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Quantum computation and decision trees
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Many interesting computational problems can be reformulated in terms of decision trees. A natural classical
algorithm is to then run a random walk on the tree, starting at the root, to see if the tree contains a noden level
from the root. We devise a quantum-mechanical algorithm that evolves a state, initially localized at the root,
through the tree. We prove that if the classical strategy succeeds in reaching leveln in time polynomial inn,
then so does the quantum algorithm. Moreover, we find examples of trees for which the classical algorithm
requires time exponential inn, but for which the quantum algorithm succeeds in polynomial time. The
examples we have so far, however, could also be solved in polynomial time by different classical algorithms.
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I. INTRODUCTION

Many of the problems of interest to computation expe
are, or are reducible to, decision problems. These are p
lems that for a given input require the determination of a
or no answer to a specified question about the input.
example the traveling salesman problem is~polynomial time!
equivalent to the decision problem that asks whether or
for a given set of intercity distances there is a route pass
through all of the cities whose length is less than a giv
fixed length. Another example that we will later use for co
creteness in this paper is the 0-1 integer programming p
lem called ‘‘exact cover’’@1#. Here we are given anm by n
matrix, A, all of whose entries are either 0 or 1. The numb
of columnsm is <n. We are asked if there exists a solutio
to them equations

(
k51

n

Ajkxk51 for j 51,m ~1.1!

with the xk restricted to be 0 or 1. The brute force approa
to this problem is to try the 2n possible choices ofxW

5(x1 , . . . ,xn). For each choice ofxW , checking to see if Eq
~1.1! is satisfied takes at most of ordermn operations, which
is polynomial in the input size. However, checking all 2n

possible choices forxW is prohibitively time consuming even
for moderately large values ofn.

For the exact cover problem, with a given instance of
input matrix A, it is not actually necessary to check all 2n

values ofxW to see if Eq.~1.1! can be satisfied. Note tha
genericallyx1 can take the values 0 or 1 and (x1 ,x2) can
have the values~0,0!, ~0,1!, ~1,0!, or ~1,1!. However, suppose
that for somej the matrixA hasAj 15Aj 251. In this case

*Electronic address: farhi@mitlns.mit.edu
†Electronic address: sgutm@nuhub.neu.edu
PRA 581050-2947/98/58~2!/915~14!/$15.00
s
b-
s
or

ot
g
n
-
b-

r

h

e

the choicex15x251 is eliminated, and noxW of the form
(1,1,x3 , . . . ,xn) need be tried. If we considerxW ’s that begin
with x1 ,x2 , . . . ,xl then if for somej we have(k51

l Ajkxk

>2, then anyxW beginning withx1 ,x2 , . . . ,xl is eliminated.
We can picture this in terms of a decision tree as follow
Before imposing any constraints we construct an underly
branching tree. This tree starts at the top with one star
node that branches to two nodes corresponding to the
choices forx1 . This then branches to the four choices f
(x1 ,x2), and so on, until we have all 2n choices for
(x1 ,...,xn) at thenth level. However if we impose the con
straints and see that a particular node is eliminated, then
can also eliminate all nodes connected to that node tha
below it in the tree. The decision tree is the underlyi
branching tree that has been trimmed as a result of the
straints. Note that the exact cover problem has a solutio
and only if the decision tree has one or more nodes left at
bottom ~nth! level.

More generally we view decision problems as having
underlying bifurcating branching tree withn levels as in Fig.
1. The specific form~or instance! of the problem imposes
constraints that eliminates nodes from the tree as in Fig
When a node is excluded the whole branch with that node
its topmost point is also cut from the tree. The decision qu
tion we wish to answer is ‘‘are there any nodes left at thenth
level after all constraints have been imposed?’’

FIG. 1. The underlying branching tree. At levelm there are 2m

nodes.
915 © 1998 The American Physical Society
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Consider a family of decision problems indexed by a s
n. Particular instances of the problem of sizen give rise to
particular decision trees that either have or do not have no
at the nth level. The computational concern is how mu
time, or how many algorithmic steps, are required to ans
the decision question asn becomes large. Roughly speakin
if the time grows likenA for fixed A.0, the problem is
considered easy; whereas, if the time grows likean with a
.1, the problem requires an ‘‘exponential amount of tim
and is considered computationally hard.

FIG. 2. An example of a decision treeTn with one node at level
n. For aesthetic reasons we will no longer put breaks in trees—
are still to be thought of as being many levels deep.
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One approach to solving a decision problem is to che
systematically every path that starts at the top of the tree
moves downward through the tree. If a path reaches a d
end you try the next path~in some list of paths! until you find
a path that has a node at thenth level, or else, after having
checked all paths, you discover that the answer to the d
sion question is ‘‘no.’’ An alternative to systematically ex
ploring the whole tree is to move through the tree with
probabilistic rule. For example you could use the rule tha
you are at a given node you move to the other nodes tha
connected to it with equal probability. Thus if you are at
node that connects to two nodes below it, you have a1

3

chance of moving back up the tree; if the node connects
just one below, you have a12 chance of moving back up
whereas if the node is a dead end, you definitely move ba
If you start at the top of the tree and move with this prob
bilistic rule, you will eventually visit every node in the tree

Consider a family of decision trees that are associa
with underlying branching trees that aren levels deep. An
individual instance of the decision tree either has or does
have nodes at thenth level. If it does have nodes at thenth
level and we use a probabilistic rule for moving through t
tree, then we say that the tree is penetrable if there is a g
chance of reaching thenth level in not too great a time. More
precisely, we define the family of trees as penetrable if

y

There existA,B.0 such that for those trees with a node~or nodes! at the nth level there is at,nA

with the probability of being at thenth level by time t greater than~1/n!B. ~P!
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This means that in polynomial time the probability of reac
ing thenth level is at worst polynomially small. If condition
~P! is met, then by running the process ordernB times we
achieve a probability of order 1 of reaching thenth level in
time nA1B. If condition ~P! is not met, this means that
either takes more than polynomial time to reach thenth level
or that the probability of reaching thenth level is always
smaller than (1/n) to any power. Therefore if condition~P! is
not met, instances of the trees with nodes at thenth level
cannot practically be distinguished from instances with
nodes at thenth level. In this case the corresponding decisi
problem is not solvable in polynomial time by this algorithm
We will divide families of decision trees indexed byn into
two classes, those that satisfy condition~P! and those that do
not, which we call impenetrable.

We are interested in using quantum mechanics to m
through decision trees. We imagine that nodes of the d
sion tree correspond to quantum states, which give a b
for the Hilbert space. We further imagine constructing

Hamiltonian Ĥ with nonzero off-diagonal matrix elemen
only between states that are connected in the correspon
decision tree.~We will be more specific about constructin

the Hilbert space andĤ later.! We start the quantum system
in the state corresponding to the topmost node, and le
evolve with its time evolution determined byĤ so that the
unitary time evolution operator is
-

o

e
i-
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ing

it

Û~ t !5exp~2 iĤ t !. ~1.2!

At any time t we have a pure state that can be expresse
a ~complex! superposition of basis states corresponding
the nodes. GivenĤ and the initial state, the probability~the
amplitude squared! of finding the system at thenth level at
time t is determined. We then say that a family of tre
indexed by sizen is quantum penetrable if condition~P! is
met and it is quantum impenetrable if condition~P! is not
met.

