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Quantum computation and decision trees
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Many interesting computational problems can be reformulated in terms of decision trees. A natural classical
algorithm is to then run a random walk on the tree, starting at the root, to see if the tree containsdevade
from the root. We devise a quantum-mechanical algorithm that evolves a state, initially localized at the root,
through the tree. We prove that if the classical strategy succeeds in reaching levtiine polynomial inn,
then so does the quantum algorithm. Moreover, we find examples of trees for which the classical algorithm
requires time exponential im, but for which the quantum algorithm succeeds in polynomial time. The
examples we have so far, however, could also be solved in polynomial time by different classical algorithms.
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. INTRODUCTION the choicex;=x,=1 is eliminated, and nx of the form

M f th bl fi i (1,1X3, ... X, need be tried. If we consider's that begin
any of the problems of interest to computation experts i, X1.Xp, ... X, then if for somej we have2(=1Ajkxk

are, or are reducible to, decision problems. These are prob>- - o . . A
lems that for a given input require the determination of a yes™ 2» then anyx beginning withx, ,xz, . . . X, is eliminated.
e can picture this in terms of a decision tree as follows.

or no answer to a specified question about the input. FolV . ) . X
example the traveling salesman problerpislynomial time ~ Before imposing any constraints we construct an underlying
equivalent to the decision problem that asks whether or ndfranching tree. This tree starts at the top with one starting
for a given set of intercity distances there is a route passing°d€ that branches to two nodes corresponding to the two
through all of the cities whose length is less than a giverfNices forx;. This then branches to the four choices for
fixed length. Another example that we will later use for con-(X1,X2), and so on, until we have all "2choices for

creteness in this paper is the 0-1 integer programming prodX1::-Xn) at thenth level. However if we impose the con-
lem called “exact cover1]. Here we are given am by n straints and see that a particular node is eliminated, then we

matrix, A, all of whose entries are either 0 or 1. The numberc@n also eliminate all nodes connected to that node that lie
of columnsm is <n. We are asked if there exists a solution PEIOW it in the tree. The decision tree is the underlying
to them equations branching tree that has been trimmed as a result of the con-
straints. Note that the exact cover problem has a solution if
and only if the decision tree has one or more nodes left at the
bottom (nth) level.

More generally we view decision problems as having an
underlying bifurcating branching tree withlevels as in Fig.
. . 1. The specific form(or instance of the problem imposes
with t-hexk restnctgd tobe 0 or 1. The prute for.ce aplorf)"y‘chconstraints that eliminates nodes from the tree as in Fig. 2.
to this problem is to try the 2 possible choices ok  \hen a node is excluded the whole branch with that node as
=(X1,...,Xy). For each choice aot, checking to see if Eq. its topmost point is also cut from the tree. The decision ques-
(1.2) is satisfied takes at most of ord®m operations, which tion we wish to answer is “are there any nodes left atritie
is polynomial in the input size. However, checking all 2 level after all constraints have been imposed?”
possible choices fox is prohibitively time consuming even
for moderately large values of. Level 0

For the exact cover problem, with a given instance of the
input matrix A, it is not actually necessary to check all 2

values ofx to see if Eqg.(1.1) can be satisfied. Note that
genericallyx, can take the values 0 or 1 and,(x,) can
have the value€0,0), (0,1), (1,0, or (1,1). However, suppose

that for somej the matrixA hasAj;=A;,=1. In this case A)\A)\A)\A)\A}\A)\AAA)\ Le;e,n_1
- Leveln

*Electronic address: farhi@mitins.mit.edu FIG. 1. The underlying branching tree. At levelthere are 2
Electronic address: sgutm@nuhub.neu.edu nodes.

n
kgl Ajx=1 for j=1m (1.1)

Level 1

Level 2

1050-2947/98/58)/91514)/$15.00 PRA 58 915 © 1998 The American Physical Society



916 EDWARD FARHI AND SAM GUTMANN PRA 58

Level 0 One approach to solving a decision problem is to check
systematically every path that starts at the top of the tree and
moves downward through the tree. If a path reaches a dead
Level 2 end you try the next pattin some list of pathsuntil you find
a path that has a node at th#éh level, or else, after having
checked all paths, you discover that the answer to the deci-
sion question is “no.” An alternative to systematically ex-

Level 1

Level net ploring the whole tree is to move through the tree with a
probabilistic rule. For example you could use the rule that if
Leveln you are at a given node you move to the other nodes that are

connected to it with equal probability. Thus if you are at a
cpode that connects to two nodes below it, you havé a
hance of moving back up the tree; if the node connects to
just one below, you have & chance of moving back up;
whereas if the node is a dead end, you definitely move back.
Consider a family of decision problems indexed by a sizéif you start at the top of the tree and move with this proba-
n. Particular instances of the problem of sizaive rise to  bilistic rule, you will eventually visit every node in the tree.
particular decision trees that either have or do not have nodes Consider a family of decision trees that are associated
at the nth level. The computational concern is how muchwith underlying branching trees that anelevels deep. An
time, or how many algorithmic steps, are required to answeindividual instance of the decision tree either has or does not
the decision question asbecomes large. Roughly speaking, have nodes at theth level. If it does have nodes at timh
if the time grows liken” for fixed A>0, the problem is level and we use a probabilistic rule for moving through the
considered easy; whereas, if the time grows Bewith a  tree, then we say that the tree is penetrable if there is a good
>1, the problem requires an “exponential amount of time” chance of reaching thath level in not too great a time. More
and is considered computationally hard. precisely, we define the family of trees as penetrable if

FIG. 2. An example of a decision trdg with one node at level
n. For aesthetic reasons we will no longer put breaks in trees—th
are still to be thought of as being many levels deep.

There existA,B>0 such that for those trees with a no@er node$ at the nth level there is at<n”

with the probability of being at thenth level by timet greater than(1/n)B. (P)

This means that in polynomial time the probability of reach- O(t)=exp —iAt). (1.2

ing thenth level is at worst polynomially small. If condition

(P) is met, then by running the process ordér times we At any timet we have a pure state that can be expressed as

achieve a probability of order 1 of reaching thth level in  a (compley superposition of basis states corresponding to

time n**®.If condition (P) is not met, this means that it the nodes. Giveifl and the initial state, the probabilitghe

either takes more than polynomial time to reachritielevel  gmplitude squaredof finding the system at theth level at

or that the probability of reaching theth level is always time t is determined. We then say that a family of trees

smaller than (1) to any power. Therefore if conditiofi®) is  indexed by sizen is quantum penetrable if conditiai) is

not met, instances of the trees with nodes atritie level  met and it is quantum impenetrable if conditi¢®) is not

cannot practically be distinguished from instances with namet.

nodes at thath level. In this case the corresponding decision In Sec. Il, we will give a specific form for the quantum

problem is not solvable in polynomial time by this algorithm. HamiltonianH, and then prove that any family of trees that

We will divide families of decision trees indexed Iyinto s classically penetrable is associated with a closely related

two classes, those that satisfy conditiéh and those that do family of trees that is quantum penetrable. This will demon-

not, which we call impenetrable. strate that our model for quantum mechanically solving de-
We are interested in using quantum mechanics to moveision problems is at least as powerful as the classical proba-

through decision trees. We imagine that nodes of the dechkilistic method. In Sec. Ill, we will go further and give an

sion tree correspond to quantum states, which give a basgxample of a family of decision trees that is classically im-

for the Hilbert space. We further imagine constructing aPenetrable but which is quantum mechanically penetrable.

