infinite parallel plates, it will simply be the separationl be-
tween them if the dimensions of the plates are fixed.! Since
the total Casimir energy is just the difference of the ze
point energies with and without boundaries, we can obtai
from the change in the spectral density
-

it

in
-

-

-
it

ECas~«,l !5E
0

`

dE ~ 1
2 E!rosc~E,l !. ~2.2!

In Eq. ~2.2! 1
2 E is the zero-point energy of the oscillato

associated with a real photon of energyE and Eq.~2.2! ex-
presses the usual sum over zero-point energies as an inte
since the spectral densityr(E)5(nd(E2\vn) gives the
distribution of eigenfrequencies of the harmonic oscillato

In the following we will exploit the fact that the chang
rosc(E,l ) in the spectral density due to a change in t
boundaries is related to the change in the imaginary par
the response functiongosc,

rosc~E,l !52
1

p
Im gosc~E,l !, ~2.3!

and that the response function is the trace of the ene
Green function

Gll8~x,y;E!5^y,l8u~E1 i«2Ĥ !21ux,l&, ~2.4!

whereĤ is the Hamiltonian andl and l8 denote states o
polarization. In our case

gosc~E; l !5(
l
E dxlim

y→x
Gosc

ll~x,y;E,l !, ~2.5!

where the sum is over the two polarizations of a photon a
the spatial integral extends over all the space accessible
In the applications we will study, the medium is not optica
active and the boundary conditions are such that the Gr
functions are diagonal and independent of the polarizat
that is,
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Gosc
ll8~x,y;E,l !5dll8Gosc~x,y;E,l !. ~2.6!

The sum over polarizations in the response function~2.5!
will thus effectively just give a factor of 2 in this case. Th
‘‘oscillatory part’’ Gosc of the Green function is the differ
ence

Gosc~x,y;E!5G~x,y;E,l !2G0~x,y;E!, ~2.7!

between the Green functionG(x,y;E,l ) in the medium sat-
isfying the boundary conditions and the one in the medi
without boundaries. Note that the Green functionsG0 andG
are singular in the limitx→y, but that this short-range sin
gularity cancels in the differenceGosc. The limit x→y in the
definition ~2.5! of gosc(E,l ) is therefore generally well de
fined.

Due to causality, bothG(x,y;E,l ) andG0(x,y;E) should
be analytic in the first quadrant of the complexE plane ~a
pole in the first quadrant of the complexE plane would
imply the existence of a state whose amplitudegrows with
time!. Instead of integrating the imaginary part ofgosc along
the real axis ofE in Eq. ~2.2!, we may therefore alternativel
integrate along the imaginary axis fromE50 to E5 i` and
a large quarter circle of radiusV, E5Veif,fP@p/2,0#. If
the integration over the large quarter-circle does not dep
on the boundaries, we obtain an alternative expression
the Casimir energy,

ECas~«,l !52
1

2p
Im E

0

`

dE Egosc~E,l !

5
\2

2pE0

`

dj jIm gosc~ i\j,l !, ~2.8!

in terms of the imaginary part of the response function on
positive imaginary energy axis, where we have expressed
energy asE5 i\j, where j52 iv, with v the frequency.
gosc is given by Eqs.~2.5!, ~2.6!, and~2.7!.

The analytic continuation~2.8! of the expression for the
Casimir energy will prove useful, sincegosc(E,l ) is a highly
oscillatory function on the real axis near any resonance
ergies of the medium, whereas it is a smooth function
purely imaginary values of the energy. Of course, the a
lytic continuation~2.8! of the Casimir energy~2.2! is valid
only if the contribution from the quartercircle does not d
pend on the boundaries, a point that must be checked in
case. We will see that the semiclassical evaluation of
expression~2.8! for the Casimir energy can be directly com
pared with Eq.~1.2! for the interesting case of a dielectr
between two plates.

This way of formulating the Casimir energy exhibits i
intimate relation to~the imaginary part of! the Green func-
tion. Due to the spatial integration in Eq.~2.3! and the inte-
gral over the spectrum in Eq.~2.2!, the Casimir energy, how
ever, contains much less information than the Green func
and this approach might appear unnecessarily complica
@Many standard calculations of the Casimir energy invo
the determination of the spectrum~and indirectly also the
determination of the eigenfunctions!, and thus in principle
amount to a determination of the~exact! Green function.#
We here wish to emphasize that an exact determinatio
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the spectrum~and associated eigenfunctions! is, however,
not required. As we show in Appendix A, the Casimir ener
of the system can always be related to the coefficient of
term of order (\c)/(El) in the semiclassical expansion o
gosc, where l is a typical length of the problem. Since th
coefficient is not easily found for most situations, the app
cation of this approach is somewhat limited. We here us
different method to extractexactCasimir energies from the
lowest-order semiclassical approximation togosc in certain
limiting cases.

The method we propose can be used to extract theleading
divergenceof Casimir energies when some of the charact
istic lengths on which it depends are taken to be much lar
than the other relevant characteristic lengths. It therefor
applicable only in limiting situations where this is actual
the case. Important exceptions where this methoddoes not
give the correct result include the case of a spherical ca
of radiusR, whereR is the only length~and the energy is
proportional to 1/R). Further, as noted in Sec. I, the sem
classical estimate ofECas is not correct if the lengths of a
rectangular parallelopiped are all comparable, but does g
the leading term if the lengths are not comparable. It al
gives the leading term for a sphere of radiusR at a distance
l !R from a plane, as will be shown below.

For simplicity let us consider a general cavity in
vacuum. The Casimir energy~2.8! then depends only on a
set of lengths$ l̄ ,l i%, where, without loss of generality, w
single out the largest of these and denote it byl̄ in the fol-
lowing. The dependence of the Casimir energy~2.8! on di-
mensionless quantities is

ECas~$r i%; l̄ !5
\c

2p l̄
E

0

`

dxr̂~x;$r i%!, ~2.9!

where the constantsr i5 l i / l̄ <1 are dimensionless ratios o
the lengths in the problem, and

r̂~x;$r i%![\j Im gosc~ i\j, l̄ ,$ l i%uj l̄ /c5x ~2.10!

is a dimensionless function that depends on the energE

only through the ratiox5(2 iE l̄ )/(\c)5j l̄ /c.
If the Casimir energy of the systemdivergesin the limit

l̄→` for any fixed values of the other lengths in the pro
lem, the integral in Eq.~2.9! diverges as all of ther i→0.
This can be due to either of two reasons: either the integr
becomes singular within some finite regionx,x0($r i%),`
for r i;0 , or the integral is divergent in the limitr i→0 due
to the behavior of the integrand forx;`. We can exclude
the first of these possibilities on physical grounds. Thus,
E0 be defined byx0(0)5E0 l̄ /\c. If x0(0) were finite, the
response functiongosc would have to become singular fo
small energiesE<E0;0 as l̄ becomes large. The behavio
of the oscillating part of the response function of a cavity
small energies can, however, never be more singular t
that of the response function without boundaries~which van-
ishes for small energies!. The divergence of the integral in
Eq. ~2.9! for l̄→` is therefore due to the behavior of th
integrand at large values ofx. The asymptotic behavior o
r̂(x,$r i%) for large values ofx5(2 iE l̄ )/(\c) therefore suf-
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fices to extract theleadingdivergence of the integral in th
limit l̄→`. Sincex5(2 iE l̄ )/(\c), this asymptotic behav
ior of the integrand is given by the leading terms in t
semiclassical expansion ofgosc. The leading divergenceof
the Casimir energy as one of the lengths becomes m
larger than all the others is therefore determined by the se
classical approximation togosc. We will verify in several
cases that the semiclassical approximation togosc does in-
deed reproduce theexactCasimir energy in this limit.

Our basic task now is to apply developments in semic
sical periodic orbit theory to the photons of present intere
An essential element of any semiclassical calculation is
actionS of ~all! classical paths. A great simplification in th
present case and in a number of other semiclassical eva
tions is due to the simplicity of the action for classical pa
of constant energy. For a massless particle such as a ph
the classical path with constant energyE from a pointx to a
point y extremizes the lengthL(x,y) of the path~these are
not alwayspiecewise straight paths, if the motion is co
strained, see Sec. III! and the momentump is tangent to the
path at every point. The wave equation for a medium ch
acterized by an index of refractionn(v2) gives the disper-
sion relation v2n2(v2)/c25k2, which we interpret asp
5n(E)E/c5E/v(E), where p is the momentum andv
[v(E) is the phase velocity.~For later notational conve
nience, we have usedv rather than sayvp to denote the
phase velocity. Since the only other velocity of interest,
group velocity, will be denoted byvg , there should be no
ambiguity.! The classical actionS is then

S~E,x,y!5E
x

y
p•dq5pL~x,y!5EL~x,y!/v. ~2.11!

The actionS of Eq. ~2.11! completely determines the sem
classical approximation to the Green functionG(x,y;E,l )
and thus also the semiclassical expression forECas.