In Sec. II, we will give a specific form for the quantum
HamiltonianĤ, and then prove that any family of trees th
is classically penetrable is associated with a closely rela
family of trees that is quantum penetrable. This will demo
strate that our model for quantum mechanically solving
cision problems is at least as powerful as the classical pro
bilistic method. In Sec. III, we will go further and give a
example of a family of decision trees that is classically i
penetrable but which is quantum mechanically penetra
This means that the quantum penetration is exponenti
faster than the corresponding classical penetration for th
trees. However, we have not yet identified general charac
istics of a problem that guarantee that its associated deci
trees are quantum penetrable. Furthermore, for the exam
considered, the problem associated with the classically
penetrable trees can be reformulated so that it is comp
tionally simple to solve by an alternative classical metho
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In Sec. IV, we discuss the construction of the Hilbe
space and the HamiltonianĤ. The usual paradigm for quan
tum computation@2# envisages a string of, say,l spin-12
particles that gives rise to a 2l -dimensional Hilbert space
Each elementary operation is a unitary transformation
acts on one or two spins at a time. We will show that t
Hilbert space for our system can be constructed usingl
spin-12 particles just as in a conventional quantum compu
Furthermore, for a large class of problems, the Hamilton
that we construct is a sum of Hamiltonians that act on a fi
number of spins. In this sense@3#, our quantum evolution
through decision trees lies in the framework of conventio
quantum computation.

II. CLASSICAL VS QUANTUM EVOLUTION
THROUGH TREES

In Sec. I, we discussed a classical~that is, nonquantum!
probabilistic rule for moving through decision trees. Here
are going to be more specific and state the rule in a way
g
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gives rise to a continuous time Markov process. The rule
simply that if you are at a given node then you move to
connected node with a probability per unit timeg whereg is
a fixed, time-independent, constant. This means that i
time e where ge!1, the probability of moving to a con
nected node is'ge. Using a continuous time process,
opposed to saying that you move at discrete times, will m
it easier when we compare with the continuous time evo
tion dictated by the unitary operator in Eq.~1.2!.

We are now going to introduce some formalism that loo
quantum mechanical, but we are going to apply it to descr
the classical Markov process. Suppose we are given a d
sion tree that hasN nodes.~N may be as large as 2n11,
wheren is the number of levels.! Index the nodes in some
way by the integersa51, . . . ,N. Corresponding to the tree
we construct anN-dimensional Hilbert space that has an o
thonormal basis$ua&% with a51, . . . ,N and accordingly

^aub&5dab . Now we define a HamiltonianĤ through its
matrix elements in this basis:
^buĤua&5 H 2g
0

for aÞb if node a is connected to nodeb
for aÞb if node a is not connected to nodeb,

~2.1!

^auĤua&5H 3g
2g

g

node a is connected to three other nodes
node a is connected to two other nodes
node a is connected to one other node.
Return to the classical probabilistic rule for movin
through a fixed tree, and let

pba~ t !5Prob ~go from a to b in time t !. ~2.2!

For a timee wherege!1, we have

pba~e!5H 2e^buĤua&1O~e2! for bÞa

12e^auĤua&1O~e2! for b5a
~2.3!

as a consequence of the definition ofĤ. For a classical Mar-
kov process, the probability of moving depends only on c
rent position, not on history, so we have, for anyt1 and t2 ,

pba~ t11t2!5(
c

pbc~ t2!pca~ t1!. ~2.4!

Therefore,

pba~ t1e!5(
c

pbc~e!pca~ t !, ~2.5!

which for e small gives

pba~ t1e!5pba~ t !2e(
c

^buĤuc&pca~ t !1O~e2!,

~2.6!
-

where we have used Eq.~2.3!. We see therefore thatpba(t)
obeys the differential equation

d

dt
pba~ t !52(

c
^buĤuc&pca~ t !, ~2.7!

with the boundary conditionpba(0)5dab . The solution to
Eq. ~2.7! is

pba~ t !5^bue2Ĥtua&. ~2.8!

Again, pba(t) given by Eq.~2.8! is theclassicalprobabil-
ity of going from a to b in time t if you move through the
tree with a probability per unit timeg of moving to a con-
necting node. As a check we should have that

(
b

pba~ t !51. ~2.9!

To see that this is the case, note thatĤ defined by Eq.~2.1!
has a zero eigenvector

uE50&5
1

AN
(
b51

N

ub&. ~2.10!

Therefore,
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(
b

pba~ t !5AN^E50ue2Ĥtua&5AN^E50ua&51.

~2.11!

We have constructed the HamiltonianĤ because of its
utility in describing a classical Markov process. We no
propose using the same HamiltonianĤ to evolve quantum
mechanically through the tree. Let

Aba~ t !5^bue2 iĤ tua& ~2.12!

be the quantum amplitude to be found at nodeb at time t
given that you are at nodea at time 0. In this case the
probability is uAba(t)u2, with

(
b

uAba~ t !u251, ~2.13!

as a consequence of the fact thatĤ is Hermitian. With this
quantum Hamiltonian we will now show that if a family o
trees is classically penetrable, then there is a related fa
of trees that is also quantum mechanically penetrable.

Imagine we are given a family of decision trees$Tn%
where eachTn is n levels deep and does have nodes at
nth level. For simplicity we will take the worst case possib
and assume that there is only one node at leveln. In order to
establish our result we are going to consider another fam
of trees$Tn8%, where eachTn8 is obtained fromTn by append-
ing a semi-infinite line of nodes to the starting node ofTn .
The rule for classically moving on the semi-infinite line
the same as the rule for moving on the rest of the tree: w
a probability per unit timeg, you move to an adjoining nod
~see Fig. 3!.

We can see that if$Tn% is classically penetrable, so i
$Tn8%. Roughly speaking, starting at 0 onTn8 , the probability
ed

ng
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e
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of reaching thenth level is not appreciably reduced becau
of the time some paths spend on the semi-infinite line.~We
now prove this statement, but the reader who is already c
vinced that it is true can skip to the next paragraph.! Suppose
that for $Tn% we have condition~P!, so that

Prob ~go from 0 to n in time t !>
1

nB ~2.14!

for somegt<nA. At level 1 of the decision tree only one o
the two nodes is on the branch that containsn, the unique
node at leveln. Denote this level 1 node by 1.̄ Now for each
path ~on Tn! that reachesn from 0 in time t there is a time
t2s at which the path last jumps from 0 to 1.̄ Thus

FIG. 3. The treeTn8 obtained from the treeTn of Fig. 2 by
appending a semi-infinite line of nodes at the starting node ofTn .
Prob ~go from 0 to n in time t !5E
0

t

ds Prob ~go from 0 to 0 in time t2s!3gds

3Prob ~go from 1̄ to n without hitting 0 in time s!. ~2.15!