Hamiltonian H with nonzero off-diagonal matrix elements This means that the quantum penetration is exponentially

only between states that are connected in the correspondirﬁ ster than the corresponding CIQSS'C?II. penetration for these

" ! e . frees. However, we have not yet identified general character-
decision tree(We will be more specific about constructing .__. . ; o

) N istics of a problem that guarantee that its associated decision

the Hilbert space andl later) We start the quantum system trees are quantum penetrable. Furthermore, for the example

in the state corresponding to the topmost node, and let gonsidered, the problem associated with the classically im-

evolve with its time evolution determined by so that the penetrable trees can be reformulated so that it is computa-
unitary time evolution operator is tionally simple to solve by an alternative classical method.
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In Sec. IV, we discuss the construction of the Hilbertgives rise to a continuous time Markov process. The rule is
space and the Hamiltonidn. The usual paradigm for quan- Simply that if you are at a given node then you move to a
tum computation[2] envisages a string of, say, spin4 connected node with a probability per unit tinpavherey is
particles that gives rise to a alimensional Hilbert space. a fixed, time-independent, constant. This means that in a
Each elementary operation is a unitary transformation thatime e where ye<1, the probability of moving to a con-
acts on one or two spins at a time. We will show that thenected node iss ye. Using a continuous time process, as
Hilbert space for our system can be constructed using opposed to saying that you move at discrete times, will make
spin4 particles just as in a conventional quantum computerit easier when we compare with the continuous time evolu-
Furthermore, for a large class of problems, the Hamiltonianion dictated by the unitary operator in Eq..2).
that we construct is a sum of Hamiltonians that act on a fixed e are now going to introduce some formalism that looks
number of spins. In this seng&], our quantum evolution  guantum mechanical, but we are going to apply it to describe
through decision trees lies in the framework of conventionatne classical Markov process. Suppose we are given a deci-

quantum computation. sion tree that ha®\ nodes.(N may be as large as"2?,
wheren is the number of levels.Index the nodes in some
IIl. CLASSICAL VS QUANTUM EVOLUTION way by the integera=1,... N. Corresponding to the tree

THROUGH TREES we construct amN-dimensional Hilbert space that has an or-

In Sec. |, we discussed a classi¢tiat is, nonquantuin  thonormal basis{|a)} with a=1,... N and accordingly
probabilistic rule for moving through decision trees. Here we(a|b) = 8,,. Now we define a Hamiltoniatd through its
are going to be more specific and state the rule in a way thanbatrix elements in this basis:

—vy for a#b if node a is connected to nodé

(bH|a)= 0 for a#b if node a is not connected to nodé,

(2.7
3y node a is connected to three other nodes
(all:||a)= 2v node a is connected to two other nodes
vy hode a is connected to one other node.

Return to the classical probabilistic rule for moving where we have used ER.3). We see therefore tha, ,(t)
through a fixed tree, and let obeys the differential equation

Pa(t)=Prob (go from a to b in time t). (2.2 q )
GPea(=—2 (b|H|c)pea(t), 2.7

For a timee where ye<1, we have

—e(b||:l|a>+0(62) for b+a with the boundary conditionp,,(0)= ,,. The solution to
Poa(€) = - (23 Ea@Dis
1—e(alH|a)+0(e?) for b=a A
. Poa(t)=(ble"""|a). (2.8
as a consequence of the definitiontbf For a classical Mar-
kov process, the probability of moving depends only on cur-  Again, p,,(t) given by Eq.(2.8) is theclassicalprobabil-
rent position, not on history, so we have, for aqyandt,, ity of going froma to b in time t if you move through the
tree with a probability per unit times of moving to a con-

ti de. A heck hould h that

pba(tl"_tz):g Poc(t2)Pea(ty). 2.4 necting node. As a check we should have tha
Therefore, Eb: Ppa(t)=1. 2.9
Ppalt+ E):; Poc(€)Pealt), (2.5  To see that this is the case, note thatlefined by Eq(2.1)

has a zero eigenvector

which for e small gives

E=0)= =
+0(€?), \/_

(2.6 Therefore,

N
) 2 (2.10
Ppa(t+€)=Pppa(t) — 6; <b| H |C>pca(t)
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3 poe(t)= VN(E=0le”"|a) = \N(E=0]a)=1.

(21]) Level -2

We have constructed the Hamiltoniah because of its Level —1

utility in describing a classical Markov process. We now Lovel 0
propose using the same Hamiltonighto evolve quantum

mechanically through the tree. Let Level 1

Level 2

Apa(t)=(ble |a) (2.12

be the quantum amplitude to be found at ndat timet
given that you are at node at time 0. In this case the Level N1
probability is|Ay,(t)|2, with

Level n

E |Aba(t)|2:11 (2.13 FIG..S. The tr‘e.e'l'.,’].obt.ained from the tred, of Fig. 2 by
b appending a semi-infinite line of nodes at the starting nod€,of

as a consequence of the fact thatis Hermitian. With this  of reaching thenth level is not appreciably reduced because
quantum Han_ultonlan we will now show th_at if a family of _of the time some paths spend on the semi-infinite lide
trees is classically penetrable, then there is a related family,,, prove this statement, but the reader who is already con-
of trees that is also quantum mechanically penetrable. vinced that it is true can skip to the next paragraySuppose

Imagine we are given a family of decision tre€s.}  hat for{T,} we have conditior(P), so that
where eachT,, is n levels deep and does have nodes at the

nth level. For simplicity we will take the worst case possible

and assume that there is only one node at laveh order to 1
establish our result we are going to consider another family Prob (go from 0 ton in time t)=—5 (2.14
of trees{T/}, where eacfi, is obtained fronT, by append-
ing a semi-infinite line of nodes to the starting nodeTgf.

