
PHYSICAL REVIEW A AUGUST 1998VOLUME 58, NUMBER 2
Elliptical ion traps and trap arrays for quantum computation

Ralph G. DeVoe
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120

~Received 9 December 1997!

The properties of a rf quadrupole trap, the elliptical ion trap, are derived. Elliptical traps can confine large
numbers of ions in the Lamb-Dicke regime due to a hitherto unrecognized mechanism unique to one-
dimensional Coulomb crystals, implicit in the theories of Dubin and Schiffer. This follows from a linear crystal
stability condition, which uniquely relates the crystal size to ellipticity, and a micromotion relation, which
reveals a 1/5-root dependence on the number of trapped ions. Elliptical traps offer several advantages over
linear traps in the Cirac-Zoller model of quantum computing, both for initial tests and as a potential method of
creating a full-scale quantum computer. Numerical solutions of a one-electrode structure show that micro-
scopic elliptical traps, each containing'100 ions, can be constructed at a density of 100 traps/cm2, making
possible arrays containing.106 ions in the Lamb-Dicke regime for precision spectroscopy or quantum com-
putation.@S1050-2947~98!08008-1#

PACS number~s!: 03.67.Lx, 32.80.Pj
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Radio frequency ion traps based on the Mathieu equa
confinement mechanism of Paul@1# have been important in
several areas of physics, including laser cooling@2,3#, ion
crystallization @4,5#, precision spectroscopy and standar
@6#, and most recently quantum computation@7–9#. Ion traps
have so far been developed in two contrasting geomet
the circular trap@1# ~Paul trap! and the linear trap@10,11#.
The former has rotational symmetry and the latter transla
symmetry as shown in Fig. 1. Linear traps were develope
overcome micromotion, which is inherent in Mathieu equ
tion solutions for circular traps for more than one ion. M
cromotion can prevent trapping in the Lamb-Dicke regim
which requires confinement tol/2p, wherel is the wave-
length of cooling laser radiation, and is often assumed
studies of quantum ion motion and computation. This pa
introduces a third type of ion trap, the elliptical ion tra
which possesses neither circular nor translational symm
but which can confine large numbers of ions in the Lam
Dicke limit. Note that slightly elliptical traps have been us
by experimenters@12–14,9# for many years to define an ax
of crystallization; Dehmelt used elliptical ring electrodes in
Paul-Straubel trap as early as 1989. However, the gen
case of arbitrary ellipticity has not previously been d
cussed. Our analysis yields two unexpected results: first,
large linear crystals can be stored in traps of moderate e
ticity @Eq. ~7!#, and second that micromotion amplitudes d
pend weakly on the size of the crystal@Eq. ~8!#, approxi-
mately as the 1/5 root of the number of ions. This follow
from the recently understood properties of Coulomb cryst
expressed in the theories@15–18# of Dubin and Schiffer.
Taken together, these results show that a single elliptical
can confine as many as 103 ions in the Lamb-Dicke regime
Elliptical traps can be constructed from a single flat electro
yielding a device that is simpler, smaller, and stronger tha
linear trap and is suitable for microfabrication in large arra
In this way, it is possible in principle to trap 106 or more ions
in the Lamb-Dicke regime, to increase the signal-to-no
ratio in precision spectroscopy or for quantum computati

The linear ion trap is the basis for the Cirac-Zoller mod
of quantum computation@7,8#. In this model a row of ions is
PRA 581050-2947/98/58~2!/910~5!/$15.00
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confined along thez axis of the trap and laser cooled to th
ground vibrational state. The lowest center-of-mass~c.m.!
vibrational phonon of the ion array couples to the intern
atomic states~the quantum bits or qubits! via Doppler shifted
laser excitation. This phonon is used as a quantum com
nication channel to transmit superposition states between
atoms and carry out quantum logic. The Cirac-Zoller mo
contains all the interactions required for an evaluation
Shor’s algorithm@19# and has been studied in such det
@20# that it is often treated as a paradigm for the practica
of quantum computing in general. Grover has develope
quantum database algorithm@21# that searchesN unordered
memory elements inAN steps. Both Shor’s and Grover’
algorithms require large numbers of qubits to gain an adv
tage over classical methods. Factorization of a 400 bit nu
ber has been estimated@20# to require.2000 ions without
quantum error correction~QEC! and from 104 to 106 ions