The semiclassical approximation toG(x,y;E,l ) is @13#

G~x,y;E,l !;2
1

2p\2(g
Dgei ~Sg /\2mgp/2!, ~2.12!

where the sum extends over all classical trajectoriesg which
begin atx and end aty. The Maslov indexmg5nt12nr is
given by the number of turning pointsnt and the number of
reflectionsnr along the classical path, and

~2.13!

is the ~positive! amplitude resulting from the unconstraine
integration over quadratic fluctuations around the class
pathg. The diagonal entries in Eq.~2.13! are 333 and 131
matrices; the off-diagonal entries are 331 and 133 matrices.
ch
i-

-
t.
e

a-
s
on,

r-

e

al

For the action~2.11!, one finds that~see Appendix B! D0 for
the straight classical path between the initial and final poi
is

D05
1

2L

]

]ES E

v D 2

5
E

Lvvg
. ~2.14!

@In the special case where the medium is the vacuum,
~2.14! simplifies toD05E/(c2L).# The semiclassical Green
function G0(x,y;E) in the infinite medium without bound-
aries is thus

G0~x,y;E!52
1

4p\2L
eiEL/~\v !

]

]ES E

v D 2

. ~2.15!

The semiclassical approximation~2.15! does not reproduce
the exact free Green function of a photon@14#; the two differ
in their real parts. The semiclassical approximation to t
imaginary part ofG0, which enters the calculation of the
Casimir energy, is in factexact.

B. Two parallel plates

We now determine in a similar fashion the semiclassi
Green function for two parallel plates a distancel apart, and
arbitrary initial and final points,xi and xf , between the
plates. The classical paths fall into four categories~I–IV !;
the shortest path for each category is indicated in the up
row of Fig. 1. In each category there are an infinite numb
of paths, involving more and more traversals of the spa
between the walls. The lower row in Fig. 1 represents
next shortest path in each category.

Due to angular momentum conservation, the classi
paths are planar. With one plate located atz50 and the other
at z5 l their lengths are

Ln
I 5@~xf'2xi'!21~2nl1xf z2xiz!

2#1/2, n50,1,2, . . . ,

FIG. 1. Classical trajectories fromxi to xf that contribute in the
semiclassical approximation to the Green function between two p
allel plates. The classical paths fall into four categories: I~even,
left!, II ~odd,left!, III ~odd,right!, and IV ~even,right!, where even
and odd refer to the number of reflections, and right and left refe
the plate from which the last reflection took place.~The upper path
in category I involves no reflections, but this path gives no con
bution to the Casimir energy.! The shortest and next to shorte
paths in each category are shown.
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Ln
II5@~xf'2xi'!21~2nl1xf z1xiz!

2#1/2, n50,1,2, . . . ,

Ln
III 5@~xf'2xi'!21~2nl2xf z2xiz!

2#1/2, n51,2,3. . . ,
~2.16!

Ln
IV5@~xf'2xi'!21~2nl2xf z1xiz!

2#1/2, n51,2,3. . . .

All classical pathsg5g(J,n) between the plates can ther
fore be classified by their categoryJP$I,II,III,IV %, and an
integern>0. L0

I is the length of the direct pathg(I ,0) from
xi to xf . @g(I ,0) is the only classical path between the init
and final points in an infinite medium without boundaries
is of course reflectionless.#

In the semiclassical expression~2.12! for the Green func-
tion, we must also evaluate the determinantDn

J5Dg(J,n) for
each classical path.Dn

J is given by Eq. ~2.13!, with S
5EL/v replaced bySn

J5ELn
J/v, whereLn

J differs from L
5L0

I in that xf z2xiz→2nl6xf z6xiz . The determinant
~2.13! for pathsg(J,n) is thus given byD0 with L replaced
by Ln

J , that is,

Dn
J5

1

2Ln
J

]

]ES E

v D 2

. ~2.17!

After subtracting the direct contribution, we can setxi5xf
[x in the semiclassical expression for the oscillatory par
the Green function without encountering any singularit
and obtain

Gosc~xf5xi ;E,l ![Gosc~x;E,l !

52
1

4p\2 S ]

]E

E2

v2 D
3F2(

n51

`
e2inlE/\v

2nl
2 (

n52`

`
e2iEuz1nlu/\v

2uz1nlu G .

~2.18!

The first (z-independent! term in Eq.~2.18! is the sum of the
~equal! contributions of classes I and IV, while the seco
(z-dependent! term is the sum of the contributions of class
II and III; we used the fact that forxi5xf , Ln

I 5Ln
IV52nl

and Ln
III 5L2n

II for nÞ0 @15#. The relative sign of the two
terms arises from the Maslov indexmJ because paths in
classes I and IV have an even number of reflections, whe
the number of reflections in categories II and III is odd. W
now integrateGosc(x;E,l ) over the space between the plat
and sum over polarizations to obtain the response functi

gosc~E; l !52
A

2p\2S ]

]E

E2

v2 D
3F (

n51

`
e2inlE/\v

n
2E

0

`dz

z
e2iEz/\vG ,

~2.19!

whereA is the area of the plates. In the second term of
~2.19!, the sum overn was accounted for by a change in th
range of integration. This term gives an infinite contributi
l
t

f
s

as

.

to the response function, but does not depend upon the s
ration l and therefore does not contribute to any force b
tween the plates. We will therefore drop this infinite term
the following. We note that this divergent butl -independent
semiclassical contribution arises from paths of type II a
III, which do not lead to classical periodic orbits asxi
→xf , the initial and final momenta being equal but oppos
The classical paths of type I and IV, whichare periodic in
the limit when initial and final points are the same, give t
l -dependent first term of Eq.~2.19!. ~We will see in subsec-
tion D and also in Appendixes C and D that closed trajec
ries corresponding to paths of type II and III with initial an
final points identical do not arise in a semiclassical eval
tion of the path integral for the response functiongosc.)

The l -dependent terms of the sum in Eq.~2.19! fall off
exponentially with the radius of the large quartercircle a
the analytic continuation used to obtain Eq.~2.8! is therefore
justified. Dropping thel -independent term in Eq.~2.19! and
analytically continuing the remainder to the positive ima
nary axis gives

Im gosc~ i\j,l !52
A

2p\ S ]

]jF j

vG2D (
n51

`
e22nlj/v

n

5
A

2p\ S ]

]jF j

vG2D ln@12e22l j/v#.

~2.20!

Inserting Eq.~2.20! in Eq. ~2.8! and integrating over the
frequencies, one arrives at Eq.~1.2!. The Casimir energy of
two parallel plates derived semiclassically is thus in fact
act for l /L;0. The nature of the above derivation strong
suggests that the semiclassical approach should be wi
applicable. As a small point, we note that the semiclass
derivation clearly depends only on the phase velocityv
(2j2) and therefore apparently applies equally well to h
mogeneous isotropic media with permeabilitymÞ1.

The semiclassical calculation above, though interesting
no less—and perhaps even more—complicated than o
derivations of the same result. The semiclassical calcula
apparently would, however, be considerably simplified if o
could ~i! legitimately ignore contributions to the Casimir e
ergy from classical paths of type II and III from the outse
since they turned out to be independent ofl and therefore are
of no physical interest and~ii ! avoid calculating the semi
classical Green function between arbitrary points, since
relevant contribution to the oscillatory part of the respon
functiongosc(E,l ) of Eq. ~2.5! arose only from periodic clas
sical orbits. We will discuss the alternative approach in S
III D and in Appendixes C and D.

We now allow one or both of the walls to be infinitel
permeable@16#. The use of periodic orbits renders the ana
sis transparent and rather trivial. The boundary conditi
that the normal derivative of the vector potential, rather th
the vector potential itself, vanishes at the surface leads
reflection coefficient at the surface of a permeable wall
11, rather than21 as for a conductor. For the periodic pa
of length 2nl the reflection factor is (61)2n51 for two
conductors or two permeable walls, but (11)n(21)n5
(21)n for one conductor and one permeable wall. For t
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latter case, with a dielectric between the walls, the contri
tions to the Casimir energy from the individual period
paths therefore alternate and one can effectively insert a
tor (21)n in the sum~1.3!. The minus sign in the argumen
of the logarithm in Eq.~1.3! and Eq.~1.2! is thereby replaced
by a plus sign and the Casimir force between a condu
and a permeable wall is seen to berepulsive. In a vacuum,
the replacement

(
1

`
1

n4
5

p4

90
→(

1

`
~21!n

n4
52

7

8

p4

90
~2.21!

leads to a repulsive force per unit area with a magnitude
that for two conducting plates. In the semiclassical pictu
the origin for the change of sign and magnitude of the C
simir force between two conducting plates compared to
Casimir force between a conducting plate and a perme
one is due to destructive interference between semiclas
contributions from paths with different numbers of refle
tions.

C. A long rectangular cavity

The method used to obtain the Casimir energy for t
large parallel plates also gives the Casimir energy of a r
angular cavity with dimensionl 13 l 23 l 3 when l 3@ l 1 ,l 2.
Since the Casimir energy diverges asl 3→`, the semiclassi-
cal approximation isexact in this limit. The periodic orbits
that reflect 2n1 times off one set of parallel walls and 2n2
times off the other have lengthsL(n1 ,n2) given by Eq.~1.7!.
Contrary to the case of only two parallel plates, there
now four periodic trajectories of the same lengthL(n1 ,n2)
for any set of integersn1 and n2, which, in the limit xi
→xf , arise from classical trajectories that first reflect off a
one of the four walls of the cavity. The contribution of th
periodic orbits with lengthL(n1 ,n2) to the semiclassical ex
pression for the oscillating part,Gosc(xf5xi ;E,l 1 ,l 2), of the
Green function is otherwise obtained as wasGosc of Eq.
~2.18! for the case of two parallel plates and found to be

24
1

4p\2S ]

]E

E2

v2 D eiL ~n1 ,n2!E/\v

L~n1 ,n2!
. ~2.22!