The rule for classically moving on the semi-infinite line is t<n® At level 1 of the decision t | f
the same as the rule for moving on the rest of the tree: witﬁOr someyt=n-. evel L of the decision tree only one o

a probability per unit timey, you move to an adjoining node € tWo nodes is on the branch that contamsthe unique
(see Fig. 3 node at leveh. Denote this level 1 node by. Now for each

We can see that ifT,} is classically penetrable, so is Path(onT,) that reaches from O in timet there is a time
{T;}. Roughly speaking, starting at 0 dr, the probability ~t—s at which the path last jumps from O ta Thus

n

t
Prob (go from 0 ton in time t)=f ds Prob (go from 0 to O in timet—s)X yds
0

X Prob (go from 1to n without hitting O in time s). (2.15

Using Eq.(2.14), it follows that for someys< yt<n”,

_ 1 1
Prob (go from 1to n without hitting 0 in time s)= WBW. (2.1
|
However, this last probability is the same of as forT,. We are now going to compare the classical and quantum

Turning to the treed|,, we see that the node 0 is connectedevolution through the family of tree§T,}. From this point

to three other nodes, the node at levell on the semi- ©On we sety=1. We will return to finite trees later in this
infinite tree and the two nodes at level 1. In time there is ~ section, but for now the device of appending a semi-infinite
an n-independent lower bound on the probability of going line to the trees of interest actually makes the analysis sim-
from O to 1 Combining this fact with Eq(2.16), we see that pler. Aj\gain call the startir!g nodevhich is at level 0 of the

in a times+ (1/y) there is a probability of going from 0 to treeT;) 0, and call the unique node at théh leveln. Then

on T, which is greater than fi/to a power. Thus if T} is A

classically penetrable so {3} p(t)=(n|e "|0) (2.17
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is the probability to go from 0 tm in time t if you evolve
with the classical rule. Similarly

p(t)—— Rej dt’ |t’ . (2.25

A(t)=(nle”"""|0) (2.19

is the quantum amplitude to be mtat timet if at t=0 you
are at 0, and you evolve with the quantum Hamiltonkn

[Of courseH, p(t) andA(t), are all sequences that depend|A(t )| for
on the sequencfT,}, but we will not bother to place an

We will now use EQq.(2.29 to show that if a family of
trees{T/} is classically penetrable it is also quantum pen-
etrable. Pick some tim@ and let e be the maximum of
0<t’<T. Now

label on these quantitigs. e{ J av 2 A(t') det’ A(t'f) ]
The HamiltonianA is defined by Eq(2.1) for each tree —it t—it
T, but now the number of nodes is infinite so the Hilbert A(t))
space is infinite dimensional. Call the energy eigenvectors =— f dt’ —2—2—/2 U dt' ——
|E), where to+t’ t—it
A 2., +2\1/2 » /
HIE)=E[E) BN K el f go A |
T t Tl )T t—it’
and

(E|E"Y=8(E-E’) (2.19
for the continuous part of the spectrum, and

(E/|Es)= s
for the bound states. Now for any Hermitian operaEQr

with matrix elementd,,, any eigenvalu& of H must lie
[4] in the union(over a) of the intervals

|E_Haa|$2 |Hba| (2-2()
b#a

which, given the form(2.1), implies that the eigenvalues lie

in the intervall0,6].

Using the completeness of tH&)'s we can write Eq.

(2.17 as
6
p0= [ dE e =nleNElD), @2
and Eq.(2.189 as
6 )
A(t)=J’0dE e 'EYn|E)(E|0), (2.22

(2.2

The magnitude of the last integral in E.26) is actually
less thanC/TY# for large T, whereC is an n-independent
constant. We will show this shortly. With this result we then
have that

(T?+t)Y2+T
t

€
p(H)=< ;In + TT4 - (2.27)

Now we are assuming that the family of trees is classically
penetrable. This means that for somen® we havep(t)
>1/nB for someA andB. For largen, this penetration time

t is clearly=1. Since the In term in Eq2.27) is a decreas-
ing function oft, we have

1 €

C
== In[(T?+1)Y2+T]+ T - (2.28

:]

Now let T=nP for D>4B. We then have, for large enough
n1

1 €
=7 nn®)

(2.29

where the integratlE is to be interpreted as a sum on the which means that the maximum P&(t)| for t<nP is larger

discrete part of the spectrum. From Eg.22, we have

1 (= ., 6
o J_wdt’e"’"t A(t’)=fodE S(w—E)(n|E)(E|0).
(2.23

Multiply both sides bye "' and integratelw from 0 to~ to
obtain, fort>0,

1 (= AL
27 f,wdt i =P, (2.24

than a constant timesri9*. Thus we have the result that if
a family of trees{T/} is classically penetrable, it is also
quantum penetrable.

Before verifying that the last integral in E(R.26) is ac-
tually bounded as claimed, we need to establish some facts
about the eigenfunctions of. Label the nodes on the semi-
infinite line of T;, by j with j=0,—1,—2, ..., sothatj=0
is the starting node of ;. On the semi-infinite line,

HIp=2[j)—=lj+1)-1i-1)

for j<—1. (2.30

which could have been obtained using the Cauchy integrafhe statd 6) with (j|6) proportional toe'!? is an eigenstate
formula. Now in the|a) basisH is real and symmetric, and of Eq. (2.30 with energy

from Eg. (2.18 it then follows thatA(t)=A*(—t). This
allows us to write Eq(2.24 as

E(6)=(2—2 cosf)=4 sirfo/2. (2.3D
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Now e’ ande ¢ correspond to the same energy, but be-where againE=4 sirf¢/2. In the node basis on the semi-
cause of the finite branching part of the ti@g,, which is infinite line, we then have
connected aj=0), only one linear combination is an eigen-

. - 12

function of the fullH, (j|E)y= (?) = E2)1400ij 0+ 5(E)], O<E=4.

1 . .

<j|0>= W[elw-f— R(e)e*”"], (232) (2.37)

We now describe the bound-state part of the spectrum.

Return to the form of, given by Eq.(2.30 on the semi-
infinite line, and consider the eigenfunctions

with 0< 6=, andR(0) is determined by the structure of
T,. Becaused in the node basis is real, E€R.32 must be
real up to an overalj-independent phase. This implies that
R(6) is of the forme 299 that is,|R(#)|=1. [The form
(2.32 is an “in” state for scattering off of the tre€, at the
end of the semi-infinite line. The fact theR(#)|=1 is also _
a consequence of the unitarity of tBematrix] We can re- (il;y=e”, p>0 (2.38
write Eq.(2.32 as

(jlay=(~1)e", a>0

5 with energies 2-2 cosha and 2—2 coshg, respectively.
jloy=e"190) _——_codjo+8(6)], (2.33  Since we know that the eigenvalues of the Hli(including
(alo) (2m)* the tree lie in [0,6], we see that there are no bound states of
the form|B) and any bound states of the forla) have en-
ergies in the interval4,6]. We have now fully explored the

_ 2\¥2 solutions toH|E)=E|E) on the runway. Any additional so-
(ilo)= (; cogjo+a(0)]. (2.34  |utions, which may be nonzero in the tree, will vanish iden-
tically on the runway and will play no role in any of our
The stateg6) are a set of function normalized eigenstates, discussion.
ie. Next we prove the required bound for the last integral in
Eq. (2.26 The trusting reader is invited to skip beyond Eq.
(010"y=06(6—10"). (2.39  (2.45. First note that

We have introduced the stati® because we coul(fairly) ) 5

easily normalize them, that is, pick the coefficient in Eq. A(t’)=(n|e‘”“'|0)=f dE(n|E)(E|0)e'EY',
(2.32 so that Eq(2.35 holds. The continuous energy eigen- 0

states|E) given by Eq.(2.19 are proportional to theg)’s. (2.39
To maintain both Egs(2.19 and(2.35, we have

and then absorb the phase in the definitionéfto obtain

1 where the integral in the range from 4 to 6 is actually a sum.
IE)= d_E 16)= (4E— E2)-1/4 0) (2.36 The integral in Eq(2.26) we wish to bound igafter dividing
’ ' by i)