Using Eq.~2.14!, it follows that for somegs<gt<nA,

Prob ~go from 1̄ to n without hitting 0 in time s!>
1

gtnB >
1

nA1B . ~2.16!
tum

ite
im-
However, this last probability is the same forTn8 as forTn .
Turning to the treesTn8 , we see that the node 0 is connect
to three other nodes, the node at level21 on the semi-
infinite tree and the two nodes at level 1. In time 1/g there is
an n-independent lower bound on the probability of goi
from 0 to 1̄. Combining this fact with Eq.~2.16!, we see that
in a times1(1/g) there is a probability of going from 0 ton
on Tn8 which is greater than 1/n to a power. Thus if$Tn% is
classically penetrable so is$Tn8%.
We are now going to compare the classical and quan
evolution through the family of trees$Tn8%. From this point
on we setg51. We will return to finite trees later in this
section, but for now the device of appending a semi-infin
line to the trees of interest actually makes the analysis s
pler. Again call the starting node~which is at level 0 of the
treeTn8! 0, and call the unique node at thenth leveln. Then

p~ t !5^nue2Ĥtu0& ~2.17!
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is the probability to go from 0 ton in time t if you evolve
with the classical rule. Similarly

A~ t !5^nue2 iĤ tu0& ~2.18!

is the quantum amplitude to be atn at time t if at t50 you
are at 0, and you evolve with the quantum HamiltonianĤ.
@Of course,Ĥ, p(t) andA(t), are all sequences that depe
on the sequence$Tn8%, but we will not bother to place ann
label on these quantities.#

The HamiltonianĤ is defined by Eq.~2.1! for each tree
Tn8 but now the number of nodes is infinite so the Hilbe
space is infinite dimensional. Call the energy eigenvec
uE&, where

ĤuE&5EuE&

and

^EuE8&5d~E2E8! ~2.19!

for the continuous part of the spectrum, and

^Er uEs&5d rs

for the bound states. Now for any Hermitian operatorĤ,
with matrix elementsHab , any eigenvalueE of Ĥ must lie
@4# in the union~over a! of the intervals

uE2Haau< (
bÞa

uHbau ~2.20!

which, given the form~2.1!, implies that the eigenvalues li
in the interval@0,6#.

Using the completeness of theuE& ’s we can write Eq.
~2.17! as

p~ t !5E
0

6

dE e2Et^nuE&^Eu0&, ~2.21!

and Eq.~2.18! as

A~ t !5E
0

6

dE e2 iEt^nuE&^Eu0&, ~2.22!

where the integraldE is to be interpreted as a sum on th
discrete part of the spectrum. From Eq.~2.22!, we have

1

2p E
2`

`

dt8eiwt8A~ t8!5E
0

6

dE d~w2E!^nuE&^Eu0&.

~2.23!

Multiply both sides bye2wt and integratedw from 0 to` to
obtain, fort.0,

1

2p E
2`

`

dt8
A~ t8!

t2 i t 8
5p~ t !, ~2.24!

which could have been obtained using the Cauchy inte
formula. Now in theua& basisĤ is real and symmetric, and
from Eq. ~2.18! it then follows thatA(t)5A* (2t). This
allows us to write Eq.~2.24! as
t
rs

al

p~ t !5
1

p
Re E

0

`

dt8
A~ t8!

t2 i t 8
. ~2.25!

We will now use Eq.~2.25! to show that if a family of
trees$Tn8% is classically penetrable it is also quantum pe
etrable. Pick some timeT and let e be the maximum of
uA(t8)u for 0<t8<T. Now

p~ t !5
1

p
ReH E

0

T

dt8
A~ t8!

t2 i t 8
1E

T

`

dt8
A~ t8!

t2 i t 8 J
<

e

p E
0

T

dt8
1

~ t21t82!1/21
1

p U E
T

`

dt8
A~ t8!

t2 i t 8 U
5

e

p
lnF ~T21t2!1/21T

t G1
1

p U E
T

`

dt8
A~ t8!

t2 i t 8 U.
~2.26!

The magnitude of the last integral in Eq.~2.26! is actually
less thanC/T1/4 for large T, whereC is an n-independent
constant. We will show this shortly. With this result we the
have that

p~ t !<
e

p
lnF ~T21t2!1/21T

t G1
C

T1/4 . ~2.27!

Now we are assuming that the family of trees is classica
penetrable. This means that for somet<nA we havep(t)
.1/nB for someA andB. For largen, this penetration time
t is clearly>1. Since the ln term in Eq.~2.27! is a decreas-
ing function of t, we have

1

nB <
e

p
ln@~T211!1/21T#1

C

T1/4 . ~2.28!

Now let T5nD for D.4B. We then have, for large enoug
n,

1

nB <
e

p
ln~nD! ~2.29!

which means that the maximum ofuA(t)u for t,nD is larger
than a constant times 1/nB11. Thus we have the result that
a family of trees$Tn8% is classically penetrable, it is als
quantum penetrable.

Before verifying that the last integral in Eq.~2.26! is ac-
tually bounded as claimed, we need to establish some f
about the eigenfunctions ofĤ. Label the nodes on the sem
infinite line of Tn8 by j with j 50,21,22, . . . , sothat j 50
is the starting node ofTn . On the semi-infinite line,

Ĥu j &52u j &2u j 11&2u j 21& for j <21. ~2.30!

The stateuu& with ^ j uu& proportional toei j u is an eigenstate
of Eq. ~2.30! with energy

E~u!5~222 cosu!54 sin2u/2. ~2.31!
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Now ei j u ande2 i j u correspond to the same energy, but b
cause of the finite branching part of the tree~Tn , which is
connected atj 50!, only one linear combination is an eigen
function of the fullĤ,

^ j uu&5
1

~2p!1/2@ei j u1R~u!e2 i j u#, ~2.32!

with 0<u<p, andR(u) is determined by the structure o
Tn . BecauseĤ in the node basis is real, Eq.~2.32! must be
real up to an overallj -independent phase. This implies th
R(u) is of the forme22id(u), that is, uR(u)u51. @The form
~2.32! is an ‘‘in’’ state for scattering off of the treeTn at the
end of the semi-infinite line. The fact thatuR(u)u51 is also
a consequence of the unitarity of theS matrix.# We can re-
write Eq. ~2.32! as

^ j uu&5e2 id~u!
2

~2p!1/2cos@ j u1d~u!#, ~2.33!

and then absorb the phase in the definition ofuu& to obtain

^ j uu&5S 2

p D 1/2

cos@ j u1d~u!#. ~2.34!

The statesuu& are a set ofd function normalized eigenstate
i.e.,

^uuu8&5d~u2u8!. ~2.35!

We have introduced the statesuu& because we could~fairly!
easily normalize them, that is, pick the coefficient in E
~2.32! so that Eq.~2.35! holds. The continuous energy eige
statesuE& given by Eq.~2.19! are proportional to theuu&’s.
To maintain both Eqs.~2.19! and ~2.35!, we have

uE&5S dE

du D 21/2

uu&5~4E2E2!21/4uu&, ~2.36!
-

.

where againE54 sin2u/2. In the node basis on the sem
infinite line, we then have

^ j uE&5S 2

p D 1/2 1

~4E2E2!1/4cos@ j u1d~E!#, 0<E<4.

~2.37!

We now describe the bound-state part of the spectr
Return to the form ofĤ, given by Eq.~2.30! on the semi-
infinite line, and consider the eigenfunctions

^ j ua&5~21! jea j , a.0

^ j ub&5eb j , b.0 ~2.38!

with energies 212 cosha and 222 coshb, respectively.
Since we know that the eigenvalues of the fullĤ ~including
the tree! lie in @0,6#, we see that there are no bound states
the form ub& and any bound states of the formua& have en-
ergies in the interval@4,6#. We have now fully explored the
solutions toĤuE&5EuE& on the runway. Any additional so
lutions, which may be nonzero in the tree, will vanish ide
tically on the runway and will play no role in any of ou
discussion.