FIG. 1. ~a! Original circular ion trap of Paul,~b! the linear ion
trap assumed by the Cirac-Zoller model, and~c! the elliptical trap.
910 © 1998 The American Physical Society
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with QEC @22#. A full-scale implementation of either algo
rithm is therfore not practical in a single trap, even ignori
technical difficulties, for reasons discussed below.

The elliptical trap offers several advantages for use in
Cirac-Zoller model, both for intial experiments and for e
tending the model to the full-scale regime. First, it acts lik
linear trap for more than 103 ions, so that the c.m. phono
can be used for quantum logic as before. Second, the
requires only a single flat electrode of microscopic dime
sions so that trap arrays can in principle be microfabrica
at a density of>102 traps/cm2. Arrays of moderate size
could therefore confine the 106 qubits needed for a full-scal
device. Third, the size and geometry of the trap permit th
use in testing recently proposed quantum optical interc
nects@23–26#, since the trap is small enough to be enclos
by an optical cavity that can satisfy the ‘‘strong-coupling
condition of cavity quantum electrodynamics~CQED!.
Long-term confinement to the Lamb-Dicke regime is imp
tant for tests of quantum optical interconnects and of CQ
in general. Current experiments have been limited to be
of neutral atoms that transit the cavity in milliseconds
microseconds@27#. Ion traps have so far not been used d
spite their unlimited confinement time in part because
mirror spacing for a strong-coupled cavity is substantia
smaller than the smallest linear ion trap. The tw
dimensional structure of elliptical traps overcomes this pr
lem, as discussed in more detail below. Fourth, trap arr
provide a specific physical model of the ‘‘nodes’’ of a di
tributed quantum network@23,24#, in which each micro-
scopic elliptical trap represents a separate Cirac-Zoller p
cessor.

The elliptical ion trap, shown in Fig. 2, is a generaliz
ion trap that includes both the Paul trap@1# and the linear
trap @10# as special cases. It is defined by the potential

V~x,y,z!5@Vdc1V0cos~Vt !#S x2

x0
2

2
y2

y0
2

1
z2

z0
2D . ~1!

FIG. 2. Ideal elliptical ion trap, consisting of three elliptic
hyperboloids. It generates the potential of Eq.~1! throughout the
interior volume, since the electrodes lie on equipotential surfa
The ellipticity e5z0 /x0. In practice the simpler electrode of Fig.
suffices.
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The axes are named in agreement with the linear trap c
vention rather than the Paul trap convention. This is the m
general quadratic potential satisfying¹2V50, which re-
quires 1/x0

211/z0
251/y0

2 . Such a potential can be created b
hyperboloidal electrodes that form ellipses in thex-z plane,
wherex0 andz0 are the minor and major axes of the ellip
at y50, while y0 is the distance to the endcap electrode
x5z50. Solution of Newton’s law for the above potenti
leads to three Mathieu equations@28,29# for the trapped ion’s
coordinatesu5x,y,z,

d2u

dt2
1au@au22qucos~2t!#u50, ~2!

whereau51 for u5x,z andau521 for u5y, the normal-
ized timet5Vt/2, the Mathieu parameter~a dimensionless
trap strength! is

qu52
4eV0

mV2u0
2

, ~3!

m is the mass of the particle,V/2p the rf drive frequency,
andu05x0,y0,z0. An identical equation holds forau with V0
replaced by 2Vdc. ¹2V50 implies the relationqx1qz5qy
and ax1az5ay . Define the ellipticitye5z0 /x0 to be the
ratio of the major to minor axes of the ellipse, which yiel
qz5qy /(e211) and qx5qye

2/(e211). In the low q limit
(q,0.2) where most traps are operated@29,30# the trap
secular frequenciesvu→quV/2A2 and therefore obey

vz5vy

1

e211
~4!

and

vx5vy

e2

e211
. ~5!