N /A(t’) ' et/ __ — 1 f rf |Et’f wu(t! +it)
fdt T fdtde<n|E><E|O)e Tt dt’ | dE(n|E)(E|O)e” due”

6 * iut iET T 1
= —luta— K
fo dEf0 du(n|E){E|0)e '*le"'=Te LFIE (2.40
Taking the absolute value, we obtain
= A) . [(E|0)]
UT Ty f du e * f dE|(n |E>|TEz)1/§ (2.41

By the Cauchy-Schwarz inequality,
= LA 6 Ak KEIO)P]Y2 (=
' ’ ’ — —uT
UTdtt N deE|<n|E)|} f = fo du e

< J‘de e #T
t 0
using({n|n)=1. For O<E<4, the matrix elementE|0) is given by Eq.(2.37) so we have(E|0)|°<C,/(4E—E?)Y? where
C; here and below are easily computable constants. SIpk&, |0)|*°<1, and eactE, =4, we have

deI<E|0>|2 D KE|0)?]"
2+E? u?+EZ
(2.42
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® ,A(t/)
’fT dt t'+it

$C2f dM ei’“T
0

The integraldE in (2.43 is

f4dE 1 1 _de 1
B GE—E ™z ez |, Y (a siann)
dea ! Cs
< S —
o wit(2m)tet T
(2.44)

Now the inequality(2.43 becomes

o At’ 1/2
[t
T t'+it

1

e[St
2 o M FI? M2+42

© N 1 5
SC4J due "ng T (2.49
0 M

which is the desired result. This was the last step we neede{J
in showing that if{T/} is classically penetrable then it is

guantum penetrable.

Of course we are not ultimately interested in quantum
evolving on the family of infinite tree$T,}, because we
only imagine building a quantum computer with a finite
number of building blocks. However, we now argue that if
the family {T/} is quantum penetrable there is a closely re-
lated family of finite treegT'} that is also quantum pen-
etrable. In factT! is obtained fromT/, by chopping off the
semi-infinite line at some node that is far, but not exponen
tially far as a function o, from the node 0. Alternatively

we can viewa1 as arising fromT , by appending tdr, at 0
a finite number of linearly connected nodes.

To understand when “infinite” and *“very long” give rise
to the same quantum evolution, consider an infinite line of

nodes by itself with the Hamiltonian given by E@.30. In
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dE 1 1/2

J

+
(4E_ EZ)l/Z(M2+ EZ) M2+42

(2.43

are obtained from the family of classically penetrable trees
{T,} by adding a finite number of linearly connected nodes,
is quantum penetrable.

It is reasonable to ask why we bother with the family of
infinite trees{T,} when we are only actually interested in
finite trees. Why did we not prove directly that the family of
classically penetrable tre¢¥,} is also quantum penetrable?
Of course the answer is we would have if we could have.
The difficulty lies in the fact that for an arbitrary finite tree
with an exponential number of nodes there are an exponen-
tial number of energy eigenvalues falling in a fixed interval,
and we were unable to establish the requisite facts about the
density of states needed for a proof.

Let us summarize the results of this section. We started
with a given family of treeT,} that was assumed to be
classically penetrable. We then constructed the closely re-
lated family of trees{T/} that has a semi-infinite line of
nodes attached to the starting node of edgh The trees
.} are also classically penetrable. Then, using the analytic
relationship between the classical probabilities and quantum
amplitudes of T, }, we were able to prove thdT,} is quan-
tum penetrable. We also argued that cutting the semi-infinite
line at some node far from O cannot affect the quantum pen-
etrability as long as the distance to the cut is much greater
than the quantum penetration time. Therefore the family
{T'} of trees that is made frorfiT,,} by appending a long
(but finite) string of nodes to the starting node of edGhis
quantum penetrable if the origindll,} is classically pen-
etrable. Clearly{T,} and{T} address precisely the same
decision question. Therefore, any problem that can be solved
by classically random walking through a decision tree can be
solved by quantum evolving through a very closely related
tree.

lll. A FAMILY OF TREES THAT IS QUANTUM,
BUT NOT CLASSICALLY, PENETRABLE

this case it is possible to explicitly evaluate the amplitude to

go fromj to k in time t:

(e Hijy=e-2 Dy _(2t), (2.4

whereJ,_; is a Bessel function of integer order. For fixed

this amplitude dies rapidly ifk—j| is larger than 2. Imag-

ine starting aj =0 att=0. The quantum amplitude spreads

out with speed ZArecall that we have sef=1). Chopping
off the infinite system at the nodesL will not affect the
evolution fromj=0 as long as.>2t.

Return to the family of quantum penetrable trdds}.

These trees have the property that, starting at 0, which is
the end of the semi-infinite line, there is a substantial quan-

tum amplitude for being at the node on thth level of the
branching tree at a time<n” for a fixedA. Lopping off the

infinite tree at a node of ordenf)? down from 0 will not
affect this result. Thus the family of finite tre€$!}, which

If we know enough about the structure of a family of trees
we can decide if it is classically penetrable and if it is quan-
tum penetrable. Here we will show examples of families of
trees that are quantum but not classically penetrable. We
begin by discussing the calculations in the quantum case. As
in the last section we consider a family of trgds,} whose
members have only one node at tith level, calledn. This
time we construct the familyT}, where each tre@; has
two semi-infinite lines of nodes, one connected to the start-
ing node of T,, and the other semi-infinite line of nodes
attached to the node of T,,. For calculational purposes we
ake these two extra lines of nodes semi-infinite, but ulti-
ately we envisage making them of lengtho a power.

For convenience we redraw our trees so that the direct
line of nodes from O ta lies along the base. In this way the
tree depicted in Fig. 2, with two semi-infinite lines appended,
becomes that of Fig. 4. We use “bush” to denote a group of
nodes coming out of a node on the base. Here we label the
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4ins

FIG. 4. The treeT, obtained from the tred, of Fig. 2 by

—4 -3 -2 - n-1 n n+1

appending two semi-infinite lines, one connected at the starting

node and one connected to the nadeThe tree is drawn with the
direct line of nodes from 0O to along the base.

nodes on the base y The node§g=-1,—2,—3,... are on
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The stategE, +in) and|E,—in) are a complete set of scat-
tering states useful for discussing tree penetration. Equiva-
lently there is the seltE,+out) and |E,—out) that at late
times represents respectively a right mover on the ending
line and a left mover on the starting line. From E¢&1) and
(3.2, we obtain

|E,+in)=R(E)|E,—outy+ T(E)|E,+out), 3.3

|E,—in)=R(E)|E,+out)y+ T(E)|E, - out).