Next we prove the required bound for the last integral
Eq. ~2.26! The trusting reader is invited to skip beyond E
~2.45!. First note that

A~ t8!5^nue2 iĤ t8u0&5E
0

6

dE^nuE&^Eu0&e2 iEt8,

~2.39!

where the integral in the range from 4 to 6 is actually a su
The integral in Eq.~2.26! we wish to bound is~after dividing
by i !
E
T

`

dt8
A~ t8!

t81 i t
5E

T

`

dt8E
0

6

dE^nuE&^Eu0&e2 iEt8
1

t81 i t
5E

T

`

dt8E
0

6

dE^nuE&^Eu0&e2 iEt8E
0

`

dme2m~ t81 i t !

5E
0

6

dEE
0

`

dm^nuE&^Eu0&e2 imte2 iETe2mT
1

m1 iE
. ~2.40!

Taking the absolute value, we obtain

U E
T

`

dt8
A~ t8!

t81 i tU<E
0

`

dm e2mTE
0

6

dEz^nuE& z
z^Eu0& z

~m21E2!1/2 . ~2.41!

By the Cauchy-Schwarz inequality,

U E
T

`

dt8
A~ t8!

t81 i t U<E
0

`

dm e2mTF E
0

6

dE8z^nuE8& z2G1/2F E
0

6

dE
z^Eu0& z2

m21E2G1/2

5E
0

`

dm e2mTF E
0

4

dE
z^Eu0& z2

m21E2 1(
r

z^Er u0& z2

m21Er
2 G1/2

~2.42!

using^nun&51. For 0<E<4, the matrix element̂Eu0& is given by Eq.~2.37! so we havez^Eu0& z2<C1 /(4E2E2)1/2 where
Ci here and below are easily computable constants. Since( r z^Er u0& z2<1, and eachEr>4, we have
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U E
T

`

dt8
A~ t8!

t81 i tU<C2E
0

`

dm e2mTF E
0

4 dE

~4E2E2!1/2~m21E2!
1

1

m2142G1/2

. ~2.43!
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The integraldE in ~2.43! is

E
0

4

dE
1

~4E2E2!1/2

1

m21E2 5E
0

p

du
1

m21~4 sin2u/2!2

<E
0

p

du
1

m21~2/p!4u4 <
C3

m3/2.

~2.44!

Now the inequality~2.43! becomes

U E
T

`

dt
A~ t8!

t81 i tU<C2E
0

`

dm e2mTF C3

m3/21
1

m2142G1/2

<C4E
0

`

dm e2mT
1

m3/4<
C5

T1/4, ~2.45!

which is the desired result. This was the last step we nee
in showing that if $Tn8% is classically penetrable then it i
quantum penetrable.

Of course we are not ultimately interested in quant
evolving on the family of infinite trees$Tn8%, because we
only imagine building a quantum computer with a fini
number of building blocks. However, we now argue that
the family $Tn8% is quantum penetrable there is a closely
lated family of finite trees$Tn

f % that is also quantum pen
etrable. In factTn

f is obtained fromTn8 by chopping off the
semi-infinite line at some node that is far, but not expon
tially far as a function ofn, from the node 0. Alternatively
we can viewTn

f as arising fromTn by appending toTn at 0
a finite number of linearly connected nodes.

To understand when ‘‘infinite’’ and ‘‘very long’’ give rise
to the same quantum evolution, consider an infinite line
nodes by itself with the Hamiltonian given by Eq.~2.30!. In
this case it is possible to explicitly evaluate the amplitude
go from j to k in time t:

^kue2 iĤ tu j &5e22i t i ~k2 j !Jk2 j~2t !, ~2.46!

whereJk2 j is a Bessel function of integer order. For fixedt
this amplitude dies rapidly ifuk2 j u is larger than 2t. Imag-
ine starting atj 50 at t50. The quantum amplitude spread
out with speed 2~recall that we have setg51!. Chopping
off the infinite system at the nodes6L will not affect the
evolution from j 50 as long asL@2t.

Return to the family of quantum penetrable trees$Tn8%.
These trees have the property that, starting at 0, which
the end of the semi-infinite line, there is a substantial qu
tum amplitude for being at the node on thenth level of the
branching tree at a timet<nĀ for a fixedĀ. Lopping off the
infinite tree at a node of order (nĀ)2 down from 0 will not
affect this result. Thus the family of finite trees$Tn

f %, which
ed

f
-

-

f

o

at
-

are obtained from the family of classically penetrable tre
$Tn% by adding a finite number of linearly connected nod
is quantum penetrable.

It is reasonable to ask why we bother with the family
infinite trees$Tn8% when we are only actually interested
finite trees. Why did we not prove directly that the family
classically penetrable trees$Tn% is also quantum penetrable
Of course the answer is we would have if we could ha
The difficulty lies in the fact that for an arbitrary finite tre
with an exponential number of nodes there are an expon
tial number of energy eigenvalues falling in a fixed interv
and we were unable to establish the requisite facts abou
density of states needed for a proof.

Let us summarize the results of this section. We star
with a given family of trees$Tn% that was assumed to b
classically penetrable. We then constructed the closely
lated family of trees$Tn8% that has a semi-infinite line o
nodes attached to the starting node of eachTn . The trees
$Tn8% are also classically penetrable. Then, using the anal
relationship between the classical probabilities and quan
amplitudes of$Tn8%, we were able to prove that$Tn8% is quan-
tum penetrable. We also argued that cutting the semi-infi
line at some node far from 0 cannot affect the quantum p
etrability as long as the distance to the cut is much gre
than the quantum penetration time. Therefore the fam
$Tn

f % of trees that is made from$Tn% by appending a long
~but finite! string of nodes to the starting node of eachTn is
quantum penetrable if the original$Tn% is classically pen-
etrable. Clearly$Tn% and $Tn

f % address precisely the sam
decision question. Therefore, any problem that can be so
by classically random walking through a decision tree can
solved by quantum evolving through a very closely rela
tree.

III. A FAMILY OF TREES THAT IS QUANTUM,
BUT NOT CLASSICALLY, PENETRABLE

If we know enough about the structure of a family of tre
we can decide if it is classically penetrable and if it is qua
tum penetrable. Here we will show examples of families
trees that are quantum but not classically penetrable.
begin by discussing the calculations in the quantum case
in the last section we consider a family of trees$Tn% whose
members have only one node at thenth level, calledn. This
time we construct the family$Tn9%, where each treeTn9 has
two semi-infinite lines of nodes, one connected to the st
ing node ofTn , and the other semi-infinite line of node
attached to the noden of Tn . For calculational purposes w
make these two extra lines of nodes semi-infinite, but u
mately we envisage making them of lengthn to a power.

For convenience we redraw our trees so that the di
line of nodes from 0 ton lies along the base. In this way th
tree depicted in Fig. 2, with two semi-infinite lines appende
becomes that of Fig. 4. We use ‘‘bush’’ to denote a group
nodes coming out of a node on the base. Here we label
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nodes on the base byj . The nodesj 521,22,23,... are on
the semi-infinite starting line. The nodesj 5n11,n12,...
are on the appended ending line. The nodesj 50, . . . ,n are
all on the original treeTn and the nodes 0,. . . ,n22 may
have bushes coming out them although the nodesn21 andn
do not. ~If node n21 had a bush, thenn would not be the
unique leveln node.! What we imagine doing is building a
quantum state localized near 0 on the starting line, and t
calculating the quantum amplitude for penetrating the t
and being on the ending line. To this end we now set up
formalism for calculating the energy-dependent transmiss
coefficient T(E), and then evaluate it in certain specifi
cases of families of trees.

