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Infinity-free semiclassical evaluation of Casimir effects
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Electromagnetic Casimir energies are a quantum effect proportional\e show that in certain cases one
can obtain an exact semiclassical expression for them that depends only on periodic orbits of the associated
classical problem. A great merit of the approach is that infinities never appear if one considers only periodic
orbits that make contact with the boundary surface. This notion is made more precise by classifying the closed
orbits in a phase space with boundaries and identifying the classes that contribute to Casimir effects. A
semiclassical evaluation of the path integral gives a systematic expansion of the Casimir energy in terms of the
lengths of classical periodic orbits. For some simple geometries the semiclassical expansion can be summed
and explicitly shown to reproduce known results. This is the case, for example, for the force per unit area
between parallel plates at a separation small compared to their linear dimensions. A more interesting example
for our purposes is the closely related problem of the force on a conducting sphere arbitrarily close to a
conducting wall. We provide a rigorous proof of Derjaguin’s result for the leading contribution to the force.
The semiclassical approach, which has never been truly exploited in Casimir studies, is relatively simple and
transparent, and should have a wide range of applications. The methods presented, however, do not apply to
cases where diffraction is important; diffraction can, in principle, also be described within this semiclassical
approach, but its implementation presents some technical problems. In cases where diffraction is important,
conventional methods of calculating the Casimir energy may often be sirfH050-294{©8)10305-0

PACS numbgs): 31.30.Jv, 12.26-m, 11.10.Gh, 12.20.Ds

I. INTRODUCTION wherev (w?) =c/\/e(w?) is the phase velocity in the dielec-
tric. Via a contour integration, an integration over the fre-
An exact expression for a Casimir effect in terms of anquency w has been replaced by an integration over
integral or infinite sum can normally be given only under ¢= —iw in Eq. (1.1). For a vacuum between the plates, that
very restricted conditions and simple geometries. Since this, £ =1, the variableg in Eg. (1.1) can be identified as the
effects originate, in one picture, in fluctuations of the elec-secant of the angle between the direction of a virtual photon
tromagnetic field, it can be difficult to devise a perturbativeincident on a wall and the normal to the wallThe more
scheme when the exact form cannot be found. The Casimygeneral Casimir energy for three uniform dielectric slabs can
energies to leading order i do not depend oe?/%c, and  also be determined in integral forfi]. Letting the permit-
often not on any other “smallness parameter.” They are intivities of the outer slabs tend to infinity gives the case under
this case of a geometrical nature and depend on the imposednsideration).
boundary conditions and the topology. The semiclassical The physical picture is greatly simplified if one recasts the
treatment we will present here, however, for certain caseswo-dimensional integral in Eg1.1) as a one-dimensional
leads to a systematic expansion of the Casimir energy iintegral, as was only very recently recognized as being pos-
terms of the lengths of primitive periodic classical orbits. sible[3]. The result is
This allows one to compute the Casimir energy exactly in

some cases, and often to high accuracy when the geometry is o d &2
complicated and the exact form cannot be obtained. Ecade,l)= Ffo dé 5(d_§ W)
It will be useful and illustrative to begin by considering a 7 v
classic Casimir problem, the determination of the energy xln[l_e—zlg/v(—gZ)]_ (1.2

Ecad €,1) between two uncharged ideal parallel plates of area
A=l4l, that are separated by a distancel,,l,, with a If we represent the logarithm in E(L.2) by the infinite sum
dielectric of uniform permittivitye (w?) between them. It is
known[1,2] that

©

In[1—e~2&v]=—> (1n)e 2nél, 1.3

n=1

o0 2 o0 . .
_ ﬁ § the expanded form of Eq1.2) virtually begs for an interpre-
Ecad &)= dé¢ dq i . . .
2m?Jo  Tu?(—¢&%) ) tation as virtual photons traveling perpendicular to the walls
) in periodic orbits; the length of a path witm2eflections is
X qin[1— e~ 2Iéa/v (=], (1.1))  2nl, and, roughly speaking, the wave numbiefor given &
is k=i&/lv(— &%) and the frequency-dependent period is
2nl/v(— £2). We also see from Eq1.3) that the contribu-
*Electronic address: ms68@scires.nyu.edu tion to the Casimir energy from periodic paths decreases
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with their length.[In the final result for the Casimir energy, L(nlynz)zz(ni|i+ n§|§)1/2_ (1.7
the contribution of a particular path is inversely proportional
to the third power of its length. The interpretation is unam-
biguous fore =1, but the path-length picture will turn out to
be valid also for frequency-dependent e (— £2).]

The semiclassical approximation will be seen to repro

Since the only lengths that appear in E#.6) are those of
classical periodic path§n the plane perpendicular to the
axis associated withs), one strongly suspects that these
duce the term of ordek of the Casimir energy for a large classical paths will be of importance in a semiclassical cal-

class of geometries. For metallic objects in a vacuum, this i§UIa“°n' If, further.,>1,, the square bracket in E(l.4) is

4 4
often the whole effect. Corrections from interactions of the'®duced to the sum over afi;>0 of 2/(I1ny), and one
order of the electromagnetic coupling~1/137 of higher readily obtains the standard Casimir energy per unit area for

order in#, which can in principle be computed perturba- WO néarby plates in a vacuuf],
tively, will not be considered. We wish to stress, however,

that the semiclassical approach in many cases gives an ex- a2 ke
pansion of the leading contribution, of order in terms of Ecadl (12l3)=— 7203 (1.9
1

the lengths of periodic classical orbits that contribute. This is
a purely geometrical expansion of the leading term of the
Casimir energy, which does not require the existence of al more interesting example from the semiclassical point of
intrinsically small parameter in the problem and that allowsview is that of a metallic sphere of radiisand a metallic
us to compute formally exadto orderfi) answers also in wall a distance <R from the nearest point on the sphere
geometries for which an expansion in terms of eigenmodesmbedded in a vacuum. Making very reasonable assump-
of the electromagnetic field appears unmanagéde Sec. tions, the leading contribution to the forde between the
). Other simple applications of this approach for whichsphere and the wall for<R has been determined theoreti-
exact solutions are not easily derived may also be envically [8] using the fact that the force per unit area between
sioned, such as for the case of a dielectric with a permittivityyalls, the derivative with respect to the separatioggf,, is
s(w,)Z) that depends on the location as well as theknown. (A very recent measuremef®] of F was in good
frequency—the case of slabs of different permittivity being aagreement with the theoretical resulf determination of
special casé4]. this force from the electromagnetic eigenmodes has, how-
For e=1, the Casimir energy density has been ob- ever, never been accomplished. 1, the only classical
tained for a rectangular parallelopiped with ideal walls ofperiodic orbits of finite length are traversals, arbitrary in

arbitrary dimension$,,l,, andls [5]. It is given by number, between the two nearest points of the wall and

sphere. Diffraction effects in the semiclassical approach are

ke [ ) 1 represented by periodic orbits that pass around the sphere;
U(lg,lp,l3)=— > 22 27 227 these have lengths that are of the order bpfus multiples
16m L (n1l1+n3l3+n3l3) of R and can be neglected f&/1~. We will show in Sec.

301 1 [l that the contribution from periodic orbits in the semiclas-

__(_ —4+ 2|, (1.4 sical approach reproduce the leading expression for the

Blalalglly 12 13 force. F has also been calculated forR; the dipole ap-

proximation for the interaction of the sphere with the fluctu-
whereX’ denotes the sum over all triplets of integers, posi-ating electric field is then valid. We will see that semiclassi-
tive, negative, and zero, other tham,(n,,n;)=(0,0,0). cally the contribution from classical periodic paths that

Note the presence in E¢l.4) of the lengths “creep” [10] around the sphere can no longer be neglected
in this limit. Although we do not obtain the solution in this
L(n;,n,,Nng)=2(n212+n3l5+n3l3)*? (1.5 limit, there are reasons to believe that the semiclassical ap-

proach could describe the for€efor arbitrary values of/R.
of classical periodic paths in the box witmg 2n,, and 2, The exact semiclassical description of the dasé is, how-
reflections off the three pairs of parallel walls. Note too that,€Ver. ea}5|ly seen to be far more cumpersome than the the
as in all cases where there is only a free electromagnetigonventional one. Thus, the semiclassical method of calcu-
field, the Casimir energy densitg.4) is strictly proportional  lating Casimir energies we propose below, while formally
to 4. We will see that Eq(1.4) is not reproduced by the €Xact in certain cases, is generally superior to conventional
semiclassical approximation. If one of the dimensions of the2Pproaches in applications only when relatively few and suf-
box is much larger than the others, the second term in Edficiently simple classical periodic orbits are relevant. How-
(1.4) is negligible, and we will see that the whole effeazn  ever, this includes the important application to complicated

be described semiclassically. If, for exampligs-1, andl,, ~ 9eometries for which a systemaapproximationto the Ca-
Eq. (1.4) reduces td6] simir energy is sought, and where the shortest classical peri-

odic orbits can be foun¢at least numerically
% The possibility of evaluating Casimir energies by a semi-
C <, B : . o
U(lg>1,l)=—— > [L(ng,n,)] 7% (1.6)  Cclassical approackthough not in terms of periodic orbjts
™ has often been pointed out in particular cases. Thus, for ex-
ample, the Casimir-Polder interaction between atoms at a
whereX’ in this case is the sum over all pairs of integersseparation arbitrarily large compared to either of their dimen-
(n41,n,) other than (0,0) and sions[11] can be obtaine@xactlyby proceeding classically
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and, in the very last step, replacing the volume integral of the Although the expressiofil.2) for the Casimir energy in

square of a component of the electric field of frequendyy  the case of two parallel conductors can be directly compared

(1)/8w(hwl2) [12]. to the result of the semiclassical determination of this energy
In one of the methods we will now consider, one findsin the next section, we will derive an expression for the

that contributions t&c,scome only from fluctuations around Casimir energy associated with two spheres in Sec. Il that

periodic classical orbits that make contact with the boundaryjoes not depend on the derivatig&&(&/v). It is therefore

surface; infinities never appear in the semiclassical evalugyerhaps illustrative that Eq41.2) can also be cast in such a

tion of the Casimir energy in this case. This is appealingform after a few elementary manipulations, a point missed in

since in most Casimir studies one must evaluate difference®]. To this end we combine Eqg1.2) and (1.3), use

between infinities, or throw away infinite energy contribu- g/ 5¢(£/v)2=2(&lv)al9é(&lv) and

tions that do not depend on the boundary surfades hav-

ing calculated formal expressions. In the semiclassical ap-

proach described below it will become clear that these £ 0k 9 g e-2né

infinities arise due to classical paths of arbitrarily short ge—anélv__(_):___,

length that do not depend on relative variations of the bound- v délv) dl 9 2n?

ary surfaces and therefore do not contribute to any forces.