The factor of 4 in front replaces the factor of 2 in Eq.~2.18!
and accounts for the four periodic paths of equal length
the path length 2nl in Eq. ~2.18! in the present case is re
placed byL(n1 ,n2). Note that the semiclassical contributio
~2.22! of a periodic orbit to the Green function does n
depend on the pointx at which the trajectory starts and end
The spatial integral in the definition~2.5! of the semiclassica
response functiongosc therefore just gives the volumel 1l 2l 3
of the cavity. To obtain the semiclassical expression for
response functiongosc in this case, we, however, have still t
determine the possible polarizations for each periodic or
There are in general two independent polarizations, but
rays parallel to one of the boundaries there is just one. S
the lengthL(n1 ,n2) of a trajectory depends only on th
squaresn1

2 and n2
2, we can account for this degeneracy

summing with weight 1/2 over all integern1 andn2, positive
-

c-

or

/8
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and negative and zero, exceptn15n250. The oscillating
part of the semiclassical response function of a long rec
gular cavity thus becomes

gosc~ l 3@ l 1 ,l 2 ;E!52 l 1l 2l 3S 1
2 (

n1 ,n2

8 D 1

p\2S ]

]E

E2

v2 D
3

eiL ~n1 ,n2!E/\v

L~n1 ,n2!
. ~2.23!

The analytic continuation to imaginary frequenciesE5 i j\
in the integral~2.8! for the Casimir energy is possible and w
obtain

ECas~ l 3@ l 1 ,l 2!/~ l 1l 2l 3!52
\

4p2 (
n1 ,n2

8 E
0

`

djjS ]

]j

j2

v2D
3

e2L~n1 ,n2!j/v

L~n1 ,n2!
~2.24!

for the Casimir energy per unit volume of a long rectangu
cavity. For a vacuum inside the cavity, the phase veloc
v(2j2)5c does not depend on the frequency and the in
gration overj in Eq. ~2.24! is readily performed. One veri
fies that the semiclassical evaluation~2.24! gives the exact
Casimir energy per unit volume~1.6! of this system.

On the other hand, proceeding along similar semiclass
lines for a rectangular cavity offinite volume does not repro
duce the correct expression~1.4!. The discrepancy can b
traced to the fact that the spectrum in a cavity offinite vol-
ume is discrete and that certain low-lying states contrib
significantly to the Casimir energy individually. As note
above, the semiclassical approximation gives only thelead-
ing divergent behavior of the Casimir energy as one of
lengths in the problem becomes large compared to the
ers. This limit corresponds to considering the long rectan
lar cavity discussed above.

D. Gutzwiller’s trace formula

Gutzwiller @17,18# first observed, in a much broader co
text than that of two plates, that performing the spatial in
gration in Eq.~2.5! by the saddle-point method to obtain th
oscillating response functiongosc(E,l ) is completely consis-
tent with the semiclassical approximation for the Green fu
tion Gosc. This observation generally leads to the desir
simplification of the semiclassical calculation, since one c
show@13,18# that theperiodic classical orbits are the sadd
points of this integral. In the case of unconstrained class
paths, the integration in Eq.~2.5! can then be performed
explicitly by the method of stationary phase, giving th
rather concise expression

gosc~E!5
2 i

\ (
l

(
gP$periodic%

Ag
ll expF i

\
Sg

ll2
ip

2
mgG

~2.25!

for the semiclassical response function@13,18#. The sum in
Eq. ~2.25! extends over smooth classical periodic orbitsg
only. ~If there are two possibledirections of the classical
motion, these are counted asseparate classical periodic
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orbits—in our example in Sec. II B, these are classical or
of type I and IV in the limit whenxi→xf .) In the following
examples the polarizationl of the photon does not chang
upon reflection~because the angle of incidence is alwa
90°) on the classical periodic paths and we furthermore
sume that the medium is not optically active. The actionSg
and the semiclassical amplitudeAg of a periodic classica
orbit in this case are independent of the polarizationl and
the sum over polarizations in Eq.~2.25! just gives a factor of
2. To simplify the notation, we again drop polarization ind
ces in the following. The semiclassical amplitudeAg of a
classical periodic orbit is@13#

Ag5E
0

tg
dtuDet @Mg~ t !21#u21/2/Ng , ~2.26!

where the integral over time extends over one periodtg of
the classical motion on the energy surface.Mg(t) is the 434
monodromy matrix, which, for a given periodic path of p
riod tg5t, relates the infinitesimal deviations perpendicu
to the path at a timet1t, namely,dx'(t1t) and dp'(t
1t), to the perpendicular deviationsdx'(t) and dp'(t) at
time t. Symbolically we thus have

Mg~ t !5S ]x'~ t1t!

]x'~ t !

]x'~ t1t!

]p'~ t !

]p'~ t1t!

]x'~ t !

]p'~ t1t!

]p'~ t !

D
g

, ~2.27!

where the entries in Eq.~2.27! are 232 matrices. The inte-
gerNg in Eq. ~2.26! counts the number of times the classic
pathg traverses thesamegeneric volume elementdx during
one period. It is the ‘‘degree of the map’’ for the change
coordinates in the spatial integration to coordinates para
and transverse to the classical pathg. ~The local Jacobian for
this change of variables is 1, i.e.,dx5d2x'dxuu .!

The expression~2.26! for the amplitudeAg obtained by a
saddle-point approximation for the spatial integration in E
~2.5! diverges if the matrixMg(t)21 is singular for some
classical periodic pathg. This is the case whenever an in
finitesimal deviation (dx' ,dp') in a particular~transverse!
direction from the periodic classical pathg is reproduced
after one period, i.e., if there isanother classical periodic
path g8 arbitrarily close tog in phase space with the sam
action and energy. An infinitesimal time-independent cano
cal transformation thus relates the two paths. As shown
Appendix C, one can formally extract the ‘‘volume’’ of th
group generated by this canonical transformation usin
procedure analogous to gauge fixing—or, equivalently, in
ducing collective coordinates to select a representative p
It may be another matter to actually compute the group v
ume; this is usually possible only for relatively simp
groups.

The semiclassical computation using Gutzwiller’s tra
formula of the Casimir energy between parallel plates is
this kind: Although only classical periodic orbitsg contrib-
ute to the final expressions~1.2! and~2.24!, Ag in Eq. ~2.26!
would diverge due to the invariance of the problem w
respect to translations parallel to the plates. A deviation
the initial position transverse to any given classical perio
s
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pathg reproduces itself after one period, since it correspo
to the initial condition for a new classical periodic path th
is just a translation of the old one. In the case of two para
plates of finite area, the ‘‘volume’’ of this translation grou
is the areaA of the plates and we show in Appendix D th
one may obtain the result~1.2! by considering periodic clas
sical paths only.

III. THE FORCE BETWEEN TWO PERFECTLY
CONDUCTING SPHERES

The degeneracy of periodic classical paths mentio
above does not occur in the calculation of the force on t
uncharged conducting spheres of radiiR1 andR2, a distance
l !R1 ,R2 apart, which are embedded in a uniform mediu
This problem was first considered theoretically by Derjag
@8#, who determined the behavior of the force on the sphe
for l !R1 ,R2 from the energy density per unit area in th
case of parallel plates. Since the Casimir energy diverge
this limit, a semiclassical evaluation ought to be exact. T
semiclassical calculation below provides a more rigoro
proof of Derjaguin’s result.

The problem Derjaguin considered is axially symmet
with respect to the axis connecting the centers of the
spheres. If the distancel between them is very much les
than either radius, the only classical periodic paths of inte
are those between the two points of the spheres that are
est. We will have a bit more to say about classical paths
wrap around one or both spheres at the end of this sec
These additional paths, shown in Fig. 2, are, however, a
trarily long compared tol in the limit R1 / l andR2 / l→` and

FIG. 2. Periodic classical trajectories for two spheres of radiiR1

and R2 separated by a distancel . Only paths that do not wrap
around either sphere, those which go fromA to B to A or from B to
A to B once or a number of times, contribute to the Casimir ene
when l !R1 and R2. Paths that reflect off one sphere and wr
around the other and paths that wrap around both spheres are
shown.~The path segments denoted bya,a8 andb,b8 are perpen-
dicular to the surfaces of spheres 2 and 1, respectively, and
retraced after reflection.! The contribution to the Casimir energ
from such paths becomes important when the radius of eithe
both spheres is comparable to or smaller than their separationl , i.e.,
when diffraction is no longer negligible.
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therefore do not contribute to the force between the sph
in the limit that interests us.

A periodic classical path between the closest points of
two spheres is obviously transformed into itself by axial
tations and is therefore isolated in phase space, i.e., it
fixed point of the symmetry. Such a pathg(J,n) is charac-
terized by its ‘‘direction’’ ~i.e., whether it can be considere
as the limitxi→xf of a classical path of typeJ5I or of J
5IV) and the numbern of reflections on either sphere
Using the same notation as for the Casimir force betw
two plates, the length of aperiodic classical path with 2n
reflections off the spheres isLn

I 5Ln
IV52nl, and the associ-

ated classical action is therefore

Sg~ I,n!5Sg~ IV, n!52nlE/v. ~3.1!