For the tree depicted in Fig. 4 with an infinite base,
each energyE with 0<E<4, there are two energy eigen
states.~Here again we have setg equal to 1!. On the semi-
infinite lines they are, in the node basis, of the formei j u and
e2 i j u, where againE54 sin2u/2 and 0<u<p. Superposi-
tions of the ei j u are used to make right-moving packe
whereas superpositions ofe2 i j u make left movers. Conside
the stateuE,1 in& that on the starting and ending lines is
the form

^ j uE,1 in&5N~E!@ei j u1R~E!e2 i j u#, j 521,22, . . .
~3.1!

^ j uE,1 in&5N~E!T~E!ei j u, j 5n21,n,n11, . . .

with

N~E!5
1

~2p!1/2

1

~4E2E2!1/4 .

At this point we say nothing about^auE,1 in& if a is a node
on Tn . Superpositions ofuE,1 in& make states that at earl
times represent right-moving packets on the starting
headed towards the tree structureTn . At late times the
packet splits into a reflected piece, proportional toR, left
moving on the starting line, and a transmitted piece, prop
tional to T, which is right moving on the ending line. Sim
larly we can defineuE,2 in&, which represents a state le
moving on the ending line at early times that at late times
split into a right mover on the ending line and a transmit
part left moving on the starting line. ForuE,2 in&, we have

^ j uE,2 in&5N~E!@e2 i j u1R̄~E!ei j u#,

j 5n21,n,n11, . . . ,
~3.2!

^ j uE,2 in&5N~E!T̄~E!e2 i j u, j 521,22, . . . .

FIG. 4. The treeTn9 obtained from the treeTn of Fig. 2 by
appending two semi-infinite lines, one connected at the star
node and one connected to the noden. The tree is drawn with the
direct line of nodes from 0 ton along the base.
en
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The statesuE,1 in& and uE,2 in& are a complete set of sca
tering states useful for discussing tree penetration. Equ
lently there is the setuE,1out& and uE,2out& that at late
times represents respectively a right mover on the end
line and a left mover on the starting line. From Eqs.~3.1! and
~3.2!, we obtain

uE,1 in&5R~E!uE,2out&1T~E!uE,1out&,
~3.3!

uE,2 in&5R̄~E!uE,1out&1T̄~E!uE,2out&.

This transformation from the out states to the in states
called theS matrix,

S5S R T

T̄ R̄
D ~3.4!

which is necessarily unitary, so we have

uR~E!u21uT~E!u251,

uR̄~E!u21uT̄~E!u251, ~3.5!

R* ~E!T~E!1T̄* ~E!R̄~E!50.

The standard interpretation ofT(E) is as follows. Suppose
we build a stateuc& completely on the starting line, that is
^auc& is nonzero only for nodesa on the starting line. Fur-
thermore, suppose thatuc& expanded as a superposition
energy eigenstates is made only of states whose energ
close to someE0 . If we quantum mechanically evolveuc&

with the unitary operatore2 iĤ t, then at late times the prob
ability of being on the ending line isuT(E0)u2. ThusuT(E)u2

has a direct interpretation as theE-dependent transmissio
probability through the tree.

Of course any stateuc& that is highly localized in energy is
necessarily highly delocalized in the node basis.~This can be
viewed as a consequence of the uncertainty principle.! We do
not want our constructions to rely on building states that
very spread out on the starting line since we eventually
wish to chop it off not too far from the node 0. Suppose w
start at a specific node,j on the starting line, and we want th
amplitude for being at nodek on the ending line at timet.
This is given by

Ak j~ t !5^kue2 iĤ tu j &

5E
0

4

dE$^kuE,1 in&^E,1 inu j &

1^kuE,2 in&^E,2 inu j &%e2 iEt

1(
r

^kuEr&^Er u j &e2 iEr t

5E
0

4

dEN2~E!$T~E!eiku@e2 i j u1R* ~E!ei j u#

1@e2 iku1R̄~E!eiku#T̄* ~E!ei j u%e2 iEt

1(
r

^kuEr&^Er u j &e2 iEr t ~3.6!

g
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where we have used the explicit forms foruE,6 in& on the
starting and ending lines, and also included possible bo
states. Now using the last equation in Eq.~3.5!, with the
further fact thatĤ being real in the node basis implie
T(E)5T̄(E), we obtain

Ak j~ t !5E
0

4

dE N2~E!$T~E!ei ~k2 j !u

1T* ~E!e2 i ~k2 j !u%e2 iEt1(
r

^kuEr&^Er u j &e2 iEr t.

~3.7!

In order to obtain amplitudesAk j that are large enough t
ensure penetrability, we will look for trees for whichT(E) is
large and nonoscillatory in some interval ofE’s. This guar-
antees that the right-hand side of Eq.~3.7! is large enough a
some relevant time.

We now turn to calculatingT(E), which clearly depends
on the structure of the tree to which we have added
semi-infinite starting and ending lines of nodes. For each
the nodesm50,1, . . . ,n22 along the base of the tree—se
Fig. 4—that has a bush sprouting up from it, let us defin

ym~E!5
^node abovemuE,1 in&

^muE,1 in&
, ~3.8!

where unode abovem& is the state corresponding to th
node one level up from the base above the nodem. Now for
fixed E, ym(E) is determined solely by the bush coming o
of the nodem; it does not depend on the other bushes. To
this suppose that the bush coming out of nodem hasN nodes
above the base nodem. Label these nodes bya51, . . . ,N.
Now Ĥua& gives a superposition ofua& and the states con
nected toa. Thus

^auĤuE,1 in&5E^auE,1 in& ~3.9!

is N equations for theN11 quantities ^auE,1 in& and
^muE,1 in&. Divide through by^muE,1 in& and we getN
equations for theN ratios ^auE,1 in&/^muE,1 in& so we see
that Eq.~3.8! is determined by the bush alone. Furthermo
the equations that were used to determineym(E) are all real
so ym(E) is also real. For any given bushym(E) can be
calculated recursively by looking at sub-bushes and it is
actually necessary to solve theN equations~3.9!.

Let m be a node on the base with a bush coming o
Now, from Eq.~2.1!,

^muĤuE,1 in&53^muE,1 in&2^m11uE,1 in&

2^m21uE,1 in&

2^node abovemuE,1 in&

5E^muE,1 in&, ~3.10!

which implies that

^m11uE,1 in&5@32E2ym~E!#^muE,1 in&

2^m21uE,1 in&, ~3.11!
d

e
f

e

e

t

.

where we have used Eq.~3.8!. If m has no bush coming ou
of it, a parallel argument gives

^m11uE,1 in&5~22E!^muE,1 in&2^m21uE,1 in&.
~3.12!

We can use~3.11! for nodes with bushes as well as witho
if we defineym(E)51 for nodes on the base with no bush
above. Equation~3.11! can be written as a matrix equation

F ^m11uE,1 in&
^muE,1 in& G

5F @32E2ym~E!# 21

1 0 GF ^muE,1 in&

^m21uE,1 in&
G .
~3.13!

We then have

F ^nuE,1 in&
^n21uE,1 in&G5M F ^0uE,1 in&

^21uE,1 in&G , ~3.14!

where

M5Mn21Mn22 •••M0 ~3.15!

and

Mm5F @32E2ym~E!# 21

1 0 G . ~3.16!

Substituting the explicit form foruE,1 in& from Eq.~3.1!, we
get

F T~E!einu

T~E!ei ~n21!uG5M F 11R~E!

e2 iu1R~E!eiuG . ~3.17!