These contributions can therefore be isolated and ignored

from the outset and the semiclassical evaluation of the Caand integrate by parts. The Casimir enerdy2 for two

simir energy is then finite at every stage. parallel conducting plates can then also be expressed as

1.9

A 9 & 1 (= 2 A S 1 (= & 2
£ ,l - _ f d e—2n|§/v(—§ )— - f d +— e—2n|§/u(—§ )' 1.1
cade ) 82 dl nzl n3l Jo ¢ 472 nzl n2 Jo ¢ v(—¢2)  2nl (119

a derivative-free form. For numerical estimates of the Ca- o L
simir energy(1.10 is eminently better suited than Ed..2), Ecade,l)= JO dE (3E)posd E.N). 2.2
since it suffices in Eq(1.10 to approximate the monotoni-

cally increasing functior/v(— ¢?). The sum converges rap- |n gq. (2.2) 1E is the zero-point energy of the oscillator

idly and poses no numerical complication. associated with a real photon of enefgyand Eq.(2.2) ex-
presses the usual sum over zero-point energies as an integral,
Il. GENERAL FORMALISM AND THE CASE since the spectral density(E)=2>,6(E—-f%w,) gives the
OF INFINITE PARALLEL PLATES distribution of eigenfrequencies of the harmonic oscillators.

In the following we will exploit the fact that the change
osd E,1) in the spectral density due to a change in the
oundaries is related to the change in the imaginary part of

the response functiog,s,

Mainly for pedagogical reasons, we will first recalculate
in an unconventional fashion the Casimir energy per uni
area for two ideal parallel plates, onezt0 and one az
=|, with a uniform medium between them ahdery much
smaller than the linear dimensions of the plates. We begin 1
with a discussion of the relevant formalism in a broader con- posd E.1)=— ;Im Oosd Eil), 2.3
text.

and that the response function is the trace of the energy
A. Some general formalism Green function

We determine the Casimir energy in terms of the differ-
encep,.{E) between the spectral densipyE,l) for a pho-
ton in a uniform medium with boundary conditions and the
spectral densitypy(E) in the uniform medium without
boundaries,

GM (X Y;E)=(Y,\|(E+ie—F)7Yx\), (2.9

whereH is the Hamiltonian and. and\’ denote states of
polarization. In our case

N y—X

The parameter here symbolically represents a collection of

shape parameters defining the boundafiesthe case of two where the sum is over the two polarizations of a photon and
infinite parallel plates, it will simply be the separatibibe-  the spatial integral extends over all the space accessible to it.
tween them if the dimensions of the plates are fix&lince In the applications we will study, the medium is not optically
the total Casimir energy is just the difference of the zero-active and the boundary conditions are such that the Green
point energies with and without boundaries, we can obtain ifunctions are diagonal and independent of the polarization,
from the change in the spectral density that is,
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GM (X.y:E.l) =" G XV E.. 26 the spe(_:trum(and associz_ited eigen_functi()ris, h_OV\_/ever,
osc (YD osdx.YiED) 29 not required. As we show in Appendix A, the Casimir energy
The sum over polarizations in the response funciiar)  ©Of the system can always be related to the coefficient of the

will thus effectively just give a factor of 2 in this case. The term of order ¢c)/(El) in the semiclassical expansion of
“oscillatory part” G of the Green function is the differ- Yosc: Wherel is a typical length of the problem. Since this
ence coefficient is not easily found for most situations, the appli-

cation of this approach is somewhat limited. We here use a
Gosd X,Y;E)=G(X,Y;E,|)—Gy(X,Y;E), (2.77  different method to extraatxactCasimir energies from the
lowest-order semiclassical approximation dg in certain
between the Green functidB(x,y;E,l) in the medium sat- limiting cases.
isfying the boundary conditions and the one in the medium The method we propose can be used to extracedhding
without boundaries. Note that the Green functi@sandG divergenceof Casimir energies when some of the character-
are singular in the limix—y, but that this short-range sin- istic lengths on which it depends are taken to be much larger
gularity cancels in the differend®,s.. The limitx—y inthe than the other relevant characteristic lengths. It therefore is
definition (2.5) of g,<{E,!) is therefore generally well de- applicable only in limiting situations where this is actually
fined. the case. Important exceptions where this mettiods not
Due to causality, botls(x,y;E,l) andGy(x,y;E) should give the correct result include the case of a spherical cavity
be analytic in the first quadrant of the complExplane(a  of radiusR, whereR is the only length(and the energy is
pole in the first quadrant of the compléx plane would proportional to 1R). Further, as noted in Sec. |, the semi-
imply the existence of a state whose amplitigtews with  classical estimate of.,¢is not correct if the lengths of a
time). Instead of integrating the imaginary part@f,calong  rectangular parallelopiped are all comparable, but does give
the real axis of in Eg.(2.2), we may therefore alternatively the leading term if the lengths are not comparable. It also
integrate along the imaginary axis frof=0 to E=i and  gives the leading term for a sphere of radRisit a distance
a large quarter circle of radiu®, E=Qe'?,¢e[#/2,0]. If <R from a plane, as will be shown below.
the integration over the large quarter-circle does not depend For simplicity let us consider a general cavity in a
on the boundaries, we obtain an alternative expression foracuum. The Casimir energj2.8) then depends only on a

the Casimir energy, set of lengths{l,l;}, where, without loss of generality, we
1 " single out the largest of these and denote itl by the fol-
Ecad €)= — —Im f dE Eg,(E,l) lowing. The dependence of the Casimir ene(gy8) on di-
21 0 mensionless quantities is

h? (=
- i — hC (= .
5 fo dé €M godifi&)), (2.9 gcai{ri}j):—z:l_Jo dpoclrl), (@29

in terms of the imaginary part of the response function on the _ ) ) i
positive imaginary energy axis, where we have expressed tphere the cpnstanuszlill <1 are dimensionless ratios of
energy asE=i%¢, where é= —iw, with o the frequency. the lengths in the problem, and
Oosc iS given by Eqs(2.5), (2.6), and(2.7). . g

*The analytic continuatiori2.8) of the expression for the p(X{riD=hE Im gosdiné, 1 {1} a7c=x (210
Casimir energy will prove useful, sinag{E,!) is a highly ) i i
oscillatory function on the real axis near any resonance er$ & dimensionless function that depends on the en&rgy
ergies of the medium, whereas it is a smooth function foronly through the ratioc=(—iEl)/(%c)=§l/c.
purely imaginary values of the energy. Of course, the ana- If the Casimir energy of the systedivergesin the limit
lytic continuation(2.8) of the Casimir energy2.2) is valid | —o for any fixed values of the other lengths in the prob-
only if the contribution from the quartercircle does not de-lem, the integral in Eq(2.9) diverges as all of the;—0.
pend on the boundaries, a point that must be checked in eadthis can be due to either of two reasons: either the integrand
case. We will see that the semiclassical evaluation of th&ecomes singular within some finite regigrcxq({r;}) <«
expression(2.8) for the Casimir energy can be directly com- for r;~0 , or the integral is divergent in the limit—0 due
pared with Eq.(1.2) for the interesting case of a dielectric to the behavior of the integrand for~o. We can exclude
between two plates. the first of these possibilities on physical grounds. Thus, let
. _This way Qf formulat_ing t_he Casimir energy exhibits its E, be defined bWO(O):EOWhC- If xo(0) were finite, the
intimate relation to(the imaginary part ofthe Green func- response functior,.. would have to become singular for

tion. Due to the spatial integration in E€R.3) and the inte- small energie€<E,~0 asT becomes large. The behavior

[Many standard calculations of the Casimir energy involve. at of the response “.’”C“O” W.'tho'“'t bounda(wh_lch van-
the determination of the spectrutand indirectly also the 'Snes for small energigsThe divergence of the integral in
determination of the eigenfunctionsand thus in principle Ed. (2.9) for |- is therefore due to the behavior of the
amount to a determination of th@xack Green functior] ~ integrand at large values of The asymptotic behavior of
We here wish to emphasize that an exact determination q¥(x,{r;}) for large values ok=(—iEl)/(%c) therefore suf-
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fices to extract théeadingdivergence of the integral in the I 11 I v

limit | —. Sincex=(—IiEIl)/(Ac), this asymptotic behav- Xt

ior of the integrand is given by the leading terms in the

semiclassical expansion of,.. The leading divergencef

the Casimir energy as one of the lengths becomes muc |

larger than all the others is therefore determined by the sem

classical approximation tg,s.. We will verify in several x;

cases that the semiclassical approximatiorggg. does in-

deed reproduce thexactCasimir energy in this limit. §
Our basic task now is to apply developments in semiclas 4

sical periodic orbit theory to the photons of present interest

An essential element of any semiclassical calculation is th

actionS of (all) classical paths. A great simplification in the

present case and in a number of other semiclassical evalua-

tions is due to the simplicity of the action for classical paths FIG. 1. Classical trajectories from to x; that contribute in the

of constant energy. For a massless particle such as a phot(ﬁgmiclassical approximation to the Green function between two par-

the classical path with constant enef§yfrom a pointx to a allel plates. The classical _paths fall into four_categorie(;e\len,

point y extremizes the length(x,y) of the path(these are left), Il (odd,lefy, 1l (odd,righ}, and Iy (even,rlglh), where even

not alwayspiecewise straight paths, if the motion is con- and odd refer to the number of refle_ctlons, and right and left refer to

strained, see Sec. JIland the momentum is tangent to the _the plate from_ which the last ref!ectlon t°°k. pla(:ﬁhe_upper path ,

path at every point. The wave equation for a medium char!” gategory | |nvolye§ no reflections, but this path gives no contri-

acterized by an index of refractidn(wz) gives the disper- butlon.to the Casimir energyThe shortest and next to shortest

sion relation w?n?(w?)/c?=k?, which we interpret ap paths in each category are shown.