To obtain the semiclassical expression for the response f
tion, we have to compute the 434 monodromy matrices
Mg(t) for these periodic paths. This is essentially a probl
in geometrical optics. For simplicity, we take the point
time t50 to be midway between the two spheres. The mo
dromy matricesMg(J,n)(0) are then related to the mono
dromy matrix for the simplest periodic trajectory,M
[Mg(I ,1)(0), by

Mg~ I,n!~0!5Mg~ IV, n!
T ~0!5„Mg~ I,1!~0!…n[Mn, ~3.2!

whereT denotes the transpose. To obtain the determinan
Eq. ~2.26! for any periodic closed orbit, it therefore suffice
to find the eigenvalues of the monodromy matrixM of the
simplest periodic orbit of type I.M can be decomposed as

M5T~ l /2!R2T~ l !R1T~ l /2!, ~3.3!

where the matricesT andRi are defined as follows.

FIG. 3. Reflection by a convex mirror of focal lengthf 5R/2 of
a monochromatic ray of momentump5E/v incident parallel to, but
displaced an infinitesimal distancedx' from, the symmetry axis of
the mirror.
es

e
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The transport matrixT( l ) in Eq. ~3.3! relates the infini-
tesimal transverse deviationsdx'( l ) and dp'( l ) at the end
of a straight path of lengthl to those at the beginning. Sinc
deviations in the two directions perpendicular to the strai
path are independent of one another, the 434 matrix T( l )
can be written as the tensor product

T~ l !5S 1 ~v l /E!

0 1 D ^ 1 ~3.4!

of a 232 matrix and a 232 unit matrix; the matrixT( l ) can
be read off from the geometrical relations

dx'~ l !5dx'~0!1
l

E/v
dp'~0!,

~3.5!

dp'~ l !5dp'~0!

for free motion of a massless particle along a straight path
lengthl with momentump5E/v. The reflection matricesRi
in Eq. ~3.3! similarly relate the transverse deviations ju
before a reflection on spherei to those just after. Since th
two radii of curvature of a sphere are the same, the 434
matrixRi can also be written as a tensor product:

Ri5S 1 0

~2E/Riv ! 1D ^ 1. ~3.6!

The matrix Ri is obtained using geometrical optics fo
paraxial rays. As shown in Fig. 3 ray optics for reflection
a mirror of focal lengthf 5R/2 gives

dx'~after!5dx'~before!,
~3.7!

dp'~after!5
E

f v
dx'~before!1dp'~before!.

The matricesRi andT do not depend on the detailed geom
etry of the problem; our results will hold for any two ide
cylindrically symmetric convex mirrors with focal length
f 15R1/2 and f 25R2/2 whose axes of symmetry coincid
and which are a distancel ! f 1 , f 2 apart. The approach is
valid irrespective of the precise shape of these mirrors
long as paths between their closest points are the only c
sical periodic paths with a length comparable to their se
ration l .

Inserting Eqs.~3.6! and ~3.4! into Eq. ~3.3!, the mono-
dromy matrix for the pathg(I,1) becomes
M[Mg~ I,1!~0!5S 11
l

R1
1

3l

R2
1

2l 2

R1R2

v l

E S 21
3l

2R1
1

3l

2R2
1

l 2

R1R2
D

E

v l S 2l

R1
1

2l

R2
1

4l 2

R1R2
D 11

3l

R1
1

l

R2
1

2l 2

R1R2

D ^ 1. ~3.8!
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Note that the dependence ofM on p5E/v appears only in
the off-diagonal elements, once asv l /E and once asE/v l .
The determinant as well as the trace ofM and thus the ei-
genvalues ofM are therefore energy independent; they d
pend only on geometric properties of the objects, i.e.,
radii of the two spheres andl . There is thus a clean separ
tion of the geometric and dynamic aspects of the problem
result rather simple to understand from the nature of D
jaguin’s calculation of the force forl /R!1.

Since the determinants ofT andRi are each unity, the
determinant ofM as given by Eq.~3.3! is also unity and the
two doubly degenerate eigenvaluesd6 of M are inverses of
each other. The sum of the eigenvalues is the trace ofM . We
thus have from Eq.~3.8!

d11d25d11~1/d1!5214a, ~3.9!

where

a5
l

R1
1

l

R2
1

l 2

R1R2
~3.10!

and one obtains

d65~Aa116Aa!2. ~3.11!

The determinant in Eq.~2.26! can be nicely expressed b
proceeding in the usual fashion of casting the eigenva
~3.11! in exponential form with a single geometrical param
etera

d65e62a, with a5 ln~Aa111Aa!. ~3.12!

Using Eq. ~3.2! and the fact that each of the eigenvalu
~3.12! is doubly degenerate in the matrix~3.8!, the determi-
nant in Eq.~2.26! is

Det @Mg~J,n!~0!21#5Det ~Mn21!5~e2na21!2

3~e22na21!2

516sinh4~na! ~3.13!

for the periodic paths characterized byJ5I or IV, with 2n
reflections. Furthermore, the result~3.13! does not depend on
the choice of the initial position on the periodic path at tim
t50. This is seen by observing thatT(x)T(y)5T(x1y).
Choosing the initial point at an arbitrary valuex rather than
at the pointx50 midway between the spheres therefo
amounts to the replacement

M→T~x!MT~2x!5T~x!MT21~x! ~3.14!

in Eq. ~3.13!. The determinant~3.13! does not change unde
the transformation~3.14!, and thus is independent of time
The time integration in Eq.~2.26! is thus trivial and just
-
e

a
r-

es

gives the total periodtg(J,n) for a periodic orbit with 2n
reflections. The period does not depend on the typeJ of orbit
and is

tg~J,n!5tn52nl/vg52nl
]p~E!

]E
52nl

]

]ES E

v D
~3.15!

since the group velocity in a homogeneous dispersive
dium is vg(E)5]E/]p. @For the special case of a vacuu
surrounding the spheres one hastn

vac52nl/c.# We finally
note that a classical periodic path with 2n reflections be-
tween the closest points of the two spheres~or mirrors!
traverses each volume elementdx exactly 2n times, so that

Ng~J,n!52n. ~3.16!

Inserting the expressions~3.16!, ~3.15!, and ~3.13! in Eq.
~2.26! and performing the~trivial! time integration, we find
that the amplitudeAg for a classical periodic orbitg(J,n),

Ag~J,n!5
l

4sinh2~na!

]

]ES E

v D , ~3.17!

is the same forJ5I andJ5IV and depends on the geometr
of the problem only via the parametera given in Eqs.~3.12!
and ~3.10! in terms of the minimal distancel between the
spheres and their radiiRi .

Inserting Eq.~3.17! in Eq. ~2.25! and using Eq.~3.1! we
arrive at the semiclassical expression for the response f
tion

gosc~E; l !R1 ,R2!54
2 i l

\ F ]

]ES E

v D G (
n51

`
e2inlE/~\v !

4sinh2~na!

~3.18!

where the overall factor of 4 in Eq.~3.18! arises from sum-
ming over classes I and IV of the periodic orbits and over
two polarizations of the photon. It is quite remarkable th
Gutzwiller’s extension@18# of the semiclassical metho
gives such a concise expression for the~semiclassical! re-
sponse function in the relatively complex situation of tw
spheres. The derivation of Eq.~3.18! is notably independen
of the precise geometry and applies equally well to h
spheres, or convex parabolic mirrors, in fact, as commen
on above, to any geometry where one may disregard all
riodic classical paths apart from the ones we conside
Thus letA andB be the points on the mirrors that are close
The method is then applicable if the straight line trajector
A to B to A and B to A to B, and their repetitions, are th
only relevant classical periodic paths, all other periodic pa
having lengths very much greater thanl . In general the mir-
ror surfaces atA andB are each characterized by two radii
curvature. The eigenvalues of the monodromy matrix
then no longer doubly degenerate as for axially symme
coaxial mirrors. This complicates the analysis somewhat
requires no new concepts.

Inserting Eq.~3.18! in Eq. ~2.8! and noting that the ana
lytic continuation is valid since the integrand falls off exp
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nentially on the large quarter-circle, the Casimir energy
the system with two spheres semiclassically is

ECas~ l !R1 ,R2!

52 (
n51

`
l\

2psinh2~na!
E

0

`

djje22nlj/vF ]

]j S j

v D G
52 (

n51

`
\

4pnsinh2~na!
E

0

`

dje22nlj/v, ~3.19!

where the last expression is obtained in a fashion simila
that used to arrive at Eq.~1.10!.

In a vacuum, the phase velocityv(2j2)5c is indepen-
dent of the frequency and the integral in Eq.~3.19! is easily
evaluated. The Casimir energyECas

vac of two spheres in a
vacuum is then given semiclassically by the rapidly conv
gent sum

ECas
vac~ l !R1 ,R2!52 (

n51

`
\c

8p ln2sinh2~na!
. ~3.20!