If we know the matrixM , T(E) is determined by these las
two equations forT(E) andR(E). From Eq.~3.16!, we see
that M is the product of matrices of determinant 1,
det(M)51. We can write

M5Fa b

c dG , ~3.18!

with ad2bc51 and a, b, c, and d all real. Solving for
T(E), we obtain

T~E!5e2 inu
2i sin u

c2b1~d2a!cosu1 i ~d1a!sin u
.

~3.19!

It is interesting to note that if for someE we have
ym(E)51 for all m, thenT(E)51. To see this we construc
M5M (E) in this special case. From Eqs.~3.15! and~3.16!,
we have

M ~E!5F22E 21

1 0 Gn

5
1

sin~u! Fsin@~n11!u# 2sin~nu!

sin~nu! 2sin@~n21!u#
G .
~3.20!
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Plugging into Eqs.~3.18! and~3.19!, we obtainT(E)51. To
understand why this comes about, recall that a node with
bush is the same as a node with a bush for whichym(E)
51 as far as the calculation ofT(E) is concerned. Therefore
if all bushes haveym(E)51 at someE, we have unimpeded
transmission at thatE.

To recap, given a decision treeTn with one node at leve
n, construct a new tree with semi-infinite lines attached
the starting node 0 and to the node at leveln. Redraw the
tree as in Fig. 4 with the direct line from 0 ton along the
base. Suppose we can calculate then21 functions
y0(E),y1(E), . . . ,yn22(E). Substitute into Eqs.~3.16! and
~3.15! to obtain the matrixM as a function ofE. The trans-
mission coefficientT(E) is then given by Eq.~3.19!, where
E54 sin2u/2.

In order for a family of trees to be quantum penetrab
the function uT(E)u must be not too small over a not to
small range ofE, as can be seen from Eq.~3.7!. Further-
more, even ifuT(E)u is not small,T(E) must not oscillate
rapidly about zero or else the integral in Eq.~3.7! may be
small due to cancellations. It is interesting to note that
any treeT(E)→1 asE→0. To see this, note that the zer
energy eigenvector ofĤ,uE50,1 in&, is constant in the node
basis; that is,̂auE50,1 in& is independent ofa. Thusym(0)
defined by Eq.~3.8! is 1 for all nodes on the base, and by t
argument of the paragraph before last we haveT(0)51. For
trees that are not quantum penetrable, we will see that
thoughT(0)51, T(E) falls to near zero at an exponential
small value ofE.

Consider a decision tree that is perfectly bifurcating un
level n21 and then only one of the 2n21 nodes at leveln
21 continues on to leveln. The associated treeTn is shown
in Fig. 5. This decision tree could arise from the followin
question. You are given a list ofN52n21 items with the
knowledge that a single unspecified item may or may not
marked. The question is, ‘‘Is there a marked item?’’~This is
essentially the problem for which Grover@5# found a quan-
tum algorithm requiring orderAN steps.! Any classical algo-
rithm for solving this problem requires of orderN steps. In
particular, the Markov process for moving through the de
sion tree gives a probability of being at the unique node
level n that is at most of order 1/N, so this family of trees is
classically impenetrable.

We now turn to quantum evolution through the same
of trees. Draw the tree in Fig. 5 with the direct line from 0
n along the base, and add semi-infinite starting and end
lines; see Fig. 6. We see that each bush coming out of
base at nodem is a perfectly bifurcating bush of lengt
n212m for m50 to n21. The ratioym(E) can be calcu-

FIG. 5. The treeTn , which is perfectly bifurcating for the firs
n21 levels, and then has only one node at leveln.
o

o
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lated for each of these bushes. Consider one such bus
length k5n212m as depicted in Fig. 7. At heightl , 1
<l <k, there are 2l 21 nodes. At each height we define th
normalized state

ul ;pb&5
1

~2l 21!1/2 (
a at height l

ua&, ~3.21!

with u0;pb& being the state at the node on the bottom of
bush, that is,u0;pb&5um&. With these labels, for thes
bushesym(E) defined by Eq.~3.8! is

ym~E!5
^1;pbuE,1 in&

^0;pbuE,1 in&
. ~3.22!

Note thatĤ to any power acting onu0;pb& gives a linear
superposition of states that only contains the statesul ;pb&
on the bush. Further note that

^l ;pbuĤul 8;pb&53d l l 82&@d l ,l 8111d l ,l 821#

for 1<l , l 8<k21, ~3.23!

so the bush in Fig. 7 can be replaced by the effective lin
bush given in Fig. 8, where the number next to the node
the right gives the diagonal element of the Hamiltonian a
the number by the connecting edge on the left gives
off-diagonal element. Up to an overall constant that dro
out of Eq.~3.22!, for l 51 to k, we have

^l ;pbuE,1 in&5cos~ l u81a!

and

^0;pbuE,1 in&5& cosa, ~3.24!

with

E5322& cosu8.

FIG. 6. The treeTn9 constructed fromTn of Fig. 5 by appending
two semi-infinite lines of nodes, and drawing the direct line
nodes from 0 ton along the base.

FIG. 7. A perfectly bifurcating bush of heightk coming out of
the base of the tree in Fig. 6 at nodem5n212k.
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By applyingĤ to the l 5k node, we can determinea,

tan~ku81a!5
cos~u8!2&

sin u8
. ~3.25!

Going back to Eq.~3.22!, we then have

ym~E!5
1

&
H& sin@~k21!u8#2sin~ku8!

& sin~ku8!2sin@~k11!u8#
J , ~3.26!

where againk5n212m. Of course the calculation o
ym(E) in this example was greatly facilitated by the regula
ity of the bush.

With ym(E) determined for each bush, we can evalu
T(E) by substituting into Eqs.~3.16! and ~3.15!, and then
into Eq. ~3.19!. In Fig. 9, we showuT(E)u for n526. At the
n21 level there are 2255107.5 nodes. AlthoughT(0)51,
T(E) has fallen substantially byE510210. Most of the area

FIG. 8. The effective bush of heightk associated with the bus
of Fig. 7. The number to the left of each edge gives the ma

element ofĤ between the two states connected by the edge.

number next to the node gives the diagonal element ofĤ for that
state.

FIG. 9. The magnitude ofT vs E for E between 0 and 4 for the
perfectly bifurcating tree with one node atn526.
-

e

under the curve comes fromE of order 1. We can evaluate
T(E) explicitly at E53. Note from Eq. ~3.24! that u8
5p/2 at E53. In this caseym(3) is 1 if k5n212m is
even, andym(3) is 2 1

2 if k is odd. ThusM (3) can be written
as ~for n even!

M ~3!5H F 1
2 21

1 0
G F21 21

1 0 G J n/2

5~21!n/2F 3
2

1
2

1 1
G n/2

5~21!n/2F1 2 1
3

1 2
3

GF2n/2 0

0 22n/2GF 2
3

1
3

21 1
G , ~3.27!

from which we conclude thatT(3);22n/2. The transmission
amplitude is of order 22n/2, so the transmission probabilit
goes like 22n. Here the quantum algorithm is doing no bett
than the classical algorithm.

The alert reader may wonder whether any use can
made of the bound states which may exist for 4<E<6. The
answer is no, at least in this case. To check this, we chan
the Hamiltonian on the semi-infinite lines to have values
on the diagonal and2 3

2 between neighbors. Now the con
tinuum statesuE,6 in& are defined for 0<E<6, and are
complete. We recalculatedT(E) and looked for intervals of
E’s whereT(E) is large and nonoscillatory. Again, there a
no values ofT(E) which permit transmission with probabil
ity greater than;22n.