This transformation from the out states to the in states is
called theS matrix,

the semi-infinite starting line. The nodg¢s-n+1n+2,... R T

are on the appended ending line. The nope®,... h are =|_ _ (3.9
all on the original treeT,, and the nodes 0, .,n—2 may TR

have bushes coming out them although the nade4 andn S . .

do not. (If node n—1 had a bush, then would not be the which is necessarily unitary, so we have

unigue leveln node) What we imagine doing is building a IR(E)|2+|T(E)[|2=1,

guantum state localized near 0 on the starting line, and then

calculating the quantum amplitude for penetrating the tree IR(E)|2+|T(E)|2=1, (3.5

and being on the ending line. To this end we now set up the
formalism for calculating the energy-dependent transmission
coefficient T(E), and then evaluate it in certain specific

cases of families of trees. , o The standard interpretation df{E) is as follows. Suppose
For the tree ermted in Fig. 4 with an infinite basp, forwe build a statdy) completely on the starting line, that is,

each energye with 0<E<4, there are two energy eigen- (4|, is nonzero only for nodea on the starting line. Fur-

states(Here again we have setequal to 1. On the semi-  harmore, suppose thaw) expanded as a superposition of

'n_f'in;te lines they are, in the node basis, of the faehf and  opergy eigenstates is made only of states whose energy is

e %, where agairE=4 sirfé/2 and O<f<m. Superposi-  ¢ose to someE,. If we quantum mechanically evolvies)

tions of thee!” are used to make right-moving packets, with the unitary operatoe*”q‘, then at late times the prob-

ey IJ 0 .
whereas superpositions ef '!“ make left movers. Consider ability of being on the ending line I (Eo)|2. Thus|T(E)|2

the statgE, +in) that on the starting and ending lines is of has a direct interpretation as tledependent transmission
the form -
probability through the tree.
j=—1,-2,... Of course any statie) that is highly localized in energy is
3.1) necessarily highly delocalized in the node ba&ihis can be
' viewed as a consequence of the uncertainty pringijle do

not want our constructions to rely on building states that are
very spread out on the starting line since we eventually do
wish to chop it off not too far from the node 0. Suppose we
start at a specific nod¢,on the starting line, and we want the
amplitude for being at nodk on the ending line at timé.
This is given by

R*(E)T(E)+T*(E)R(E)=0.

(j|E,+iny=N(E)[e'!?+R(E)e 1],

(J|E,+iny=N(E)T(E)e"’, j=n—1n,n+1,...
with

1
(2,”_)1/2 (4E—E2)1/4 .

N(E)=

At this point we say nothing abog#|E, +in) if a is a node

on T,. Superpositions ofE,+in) make states that at early
times represent right-moving packets on the starting line
headed towards the tree structufg. At late times the
packet splits into a reflected piece, proportionalRp left
moving on the starting line, and a transmitted piece, propor-
tional to T, which is right moving on the ending line. Simi-
larly we can defind E,—in), which represents a state left
moving on the ending line at early times that at late times is
split into a right mover on the ending line and a transmitted
part left moving on the starting line. FOE, —in), we have

At =(kle H1j)
=fo4dE{<k|E,+in><E,+in|j>
+(K|E, ~in)(E,~ inl}e =
+ 3 (KENE lj)e "=
= f:dENZ(E){T(E)e““’[e’”"+ R*(E)ell’]
(i|E,—iny=N(E)[e T*+R(E)e"],

j=n—=1nn+1,...,
(3.2

j=—1-2,....

+[e7ik0+§(E)eik0]?}c(E)eij G}efiEt

+ 2 (KENE e (36

(j|E,—iny=N(E)T(E)e"I°,
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where we have used the explicit forms &, =in) on the = where we have used E¢B.8). If m has no bush coming out
starting and ending lines, and also included possible boundf it, a parallel argument gives

states. Now using the last equation in E§.5), with the
further fact thatH being real in the node basis implies

(m+1|E, +in)=(2—E)(m|E, +in)—(m—1|E, +in).
T(E)=T(E), we obtain 3

(3.12
We can usd3.11) for nodes with bushes as well as without
4 . . .
= 2 i(k—)0 if we definey,(E)=1 for nodes on the base with no bushes
Awi(D) fo dE N(E){T(E)e above. Equatiori3.11) can be written as a matrix equation
(m+1|E,+in)
(m|E,+in)

+T*(E)e ' D%e B X (KIE)(E/|j)e "
r

(3.7 _{[B—E—ym(a] —1H (m[E, +in)
In order to obtain amplituded,; that are large enough to 1 0 Jl(m—1[E,+in)
ensure penetrability, we will look for trees for whi@i{E) is (3.13
large and nonoscillatory in some interval Bfs. This guar-

antees that the right-hand side of E8.7) is large enough at We then have

some relevant time.

We now turn to calculating (E), which clearly depends <Elf’E+ m} = { <_O|1Eé+lr.]> , (3.149
on the structure of the tree to which we have added the (n—1[E,+in) (—1|E,+in)
semi-infinite starting and ending lines of nodes. For each of /e
the nodesn=0,1,...n—2 along the base of the tree—see
Fig. 4—that has a bush sprouting up from it, let us define M=M,_1M,_,---Mj (3.19

(node abovem|E, +in) and
Ym(E)= (m|E, +in) ' 3.8
! [[3-E-yn(E)] -1 5
where [node abovem) is the state corresponding to the m- 1 0| (3.16

node one level up from the base above the nodéow for o o .
fixed E, y(E) is determined solely by the bush coming out Substituting the explicit form fofE, +in) from Eq.(3.1), we
of the nodem; it does not depend on the other bushes. To seg@ét

this suppose that the bush coming out of nodbasN nodes T(E)ein? 1+R(E)

above the base nodu. Label these nodes y=1,... N. [T E i(nl)g}z 04 R(E)el|" (3.19

Now H|a) gives a superposition d&) and the states con- (B)e € (B)e

nected toa. Thus If we know the matrixM, T(E) is determined by these last

. two equations fofT(E) andR(E). From Eq.(3.16), we see

(alH|E, +in)=E(alE, +in) (3.9  that M is the product of matrices of determinant 1, so

_ ) . . detM)=1. We can write

is N equations for theN+1 quantities(a|E,+in) and

(m|E,+in). Divide through by(m|E,+in) and we getN a b

equations for theN ratios(a|E,+in)/(m|E, +in) so we see M=. 4l (3.18

that Eq.(3.8) is determined by the bush alone. Furthermore
the equations that were used to deternyp€E) are all real  with ad—bc=1 anda, b, ¢, andd all real. Solving for
so ym(E) is also real. For any given busp,(E) can be T(E), we obtain

calculated recursively by looking at sub-bushes and it is not

actually necessary to solve tieequations(3.9). T(E) = -ind 2i sin 6
Let m be a node on the base with a bush coming off. (E)=e c—b+(d—a)cosd+i(d+a)sinf’
Now, from Eq.(2.1), (3.19
<m|l:||E,+in>=3<m|E,+in)—<m+1|E,+in) It is interesting to note that if for somE we have
Ym(E)=1 for all m, thenT(E)= 1. To see this we construct
—(m—1|E,+in) M=M(E) in this special case. From Eq8.15 and(3.16),
h
—(node abovem|E, +in) e have
. 2—-E —-1]"
=E(m|E,+in), (3.10 M(E)={ L 0
which implies that
P 1 [sif(n+1)6]  —sinno)
(m+1]E,+in)=[3—E—yn(E)M[E, +in) “sin(6)|  sinng)  —sin(n—1)6]]