The semiclassical expressions~3.19! and ~3.20! are strictly
valid only in the asymptotic regimel /R1;0, l /R2;0 where
the semiclassical contribution from paths that wrap arou
either sphere can be neglected. They furthermore dive
only in the limit a→0. By our previous argument the Ca
simir energy of the system isexactlyreproduced by the semi
classical evaluation in this limit. It is easily seen that t
limit a→0 corresponds to the situation where the radius
thesmallerof the two spheres is much larger than their se
ration. Fortunately, this is also the limit in which diffractio
effects are negligible and our semiclassical result is va
From Eqs.~3.19! and ~3.20! we thus can obtain theexact
Casimir energy of the system in the limitl !R1 ,R2. We
retain only the leading~divergent! contribution to the Ca-
simir energy~3.19! in the asymptotic regimea;0; with a
;0, it follows thata25a1O(a2);0, and keeping only the
leading term forna!1,

sinh2~na!5n2a1O~a2!. ~3.21!

Inserting Eq.~3.21! in Eq. ~3.19!, the leading divergent be
havior of the Casimir energy forl /R1;0 and l /R2;0 is,
using Eq.~3.10!,

ECasS l

R1
;0

l

R2
;0D;2 (

n51

`
\

4pan3E0

`

dje22nlj/v

;2 (
n51

`
\R̄

4p ln3E0

`

dje22nlj/v,

~3.22!

where R̄5(R1R2)/(R11R2) is the large length scale. Th
Casimir energy of two spheres embedded in a vacuum
distancel !R1 ,R2 apart becomes

ECas
vacS l

R1
;0

l

R2
;0D;2

p3\cR̄

720l 2
, ~3.23!
f

to

-

d
ge

f
-

.

a

and the attractive forceFsph-sph
vac between them for sufficiently

small separationl is

Fsph-sph
vac S l

R1
;0

l

R2
;0D;2

p3\cR̄

360l 3
. ~3.24!

The limiting case of the force,Fsph-wall
vac , between a conduct

ing sphere of radiusR and a conducting wall in a vacuum i
obtained by letting one of the radii of curvature become
bitrarily large compared to the other. In this limit Eq.~3.24!
implies

Fsph-wall
vac S l

R
;0D;2

p3\cR

360l 3
. ~3.25!

This leading term of the Casimir forces for small separati
proportional toR̄/ l 3 andR/ l 3, respectively, was first arrived
at by Derjaguin@8# using the known dependence of the e
ergy density~1.8! between two parallel plates. His calcula
tion essentially assumes that the vacuum energy density
pends upon the separation between opposing infinites
surface elements in the same manner as for flat plates
does not depend on their relative orientation, nor on the
ometry of the configuration of conductors as a whole. Th
assumptions can alternatively be formulated as stating
the force between conductors is primarily due to the in
pendent superposition of the retarded interaction between
individual atoms of which they are composed—the additiv
principle—if this interaction is normalized to give the C
simir force between two parallel plates—the renormalizat
principle@19–21#. Both approaches are eminently reasona
from a physical point of view, but the underlying assum
tions have not been proven from first principles and hig
order corrections cannot be estimated. The semiclassica
proach provides the theoretical justification for these phy
cal assumptions.

In the case of spheres, we could ignore diffraction effe
only in the limit R1 andR2@ l we considered. As such, th
final result~3.20! gives the true force on the spheres only
a!1 and thereforea!1, and we could have retained on
the leading terms in the expansion ofa in powers ofa from
the outset to derive the semiclassical expression for the fo
on the spheres in the limit where we can ignore diffractio
As it happens, it is algebraically simpler to proceed as
did, but much more significant is the fact that the contrib
tion to F from the paths we considered, henceforth deno
by Fno diff , is the semiclassical result for arbitrary values ofl ,
R1, and R2. Our previous discussion concerning the exa
ness of the semiclassical evaluation of Casimir energies
gests that it is not accurate when the separationl is much
larger than the radius of the smaller of the two spheres,
cause the Casimir energy no longer diverges in this limit a
the dominant contribution to the energy integral in Eq.~2.8!
doesnot arise from the behavior of the integrand at lar
energies. We have not looked into the question of whethe
not the semiclassical approximation forgosc gives a useful
approximationto the Casimir energy in this situation.
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We return to Eq.~3.20!, by itself valid semiclassically
also for l @R1 ,R2, where now a@1 and thereforea
5 1

2 ln@4l2/(R1R2)#; we retain only then51 term, differenti-
ate, and find

Fno diff~a;`!;2
3\cR1R2

8p l 4
. ~3.26!

The Casimir-Polder result@11# for the force between two
distant atoms, on the other hand, is

FAt At;2
161

4p

\ca1~0!a2~0!

l 8
, ~3.27!

wherea i(0) is the static~zero-frequency! electric-dipole po-
larizability of thei th atom and magnetic polarizabilities hav
been neglected. Buta(0)5R3 for a conducting sphere o
radiusR, and thus for two spheres separated by a dista
l @R1 ,R2, the force is

Fsph-sph~ l;`!;2
161

4p

\cR1
3R2

3

l 8
. ~3.28!

Since

Fsph-sph5Fno diff1Fdiff , ~3.29!

the diffraction contributionFdiff would have to cancel the
1/l 4 term and any other terms falling off less rapidly th
1/l 8 of Fno diff for the semiclassical approximation to ha
any justification in the limitl;`. We have not yet studied
diffraction effects, but one can see from Fig. 2 that the do
nant 1/l 4 term may well be canceled. Thus, ignoring terms
order Ri / l , the shortest diffractive paths of Fig. 2 have t
same length, 2l , as the shortest nondiffractive path@which is
the only path that contributes in the limitl;` to Fno diff in
Eq. ~3.26!#. But the shortest diffractive paths undergo o
reflection and therefore contribute to the force between
spheres with a sign that is opposite to the contribution of
nondiffractive path of similar length.

Another, perhaps experimentally more relevant, obse
tion is in order in this context: diffraction effects are neg
gible, irrespective of the curvature radii at the closest po
of the two convex axially symmetric mirrors with a commo
axis, whenever the linear dimensions of the mirrors are la
compared to their separation. One can imagine mirrors w
rather small radii of curvature but with mirror dimensio
sufficiently large for diffraction to play no role even whe
the curvature at their closest points is much less than
separation between them.~Consider, for instance, the ex
treme case of two perfectly aligned ‘‘needles’’ pointed
each other, separated by a distancel satisfyingLi@ l @Ri ,
where theRi are the radii of curvature of their tips and theLi
are the lengths of the needles, or the more realistic case
single needle pointed at a plane.! In this case, the dependenc
of the force between these objects on their separation w
semiclassically be given by Eq.~3.26!, rather than by Eq.
~3.27! for l @R1 ,R2 but l !L1 ,L2. In other words, Eq.~3.20!
would be the semiclassical result for all separationsl small
compared to the linear dimensions of the mirrors, but
necessarily small compared to their radii of curvature. Th
ce
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is no apparent contradiction with the Casimir-Polder res
~3.27!, which obviously does not apply when the separat
is small compared to the linear dimensions of the objects

Similar reasoning suggests that the results~3.19! and
~3.20! give the semiclassical approximation to the Casim
energy of two~infinite! paraboloids of revolution with radi
of curvatureR1 andR2 and a common symmetry axis. Dif
fraction effects are negligible. We do not claim that the sem
classical approximation in this case is exact~except for l
!R1 ,R2), but it could be of interest to see whether thel 24

dependence of the force for large separations between
paraboloids predicted semiclassically by Eq.~3.26! is at least
qualitatively correct.

IV. DISCUSSION

The semiclassical approach to Casimir energies advoc
here is clearly applicable to a range of problems we have
considered. The analysis of nearby metallic spheres em
ded in a dielectric can obviously be extended to nearby
electric spheres in a dielectric, since the only significant
riodic orbits are the same for the two cases; the reflec
matricesR1 andR2 would, however, have to be changed
those appropriate for reflection off a dielectric. We also
mark that the results deduced simplify greatly for very lar
and very small separations. In the former case,«(v2) of the
medium between the metallic objects can be replaced
«(0), and theresults for the medium in this regime are tho
for the vacuum with the replacementc→c/A«(0). For suf-
ficiently small separations,j2«(2j2) is well approximated
by j21vpl

2 , wherevpl is the plasma frequency of the me
dium, and the integrations can be evaluated@22#.

More important for the general usefulness of the semic
sical method we presented for calculating the Casimir ene
would be the inclusion of diffraction phenomena. The cu
rent status of affairs@10# is somewhat unsatisfactory in thi
regard, for it requires a decomposition of the scattering a
plitude into partial waves, which, after performing the sem
classical approximation for each channel separately,
eventually resummed. The procedure is at best cumbers
and generally leads to approximations~because the summa
tion over partial waves is usually truncated! that are not con-
sistent with an expansion in\. Pending a more efficient reso
lution of this technical problem of the semiclassic
approximation, the calculation of Casimir energies us
classical periodic paths, although conceptually appealing
in practice limited to situations in which diffraction effec
can be neglected.

When present, as in the examples we discussed, cont
tions from fluctuations around periodic classical paths co
pletely dominate the semiclassical response function,
contribution from nonperiodic paths being of higher order
\. In the absence of classical periodic paths, as, for exam
for two large conducting plates that are at an angleb to one
another, one must clearly consider nonperiodic paths.
semiclassical Green function can be computed for this c
but it is not clear how the leading approximation to the sp
tial integral for the response function can be obtained.
conjecture that the spatial integration giving the respo
function in the\→0 limit in this case is dominated by end
point contributions and speculate that the Casimir energy



a
-

i

a

ite

ril
n.

fo
an
his
d
b

o
n

ns

nc
pa
ar
er
e

a
ai

th

f

em
l

th

l

y,

e

eal

ck-

te
ral

nse

ir

rgy

ne

part

PRA 58 947INFINITY-FREE SEMICLASSICAL EVALUATION OF . . .
be found by considering certain classical paths that begin
end at a pointon the boundary. We are currently investigat
ing this possibility and wish only to remark here that asb
→0, the case of two parallel plates, such paths coincide w
the periodic classical paths we considered.