=n(E)E/c=E/v(E), where p is the momentum and

=y(E) is the phase velocity(For later notational conve-

nience, we have used rather than say, to denote the

phase velocity. Since the only other velocity of interest, the

group velocity, will be denoted by, there should be no 1 9(E\2 E

ambiguity) The classical actio’® is then Dozi a_E( )

A K

For the action(2.11), one finds thatsee Appendix BD, for
the straight classical path between the initial and final points

(2.19

v Lvvg’
y . . .
S(E,x,y)=f p-dg=pL(x,y)=EL(x,y)/v. (2.1) LIn the special case where the medium is the vacuum, Eq.
X (2.14 simplifies toDy=E/(c?L).] The semiclassical Green
function Gy(x,y;E) in the infinite medium without bound-
The actionS of Eq. (2.11) completely determines the semi- aries is thus
classical approximation to the Green functi@{x,y;E,l)

and thus also the semiclassical expressionSQc. _ EL/(ho) 2
The semiclassical approximation &x,y;E,|) is [13] Go(X,y;E) =~ 47-rthe JE\o | - (219
1 . o The semiclassical approximatid@.15 does not reproduce
G(xy;E.N~~— ZwﬁgEy D,e!S/"7#y™2 (212 the exact free Green function of a phofdd]; the two differ

in their real parts. The semiclassical approximation to the

imaginary part ofGg, which enters the calculation of the

where the sum extends over all classical trajectoyi@ehich  casimir energy, is in faatxact
begin atx and end ay. The Maslov indexu ,=n+2n, is

given by the number of turning pointg and the number of B. Two parallel plates
reflectionsn, along the classical path, and ' P P

We now determine in a similar fashion the semiclassical

Green function for two parallel plates a distahcapart, and
) ) arbitrary initial and final pointsx; and x;, between the
9°Sy | 9°S,y plates. The classical paths fall into four categoriedV);
D.=Det 2 Ix3y | IxoE the shor'Fest path for each category is indicat_ed_ in the upper
L4 (213 row of Fig. 1. In each category there are an infinite number
3257 3257 of paths, involving more and more.tra\(ersals of the space
9yoE E between the walls. The lower row in Fig. 1 represents the
next shortest path in each category.

Due to angular momentum conservation, the classical
is the (positive amplitude resulting from the unconstrained paths are planar. With one plate locatedat0 and the other
integration over quadratic fluctuations around the classicaht z=1 their lengths are
path+y. The diagonal entries in Eq2.13 are 3x3 and 1X1 | 5 212
matrices; the off-diagonal entries ar& B and 1x3 matrices.  Ln=[(Xt —Xi,)“+(2nl+X¢,—X,)]74 n=0,12...,
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L:::[(ij__xil)2+(2nl+xfz+ xi)?1¥2 n=01.2..., to the response function, but does not depend upon the sepa-
ration | and therefore does not contribute to any force be-
|_:1” =[(x¢, — % )2+ (2nl—x,—Xi,)2 1Y% n=1,2,3..., tween the plates. We will therefore drop this infinite term in

(2.16 the following. We note that this divergent blutndependent
semiclassical contribution arises from paths of type Il and
LV=[(x¢, =% )%+ (2nl—x4,+x)21Y2 n=1,2,3.... I, which do not lead to classical periodic orbits ag
— X, the initial and final momenta being equal but opposite.
All classical pathsy= y(J,n) between the plates can there- The classical paths of type | and IV, whiette periodic in
fore be classified by their categodye {LILIII,IV }, and an  the limit when initial and final points are the same, give the
integern=0. Ly is the length of the direct pat(1,0) from  |-dependent first term of E¢2.19. (We will see in subsec-
x; to x¢. [v(1,0) is the only classical path between the initial tion D and also in Appendixes C and D that closed trajecto-
and final points in an infinite medium without boundaries; itries corresponding to paths of type Il and IIl with initial and

is of course reflectionless. final points identical do not arise in a semiclassical evalua-
In the semiclassical expressiGa 12 for the Green func-  tion of the path integral for the response functimy,.)
tion, we must also evaluate the determinaﬂFDy(J,n) for The I-dependent terms of the sum in BE@.19 fall off

each classical pathD; is given by Eq.(2.13, with S  exponentially with the radius of the large quartercircle and
=EL/v replaced byS,=EL}/v, whereL} differs fromL  the analytic continuation used to obtain E28) is therefore
=L} in that X;,—X;,—2nl*X;,*x;,. The determinant justified. Dropping thd-independent term in Eq2.19 and
(2.13) for pathsy(J,n) is thus given byD, with L replaced analytically continuing the remainder to the positive imagi-

by LF]I that is nary axis gives

1 JE 2 A J g 2\ * e—2n|§/v

J__— | = H R I
D“_zLﬂ 0E<U) . (2.17) Im gosdif &) ZWh(agM nzl -

After subtracting the direct contribution, we can sgt x; _ A 9] § ? In[1—e~2'¢]
=x in the semiclassical expression for the oscillatory part of 2mh \ €| v |
the Green function without encountering any singularities (2.20
and obtain .
Gosd Xi=X; ;E,1)=Gosd X;E,l) Inserting Eq.(2.20 in Eq. (2.8) and integrating over the

frequencies, one arrives at Ed..2). The Casimir energy of

1 J E2 two parallel plates derived semiclassically is thus in fact ex-
=_ 2<_ - act forl/L~0. The nature of the above derivation strongly
amh?\ JE y suggests that the semiclassical approach should be widely

applicable. As a small point, we note that the semiclassical
derivation clearly depends only on the phase velogcity
“ o onl <~ 2|z+nl| (— &%) and therefor_e appa_rent_ly applies eq_ually well to ho-
2.18 mogeneous isotropic media with permeability 1.

' The semiclassical calculation above, though interesting, is
The first (z-independentterm in Eq.(2.18) is the sum of the no less—and perhaps even more—complicated than other
(equa) contributions of classes | and IV, while the secondderivations of the same result. The semiclassical calculation
(z-dependentterm is the sum of the contributions of classesapparently would, however, be considerably simplified if one
Il and Ill; we used the fact that fox;=Xx;, LL:LLVZZM could (i) legitimately ignore contributions to the Casimir en-
and |_L“:|_'ln for n#0 [15]. The relative sign of the two €rgy from classical paths of type Il and Il from the outset,
terms arises from the Maslov index; because paths in since they turned out to be independent ahd therefore are
classes | and IV have an even number of reflections, where& no physical interest andi) avoid calculating the semi-
the number of reflections in categories Il and 1l is odd. Weclassical Green function between arbitrary points, since the
now integrateG,{X;E,l) over the space between the platesrelevant contribution to the oscillatory part of the response

and sum over polarizations to obtain the response functionfunctionges{E,l) of Eq.(2.5) arose only from periodic clas-
sical orbits. We will discuss the alternative approach in Sec.

2>,

X

> g2inlE/fv * e2iEz+nI|/hv}

A [ o E? [l D and in Appendixes C and D.
Gosd E;1)=— Z(E —2) We now allow one or both of the walls to be infinitely
2mh v permeabld 16]. The use of periodic orbits renders the analy-
2Nl »dz sis transparent and rather trivial. The boundary condition,
X _f — 2Bzt | that the normal derivative of the vector potential, rather than
n=1 n 2 the vector potential itself, vanishes at the surface leads to a

(2.19 reflection coefficient at the surface of a permeable wall of
+1, rather than-1 as for a conductor. For the periodic path
where A is the area of the plates. In the second term of Eqof length i the reflection factor is £1)"=1 for two
(2.19, the sum oven was accounted for by a change in the conductors or two permeable walls, but-{)"(—1)"=
range of integration. This term gives an infinite contribution(—1)" for one conductor and one permeable wall. For the
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latter case, with a dielectric between the walls, the contribuand negative and zero, except=n,=0. The oscillating
tions to the Casimir energy from the individual periodic part of the semiclassical response function of a long rectan-
paths therefore alternate and one can effectively insert a fagular cavity thus becomes

tor (—1)" in the sum(1.3). The minus sign in the argument

of the logarithm in Eq(1.3) and Eq.(1.2) is thereby replaced L )\ 1[0 E?

by a plus sign and the Casimir force between a conductor Gosdla>11,12:E) =~ 11lal5 5nzn 2h2\ IE 2

and a permeable wall is seen to t@pulsive In a vacuum, vhe 1T v

the replacement gL (ng.ny)Elhv
X . (2.23
[} 1 774 (_1)” 4 L(n1’n2)
; F: %—); v ~7890 (2.2)  The analytic continuation to imaginary frequenclesi &

in the integral2.8) for the Casimir energy is possible and we

obtain

leads to a repulsive force per unit area with a magnitude 7/8

that for two conducting plates. In the semiclassical picture, h , (= 9 &

the origin for the change of sign and magnitude of the Ca. Ecadls™11,12)/(I1lolg)=~— > dégl -~ —
. . 444 nyny, Jo v

simir force between two conducting plates compared to the

Casimir force between a conducting plate and a permeable o L(ng.n)ély

one is due to destructive interference between semiclassical X— (2.24
contributions from paths with different numbers of reflec- L(ng,nz)

tions.

for the Casimir energy per unit volume of a long rectangular
cavity. For a vacuum inside the cavity, the phase velocity
C. A long rectangular cavity v(— &%) =c does not depend on the frequency and the inte-

The method used to obtain the Casimir energy for twodration overé in Eq. (2.24 is readily performed. One veri-
large parallel plates also gives the Casimir energy of a recti€S that the semiclassical evaluati@h24 gives the exact
angular cavity with dimensior;X1,X1; when [g>1,,1,. ~ C@Simir energy per unit volumé.€) of this system. .
Since the Casimir energy divergeslas- =, the semiclassi- . On the other hand, proc_:eedmg along similar semiclassical
cal approximation iexactin this limit. The periodic orbits IN€s for a rectangular cavity dinite volume does not repro-
that reflect 2, times off one set of parallel walls anchg ~ duce the correct expressid.4). The discrepancy can be
times off the other have lengthgn, ,n.) given by Eq.(1.7). traced to the fact that the spectrum in a cavityfinite vol-

Contrary to the case of only two parallel plates, there aré'Me is discrete and tha}t c_:ertain Iovx{-lying states contribute
now four periodic trajectories of the same lendgtin, ,n,) significantly to the Casimir energy individually. As noted

for any set of integers, and n,, which, in the limit x above, the semiclassical approximation gives onlyléasl-

’ ’ I H . . . .
—X;, arise from classical trajectories that first reflect off any:gggot“r:/:rigetmab;rg?)\llé% %Lzzemgzﬁgéreegségga?:’ dotgetr?(: t)htfl
one of the four walls of the cavity. The contribution of the L A )
periodic orbits with length.(n, .n,) to the semiclassical ex- ers. This limit corresponds to considering the long rectangu-

pression for the oscillating paiG<{X:=X; ;E,l1,15), of the lar cavity discussed above.
Green function is otherwise obtained as wag. of EQ.