—(m—1|E,+in), (3.11 (3.20
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Level 0
Level 1
Level 2 ‘! y
—4 -3 -2 —1 0 1 2 n—1

Level n—-1

n n+1

Level n FIG. 6. The treel, constructed fronT,, of Fig. 5 by appending
two semi-infinite lines of nodes, and drawing the direct line of

FIG. 5. The tre€l,,, which i fectly bifurcating for the first
e tre€eT,, which is perfectly bifurcating for the firs nodes from 0 ta along the base.

n—1 levels, and then has only one node at lavel

L . _ lated for each of these bushes. Consider one such bush of
Plugging into Eqs(3.1& and(3.19, we obtainT(E)=1. To length k=n—1—m as depicted in Fig. 7. At height, 1
understand why this comes about, recall that a node with ng ~_ 5-1 . !
bush is the same as a node with a bush for whickE) </ \k_, there are nodes. At each height we define the
=1 as far as the calculation ®{E) is concerned. Therefore, normalized state
if all bushes have/,(E)=1 at someE, we have unimpeded 1
transmission at tha. |/ :pb)= 7o > la), (3.20)

To recap, given a decision trdg, with one node at level a at height/

n, construct a new tree with semi-infinite lines attached to . . ;
the starting node 0 and to the node at lenelRedraw the with |0;pb) being the state at the node on the bottom of the

tree as in Fig. 4 with the direct line from O o along the bush, that is,|0;pb)=|m). With these labels, for these

base. Suppose we can calculate the-1 functions bushesy(E) defined by Eq(3.8) is
Yo(E),y1(E), . .. yn_2(E). Substitute into Egqs(3.16 and (1;pb|E, +in)
(3.15 to obtain the matriXxM as a function oE. The trans- VYm(E)= . (3.22
mission coefficienfT(E) is then given by Eq(3.19, where (O;pblE, +in)

E=4 sirfal2.

In order for a family of trees to be quantum penetrable,
the function|T(E)| must be not too small over a not too
small range ofg, as can be seen from E¢3.7). Further-
more, even if| T(E)| is not small, T(E) must not oscillate
rapidly about zero or else the integral in E§.7) may be
small due to cancellations. It is interesting to note that for
any treeT(E)—1 asE—0. To see this, note that the zero-

energy eigenvector &, |[E=0,+in), is constant in the node s the bush in Fig. 7 can be replaced by the effective linear
basis; that is(a|E=0,+in) is independent oh. Thusy(0)  push given in Fig. 8, where the number next to the node on
defined by Eq(3.8) is 1 for all nodes on the base, and by the the right gives the diagonal element of the Hamiltonian and
argument of the paragraph before last we h&(@)=1. For  the number by the connecting edge on the left gives the

trees that are not quantum penetrable, we will see that, akff.diagonal element. Up to an overall constant that drops
thoughT(0)=1, T(E) falls to near zero at an exponentially gyt of Eq.(3.22, for /=1 tok, we have

small value ofE.

Consider a decision tree that is perfectly bifurcating until (/;pblE,+in)=coq/ 6" + )
level n—1 and then only one of the"2! nodes at leveh
—1 continues on to level. The associated trég, is shown and
in Fig. 5. This decision tree could arise from the following )
question. You are given a list di=2""1 items with the (0;pb|E, +in)=v2 cosa, (3.24
knowledge that a single unspecified item may or may not be .
marked. The question is, “Is there a marked iten(This is with
essentially the problem for which Grovgs] found a quan- E=3-2v7 cos ¢’
tum algorithm requiring ordey/N steps) Any classical algo- '
rithm for solving this problem requires of ord8¥ steps. In Height k
particular, the Markov process for moving through the deci-
sion tree gives a probability of being at the unique node at
level n that is at most of order IV, so this family of trees is
classically impenetrable.

We now turn to quantum evolution through the same set
of trees. Draw the tree in Fig. 5 with the direct line from 0 to Height 1
n along the base, and add semi-infinite starting and ending
lines; see Fig. 6. We see that each bush coming out of the
base at nodem is a perfectly bifurcating bush of length  FIG. 7. A perfectly bifurcating bush of heightcoming out of
n—1-—m for m=0 to n—1. The ratioy,(E) can be calcu- the base of the tree in Fig. 6 at node=n—1—Kk.

Note thatH to any power acting o0;pb) gives a linear

superposition of states that only contains the stptepb)

on the bush. Further note that
(/;pblA|/";pby=368,,—V2[8, ;1 1+ 8, ;1 1]

for 1</, /'<k-1, (3.23

Height k-1

Height 0
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1 Height k 1 T T T T T T
—"/E 0.9r M/ R
- 3 Height k-1 Los i
—2 g
3 £07r 4
8
§ 0.6F 4
E 0.5 1
s
£
504F .
203} 1
2 5
3 Height 1 0.2f i
-1 0.1F ’ )
Helght 0 0 .| I " I II ) M lJ lAA L I | L
0 0.5 1 1.5 2 2.5 3 3.5 4
FIG. 8. The effective bush of heightassociated with the bush Energy

of Fig. 7. The number to the left of each edge gives the matrix
element ofH between the two states connected by the edge. Th%

number next to the node gives the diagonal elemertt dér that
State.

FIG. 10. The magnitude dff vs E for the same tree used in Fig.
after removing one layer of nodes from each odd-length bush.

under the curve comes frol of order 1. We can evaluate
T(E) explicitly at E=3. Note from Eg.(3.24 that ¢’

By applyingH to the/ =k node, we can determine, — w2 at E=3. In this casey,(3) is 1 if k=n—1—m is

cog0')—v2 even, and/,,(3) is — 3 if k is odd. ThusM (3) can be written
tanké' +a)= ————— (3.29 as(for n even
sin 6
Going back to Eq(3.22, we then have 1o1)[-1 -1 ni2 3 1 n/2
M(3)= =(-1)"™
(E)= 1 [v2sin(k—1)6']—sinkd") (3.26 1 0 1 0 11
IS0 Ve sinke) —sink+ o)) 1 —tfve g [z 1
. . =(—1)"? Wl 327

where againk=n—1—m. Of course the calculation of 1 2 0o 2 -1 1

ym(E) in this example was greatly facilitated by the regular-

ity of the bush. _ 2 .
With y,,(E) determined for each bush, we can evaluatg"™om which we conclude/ghélf(3)~2 - The transmission

T(E) by substituting into Eqs(3.16 and (3.15, and then ampllt_ude is of order 2"<, so the transmls_,smn_ probability

into Eq.(3.19. In Fig. 9, we showT(E)| for n=26. Atthe =~ 90€S like 27", Here the quantum algorithm is doing no better

n—1 level there are $=10"5 nodes. AlthoughT(0)=1, than the classical algorithm.