Note added. As is apparent from the semiclassical deriv
tion, Eq. ~1.6! is the contribution toECas of fluctuations
within the rectangular parallelepiped. It is the fullECas only
for a rectangular parallelepiped of vacuum within an infin
metallic region. The total Casimir energy, internalandexter-
nal, has been calculated for an ideal cylinder of arbitra
small thickness by L. L. DeRaad, Jr. and K. A. Milton, An
Phys.~N.Y.! 136, 229 ~1981!.
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APPENDIX A: ON THE SEMICLASSICAL EVALUATION
OF CASIMIR EFFECTS

We here show that the Casimir energy of a system
conductors in a vacuum can in principle always be fou
exactly from the semiclassical expansion of the respo
function gosc(E,l )5g(E,l )2g0(E,l ) to finite order. In Ap-
pendix C we define the oscillating part of the response fu
tion without recourse to a semiclassical expansion, as a
integral over periodic orbits which depend on the bound
of the system. For simplicity we here consider only a p
fectly conducting cavity of general shape in a vacuum. Ev
with this restriction, an exact determination ofgosc is pos-
sible only for very simple geometries of the cavity. The C
simir energy of the system is, however, given by a cert
coefficient in the semiclassical expansion ofgosc(E,l ) for
large uEl/\cu.

The basic idea is to express the energy integral over
imaginary part ofgosc(E,l ) in Eq. ~2.8! as an integral over a
contour in the complexE plane using analytic properties o
the response function. The contour is chosen so that the
tegral can be evaluated to arbitrary accuracy using the s
classical approximation tog osc(E,l ). The exact semiclassica
evaluation of a moment of the imaginary part ofgosc is the
basis for many sum rules and the Casimir energy is in
sense just a special case.

We first ~re!introduce a cutoffV in the energy integra
~2.8! and considerECas as the limitV→` of

ECas~«,l ;V!52
1

2p
lim

h→01

E
0

V

dE E Im gosc~E1 ih,l !.

~A1!

The spectral representation ofgosc(E,l ) follows from Eq.
~2.3!; it is

gosc~E,l !5E
0

`

dE8
rosc~E8,l !

E2E8
, ~A2!
nd

th

-

y

r
d

a-
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-
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e

in-
i-
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whererosc(E,l ), the oscillatory part of the spectral densit
is a real ~but not necessarily positive definite! function.
gosc(E,l ) is thus an analytic function ofE in the whole com-
plex plane, apart from a cut~and/or poles! on the positive
real E axis. Inserting Eq.~A2! in Eq. ~A1! one can express
the Casimir energy as

ECas~«,l ;V!5
1

4ip
lim

h→01

E
I h~V!

dE Egosc~E,l !, ~A3!

that is, as an integral over the contourI h(V) in the complex
E plane. The contourI h(V), indicated in Fig. 4, starts at th
point V1 ih, runs just above the positive realE axis to the
origin, encircles the origin, and continues just below the r
positive E axis to the pointV2 ih. Since the function
gosc(E,l ) is analytic in the complexE plane apart from sin-
gularities on the positive realE axis, the integral in Eq.~A3!
can just as well be performed by integrating counterclo
wise along a large circle of radiusV in the complexE plane,
the contourCV shown in Fig. 4. We can therefore evalua
the Casimir energy of the system by performing the integ

ECas~«,l !5
1

4ip
lim

V→`
E

CV

dE Egosc~E,l !

5 lim
V→`

V2

4pE0

2p

dfe2ifgosc~Veif,l !. ~A4!

The point is that a semiclassical expansion of the respo
function gosc(E,l ) in Eq. ~A4! is possible for sufficiently
large radiusV, and should suffice to determine the Casim
energy of the systemexactly.

Dimensional analysis shows that theE dependence of the
response function is of the form

gosc~E,l !5ĝ~x,$r i%!/E. ~A5!

ĝ is a dimensionless function that depends on the ene
only through the dimensionless parameterx5(El)/(\c),

FIG. 4. Contours of integration in the complex energy pla
used in the text. Poles and cuts ofgosc(E,l ) on the positive realE
axis are shown schematically. The region where the oscillating
of the response functiongosc is an analytic function ofE is shaded
gray.
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with l a typical length of the cavity. The dimensionless p
rametersr i5 l i / l are ratios of lengths on which the geomet
of the cavity may also depend. To perform the contour in
gral in Eq. ~A4!, we need to knowgosc(E,l ) only for large
uEu5V and Eq.~A5! shows that a semiclassical expansi
of the response function is valid in this regime. The sem
classical expansion ofĝ(x,$r i%) for large energy and there
fore largex is in general of the form

ĝ~x@1,$r i%!;xqeixc1~$r i %!(
j 50

`

x2 j c2 j~$r i%!, ~A6!

where the coefficientscj are functions of the dimensionles
geometrical ratiosr i only andq is the leading exponent ofx
in the expansion. Becausegosc(E,l ) is a single-valued func-
tion of the energyE, only integer powers ofx appear in the
semiclassical expansion~A6!. @The semiclassical expansio
of other quantities is generally an expansion in half-inte
powers of\.# In the text we obtained the leading term of th
expansion and found thatq52 for the parallel plate problem
@see Eqs.~2.19! and ~2.23!#, whereasq51 in the Derjaguin
problem@see Eq.~3.18!#. If we use the expansion Eq.~A6!
for the oscillating part of the response function~A5! at large
energies, the contour integration in Eq.~A4! can be per-
formed term by term. By Cauchy’s theorem, only the te
proportional tox21, with coefficientc2q21, gives a contri-
bution and the Casimir energy of a cavity is

ECas~«,l ,$r i%!5
\c

2l
c2q21~$r i%!. ~A7!

Although interesting, the relation~A7! is generally perhaps
of little practical use for a determination of the Casimir e
ergy. It is usually quite difficult to obtain the coefficien
c2q21 in the semiclassical expansion ofgosc accurately. We
therefore did not pursue this approach to evaluate Cas
energies and instead restricted ourselves to special case
which an asymptotic evaluation of the Casimir energy us
only the leading term of Eq.~A6! suffices. The relation~A7!
shows that an exact semiclassical evaluation of the Cas
energy is, however, in principle always possible.

APPENDIX B: THE DETERMINANT D0

To prove Eq.~2.14!, let Q represent the matrix in Eq
~2.13! for the direct path betweenx andy. With S given by
Eq. ~2.11!, Q becomes

~B1!

whereX5x2y is the displacement vector and

vg~E!5S ]

]E

E

v D 21

~B2!
-

-

i-

r

-

ir
for

g

ir

denotes the group velocity. The elements ofQ are not all of
the same dimension. In evaluating detQ, we therefore extract
a factor (2E/Lv) from each of the first three rows,
(21/vg) from the fourth row, andLv/Evg from the resultant
fourth column, and obtain

detQ5S E

Lvvg
D 2

detQ8,

~B3!

with the elements ofQ8 dimensionless. The matrixQ8 has
two eigenvectors of the formZ65(X, f 6) with correspond-
ing eigenvalues

s65
1

2S E

v
]vg

]E
6AS E

v
]vg

]E D 2

24D , ~B4!

so thats1s251. The other two linearly independent eige
vectorsZ1,25(Y1,2,0) of Q8, with Y1,2•X50, are orthogonal
to Z6 and correspond to a doubly degenerate eigenvalu
The determinant ofQ is therefore

detQ5D0
25F E

Lvvg
G2

, ~B5!

and Eq.~2.14! follows.

APPENDIX C: PERIODIC PATHS AND SYMMETRIES
OF A PHASE SPACE WITH BOUNDARY

We will here consider a bounded~one-particle! phase
spaceP with a five-dimensional boundary]P that is de-
scribed by the constraint

F~x,p!50. ~C1!