(2.18 for the case of two parallel plates and found to be D. Gutzwiller's trace formula
_ Gutzwiller [17,1§ first observed, in a much broader con-
1 g E?|e't(nno)Elhv text than that of two plates, that performing the spatial inte-
~Tamn2l 9E 2] L(ngny (2.22 gration in Eq.(2.5) by the saddle-point method to obtain the

oscillating response functiogy,s{ E,l) is completely consis-
] ] tent with the semiclassical approximation for the Green func-
The factor of 4 in front replaqes t'he factor of 2in EB.18  {on Gysc. This observation generally leads to the desired
and accounts for the four periodic paths of equal length andjmjification of the semiclassical calculation, since one can
the path length @1 in Eq. (2.18 in the present case is re- gpow[13,19 that theperiodic classical orbits are the saddle
placed byl (ny,n,). Note that the semiclassical contribution noints of this integral. In the case of unconstrained classical
(2.22 of a periodic orbit to the Green function does not paths, the integration in Eq2.5 can then be performed

depend on the point at which the trajectory starts and ends. explicitly by the method of stationary phase, giving the

response functiog,s. therefore just gives the volumiel,l 3

of the cavity. To obtain the semiclassical expression for the —i M P 7
response functiog,s.in this case, we, however, have still to Gosd E) = 7 2}\: 2 di Ay eX gsy Ty My
determine the possible polarizations for each periodic orbit. < {periodi

There are in general two independent polarizations, but for (2.29
rays parallel to one of the boundaries there is just one. Sincfor the semiclassical response functid8,18. The sum in
the lengthL(ny,n,) of a trajectory depends only on the Eq. (2.25 extends over smooth classical periodic orbjts
squaresnf and n%, we can account for this degeneracy by only. (If there are two possibl@lirections of the classical
summing with weight 1/2 over all integer, andn,, positive  motion, these are counted @&eparate classical periodic
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orbits—in our example in Sec. Il B, these are classical orbits ~—> reflection only

of type | and IV in the limit wherx;—X;.) In the following =, o e diffraction and reflection
examples the polarization of the photon does not change G,
upon reflection(because the angle of incidence is always
90°) on the classical periodic paths and we furthermore as-
sume that the medium is not optically active. The act&n
and the semiclassical amplitude, of a periodic classical
orbit in this case are independent of the polarizatioand

the sum over polarizations in E€R.25 just gives a factor of

2. To simplify the notation, we again drop polarization indi- e
ces in the following. The semiclassical amplitudeg of a 3
classical periodic orbit i§13]

- diffraction only

Ay= foryquet[My(t)—l]lfllley, 220 Tt e

where the integral over time extends over one perigaf !
the classical motion on the energy surfalge,(t) is the 4x<4
monodromy matrix, which, for a given periodic path of pe-
riod 7,= 7, relates the infinitesimal deviations perpendicular
to the path at a time+ 7, namely, 6x, (t+7) and dp, (t
+7), to the perpendicular deviation¥, (t) and ép, (t) at
time t. Symbolically we thus have

FIG. 2. Periodic classical trajectories for two spheres of fagii
and R, separated by a distande Only paths that do not wrap
around either sphere, those which go frémo B to A or from B to
A to B once or a number of times, contribute to the Casimir energy
when |<R; and R,. Paths that reflect off one sphere and wrap
around the other and paths that wrap around both spheres are also
shown.(The path segments denoted &ya’ andb,b’ are perpen-

X, (t+7)  9X, (t+7) dicular to the surfaces of spheres 2 and 1, respectively, and are

ax, (1) ap.(t) retraced after reflection.The contribution to the Casimir energy
v(t): ap, (t+7) ap,(t+7) |’ (2.27 from such paths becomes important when the radius of either or

= = both spheres is comparable to or smaller than their sepaiatien,

%, (1) ap. () ¥ when diffraction is no longer negligible.

where the entries in Eq2.27) are 2<2 matrices. The inte-  pathy reproduces itself after one period, since it corresponds
gerN, in Eq.(2.26 counts the number of times the classicaltg the initial condition for a new classical periodic path that
path y traverses theamegeneric volume elemenix during s just a translation of the old one. In the case of two parallel
one period. It is the “degree of the map” for the change of plates of finite area, the “volume” of this translation group
coordinates in the spatial integration to coordinates parallek the area of the plates and we show in Appendix D that

and transverse to the classical pati{Thelocal Jacobian for  one may obtain the resulL.2) by considering periodic clas-
this change of variables is 1, i.cdx=d2dexH J) sical paths only.

The expressioii2.26) for the amplitudeA,, obtained by a
saddle-point approximation for the spatial integration in Eq.
(2.5 diverges if the matrixM ,(t) —1 is singular for some
classical periodic pathy. This is the case whenever an in-
finitesimal deviation §x, ,8p,) in a particular(transversg The degeneracy of periodic classical paths mentioned
direction from the periodic classical path is reproduced above does not occur in the calculation of the force on two
after one period, i.e., if there ianotherclassical periodic uncharged conducting spheres of rdgljiandR,, a distance
path y' arbitrarily close toy in phase space with the same |<R;,R, apart, which are embedded in a uniform medium.
action and energy. An infinitesimal time-independent canoniThis problem was first considered theoretically by Derjaguin
cal transformation thus relates the two paths. As shown i8], who determined the behavior of the force on the spheres
Appendix C, one can formally extract the “volume” of the for |<R;,R, from the energy density per unit area in the
group generated by this canonical transformation using @&ase of parallel plates. Since the Casimir energy diverges in
procedure analogous to gauge fixing—or, equivalently, introthis limit, a semiclassical evaluation ought to be exact. The
ducing collective coordinates to select a representative patlsemiclassical calculation below provides a more rigorous
It may be another matter to actually compute the group volproof of Derjaguin’s result.
ume; this is usually possible only for relatively simple  The problem Derjaguin considered is axially symmetric
groups. with respect to the axis connecting the centers of the two

The semiclassical computation using Gutzwiller's tracespheres. If the distande between them is very much less
formula of the Casimir energy between parallel plates is othan either radius, the only classical periodic paths of interest
this kind: Although only classical periodic orbits contrib-  are those between the two points of the spheres that are clos-
ute to the final expressior{4.2) and(2.24), A, in Eq. (2.26 est. We will have a bit more to say about classical paths that
would diverge due to the invariance of the problem withwrap around one or both spheres at the end of this section.
respect to translations parallel to the plates. A deviation offhese additional paths, shown in Fig. 2, are, however, arbi-
the initial position transverse to any given classical periodidrarily long compared td in the limit R, /| andR,/l—~ and

Ill. THE FORCE BETWEEN TWO PERFECTLY
CONDUCTING SPHERES
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The transport matrixZ(l) in Eq. (3.3 relates the infini-
tesimal transverse deviatiord®, (1) and ép, (I) at the end
of a straight path of lengthto those at the beginning. Since
deviations in the two directions perpendicular to the straight
path are independent of one another, the44d matrix 7{I)
can be written as the tensor product

dpL

Csymmetry axis | rmpr
1 (vl/E)

0 1 ®1 (3.9

ﬂ|)=<

FIG. 3. Reflection by a convex mirror of focal lengtk R/2 of ) ) ) )
a monochromatic ray of momentup E/v incident parallel to, but ~ Of @ 2X2 matrix and a X2 unit matrix; the matrix7(l) can
displaced an infinitesimal distané@, from, the symmetry axis of be read off from the geometrical relations
the mirror.

therefore do not contribute to the force between the spheres ox, (1)=+6x,(0)+ I—6pl(0),

in the limit that interests us. Elv (3.5
A periodic classical path between the closest points of the

two spheres is obviously transformed into itself by axial ro- Sp,(1)=6p,(0)

tations and is therefore isolated in phase space, i.e., it is a

fixed point of the symmetry. Such a pajtfJ,n) is charac- for free motion of a massless particle along a straight path of
terized by its “direction” (i.e., whether it can be considered lengthl with momentump=E/v. The reflection matrice®,

as the limitx;—x; of a classical path of typd=1 or of J in Eq. (3.3 similarly relate the transverse deviations just
=1V) and the numbem of reflections on either sphere . before a reflection on spheieto those just after. Since the
Using the same notation as for the Casimir force betweetwo radii of curvature of a sphere are the same, the44
two plates, the length of geriodic classical path with & matrix R; can also be written as a tensor product:
reflections off the spheres Ig,=L!Y=2nl, and the associ-

ated classical action is therefore 1 0

Sy(l,n):Sy“V,n):Zn'E/U. (3.1

_ _ _ _ The matrix R; is obtained using geometrical optics for
To obtain the semiclassical expression for the response fun‘baraxial rays. As shown in Fig. 3 ray optics for reflection on
tion, we have to compute the>d4 monodromy matrices g mirror of focal lengthf = R/2 gives

M., (t) for these periodic paths. This is essentially a problem

in geometrical optics. For simplicity, we take the point at

timet=0 to be midway between the two spheres. The mono- ox, (aften = ox, (before, (3.7
dromy matricesM ,; ,)(0) are then related to the mono-

dromy matrix for the simplest periodic trajectoryM E

=M,.1)(0), by op, (aften= o 6x, (beforg + 6p, (beforg.