Now we make a seemingly small modification of the tre
We take all of the odd-height bushes coming out of the b
line of Fig. 6, and trim back one layer so all bushes are
even height. The magnitude of the transmission coefficien
shown in Fig. 10, where we see that for a substantial rang
E near 3,uT(E)u is very close to 1. In fact for all of these
bushes,ym(3)51, which by the argument given above im
plies thatT(3)51. We can also see thatT(E) does not os-
cillate rapidly in this region by plotting the real part ofT(E),
which is shown in Fig. 11, confirming a more tedious an
lytic evaluation. Therefore, the family of trees is quantu
penetrable.

x

e
FIG. 10. The magnitude ofT vs E for the same tree used in Fig

9 after removing one layer of nodes from each odd-length bush
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It is easy to see that these trees with even-height bu
are not classically penetrable. Before trimming back the o
height bushes, we had then-level tree shown in Fig. 5,Tn ,
which is associated with the treeTn9 shown in Fig. 6. These
trees are not classically penetrable. Now, if we trim the o
height bushes back one layer, the trimmed tree still conta
all of the treeTn219 , which has even- and odd-height bush
Since Tn219 is not classically penetrable, the even-heig
bush family is also not classically penetrable, since, cla
cally, any time you add nodes to bushes, you necess
decrease the chances of getting to the noden.

We have given a single example of a family of trees t
is not classically penetrable butis quantum penetrable
Clearly there are many variants of this example using ev
length, perfectly bifurcating bushes in all sorts of combin
tions; we will not pursue these other examples here. Ho
ever, we are faced with the question of what problem t
family of trees corresponds to.

We can think of decision trees as associated with fu
tions that impose constraints. At each leveli there is a func-
tion f i that depends on the firsti bits. If f i(x1¯xi)51 then
the i th-level nodex1¯xi is connected to the (i 21)th-level
nodex1¯xi 21 . ~The zeroth-level node needs no bits to d
scribe it.! If f i(x1¯xi)50, thenx1¯xi is absent from the
tree. In terms of the functionsf i , the decision question is
‘‘Is there anx1¯xn such thatf i(x1¯xi)51 for all i 51 to
n?’’

For the tree depicted in Fig. 5, the functionsf 1 , . . . ,f n21
are all identically 1. This gives the perfectly bifurcatin
structure. Then there is a functionf n(x1¯xn) that is guar-
anteed to be 0 for all but one of the 2n values ofx1¯xn . At
one special, but unknown, valuef n is either 0 or 1.~We draw
the decision tree assuming there is a value for whichf n
equals 1. Otherwise the transmission coefficient is 0
there is nothing to calculate.! Without further information
aboutf n , any classical algorithm will need to search 2n val-
ues ofx1¯xn to see if there is a value at whichf n equals 1.

Let us turn to the functions that determine the quant
penetrable tree just discussed. At thenth level there is the
function f n(x1¯xn) which may take the value 1 on on

FIG. 11. The real part ofT vs E showing thatT does not oscil-
late rapidly about zero close to whereT is 1, for the same tree a
Fig. 10.
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input, sayw1¯wn . To arrange for the bushes to all hav
even height, the tree must be trimmed at leveln21. For n
even, the functionf n21(x1¯xn21) is 0 if x1Þw1 or if x1
5w1 , x25w2 , and x3Þw3 or if x15w1 , x25w2 , x3
5w3 , x45w4 , and x5Þw5 , etc. If we are allowed to cal
the functionf n21(x1¯xn21), which we know has this much
structure, we can determinew1¯wn21 with far fewer than
order 2n function calls. First try various inputs until you fin
an examplex1¯xn21 such thatf n21 is 1 on this input. Then
you know that w15x1 . Trying inputs of the form
w1x2¯xn21 will allow you to find w2 , etc. Oncew1¯wn21
is determined, two function evaluations off n(w1¯wn21xn)
with xn50 and 1 will answer the decision question. O
course what is occurring here is that the extreme regularit
the tree, which guarantees its quantum penetrability, is a
structuring the decision problem so that it can be answe
much more efficiently than by a classical random walk wh
is incapable of seeing larger structures.

IV. IMPLEMENTING THE QUANTUM SYSTEM

In this section, we show how to implement on a conve
tional quantum computer the quantum systems previou
described. A conventional quantum computer consists ol
spin-12 particles that give rise to a 2l dimensional complex
Hilbert space with basis elementsuz1z2¯zl & where we take
eachzi to be 0 or 1. The computer program can be though
as a sequence of unitary operatorsÛa each of which acts on
~at most! B bits. That is, for eachÛa in the sequence, ther
is a setSa5$ i 1 ,i 2 , . . . ,i B% that tells us whichB bits are
being acted on and a 2B by 2B unitary matrix whose ele-
ments we write asUa(w18¯wB8 ;w1¯wB). We then have,

for eachÛa ,

^z18z28¯zl8 uÛauz1z2¯zl &

5 )
j ¹Sa

I ~zj5zj8!Ua~zi 1
8 ¯zi B

8 ;zi 1
¯zi B

!. ~4.1!

HereI (s) is the indicator function that is 1 ifs is true and 0
if s is false. This formula is just a way of writing thatÛa
acts onB bits.

In previous sections we described evolution through de
sion trees using the quantum HamiltonianĤ that gives rise to
the unitary time evolution operatore2 i tĤ . To find a sequence
of unitary operators, each of which acts on only several b
and whose product gives~approximately! the same evolution
ase2 i tĤ , we follow the procedure given in Ref.@3#. Suppose

Ĥ5 (
k51

p

Ĥk ~4.2!

where, for eachk, Ĥk and hencee2 i tĤ k acts only on~at
most! B bits. The Trotter formula says

e2 i tĤ'@e2 i tĤ 1 /me2 i tĤ 2 /m•••e2 i tĤ p /m#m ~4.3!

for t/m small. Thus the evolution operatore2 i tĤ can be ap-
proximated as a product ofpm unitary operators each o
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which acts on a fixed number of bits. As a function ofn the
largest timest that interest us are, say,nA. Taking m5n2A

allows us to obtaine2 i tĤ with a number of elementary uni
tary operators that only grows polynomially withn, as long
asp also grows only polynomially withn.

We now show two cases where the HamiltonianĤ given
by Eq. ~2.1! can be written as a sum ofĤk where eachĤk
acts on a fixed number of bits. Consider first the underly
branching tree, Fig. 1 and its associatedĤ. Start with l
52n11 bits that we group for convenience as

~yx!5~y0y1¯ynx1¯xn!. ~4.4!

The y bits indicate the level of the node. The states we
will have a singleyi51 and the rest 0 to indicate that th
node is at leveli . The x1¯xi will indicate the particular
node at thei th level; these nodes will also havexi 115xi 12
5¯5xn50. We now define the following one bit operato
through their action on the basis vectorsuyx&:

ŷ j uyx&5yj uyx&,

x̂ j uyx&5xj uyx&,
~4.5!

r̂ j uyx&5 r̂ j uy0¯yj¯ynx&5 ȳ j uy0¯ ȳ j¯ynx&,

ŝ j uyx&5ŝ j uyx1¯xj¯xn&5 x̄ j uyx1¯ x̄ j¯xn&,

where ȳ j512yj and x̄ j512xj . We see thatx̂ j and ŷ j are
diagonal in this basis. The operatorr̂ i

†r̂ i 11 acting on a state

at level i brings it to leveli 11, whereasr̂ i r̂ i 11
† moves from

level i 11 to level i .
The Hamiltonian~2.1!, defined on the underlying branch

ing tree, is

Ĥ52ŷ013(
i 51

n21

ŷi1 ŷn2 (
i 50

n21

~ r̂ i
†r̂ i 111 r̂ i r̂ i 11

† !~12 x̂i 11!