A periodic pathgt of periodt in the phase spaceP can be
considered as the map

gt :tP@0,t#→$„x~ t !,p~ t !…PP; with x~0!5x~t!

and p~0!5p~t!% ~C2!

of the time intervaltP@0,t# onto a closed path in the phas
spaceP. Since the path is periodic, the time interval@0,t#
can be thought of as a parametrization of the circleS1. For
reflections at anx-space boundary to be possible, we cann
restrict our attention to continuous mapsgt , since the mo-
mentum of a classical path in general is discontinuous a
x-space boundary]P of P. We will, however, consider only
piecewise continuous mapsgt , continuous everywhere ex
cept for~possibly! a set of points$t i% of vanishing measure
which is mapped onto the boundary]P, i.e.,

F„gt~ t !…u tP$t i %
50. ~C3!
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The response functiong(E) is, loosely speaking, the Laplac
transform of a path integral over all such periodic paths~C2!
of periodt. This path integral generally diverges in a sem
classical evaluation. Some of these divergences, howe
are of no physical significance for Casimir effects, and oth
are due to the~naive! semiclassical evaluation of the pa
integral. It would be conceptually preferable and compu
tionally advantageous to avoid such divergences in the
mulation of the problembefore performing the semiclassic
evaluation. We will here consider two types of divergenc
that can be circumvented. The first is associated with
short-range singularity arising from periodic paths of ar
trarily short length, while the second is due to the fact t
classical periodic paths are not isolated in the presenc
continuous phase-space symmetries. Although these
types of divergences encountered in a straightforward se
classical evaluation of the path integral representation for
response function are of a different kind, they both have th
origin in periodic paths that are equivalent in some sens

Let us first address the issue of arbitrarily short perio
paths. These paths can be understood as fluctuations ar
a classical pathgt

0 , which is a single point in phase space.
the restricted set of piecewise continuous mapsgt defined
above with a HamiltonianH5cp describing a massless pa
ticle, there is no stationary periodic classical path of vani
ing length for t.0, and the problem can in principle b
avoided in a semiclassical evaluation of the path integra
a restriction to paths witht.0. However, the periodic path
gt

0 :@0,t#→$„x(t)5x0 , p(t)50…¹]P% is a classical~i.e.,
stationary! periodic trajectory of vanishing length for amas-
sive particle and the fluctuations around such paths do g
rise to a divergence in the semiclassical evaluation of
response function that cannot be avoided by a restrictio
paths of periodt.0. More significant from a physical poin
of view is that the contribution to the response function fro
such arbitrarily short paths can at most depend onlocal
variations of the boundary, if the~arbitrarily short! periodic
path begins and ends on the boundary. Periodic paths tha
wholly in the interior of P are unaffected by a small varia
tion of the boundary. They therefore do not give a bounda
dependent contribution tog(E) nor to the Casimir energy
We are not interested in these generally divergent
boundary-independent terms, since a Casimir energy sh
depend on the imposed boundary. One usually simply
nores these boundary-independent contributions to the
ergy but it would be conceptually and computationally pr
erable to formulategosc(E) in a way that avoids them from
the outset. In particular, we would like to exclude contrib
tions to the path integral from~short! periodic paths that are
wholly in P\]P or at most includeonepoint of the bound-
ary.

The restriction of the space of periodic paths can be c
in a more mathematical form by noting that a short perio
path that depends onlylocally ~or not at all! on the boundary
can be continuously deformedin the interiorP\]P to a tra-
jectory that consists of a single point. More rigorously, w
require an equivalence relation that relates paths that ca
‘‘smoothly’’ deformed into each other—where smoothly e
sentially means that the action varies continuously as
deform one path into another. The required equivalence
lation is rather close to the notion ofhomotopy@23# on
-
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P\]P. Two periodic pathsg and g8 are usually said to be
homotopically equivalent if there is a continuous deform
tion r of g into g8,

r:sP@0,1#→g~s!, with g~0!5g and g~1!5g8.
~C4!

However, we clearly require a more restrictive equivalen
relation, since the definition~C4! would imply that all the
periodic paths in say the Derjaguin problem are homoto
cally trivial. Intuitively we would like to arrange matter
such that paths that differ in the number of reflections
inequivalent, especially since the Maslov index genera
differs for such curves. In effect, we would like the ‘‘homo
topy’’ map to preserve the Maslov index of a path. To gu
antee this, it appears to be sufficient for the mapr of Eq.
~C4! to preserve thenumberof time intervals~which can be
isolated points! during which the paths are on the bounda
]P of the phase spaceP. We can define a correspondin
index i (gt), for any periodic pathgtPP, which simply
counts the number of time intervals for which the pathgt is
on the boundary]P. Consider the set of disjoint closed tim
intervals for which the periodic pathgt is part of the bound-
ary,

m~gt!:5$I i5@ t i ,t i 11#,I iùI j5B; iÞ j :gt~ t !¹]P

for tP;ø
i

I i%, ~C5!

where the periodic time interval@0,t# is considered a param
etrization of a circle. We define the indexi (gt) as the num-
ber of elements inm(gt), i.e., the orderN(m) of the setm,

i ~gt!:5N„m~gt!…. ~C6!

The desired equivalence relation between two periodic pa
is then given by a homotopy mapr̄ that does not change th
index of a path. The restricted homotopy mapr̄, in particu-
lar, does not change the number of reflections of a perio
path. The trivial equivalence class$0% will denote those pe-
riodic curves that can be continuously deformed to a poin
P without changing the indexi (gt). Since a point inP either
is or is not on the boundary, these periodic paths have in
i 51 or i 50. They are precisely the periodic paths who
contribution to the Casimir energy does not depend on glo
variations of the boundary and we can exclude them in
definition of the oscillating part of the response functi
gosc. Note that the restricted homotopic equivalence relat
defined above fits our requirements quite well and is su
ciently refined to distinguish betweenmanyof the classical
periodic paths of the two-plate and Derjaguin problems.~Re-
flected paths and paths that follow the boundary for a wh
can, however, belong to the same equivalence class in
above sense, and one may wonder whether an even m
restrictive definition of equivalence distinguishes betwe
them!. There always, however, seems to be at least one c
sical periodic path in each~restricted! equivalence class. Ou
equivalence between periodic paths on the bounded p
spaceP thus appears to be in agreement with the expecta
that the action is a continuous functional within each equi
lence class only.
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We can now eliminate from the outset the bounda
independent but generally divergent contribution to the
sponse function from periodic paths in the trivial equivalen
class$0% and define the oscillating part of the response fu
tion, gosc(E), by the Laplace transform of the path integra

gosc~E!5
22i

\ E
0

`

dtei ~E1 i«!t/\E
gt¹$0%

@dxdp#eiS[gt]/\,

~C7!

where the factor of two accounts for the sum over polari
tions. Since classical periodic paths that belong to a n
trivial equivalence class generally have a minimal len
~which depends on the boundary ofP), the restricted path
integral~C7! is free from divergent contributions due to flu
tuations around arbitrarily short classical paths. The rest
tion of Eq. ~C7! to periodic paths in nontrivial equivalenc
classes is equivalent to the previously used definition~2.5! of
the oscillating part of the response function semiclassica
but Eq. ~C7! specifies the boundary dependent~oscillating!
part of the response function without reference to the ge
ally divergent response function in the absence of bou
aries. In the absence of a boundary, all periodic paths o
contractable phase space are trivial andgosc(E) given by Eq.
~C7! then vanishes by definition.

The measure@dxdp# and the corresponding path integr
in Eq. ~C7! should be understood as the limit of a fini
dimensional integral obtained by suitably discretizing t
time interval@0,t#. Note that momenta and coordinates en
symmetrically in the discretized path integral for the r
sponse function~C7!

lim
n→`

E F)
i 51

n dx~ i t/n!dp@~ i 2 1
2 !t/n#

~2p\!3 GeiS[gt] udisc/\ ~C8!

and the integrals in Eq.~C7! extend over the available phas
space volume. The momentum and coordinate integration
the path integral representation of a Green function, on
other hand, are not symmetric.~The end pointsx0 andxn of
a Green function are fixed and there is an ‘‘extra’’p-space
integral in its path integral representation.!

Let us next consider continuous symmetries of the ph
spaceP. A function l(x,p) on the phase spaceP that does
not explicitly depend on time and whose Poisson brac
with the Hamiltonian vanishes generates an~infinitesimal!
canonical transformationL« :

L«~x!5x1«@x,l#P1O~«2!5x1«¹pl1O~«2!,

L«~p!5p1«@p,l#P1O~«2!5p2«¹xl1O~«2!,
~C9!

L«~H !5H5E

on the energy surfaceH(x,p)5E. Here« is an infinitesimal
parameter and the Poisson bracket@F,G#P of two functions
F andG on the phase space is as usual

@F,G#P :5
]F

]x
•

]G

]p
2

]G

]x
•

]F

]p
. ~C10!
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Such a canonical transformation will, however, genera
also move the boundary]P of the phase spaceP. One there-
fore requires that a canonical generatorl on the phase spac
P with boundary]P also satisfy

05@F,l#PuF~x,p!50 . ~C11!

Note that this requirement greatly restricts the canon
transformations we are considering. Of interest to us will
the special case where the bounded phase space and H
tonian possess some ‘‘obvious’’ continuous symmetries. T
generatorsla of the symmetry groupG in this case form the
basis of anr -dimensional Lie algebra:

$la ,a51, . . . ,r :@la ,lb#P5 f ab
c lc% ~C12!

with structure constantsf ab
c . In the Casimir problem with

two parallel plates of dimensionL3L located atz50 and
z5 l with L@ l , the ‘‘obvious’’ symmetry is that of transla
tions parallel to the plates. It is generated by the momen
componentspx and py . In the Derjaguin problem, the
boundary of phase space is axially symmetric with respec
the z axis. The time-independent symmetry is generated
the z component of angular momentum,

l5~x3p!z5xxpy2xypx . ~C13!

In a rotationally symmetric spherical cavity, the symme
generators are the components of angular momentum, e

An elementgPG of the group of canonical transforma
tions generated by thela of Eq. ~C12! maps any periodic
pathgt onto another pathgt

g5g+gt of the same periodt via

gt
g5g+gt :5$„g+x~ t !,g+p~ t !…,tP@0,t#% ~C14!

and respects the boundary conditions~C1!. SincegPG has
an inverseg21 the index i (gg)5 i (g) defined in Eq.~C6!
does not change and the pathgt

g therefore belongs to the
same equivalence class asgt . The Lie groupG thus induces
an equivalence relationwithin each of the previous equiva
lence classes. One says thatgt

g is on the sameorbit asgt .
The action as well as the measure@dxdp# of the path integral
are invariant under these canonical transformations, an
particular are invariant under infinitesimal canonical tran
formations generated by thela’s.