M,,m(0)= MT/(,V'”)(O)= (M,1)(0)"=M", (3.2  The matricesR; and7 do not depend on the detailed geom-
etry of the problem; our results will hold for any two ideal

whereT denotes the transpose. To obtain the determinant iYlindrically symmetric convex mirrors with focal lengths
Eq. (2.26 for any periodic closed orbit, it therefore suffices '1=Ri/2 and f;=R,/2 whose axes of symmetry coincide
to find the eigenvalues of the monodromy matkiof the ~ @nd which are a distande<f,,f, apart. The approach is

simplest periodic orbit of type IM can be decomposed as valid irrespective of the prgcise shape' of these mirrors, as
long as paths between their closest points are the only clas-

sical periodic paths with a length comparable to their sepa-
M=TI12)R, TR, T(1/2), B3 rationl.
Inserting Eqgs.(3.6) and (3.4) into Eq. (3.3, the mono-
where the matrice§ andR; are defined as follows. dromy matrix for the pathy(l,1) becomes

1+|+3|+2|2 v|2+3|+3|+|2
R, R, RR, E\" 2R, 2R, RiR,
E(ZI 21 4|2> 3l | 212

— = et —
R Ry RiRy YR TR, TRIR,

vl
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Note that the dependence bf on p=E/v appears only in gives the total periodr, ) for a periodic orbit with 2
the off-diagonal elements, once aK¥E and once a&/vl. reflections. The period does not depend on the fiypéorbit
The determinant as well as the traceMfand thus the ei- and is

genvalues oM are therefore energy independent; they de-

pend only on geometric properties of the objects, i.e., the o _ Ip(E) J(E

radii of the two spheres and There is thus a clean separa- Tyam=Tn=2nl/vg=2nl—F=—=2nl—=| ~

tion of the geometric and dynamic aspects of the problem, a (3.15
result rather simple to understand from the nature of Der-

jaguin’s calculation of the force fdrR<1. since the group velocity in a homogeneous dispersive me-

Since the determinants &f and R; are each unity, the dium isvy(E)=JE/dp. [For the special case of a vacuum
determinant oM as given by Eq(3.3) is also unity and the surrounding the spheres one hg$°=2nl/c.] We finally
two doubly degenerate eigenvaluis of M are inverses of note that a classical periodic path witm 2eflections be-
each other. The sum of the eigenvalues is the tradé.0lve  tween the closest points of the two sphefes mirrorg

thus have from Eq(3.8) traverses each volume elemeht exactly 2h times, so that
d,+d_=d,+(1/d,)=2+4a, (3.9 Nya,m=2n. (3.16
where Inserting the expression8.16, (3.15, and (3.13 in Eq.

(2.26) and performing thdtrivial) time integration, we find
that the amplitude?, for a classical periodic orbiy(J,n),

a=5+t5+ (3.10
Ri R, R4R
1 2 1r2 . - I P (E) 517
and one obtains I A sin(na) JE\v )’ '
d, = (Vati+ Ja)? (3.19) is the same fod=1andJ=1V and depends on the geometry

of the problem only via the parametergiven in Eqs.(3.12

and (3.10 in terms of the minimal distanck between the
The determinant in Eq(2.26 can be nicely expressed by spheres and their rad; .

proceeding in the usual fashion of casting the eigenvalues Inserting Eq.(3.17) in Eq. (2.25 and using Eq(3.1) we
(3.11) in exponential form with a single geometrical param- arrive at the semiclassical expression for the response func-

etera tion
d.=e"2®  with a=In(ya+1l+ Ja). (3.12 (E:l<R,.R )_4—il[ d (E) 2inlE/(hv)
Jost =112 fi [9BE\v ] [i=1 4sinf(na)
Using Eg.(3.2) and the fact that each of the eigenvalues (3.18
(3.12 is doubly degenerate in the matii8.8), the determi- ) )
nant in Eq.(2.26) is where the overall factor of 4 in E¢3.18 arises from sum-

ming over classes | and IV of the periodic orbits and over the
two polarizations of the photon. It is quite remarkable that
Det[My(J,n)(O)—1]=Det(M"—1)=(e2”“—1)2 Gutzwiller's extension[18] of the semiclassical method
X (e~2na_1)?2 gives such a concise expression for flsemiclassical re-
sponse function in the relatively complex situation of two
— 16sinf(na) (3.13 spheres. Th.e derivation of E(B.18 i; notably independent
of the precise geometry and applies equally well to half
spheres, or convex parabolic mirrors, in fact, as commented
for the periodic paths characterized by 1 or IV, with 2n  on above, to any geometry where one may disregard all pe-
reflections. Furthermore, the res(8t13) does not depend on riodic classical paths apart from the ones we considered.
the choice of the initial position on the periodic path at timeThus letA andB be the points on the mirrors that are closest.
t=0. This is seen by observing th&(x)7(y)=7(x+vy). The method is then applicable if the straight line trajectories
Choosing the initial point at an arbitrary valuerather than A to B to A andB to A to B, and their repetitions, are the
at the pointx=0 midway between the spheres thereforeonly relevant classical periodic paths, all other periodic paths
amounts to the replacement having lengths very much greater thiarin general the mir-
ror surfaces afA andB are each characterized by two radii of
curvature. The eigenvalues of the monodromy matrix are
then no longer doubly degenerate as for axially symmetric
coaxial mirrors. This complicates the analysis somewhat but
in Eq. (3.13. The determinan(3.13 does not change under requires no new concepts.
the transformation3.14), and thus is independent of time. Inserting Eq.(3.18 in Eqg. (2.8) and noting that the ana-
The time integration in Eq(2.26) is thus trivial and just lytic continuation is valid since the integrand falls off expo-

M—T(X)MT(—x)=T(xX)MT (x) (3.19
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nentially on the large quarter-circle, the Casimir energy ofand the attractive forcE‘s’Sﬁ_sphbetween them for sufficiently
the system with two spheres semiclassically is small separatiot is

Ecad <Ry, Ry) L =
I I T hCcR
* o v —~0—~0)~— . 3.2
= ELJ’ dffe_2nl§lv[i(§> Sphsp'(Rl R, 3603 (329
)Jo

41 27sint(na d&\v

© vac

3 o The limiting case of the forces gy, 1, between a conduct-
== 21 WJ' dge ey, (3.19 ing sphere of radiuR and a conducting wall in a vacuum is
n=1 4ansintr(na) o obtained by letting one of the radii of curvature become ar-

where the last expression is obtained in a fashion similar t6)|tl’8.l‘l|y large compared to the other. In this limit EG.24

that used to arrive at E¢1.10. Implies
In a vacuum, the phase velocity — £2)=c is indepen-

dent of the frequency and the integral in £g.19 is easily | 3heR

evaluated. The Casimir energy’s, of two spheres in a ‘g;ﬁ_wal(ﬁ >~— T (3.25

vacuum is then given semiclassically by the rapidly conver- 36d

gent sum
m . This leading term of the Casimir forces for small separation,

EY1<Ry,Ry) =— — (3.20 proportional toR/1® andR/13, respectively, was first arrived

n=1 8xIn’sintf(na) at by Derjaguin[8] using the known dependence of the en-

. . ] ] ergy density(1.8) between two parallel plates. His calcula-
The semiclassical expressiof&19 and (3.20 are strictly  tjon essentially assumes that the vacuum energy density de-
valid only in the asymptotic regiméR;~0, |/R,~0 where  pends upon the separation between opposing infinitesimal
the semiclassical contribution from paths that wrap aroundyrface elements in the same manner as for flat plates and
either sphere can be neglected. They furthermore diverggoes not depend on their relative orientation, nor on the ge-
only in the limit «—0. By our previous argument the Ca- ometry of the configuration of conductors as a whole. These
simir energy of the system &xactlyreproduced by the semi- assumptions can alternatively be formulated as stating that
ClaSSical eVaantion in th|S ||m|t It iS easily seen that thethe force between Conductors iS primar”y due to the inde_
limit «—0 corresponds to the situation where the radius ohendent superposition of the retarded interaction between the
the smallerof the two spheres is much larger than their sepaindividual atoms of which they are composed—the additivity
ration. Fortunately, this is also the limit in which diffraction pr|nc|p|e_|f this interaction is normalized to give the Ca-
effects are negligible and our semiclassical result is validsjmir force between two parallel plates—the renormalization
From Egs.(3.19 and (3.20 we thus can obtain thexact  principle[19—-21]. Both approaches are eminently reasonable
Casimir energy of the system in the limit<R;,R,. We  from a physical point of view, but the underlying assump-
retain only the leadingdivergen} contribution to the Ca- tjons have not been proven from first principles and higher
simir energy(3.19 in the asymptotic regime~0; with a  order corrections cannot be estimated. The semiclassical ap-
~0, it follows thata®=a+0(a%)~0, and keeping only the proach provides the theoretical justification for these physi-
leading term foma<<1, cal assumptions.

In the case of spheres, we could ignore diffraction effects
only in the limit R, andR,>| we considered. As such, the
final result(3.20 gives the true force on the spheres only if
a<1 and thereforex<1, and we could have retained only
the leading terms in the expansion®fin powers ofa from
the outset to derive the semiclassical expression for the force

sintf(na) =n?a+0(a?). (3.22)

Inserting Eq.(3.2)) in Eq. (3.19, the leading divergent be-
havior of the Casimir energy fa/R;~0 andl/R,~0 is,
using Eq.(3.10,

| | oo . on the spheres in the limit where we can ignore diffraction.
5Cai(_~0_~0) — f dge2nié A_s it happens, it is al_gep_raicall_y simpler to proceed as we
Ri R n=1 47ran3Jo did, but much more significant is the fact that the contribu-

tion to F from the paths we considered, henceforth denoted
w by F o qiff» IS the semiclassical result for arbitrary values of
3]0 dge 2y, R;, andR,. Our previous discussion concerning the exact-
ness of the semiclassical evaluation of Casimir energies sug-
(3.22 gests that it is not accurate when the separaltio®m much
larger than the radius of the smaller of the two spheres, be-
cause the Casimir energy no longer diverges in this limit and
the dominant contribution to the energy integral in E3}8)
doesnot arise from the behavior of the integrand at large
| | 3hCR energies. Wg havg not Iooked_ into_ the quest_ion of whether or
acﬂ(—~0—~0) _ , (3.23 not the_ ser_mclassmal ap_prpxmatlon_fgggs_c gives a useful
7202 approximationto the Casimir energy in this situation.

kR
-3

n=1 47ln

whereﬁz(Rle)/(RlnL R,) is the large length scale. The
Casimir energy of two spheres embedded in a vacuum
distancel <R, ,R, apart becomes
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We return to EQq.(3.20, by itself valid semiclassically is no apparent contradiction with the Casimir-Polder result
also for I>R;,R,, where nowa>1 and thereforea (3.27), which obviously does not apply when the separation
=1In[41%/(R;R,)]; we retain only then=1 term, differenti- is small compared to the linear dimensions of the objects.