T(E) has fallen substantially b=10"1°. Most of the area The alert reader may wonder whether any use can be
made of the bound states which may exist fesB=<6. The

answer is no, at least in this case. To check this, we changed
the Hamiltonian on the semi-infinite lines to have values 3
on the diagonal and- 3 between neighbors. Now the con-
tinuum states|E,+in) are defined for &E<6, and are
complete. We recalculatet{ E) and looked for intervals of

E’s whereT(E) is large and nonoscillatory. Again, there are
no values ofT (E) which permit transmission with probabil-

ity greater than~2"".

Now we make a seemingly small modification of the tree.
We take all of the odd-height bushes coming out of the base
line of Fig. 6, and trim back one layer so all bushes are of
even height. The magnitude of the transmission coefficient is
shown in Fig. 10, where we see that for a substantial range of
E near 3,|T(E)| is very close to 1. In fact for all of these
bushesy(3)=1, which by the argument given above im-
plies thatT(3)=1. We can also see tha{E) does not os-
cillate rapidly in this region by plotting the real part ofE),
which is shown in Fig. 11, confirming a more tedious ana-

FIG. 9. The magnitude of vs E for E between 0 and 4 for the lytic evaluation. Therefore, the family of trees is quantum
perfectly bifurcating tree with one node iat26. penetrable.

Magnitude of Transmission Coefficient

Energy
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' input, sayw;---w,. To arrange for the bushes to all have
even height, the tree must be trimmed at lewel1. Forn
even, the functiorf,_ (X - *Xp—1) is 0 if x;#w; or if x;
=W, Xo=W,, and Xz#Ws or if X;=Wj, Xo=W,, Xz
=Ws3, X4=W,, andxs#wsg, etc. If we are allowed to call
the functionf,,_ (X - *X,_1), which we know has this much
structure, we can determing;- --w,_4 with far fewer than
order 2" function calls. First try various inputs until you find
an example;- - -x,_4 such thatf,,_; is 1 on this input. Then
you know that w;=x;. Trying inputs of the form
WXy X, 1 Will allow you to findw,, etc. Oncewy---w,_;

is determined, two function evaluations f(w- - -w,_1X,)

with x,=0 and 1 will answer the decision question. Of
course what is occurring here is that the extreme regularity of
the tree, which guarantees its quantum penetrability, is also
structuring the decision problem so that it can be answered
much more efficiently than by a classical random walk which
is incapable of seeing larger structures.

Real Part of Transmission Coefficient

) ) .
2.9 2,95 3.056 3.1
Energy

R ) "
27 2.75 2.8 2.85 3

FIG. 11. The real part of vs E showing thaflT does not oscil-
late rapidly about zero close to whefeis 1, for the same tree as

Fig. 10. IV. IMPLEMENTING THE QUANTUM SYSTEM

It is easy to see that these trees with even-height bushes In this section, we show how to implement on a conven-
are not classically penetrable. Before trimming back the oddtional quantum computer the quantum systems previously
height bushes, we had timelevel tree shown in Fig. 5T, described. A conventional quantum computer consistg’ of
which is associated with the tré& shown in Fig. 6. These spin4 particles that give rise to a’2dimensional complex
trees are not classically penetrable. Now, if we trim the oddHilbert space with basis elemerjigz, --z,) where we take
height bushes back one layer, the trimmed tree still containeachz; to be 0 or 1. The computer program can be thought of
all of the tree ;;71! which has even- and odd-height bushes.gs a sequence of unitary 0perat6]’§ each of which acts on
Since T;_, is not classically penetrable, the even-height(at mosj B bits. That is, for each),, in the sequence, there
bush family is also not classically penetrable, since, classis a setS,={i,,i,, ... g} that tells us whichB bits are
cally, any time you add nodes to bushes, you necessariljeing acted on and aB2by 28 unitary matrix whose ele-
decrease the chances of getting to the node ments we write asJ (W --wj Wy --Wg). We then have,

We have given a single example of a family of trees thatfor cachl)
is not classically penetrable bus quantum penetrable. ar
Clearly there are many variants of this example using even;_,
length, perfectly bifurcating bushes in all sorts of combina- 2
tions; we will not pursue these other examples here. How-
ever, we are faced with the question of what problem this
family of trees corresponds to.

We can think of decision trees as associated with func-

Zé"‘zl/|0a|2122"‘z/>

jgﬂ W(zj=z)U (2 7 ;2 7). 4.1

tions that impose constraints. At each levéhere is a func-
tion f; that depends on the firgtbits. If f;(x4---X;)=1 then
the ith-level nodex;- - -X; is connected to thei - 1)th-level
nodex,---xj_4. (The zeroth-level node needs no bits to de-
scribe it) If f;(X1---%;)=0, thenx;---X; is absent from the
tree. In terms of the functionk , the decision question is,
“Is there anxy---X, such thatf;(x;---x;)=1 for alli=1 to
n?”

For the tree depicted in Fig. 5, the functiohs ... ,f,_4
are all identically 1. This gives the perfectly bifurcating
structure. Then there is a functidip(x,---x,) that is guar-
anteed to be 0 for all but one of thé 2alues ofx;---x,,. At
one special, but unknown, valdig is either 0 or 1(We draw
the decision tree assuming there is a value for whigh

equals 1. Otherwise the transmission coefficient is 0 anavhere, for eactk, H

there is nothing to calculajeWithout further information
aboutf,,, any classical algorithm will need to search\al-
ues ofx;---x, to see if there is a value at whidh equals 1.

Let us turn to the functions that determine the quantum

penetrable tree just discussed. At thih level there is the
function f,(x;---x,) which may take the value 1 on one

Herel (s) is the indicator function that is 1 & is true and O

if s is false. This formula is just a way of writing thét,,
acts onB bits.

In previous sections we described evolution through deci-
sion trees using the quantum Hamiltqnlarthat gives rise to
the unitary time evolution operater ™. To find a sequence
of unitary operators, each of which acts on only several bits
and whose product givéapproximately the same evolution

ase "™ we follow the procedure given in RdB]. Suppose

4.2

x and henceetHk acts only on(at
mos) B bits. The Trotter formula says

e itH ,Nv[e—itﬁl/me—itﬁz/m. . ,e—m%p/m]m

4.3

for t/m small. Thus the evolution operater‘ith can be ap-

proximated as a product gim unitary operators each of
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which acts on a fixed number of bits. As a functionnothe  trimmed decision trees. There are families of trimmed trees
largest timed that interest us are, sag”. Takingm=n?*  whose Hamiltonians we cannot represent in this way. But for

allows us to obtaire™ ™" with a number of elementary uni- many interesting problems we can writé as a sum of
tary operators that only grows polynomially with as long  Hamiltonians that act on at moBt bits, whereB does not
asp also grows only polynomially with. grow with n. For example, we now show how to do this for

We now show two cases where the Hamiltonfargiven @ Version of the exact cover problem discussed in Sec. |. We
by Eq.(2.1) can be written as a sum ¥, where eactf, restrict the matrixA, which defines an instance of the exact

acts on a fixed number of bits. Consider first the underlyingcover prOb!em’ to have exactly three L's in any row gnd three
. . . . n N or fewer 1's in any column. Even with this restriction, the
branching tree, Fig. 1 and its associatdd Start with /