A semiclassical evaluation of the path integral~C7! is
therefore plagued by zero modes, infinitesimal deformati
of the path that do not change the action, which are a m
festation of this symmetry. The remedy is well known:
consists of choosing a particular representative on each o
and then performing the integration along the orbit exac
We choose the representativegs of an orbits by demanding
that it satisfy the subsidiary conditions

Fa@gs ;s#50, a51, . . . ,r , ~C15!

where theFa are functionals of the path. As indicated, th
conditions~C15! may explicitly depend on the orbits. They
must have a solutiongs on the orbits, which preferably is
unique. In this case theFa@g;s# can be regarded as collec
tive coordinates that give the position of the path on the o
s on which the actionS@g# does not depend. The remaind



r
pa

no
o

tu
t

te
e
s
.

th

pov
the

just
tive

fy
are
i-

PRA 58 951INFINITY-FREE SEMICLASSICAL EVALUATION OF . . .
of this appendix is then just the change of integration va
ables in the path integral from collective coordinates to
rameters of the symmetry group.

For a semiclassical evaluation of Eq.~C7!, however, it
suffices that aclassicalperiodic path on the orbits satisfy
Eq. ~C15! and that the Faddeev-Popov determinant~to be
defined below! does not vanish at this solution. There are
gauge-equivalent classical paths in the immediate vicinity
gs in this case, and a semiclassical evaluation of the fluc
tions around this representative path is possible. We use
fact that the parameter space of the Lie groupG is a metric
space to write

Ns5E
G
DgudetM u)

a51

r

d~Fa@g+g;s#!, ~C16!

where the integral is over the manifold of the parame
space of the invariance groupG with the appropriate measur
andNs is a positiveinteger that gives the number of time
the subsidiary conditions~C15! are satisfied on the orbit
~Note that we take theabsolute valueof the determinant—
Ns is not the degree of the map, and vanishes only if
subsidiary conditions cannot be satisfied.! The r 3r matrix
M in Eq. ~C16! has elements
to

n
f

ep

-
o

i-
-

f
a-
he

r

e

Mab5
]Fa

]«b U
g

[E
0

tS dFa

dx~ t !

]x~ t !

]«b
1

dFa

dp~ t !

]p~ t !

]«b D
g

5E
0

tS dFa

dx~ t !

]lb

]p
2

dFa

dp~ t !

]lb

]x D
g

~C17!

and is the finite-dimensional analog of the Faddeev-Po
@24# matrix in gauge theories. It relates the change of
collective coordinates ofg to an infinitesimal change of the
group parameters and the determinant of this matrix is
the Jacobian for the change of variables from the collec
coordinatesFa to the group parameters@in the case where
the solution of Eq.~C15! is unique andNs51#. The deter-
minant of M needs to be known only at points that satis
Eq. ~C15! and we demand that the collective coordinates
chosen so that detM does not vanish for the classical per
odic paths on the orbits. We insert Eq.~C16! in Eq. ~C7!
and use the fact that the actionS, the measure@dxdp#, detM ,
and Ns are invariant under the action of the groupG. One
can thus rewrite the response function as
a semi-
, a
q.
gosc~E!5
22i

\ S E
G
DgD E

0

`

dtei ~E1 i«!t/\E
gt¹$0%

@dxdp#Ns
21udetM u)

a51

r

d@Fa~gt ;s!#eiS[gt]/\, ~C18!

that is, as a path integral over periodic representative pathsgs of each orbits that satisfy the constraints~C15!. The volume
VG5*GDg of the symmetry group from the integration over the orbit has been separated, and one may proceed to
classical evaluation of the path integral in Eq.~C18!. As is shown in Appendix D for the Casimir problem with two plates
judicious choice of the subsidiary conditions~or collective coordinates! Fa often allows for a semiclassical evaluation of E
~C18! in terms of a semiclassical Green function. Using the Fourier representation of thed function, Eq.~C18! can also be
written in the form of a path integral over an enlarged phase space supplemented by Lagrange multiplierssa,

gosc~E!5
22i

\ S E
G
DgD E

0

`

dtei ~E1 i«!t/\E
gt¹$0%

@dxdp#Ns
21udetM uS )

a51

r E
2`

` dsa

2p\ D ei ~S[gt] 1saFa[gt ;s] !/\. ~C19!
ma-

p
.e.,
to a
be-
uch

ns
It is consistent with the semiclassical approximation
evaluate all the integrals in Eq.~C19! by the method of sta-
tionary phase and consider only quadratic fluctuatio
around classical periodic pathsgs that are representatives o
the orbits that satisfy the subsidiary conditions~C15!.

APPENDIX D: THE TWO-PLATE CASIMIR PROBLEM
REVISITED

The boundaries atz50 andz5 l of the Casimir problem
are described by the constraint

F~x,p!5z~ l 2z!50. ~D1!

To avoid the edge effects of two finite plates and for conc
tual clarity we impose periodic boundary conditions in thex
andy directions of periodL@ l . The symmetry of the prob
lem in this case is that of the translation group on a tw
s

-

-

dimensional torus. The corresponding canonical transfor
tions are generated by the momentapx and py , whose
Poisson brackets with the constraint~D1! vanish. Since

l15px , l25py , and @l1 ,l2#P5@px ,py#P50,
~D2!

there are no additional generators and the symmetry grouG
of translations parallel to the plates is two-dimensional, i
r 52 in this case. Periodic paths that are the same up
translation parallel to the plates are thus equivalent and
long to the same orbit. We choose the representative of s
an orbit to be the path whose initial point„x(0),p(0)… is on
thez axis and select it by imposing the subsidiary conditio

F1@g#5x~0!50,
~D3!

F2@g#5y~0!50.



-
th

al

i

t
r
-

th
-

-

so
y
ry

he

ly

to

n
een
en
in

952 PRA 58MARTIN SCHADEN AND LARRY SPRUCH
Note that the subsidiary conditions~D3! can be chosen inde
pendent of the orbits, since a representative periodic pa
satisfying them can be found for any orbit.

A group elementg(da')PG in the vicinity of the identity
depends on two infinitesimal parametersda1 and da2, da'

5(da1 ,da2,0). The corresponding infinitesimal canonic
transformationLda'

is generated by

l1da11l2da25p•da' , ~D4!

and effects an infinitesimal translationda' parallel to the
plates

Lda'
~x!5x1@x,da'•p#P5x1da' ,

~D5!

Lda'
~p!5p,

Lda'
~H !5H,

on the energy surfaceH5E.
Due to the periodic boundary conditions, a translation

the x or y direction byL is equivalent to no translation in
that direction at all. The group element corresponding
such a translation byL is thus the identity. The paramete
space ofG is therefore topologically a symmetric two
dimensional torusT2 of dimensionL3L. The metric on this
parameter space of the Lie groupG is flat, becauseG is
Abelian, and the manifold of the parameter space of
groupG is thus isomorphic toT2. The volume of the trans
lation groupG, that of a two-dimensional symmetric torusT2
of dimensionL3L, is just the area of the plates

VG5E
G
Dg5E

T2
da1da25L2. ~D6!

The Faddeev-Popov matrixM of the two-plate Casimir prob
lem with the subsidiary conditions~D3! is the 2 by 2 unit
matrix

Mi j 5
]Fi

]aj
5d i j ⇒detM51 ~D7!
.

r-
by
.
rst
er
n

o

e

with unit determinant. Although obvious, one may al
prove that the representativegs chosen by the subsidiar
conditions~D3! is unique: since the change of the subsidia
conditions by a group element infinitesimally close to t
unit element ofG is given by the matrixM and detM51
.0 for any value of the subsidiary conditions, there is on
one solutiongPG to F1@g+g#5F2@g+g#50 for any pathg.
The multiplicity constantNs is thus

Ns51, ~D8!

for any orbits.
Inserting Eqs.~D6!, ~D8!, ~D7!, and ~D3! in Eq. ~C18!,

we obtain for the oscillating response functiongosc
2-plate(E) of

the two-plate Casimir problem

gosc
2-plate~E!5

22iL 2

\ E
0

`

dtei ~E1 i«!t/\

3E
gt¹$0%

@dxdp#d„x~0!…d„y~0!…eiS[gt]/\.

~D9!

Only periodic paths that begin and end on thez axis and that
do not belong to the trivial equivalence class contribute
the path integral in Eq.~D9!. To evaluate Eq.~D9! semiclas-
sically, observe that

2 i

\ E dx~0!d„x~0!…d„y~0!…E
0

`

dtei ~E1 i«!t/\E
gt¹$0%

dp~0!

~2p\!3

3E @dxdp#eiS[gt]/\5E
0

l

dzG~z,z;E!ug¹$0% ~D10!

is an integral overz of the Green functionG(z,z;E) from a
point on thez axis to the same point, where the contributio
from periodic paths in the trivial equivalence class has b
excluded. The semiclassical approximation to this Gre
function was obtained above and is given by the first term
Eq. ~2.18!.
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