ate, and find Similar reasoning suggests that the resyBsl9 and
(3.20 give the semiclassical approximation to the Casimir
3hcRR, energy of two(infinite) paraboloids of revolution with radii
Fno diff(@~)~ = W- (326 of curvatureR; andR, and a common symmetry axis. Dif-

fraction effects are negligible. We do not claim that the semi-
The Casimir-Polder resufil1] for the force between two classical approximation in this case is ex#except forl

distant atoms, on the other hand, is <R;,R,), but it could be of interest to see whether thé
dependence of the force for large separations between the
161#%caq(0)a,(0) paraboloids predicted semiclassically by E2}26) is at least
Faa~ =7 BT (3.27  qualitatively correct.
whereq;(0) is the statidzero-frequencyelectric-dipole po- IV. DISCUSSION

larizability of theith atom and magnetic polarizabilities have . ) o .
been neglected. Buk(0)=R® for a conducting sphere of The semiclassical approach to Casimir energies advocated

radiusR, and thus for two spheres separated by a distanchere _is clearly applicable to a range of problems we have not
I>R,,R,, the force is considered. The analysis of nearby metallic spheres embed-

ded in a dielectric can obviously be extended to nearby di-
161 AcRERS electric spheres in a dielectric, since the only significant pe-
Fsph-sphl ~)~— v ra (3.28  riodic orbits are the same for the two cases; the reflection
| matricesR, andR, would, however, have to be changed to
those appropriate for reflection off a dielectric. We also re-
mark that the results deduced simplify greatly for very large
Fsph-spf= Fro i+ Fait (3.29  and very small separations. In the former cag@y?) of the
medium between the metallic objects can be replaced by
the diffraction contributionF 4 would have to cancel the &(0), and theresults for the medium in this regime are those
1/1* term and any other terms falling off less rapidly than for the vacuum with the replacemeat-c/+/e(0). Forsuf-
118 of F,, 4 for the semiclassical approximation to have ficiently small separations®e(— ¢2) is well approximated
any justification in the limi ~c. We have not yet studied by £+ wgl, where w, is the plasma frequency of the me-
diffraction effects, but one can see from Fig. 2 that the domi-dium, and the integrations can be evaludid].
nant 114 term may well be canceled. Thus, ignoring terms of More important for the general usefulness of the semiclas-
orderR; /I, the shortest diffractive paths of Fig. 2 have thesical method we presented for calculating the Casimir energy
same length, B as the shortest nondiffractive pdtihich is ~ would be the inclusion of diffraction phenomena. The cur-
the only path that contributes in the limit-o to F,, 4 IN rent status of affair§10] is somewhat unsatisfactory in this
Eq. (3.26]. But the shortest diffractive paths undergo oneregard, for it requires a decomposition of the scattering am-
reflection and therefore contribute to the force between thelitude into partial waves, which, after performing the semi-
spheres with a sign that is opposite to the contribution of thelassical approximation for each channel separately, are
nondiffractive path of similar length. eventually resummed. The procedure is at best cumbersome
Another, perhaps experimentally more relevant, observaand generally leads to approximatiofieecause the summa-
tion is in order in this context: diffraction effects are negli- tion over partial waves is usually truncajetat are not con-
gible, irrespective of the curvature radii at the closest pointsistent with an expansion . Pending a more efficient reso-
of the two convex axially symmetric mirrors with a common lution of this technical problem of the semiclassical
axis, whenever the linear dimensions of the mirrors are largapproximation, the calculation of Casimir energies using
compared to their separation. One can imagine mirrors witlelassical periodic paths, although conceptually appealing, is
rather small radii of curvature but with mirror dimensions in practice limited to situations in which diffraction effects
sufficiently large for diffraction to play no role even when can be neglected.
the curvature at their closest points is much less than the When present, as in the examples we discussed, contribu-
separation between theniConsider, for instance, the ex- tions from fluctuations around periodic classical paths com-
treme case of two perfectly aligned “needles” pointed atpletely dominate the semiclassical response function, the
each other, separated by a distahcgatisfyingL;>|>R;, contribution from nonperiodic paths being of higher order in
where theR; are the radii of curvature of their tips and the 7. In the absence of classical periodic paths, as, for example,
are the lengths of the needles, or the more realistic case offar two large conducting plates that are at an arngj® one
single needle pointed at a plani this case, the dependence another, one must clearly consider nonperiodic paths. The
of the force between these objects on their separation woulsemiclassical Green function can be computed for this case,
semiclassically be given by E@3.26), rather than by Eq. but it is not clear how the leading approximation to the spa-
(3.27 for I>»R;,R, butl<L4,L,. In other words, Eq(3.20  tial integral for the response function can be obtained. We
would be the semiclassical result for all separatibssnall ~ conjecture that the spatial integration giving the response
compared to the linear dimensions of the mirrors, but nofunction in thez— 0 limit in this case is dominated by end-
necessarily small compared to their radii of curvature. Thergoint contributions and speculate that the Casimir energy can

Since
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be found by considering certain classical paths that begin and
end at a poinbn the boundaryWe are currently investigat-
ing this possibility and wish only to remark here that @s
—0, the case of two parallel plates, such paths coincide with
the periodic classical paths we considered.

Note addedAs is apparent from the semiclassical deriva-
tion, Eq. (1.6) is the contribution toc,s of fluctuations
within the rectangular parallelepiped. It is the fdl,sonly
for a rectangular parallelepiped of vacuum within an infinite
metallic region. The total Casimir energy, interaald exter-
nal, has been calculated for an ideal cylinder of arbitrarily
small thickness by L. L. DeRaad, Jr. and K. A. Milton, Ann.
Phys.(N.Y.) 136, 229(1981).
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where pys{E,l), the oscillatory part of the spectral density,
APPENDIX A: ON THE SEMICLASSICAL EVALUATION is a real-(but not necessar”y pOSItlve deﬁnjtéunction.
OF CASIMIR EFFECTS 0osd E,l) is thus an analytic function d in the whole com-
plex plane, apart from a cuind/or poles on the positive
We here show that the Casimir energy of a system oteal E axis. Inserting Eq(A2) in Eq. (A1) one can express
conductors in a vacuum can in principle always be founche Casimir energy as
exactly from the semiclassical expansion of the response
function g,c{ E,1)=9(E,l) —go(E,l) to finite order. In Ap-
pendix C we define the oscillating part of the response func-
tion without recourse to a semiclassical expansion, as a path
integral over periodic orbits which depend on the boundary, is, as an integral over the contdy(Q) in the complex
of the system. For simplicity we here consider only a per-¢ plane. The contourr,((}), indicated in Fig. 4, starts at the
fe_ctly c_onducti_ng cavity of general shgpe _in a vacuum. EverbointQ+i 7, TUNS jus;] above the positive reflaxis to the
with this restriction, an exact determination @fsc is POS-  qyigin, encircles the origin, and continues just below the real
sible only for very simple geometries of the cavity. The Ca-pqjtive E axis to the pointQ—iz. Since the function
simir energy of the system is, however, given by a certairy (g |y is analytic in the compleg plane apart from sin-
coefficient in the semiclassical expansion @k{E.l) for g jarities on the positive re@ axis, the integral in EqA3)

large [El/%icl. can just as well be performed by integrating counterclock-

_The basic idea is to express the energy integral over thg;ise glong a large circle of radiu in the complexE plane,
imaginary part 0os{E, 1) in Eq.(2.8) as an integral over a the contourC,, shown in Fig. 4. We can therefore evaluate

contour in the com_pIeE plane using_analytic properties of_ the Casimir energy of the system by performing the integral
the response function. The contour is chosen so that the in-

ECa;s,l;m:i lim dE Eg,(E,l), (A3)

dim, o Ji@

tegral can be evaluated to arbitrary accuracy using the semi- 1
classical approximation 19 ,{E,|). The exact semiclassical Ecade,l)= —lim J dE EgwsdE\l)
; ; ; ; Aimg_.Jcg
evaluation of a moment of the imaginary partqy is the
basis for many sum rules and the Casimir energy is in this 02 (2n . .
sense just a special case. = lim 72— depe??g. Qe ). (A4)
We first (re)introduce a cutoff() in the energy integral Q-="TJ0

(2.8 and consideE,sas the limit{)— o of L . : .
The point is that a semiclassical expansion of the response

1 Q function g.sdE,l) in Eq. (A4) is possible for sufficiently
Ecad e, ;Q)=— pym lim f dE EImgesd E+in,l). large radius(), and should suffice to determine the Casimir
Ty—0,70 energy of the systeraxactly
(A1) Dimensional analysis shows that tRedependence of the

The spectral representation gfs;{E,l) follows from Eq. response function is of the form

2.3, itis N
23 Josd E.D=9g(x,{riH/E. (A5)
gos&E,l)ZdeE’w, (A2) gis a dimensionles_s fun(_:tion that depends on the energy
0 E-E’ only through the dimensionless parameter (El)/(%c),



948 MARTIN SCHADEN AND LARRY SPRUCH PRA 58

with | a typical length of the cavity. The dimensionless pa-denotes the group velocity. The elementgoére not all of

rameterg;=1; /I are ratios of lengths on which the geometry the same dimension. In evaluating Qetve therefore extract
of the cavity may also depend. To perform the contour intea factor (—E/Lv) from each of the first three rows,

gral in Eq.(A4), we need to knovg,s{E,l) only for large  (—1/v4) from the fourth row, and.v/Ewv 4 from the resultant
|E|=0Q and Eq.(A5) shows that a semiclassical expansionfourth column, and obtain

of the response function is valid in this regime. The semi-

~ 2
classical ex_pa_nsion aj(x,{r;}) for large energy and there- deQ= ) deQ’,
fore largex is in general of the form Lovg
g 1{rpH~xte b Y, xe_({r}),  (A6)

=0 XX; X;
where the coefficients; are functions of the dimensionless with @'=[ " L2 L, (B3)
geometrical ratios; only andq is the leading exponent of X; E v,
in the expansion. Becausg{E,!) is a single-valued func- A > JE

tion of the energ\E, only integer powers ok appear in the
semiclassical expansidi\6). [The semiclassical expansion with the elements of)’ dimensionless. The matriQ’ has
of other quantities is generally an expansion in half-integetwo eigenvectors of the forid.. = (X,f..) with correspond-
powers offi.] In the text we obtained the leading term of this ing eigenvalues

expansion and found thgt=2 for the parallel plate problem

[see Eqs(2.19 and(2.23], whereagy=1 in the Derjaguin 1( E dug (E avg>2 4)