2 (
i 50

n21

~ r̂ i
†r̂ i 11ŝ i 111 r̂ i r̂ i 11

† ŝ i 11
† !. ~4.6!

The first three terms give the diagonal matrix elements. T
fourth term connects the nodesx1¯xi at level i with the
nodesx1¯xi0 at leveli 11, whereas the last term connec
x1¯xi at leveli with x1¯xi1 at leveli 11. Thus we see tha
Ĥ can be written as a sum ofĤk , each of which acts on a
most three bits.

We have built a Hilbert space with 22n11 states, whereas
the underlying branching tree has only 2n1121 nodes. How-
ever, if we start in the state corresponding to the topm
node, that is,y051 and all other bits 0, then if we act wit
e2 iĤ t with Ĥ given by Eq.~4.6! we only ever reach states i
the subspace corresponding to the underlying branching
The 22n11-dimensional Hilbert space may not be the mo
economical choice to describe the tree, but it suffices for
purpose of showing thatĤ can be built as a sum of loca
Hamiltonians.

Of course we also want to constructĤ as a sum of Hamil-
tonians acting on a fixed number of bits for interesti
g

e

e

st

e.
t
r

trimmed decision trees. There are families of trimmed tre
whose Hamiltonians we cannot represent in this way. But
many interesting problems we can writeĤ as a sum of
Hamiltonians that act on at mostB bits, whereB does not
grow with n. For example, we now show how to do this fo
a version of the exact cover problem discussed in Sec. I.
restrict the matrixA, which defines an instance of the exa
cover problem, to have exactly three 1’s in any row and th
or fewer 1’s in any column. Even with this restriction, th
problem isNP complete.

Consider first the question of whether thei th-level node
x1¯xi connects to the (i 11)th level nodex1¯xi1. We as-
sume thatx1¯xi is in the tree, and we need to be consiste
with Eq. ~1.1!, so we know that for eachj , (k51

i Ajkxk is 0 or
1. If for some j this sum is 1 and alsoAj ,i 1151, then
x1¯xi1 is eliminated as a node. Consider the function

Ci
1~x1¯xi !5)

j 51

m H F12 (
k51

i

AjkxkGAj ,i 111@12Aj ,i 11#J .

~4.7!

Given thatx1¯xi is an allowed node, then this function is
if x1¯xi1 is allowed and 0 ifx1¯xi1 is excluded. Further-
more, given the restriction thatA has three 1’s in any row
and three or fewer in any column,Ci

1 has at most sixxk’s
appearing.

Now we ask ifx1¯xi at level i connects tox1¯xi0 at
level i 11. This connection will be allowed unless for somej
with Aj ,i 1151, there is ak< i and a distinctk8< i such that
Ajk5Ajk851 andxk5xk850. The reason the nodex1¯xi0
would be eliminated in this case is that there are exa
three 1’s in any row, and Eq.~1.1! could not be satisfied if
the three bitsxk , xk8 , andxi 11 are all 0. Now consider the
function

di
j~x1¯xi !5 (

k51

i

Ajk~12xk!. ~4.8!

For any j with Aj ,i 1151, di
j can be 0, 1, or 2. Only if

di
j (x1¯xi)52 is x1¯xi0 eliminated. Let

Ci
0~x1¯xi !5)

j 51

m H F1

2
di

j~12di
j !11GAj ,i 111~12Aj ,i 11!J .

~4.9!

Then this function is 0 ifx1¯xi0 excluded, and it is 1 if
x1¯xi0 is allowed. Again because of the restrictions plac
on A, this function has only sixxk’s appearing.

The functionsCi
0 and Ci

1 can be promoted to operator

simply by replacing their arguments by the bit operatorsx̂k

defined in Eq. ~4.5!; that is, we haveCi
0( x̂1¯ x̂i) and

Ci
1( x̂1¯ x̂i). If we multiply the last term in Eq.~4.6! by Ci

1

and the fourth term byCi
0 , the Hamiltonian has off-diagona

elements only where the tree has connections. Similarly,
can write the diagonal term as

Ĥdiagonal52ŷ01 (
i 51

n21

ŷi~11Ci
01Ci

1!1 ŷn . ~4.10!
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Thus we have written the Hamiltonian for the trees trimm
by A in the form ~4.2! with B59.

Generally, we think of decision trees as associated w
functions f i that impose constraints:f i(x1¯xi)51 if the
( i 21)th level nodex1¯xi 21 is connected to thei th level
node x1¯xi ; otherwise f i50. The exact cover exampl
above makes clear that as long as there is a fixedB such that
f i(x1¯xi) depends on onlyB bits for eachi ~whichbits can
vary with i , of course! then the problem can be implemente
within the usual quantum computing paradigm—we on
need to replace Ci 21

x ( x̂1¯ x̂i 21) in Eq. ~4.10! by

f i( x̂1¯ x̂i 21 ,x), and also to multiply the appropriate conne
tion terms in Eq.~4.6! by f i( x̂1¯ x̂i 21 ,x).

Note that our example in Sec. III for which the quantu
algorithm achieved exponential speed-up does not meet
fixed-B requirement. We do have, however, similar e
amples that achieve exponential speed-up and that do
this requirement. These problems also rely on even-len
very structured bushes, and also can be solved quickly
other classical algorithms.

V. CONCLUSIONS

There is great interest in devising quantum algorithms t
improve on classical algorithms, and there have been s
notable successes. For example, the well-known Shor@6# and
Grover @5# algorithms demonstrate remarkable ingenui
Each uses quantum interference, the necessary ingredien
quantum speed-up, in what appears to be a problem-spe
way. So far these methods have not been successfully
plied to problems very different from the ones for which th
were originally devised.

In this paper, we have considered a single time-indep
dent Hamiltonian that evolves a quantum state through
.
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nodes of a decision tree.~For a related approach, see Re
@7#.! This is in contrast to the usual setup consisting o
sequence of unitary operators each acting on a fixed num
of bits. ~For many problems, includingNP-complete ones,
our algorithm can be rewritten in the conventional langua
of quantum computation.! Studying Hamiltonian evolution
on decision trees is facilitated by the technique of calculat
energy-dependent transmission coefficients. The examp
Sec. III shows explicitly how interference allows a class
trees to be penetrated exponentially faster by quantum e
lution than by a classical random walk. However, this e
ample can be quickly solved by a different classical alg
rithm.

The particular Hamiltonian we chose allowed us to pro
in Sec. II, that the quantum algorithm succeeded in poly
mial time whenever the corresponding classical random w
on the decision trees succeeded in polynomial time.
searching for more examples where the quantum algori
outperforms the classical algorithm, one is not restricted
this Hamiltonian. We can imagine trying any Hamiltonia
with nonzero off-diagonal elements where there are links
tween the nodes on the decision tree. With this flexibility,
hope that the class of trees that can be penetrated quickl
the quantum algorithm is large enough to include classic
difficult problems.
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