_ . ; problem isNP complete.
=2n+1 bits that we group for convenience as Consider first the question of whether ttth-level node

= X1 ++X; connects to thei(+ 1)th level nodex;---x;1. We as-
(YX)=(Yoya Yk Xn). 49 sume thak,---x; is in the tree, and we need to be consistent
They bits indicate the level of the node. The states we usavith Eq.(1.1), so we know that for each X} _;Ajx, is 0 or
will have a singley;=1 and the rest O to indicate that the 1. If for somej this sum is 1 and als@\;;,,=1, then
node is at leveli. The x;---x; will indicate the particular x;---X;1 is eliminated as a node. Consider the function
node at thath level; these nodes will also hawe, ;=X >

=---=X,=0. We now define the following one bit operators | n :
through their action on the basis vectdys): Ci (Xl“‘Xi):jﬂl 1—21 AjXic| A1 T [1=A) el (-
yilyx)=y;lyx), @7
. Given thatx,- - -x; is an allowed node, then this function is 1
Xjlyx)=x;|yx), (4.5) if X4---x;1 is allowed and 0 ifk;---x;1 is excluded. Further-
- . _ _ ' more, given the restriction tha has three 1's in any row
PilyX)=pjlYo - Yj - YnX) =YjlYo - Yj YnX), and three or fewer in any colum@! has at most six’s
. . _ _ appearing.
ailyX)=oilyXe - Xj - Xn) =Xy Xg X X)), Now we ask ifx;--x; at leveli connects tax;--x;0 at

_ _ . . leveli+ 1. This connection will be allowed unless for some
wherey;=1-y; andx;=1-x;. We see thak; andy; are  with A; ;,;=1, there is &=i and a distinck’ <i such that
diagonal in this basis. The operamﬁpiﬂ acting on a state  Aj,=Aj» =1 andx,=X,,=0. The reason the nodg- - -x;0
at leveli brings it to leveli + 1, whereap;p/, ; moves from would be eliminated in this case is that there are exactly

leveli+1 to leveli. three 1's in any row, and Ed1.1) could not be satisfied if
The Hamiltonian(2.1), defined on the underlying branch- the three bitsq, x,:, andx;., are all 0. Now consider the
ing tree, is function
n—1 n—1 ' i
H=2y0+32 Vityn= 2 (p{pivatpipls)(1=%i 1) d(xy-x) = 2, Aj(1=%0)- 4.8
n-1 . . . .
_igo (Pl pi+ 10141 T PP 1074 1) (4.6 gllo(eran):(lj) lVIZthlsé(Jll+1X,_Ol,e|(|jrfnl(r:12?ecli)eL2'; 1, or 2. Only i

The first three terms give the diagonal matrix elements. The m
fourth term connects the nodes---x; at leveli with the Cio(x1~--xi)=H [
nodesx;---x;0 at leveli + 1, whereas the last term connects =1
X1+ +-X; at leveli with x4+ --x;1 at leveli + 1. Thus we see that

H can be written as a sum &f,, each of which acts on at Tnen this function is 0 if,---x,0 excluded, and it is 1 if

most three bits. , . X1+ -X;0 is allowed. Again because of the restrictions placed
1
We have built a Hilbert space with??"* states, whereas on A, this function has only six,’s appearing.

the underlying branching tree has only"2 —1 nodes. How- The functionsC? and C! can be promoted to operators
ever, if we start in the state corresponding to the topmost. v b lacing thei ts by the bit ~
node, that isy,=1 and all other bits 0, then if we act with S|m.py y rep acmg‘ er ar.gumen S by OeA It operatqrs

e "Mt with H given by Eq.(4.6) we only ever reach states in delflped in Eq.(4.5; Fhat IS, we havepi (X1 i) anii

the subspace corresponding to the underlying branching tre€i (X1 - ;). If we multiply the last term in Eq(4.6) by C;

The 2"*1.dimensional Hilbert space may not be the mostand the fourth term bg?, the Hamiltonian has off-diagonal
economical choice to describe the tree, but it suffices for ouelements only where the tree has connections. Similarly, we

purpose of showing thafl can be built as a sum of local €an write the diagonal term as

1
sdi(1-dh+1

Ajirit(1=Ajir) (-
(4.9

Hamiltonians. no1
Qf course we also want to construdtas asum o_f Hamll-_ Hdiagonal: 290+ 2 g,i(1+cio+ci1)+§,n. (4.10
tonians acting on a fixed number of bits for interesting i=1
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Thus we have written the Hamiltonian for the trees trimmednodes of a decision tre€For a related approach, see Ref.
by A in the form(4.2) with B=9. [7]) This is in contrast to the usual setup consisting of a
Generally, we think of decision trees as associated wittsequence of unitary operators each acting on a fixed number
functions f; that impose constraintsf;j(x;---x;)=1 if the  of bits. (For many problems, includiny P-complete ones,
(i—21)th level nodex;---x;_; is connected to théth level  our algorithm can be rewritten in the conventional language
node x;---X;; otherwise f;=0. The exact cover example of quantum computatiop.Studying Hamiltonian evolution
above makes clear that as long as there is a fixadch that  on decision trees is facilitated by the technique of calculating
f,(x1--X;) depends on onl bits for eachi (whichbits can  energy-dependent transmission coefficients. The example in
vary withi, of coursg then the problem can be implemented Sec. Il shows explicitly how interference allows a class of
within the usual quantum computing paradigm—we onlytrees to be penetrated exponentially faster by quantum evo-
need to replace C;(_l(;(l...)}i_l) in Eq. (4.10 by lution than by a 9Ia35|cal random we_llk. Howeverz this ex-
ample can be quickly solved by a different classical algo-
~ A rithm.
tion terms in Eq(4.6) by fi(Xy = Xi-1.X). The particular Hamiltonian we chose allowed us to prove,
Note that our example in Sec. Il for which the quantumin sec. |1, that the quantum algorithm succeeded in polyno-
algorithm achieved exponential speed-up does not meet thigja| time whenever the corresponding classical random walk
fixedB requirement. We do have, however, similar ex-on the decision trees succeeded in polynomial time. In
amples that achieve exponential speed-up and that do megéarching for more examples where the quantum algorithm
this requirement. These problems also rely on even-lengthyytperforms the classical algorithm, one is not restricted to
very structured bushes, and also can be solved quickly byhis Hamiltonian. We can imagine trying any Hamiltonian

fi(§<1- . -§(i_1 ,X), and also to multiply the appropriate connec-

other classical algorithms. with nonzero off-diagonal elements where there are links be-
tween the nodes on the decision tree. With this flexibility, we
V. CONCLUSIONS hope that the class of trees that can be penetrated quickly by

There is great interest in devising quantum algorithms tharthe. quantum algorithm is large enough to include classically
difficult problems.

improve on classical algorithms, and there have been some

notable successes. For example, the well-known Sland

Grover [5] algonthm_s demonstrate remarkable_ ingenuity. ACKNOWLEDGMENTS
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