- v JE

v JE (B4)

problem[see Eq.3.18]. If we use the expansion E¢A6) 7=75
for the oscillating part of the response functi@b) at large

energies, the contour integration in E@A\4) can be per- sothato, o_=1. The other two linearly independent eigen-
formed term by term. By Cauchy’s theorem, only the termvectorsZ, ,=(Y1,0) of Q', with Y, ,-X=0, are orthogonal
proportional tox ™, with coefficientc_,_;, gives a contri-  to Z, and correspond to a doubly degenerate eigenvalue 1.
bution and the Casimir energy of a cavity is The determinant o€ is therefore

2

fic
Ecad el {ri}) = ﬁchfl({ri})- (A7) deQ=D2= , (B5)

vag

Although interesting, the relatio@A7) is generally perhaps and Eq.(2.14 follows.
of little practical use for a determination of the Casimir en-
ergy. It is usually quite difficult to obtain the coefficient
C_q4-1 in the semiclassical expansion gfs. accurately. We
therefore did not pursue this approach to evaluate Casimir
energies and instead restricted ourselves to special cases forWe will here consider a boundegne-particl¢ phase
which an asymptotic evaluation of the Casimir energy usingspace” with a five-dimensional boundaryP that is de-
only the leading term of EqA6) suffices. The relatiofA7) scribed by the constraint

shows that an exact semiclassical evaluation of the Casimir

energy is, however, in principle always possible. ®(x,p)=0. (CY

APPENDIX C: PERIODIC PATHS AND SYMMETRIES
OF A PHASE SPACE WITH BOUNDARY

A periodic pathy, of period 7 in the phase spacg can be

APPENDIX B: THE DETERMINANT D, considered as the map

To prove Eq.(2.14), let Q represent the matrix in Eq.

(2.13 for the direct path betweex andy. With S given by - :te[07]={(x(1),p(t)) e P; with x(0)=x(7)
Eqg. (2.11), Q becomes
and p(0)=p(7)} (C2
of the time intervalt [ 0,7] onto a closed path in the phase
_£ _f_‘ﬁ _X_, spaceP. Since the path is periodic, the time intery&l,7]
Lv| ™ 2 veL can be thought of as a parametrization of the ci@leFor
o= > (Bl reflections at arx-space boundary to be possible, we cannot
restrict our attention to continuous magps, since the mo-
X; L dv, mentum of a classical path in general is discontinuous at an
oL - v—z' BE x-space boundaryP of P. We will, however, consider only
g 8 piecewise continuous maps,, continuous everywhere ex-
whereX=x-y is the displacement vector and cept for(possibly a set of point{t;} of vanishing measure,
which is mapped onto the boundad®, i.e.,
9 E\!
Ug(E): E;) (BZ) ¢(77(t))|te{tl}:0 (CB)
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The response functiog(E) is, loosely speaking, the Laplace P\ gP. Two periodic pathsy and y' are usually said to be
transform of a path integral over all such periodic padt®8  homotopically equivalent if there is a continuous deforma-
of period 7. This path integral generally diverges in a semi-tion p of y into y’,

classical evaluation. Some of these divergences, however,

are of no physical significance for Casimir effects, and others  p:s€[0,1]— ¥(s), with y(0)=y and y(1)=y'.

are due to thgnaive semiclassical evaluation of the path (CH
integral. It would be conceptually preferable and computa- . - .
tionally advantageous to avoid such divergences in the for_How_ever, we clearly require a more restrictive equivalence
mulation of the problenbefore performing the semiclassical fe"”?t'o'.’" since f[he def|n|t|0|(1C4) med imply that all the .
evaluation We will here consider two types of divergences periodic paths in say the Derjaguin problem are homotopi-

that can be circumvented. The first is associated with th&2lly trivial. Intuitively we would like to arrange matters

short-range singularity arising from periodic paths of arbi_;uch that paths that differ in the number of reflections are

trarily short length, while the second is due to the fact thafn€duivalent, especially since the Maslov index generally
classical periodic paths are not isolated in the presence &ffe’r’s for such curves. In effect, we would like the "homo-
continuous phase-space symmetries. Although these twi@PY" Map to preserve the Maslo_v_lndex of a path. To guar-
types of divergences encountered in a straightforward semfnt€€ this, it appears to be sufficient for the mapf Eq.
classical evaluation of the path integral representation for théCA') to preserve th@umbgrof time intervals(which can be
response function are of a different kind, they both have theifSlated pointsduring which the paths are on the boundary
origin in periodic paths that are equivalent in some sense. 97 Of the phase spac®. We can define a corresponding
Let us first address the issue of arbitrarily short periodidndeX i(y), for any periodic pathy,eP, which simply

paths. These paths can be understood as fluctuations arouffgNts the number of time intervals for which the pathis
a classical path/?, which is a single point in phase space. In " the boundaryP. Consider the set of disjoint closed time

the restricted set of piecewise continuous mapsdefined intervals for which the periodic path, is part of the bound-

above with a Hamiltoniatd = cp describing a massless par- ary,
ticle, there is no stationary periodic classical path of vanish- T _ S
ing length for 7>0, and the problem can in principle be My ={li=t il inl=@Vizjy.() e oP
avoided in a semiclassical evaluation of the path integral by for te ~Ul;}, (C5)

a restriction to paths with>0. However, the periodic path i

y2:[0,7]={(x(t)=X,, p(t)=0)e& P} is a classical(i.e., S _ _

stationary periodic trajectory of vanishing length forraas- ~ Where the periodic time interva0,7] is considered a param-
sive particle and the fluctuations around such paths do givé&trization of a circle. We define the indeky,) as the num-
rise to a divergence in the semiclassical evaluation of th&er of elements im(y,), i.e., the ordeN(m) of the setm,
response function that cannot be avoided by a restriction to )

paths of period->0. More significant from a physical point i(y-):=N(m(y,). (C8)

of view is that the contribution to the response function from_l_h desired ival lation bet i iodi th
such arbitrarily short paths can at most dependlazal € desired equivaience relation between two periodic paths

variations of the boundary, if th@rbitrarily shor} periodic IS then given by a homotopy mapthat does not change the
path begins and ends on the boundary. Periodic paths that lisdex of a path. The restricted homotopy mapn particu-
wholly in the interior of P are unaffected by a small varia- lar, does not change the number of reflections of a periodic
tion of the boundary. They therefore do not give a boundarypath. The trivial equivalence cla$8} will denote those pe-
dependent contribution tg(E) nor to the Casimir energy. riodic curves that can be continuously deformed to a point in
We are not interested in these generally divergent buf without changing the indei(y,). Since a point irP either
boundary-independent terms, since a Casimir energy shouid or is not on the boundary, these periodic paths have index
depend on the imposed boundary. One usually simply igi=1 ori=0. They are precisely the periodic paths whose
nores these boundary-independent contributions to the emontribution to the Casimir energy does not depend on global
ergy but it would be conceptually and computationally pref-variations of the boundary and we can exclude them in the
erable to formulatgy,.{ E) in a way that avoids them from definition of the oscillating part of the response function
the outset. In particular, we would like to exclude contribu-g.s.. Note that the restricted homotopic equivalence relation
tions to the path integral frortshord periodic paths that are defined above fits our requirements quite well and is suffi-
wholly in P\dP or at most includene point of the bound- ciently refined to distinguish betweanany of the classical
ary. periodic paths of the two-plate and Derjaguin proble(Re-

The restriction of the space of periodic paths can be cadtected paths and paths that follow the boundary for a while
in a more mathematical form by noting that a short periodiccan, however, belong to the same equivalence class in the
path that depends onlgcally (or not at al) on the boundary above sense, and one may wonder whether an even more
can be continuously deformed the interior P\dP to a tra-  restrictive definition of equivalence distinguishes between
jectory that consists of a single point. More rigorously, wethem). There always, however, seems to be at least one clas-
require an equivalence relation that relates paths that can Isical periodic path in eactrestricted equivalence class. Our
“smoothly” deformed into each other—where smoothly es- equivalence between periodic paths on the bounded phase
sentially means that the action varies continuously as wespaceP thus appears to be in agreement with the expectation
deform one path into another. The required equivalence rehat the action is a continuous functional within each equiva-
lation is rather close to the notion dfomotopy[23] on  lence class only.
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We can now eliminate from the outset the boundary-Such a canonical transformation will, however, generally
independent but generally divergent contribution to the realso move the boundaw/P of the phase space. One there-
sponse function from periodic paths in the trivial equivalencefore requires that a canonical generatoon the phase space
class{0} and define the oscillating part of the response func-P with boundarydP also satisfy

tion, gos{ E), by the Laplace transform of the path integral
0=[® N\ ]ploxp=0- (C1y

—2i (> . _
gOS&E):_f dTeI(E+|s)T/hJ
i Jo

{O}[dxdp]eis[”]’h, Note that this requirement greatly restricts the canonical
Vo€

transformations we are considering. Of interest to us will be
€7 the special case where the bounded phase space and Hamil-
tonian possess some “obvious” continuous symmetries. The
generators. , of the symmetry grou in this case form the
basis of arr-dimensional Lie algebra:

where the factor of two accounts for the sum over polariza
tions. Since classical periodic paths that belong to a non
trivial equivalence class generally have a minimal length
(which depends on the boundary B}, the restricted path
integral(C7) is free from divergent contributions due to fluc-
tuations around arbitrarily short classical paths. The restric
gl?anss?efsEig.(;Cu?v;?eﬁftrtl)oglg p?etC;L'Jnsln%gtég'ggﬁr?&glg?ce two parallel plates of dimensiobh XL located atz=0 and
the osciIIatir? art of the rez onse f{lnction semiclassicall z=| with L>1, the “obvious” symmetry is that of transla-

g part P - Ytions parallel to the plates. It is generated by the momentum
but Eq.(C7) specifies the boundary dependéascillating o

. : componentsp, and p,. In the Derjaguin problem, the

part of the response function without reference to the gener: y. . S
boundary of phase space is axially symmetric with respect to

ally divergent response function in the absence of boundt- e 7 axis. The time-independent svmmetry is aenerated b
aries. In the absence of a boundary, all periodic paths on é ' P y yisg y
ez component of angular momentum,

contractable phase space are trivial @gg( E) given by Eq.
(C7) then vanishes by definition. A= (XX ), =X, Py— Xy Py - (C13
The measur¢dxdp] and the corresponding path integral zoEy Ty

in Eq. (C7) should be understood as the limit of a finite |n a rotationally symmetric spherical cavity, the symmetry
dimensional integral obtained by suitably discretizing thegenerators are the components of angular momentum, etc.
time interval[0,7]. Note that momenta and coordinates enter  An elementge G of the group of canonical transforma-
symmetrically in the discretized path integral for the re-tions generated by the, of Eq. (C12 maps any periodic

sponse functionC7) pathy, onto another pathy?=gey, of the same period via

Iimf
n—o
. _l . . . . .

_ _ ) an inverseg ™~ the indexi(y%) =i(vy) defined in Eq.(C6)
and the integrals in EQC7) extend over the available phase- does not change and the patfl therefore belongs to the
space volume. The momentum and coordinate integrations igame equivalence class qis. The Lie groupg thus induces
the path integral representation of a Green function, on th%n equivalence relatiowithiﬁ each of the previous equiva-

other hand, are not symmetricthe end points, andx of lence classes. One says thdtis on the samerbit as y. .

a Green function are fixed and there is an "extaspace The action as well as the measficxdp] of the path integral

integral in its path integral representatin. re invariant under these canonical transformations, and in
Let us next consider continuous symmetries of the phasg1 ; . . P .
particular are invariant under infinitesimal canonical trans-

spaceP. A function A(x,p) on the phase spad@ that does {ormations generated by the’s
not explicitly depend on time and whose Poisson bracke A semiclassical evaluation of the path integfdl?) is

with the Hamiltonian vanishes generates (@mfinitesima) L .
canonical transformation . - therefore plagued by zero modes, |nf|r_ute5|ma_\l deforma’uon_s

& of the path that do not change the action, which are a mani-
festation of this symmetry. The remedy is well known: It
consists of choosing a particular representative on each orbit
and then performing the integration along the orbit exactly.
We choose the representatiyg of an orbito- by demanding
that it satisfy the subsidiary conditions

Na,a=1,... i [Na Aplp=Tohe} (C12

with structure constants,. In the Casimir problem with

yI=goy, ={(g°x(t),g°p(t)),te[0,7]}  (C19

and respects the boundary conditid@l). Sincege G has

iSlyAlaisc/n (C8)

dx(i7/n)dp[(i—3)7/n]
e
(27h)3

A (X)=x+e[x\]p+O(e?)=x+ SVpA-i-O(sz),

Ao(p)=p+e[p,\]p+O(e?)=p—eV,A+0(e?),
(C9

A,(H)=H=E F.av,:0]=0, a=1,...r, (C15

on the energy surfadd(x,p) =E. Heree is an infinitesimal  where theF, are functionals of the path. As indicated, the
parameter and the Poisson bracketG]p of two functions  conditions(C15 may explicitly depend on the orbit. They

F andG on the phase space is as usual must have a solutiory,, on the orbito, which preferably is
uniqgue In this case thé-_[ y;o] can be regarded as collec-
tive coordinates that give the position of the path on the orbit
o on which the actior§| y] does not depend. The remainder

JF G G oF
[F.Glpi= o — (C10
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of this appendix is then just the change of integration vari- oF , o[ 8F, ox(t)  &F, ap(t)
ables in the path integral from collective coordinates to pa- Map=—— Ef ( ot 5 )
rameters of the symmetry group. de 0\ OX(t) gg = p(t) ge
For a semiclassical evaluation of E(C7), however, it
suffices that aclassical periodic path on the orbit- satisfy
Eg. (C15 and that the Faddeev-Popov determinéot be (7 6Fa N, SF4 Ay
defined belowdoes not vanish at this solution. There are no _f x(t) ap  Sp(t) ax
gauge-equivalent classical paths in the immediate vicinity of (C17)

v, in this case, and a semiclassical evaluation of the fluctua-
tions around this representative path is possible. We use the
fact that the parameter space of the Lie gréufs a metric  and is the finite-dimensional analog of the Faddeev-Popov
space to write [24] matrix in gauge theories. It relates the change of the
] collective coordinates of to an infinitesimal change of the
) group parameters and the determinant of this matrix is just
No= LDg|delM |a1:[1 o(Falgoyio]), (€18 the Jacobian for the change of variables from the collective
coordinates-, to the group parametefin the case where
where the integral is over the manifold of the parametetthe solution of Eq(C15) is unique andN,=1]. The deter-
space of the invariance grogpwith the appropriate measure minant of M needs to be known only at points that satisfy
andN, is a positiveintegerthat gives the number of times Eq. (C15 and we demand that the collective coordinates are
the subsidiary condition§C15 are satisfied on the orbit. chosen so that det does not vanish for the classical peri-
(Note that we take thabsolute valueof the determinant— odic paths on the orbitr. We insert Eq(C16) in Eq. (C7)
N, is not the degree of the map, and vanishes only if theand use the fact that the acti@the measurgdxdp], de,
subsidiary conditions cannot be satisfje@ihe r Xr matrix ~ andN, are invariant under the action of the grogp One
M in Eqg. (C16) has elements can thus rewrite the response function as

2i o ' A
gosc(E):T(ng>J dre'<E+'8>T’ﬁJ [dxdp]N, *|deM|[] o[Fa(y,;0)]e7%, (C18)
4 0 v,¢{0} a=1

that is, as a path integral over periodic representative pgftaf each orbito that satisfy the constraint€15). The volume
Vg=[¢Dg of the symmetry group from the integration over the orbit has been separated, and one may proceed to a semi-
classical evaluation of the path integral in E§18). As is shown in Appendix D for the Casimir problem with two plates, a
judicious choice of the subsidiary conditiof@ collective coordinated-, often allows for a semiclassical evaluation of Eq.

(C18 in terms of a semiclassical Green function. Using the Fourier representation éfftlretion, Eq.(C18) can also be

written in the form of a path integral over an enlarged phase space supplemented by Lagrange matftipliers

—2i I Lo ds$ _—
gOSC(E): _ = f Dg f dTel(E+IS)T/hf [dXdp]N_1|deIM| H f R eI(S[)/T]+s Fa[yT,O'])/h. (Clg)
h G y.&{0} 7 — 27H

0 - a=1

It is consistent with the semiclassical approximation todimensional torus. The corresponding canonical transforma-
evaluate all the integrals in E¢C19 by the method of sta- tions are generated by the momema and p,, whose
tionary phase and consider only quadratic fluctuationdPoisson brackets with the constrai{ftl) vanish. Since
around classical periodic paths, that are representatives of
the orbito that satisfy the subsidiary conditiof€15). N1=Pyx, Np=py, and [Nq,A2]p=[px.Py]p=0,

(D2

APPENDIX D: THE TWO-PLATE CASIMIR PROBLEM

REVISITED there are no additional generators and the symmetry gioup

of translations parallel to the plates is two-dimensional, i.e.,
The boundaries at=0 andz=| of the Casimir problem r=2 in this case. Periodic paths that are the same up to a

are described by the constraint translation parallel to the plates are thus equivalent and be-
long to the same orbit. We choose the representative of such
d(x,p)=2z(1—2)=0. (D1)  an orbit to be the path whose initial poi(0),p(0)) is on

the z axis and select it by imposing the subsidiary conditions

To avoid the edge effects of two finite plates and for concep-

tual clarity we impose periodic boundary conditions in the Fil¥]=x(0)=0, (D3)
andy directions of period_>1. The symmetry of the prob-

lem in this case is that of the translation group on a two- Fo[y]=y(0)=0.
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Note that the subsidiary conditiofi®3) can be chosen inde-
pendent of the orbitr, since a representative periodic path
satisfying them can be found for any orbit.

A group elemeng(da, ) € G in the vicinity of the identity
depends on two infinitesimal parametela, andda,, da,
=(da;,day,0). The corresponding infinitesimal canonical
transformation/\daL is generated by

N da;+\,da,=p-da, , (D4)

and effects an infinitesimal translatiate, parallel to the
plates

AdaL(x) =x+[x,da, -plp=x+da,,
(D5)

Ada (P)=P,
AdaL(H): H1

on the energy surfadd =E.

Due to the periodic boundary conditions, a translation in

the x or y direction byL is equivalent to no translation in

that direction at all. The group element corresponding to

such a translation by is thus the identity. The parameter
space ofG is therefore topologically a symmetric two-
dimensional torug, of dimensionL X L. The metric on this
parameter space of the Lie grogpis flat, becausej is
Abelian, and the manifold of the parameter space of th
group G is thus isomorphic ta/,. The volume of the trans-
lation groupg, that of a two-dimensional symmetric toriis

of dimensionL XL, is just the area of the plates

vg=f Dg=f da;da,=L>2. (D6)
g 7

The Faddeev-Popov matrM of the two-plate Casimir prob-
lem with the subsidiary conditiond?3) is the 2 by 2 unit
matrix

JF;

5aj
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with unit determinant. Although obvious, one may also
prove that the representative, chosen by the subsidiary
conditions(D3) is unique: since the change of the subsidiary
conditions by a group element infinitesimally close to the
unit element ofG is given by the matrixM and dem =1
>0 for any value of the subsidiary conditions, there is only
one solutionge G to F4[gey]=F,[gey]=0 for any pathy.
The multiplicity constantN,; is thus

N,=1, (D8)

(o8

for any orbito.

Inserting Eqs.(D6), (D8), (D7), and (D3) in Eqg. (C18),
we obtain for the oscillating response functigfi?®{E) of
the two-plate Casimir problem

o

)

X f [dxdp]5(x(0))8(y(0))e! 7",
v,¢{0}

T

—2iL?
#

g;glate(E): dTei(E+is)T/ﬁ

(D9)

Only periodic paths that begin and end on thaxis and that
do not belong to the trivial equivalence class contribute to
the path integral in EqD9). To evaluate Eq(D9) semiclas-

L§ically, observe that

__i F o i(E+ie)rlh dp(0)

7] ooy [ Careeiom | P
) [

xf[dxdp]e‘s[””‘IdeZG(Z,Z;E)|y¢{o} (D10)

is an integral ovee of the Green functiors(z,z;E) from a
point on thez axis to the same point, where the contribution
from periodic paths in the trivial equivalence class has been
excluded. The semiclassical approximation to this Green
function was obtained above and is given by the first term in
Eqg. (2.18.
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