The Paul trap is a special case ofe51 where vx5vz
5vy /2, while the linear trap is a limiting case ofe→`
wherevz→0 andvx→vy . Although it is well known that
the linear trap is a limiting case of a stretched circular tr
@10#, and although the general form of Eq.~1! was discussed
by Paul @28# many years ago, the regime 1,e,` has not
previously been considered in detail.

To play the role of a linear trap in the Cirac-Zoller mode
an elliptical trap must first confine the ions on thez axis so
that the c.m. phonon can act as a quantum communicat
channel, and second have sufficiently small micromotion
that the resulting Doppler shifts do not decouple the io
from the lasers. Schiffer@17,18#, Dubin @15,16#, and others
have shown through analytic and numerical studies of
crystals in asymmetric harmonic potentials that the ions w
stay on thez axis providing

d.d0[S ae2

mvx
2D 1/3

, ~6!

s.
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912 PRA 58RALPH G. DeVOE
whered is the ion-ion separation at the center of the trap a
a57z(3)/254.207, wherez is the Riemannz function. For
d,d0 the ions undergo what is called the ‘‘zig-zag tran
tion,’’ where alternate ions move off thez axis in opposite
directions. Note that Eq.~6! does not depend directly on th
axial trap strengthvz , but only on the transverse tra
strengthvx . No exact analytic expression ford exists for all
N but several accurate approximations have been deri
Equating Steane’s@8# resultd52.0s0N20.57 to d0 in Eq. ~6!,
where the scale lengths0

35e2/mvz
2 , yields the relation

N~e!51.44e2.34, ~7!

which determines the capacity of a trap of given ellipticitye
to hold a numberN(e) of ions on thez axis. See Fig. 3. For
N.N(e), the ions assume the zig-zag structure while
N,N(e), the ions are farther apart than the minimum va
d0. Note that Eq.~7! is independent of all trap paramete
except the ellipticity.

The second requirement is that the elliptical trap confi
large crystals in the Lamb-Dicke regime, that is, that
micromotion amplitude is less thanl/2p, wherel is the
wavelength of the laser light. It has been assumed previo
that only linear ion traps, which have no rf field along thez
axis, can provide small enough micromotion for quantu
computation. However, a detailed calculation of microm
tion amplitudes shows that a properly designed elliptical t
can limit micromotion oscillations to a few tens of nm, ev
for large ion crystals containing more than 1000 ions a
even though rf fields are used for all confinement. Microm
tion @29,3# is the oscillatory motion of the ions at the rf driv
frequency V and in the low q limit is given by mz(t)
5 z̄qzcos(Vt)/2, wherez̄ is the time-averaged~secular! posi-
tion of the ion. The largest micromotion occurs at the en
where z̄5 l z/2, wherel z is the total length of the ion chain
The theories of Dubin and Schiffer assume a static harmo
potential~the pseudopotential approximation! that yields ac-
curate values ofl z but gives no information about micromo
tion. These results may be summarized by the approxima
l z5d(N21)1.053, which agrees within 10% with numerica
results@15,31#. The micromotion may then be estimated u
ing Steane’s approximation ford yielding mz(N)5qzs0(N
21)1.053/2N0.57, which approximatesqzs0AN/2 as N→`.

FIG. 3. Plot of Eq.~7!, showingN(e), the maximum number of
ions that can be confined on thez axis before the zig-zag transition
as a function of the ellipticitye. Note thatN(e) is independent of
all other trap parameters.
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However, a much lower value ofmz can be attained by
matching the ellipticity toN. Consider a series of traps tha
are identical except for their ellipticity and assume that ea
trap containsN(e) ions in accordance with Eq.~7!. This
minimizes micromotion for a givenN by using the weakes
axial confinement, which will keep the ions on thez axis.
Using Eqs.~4!, ~5!, ~6!, and~7! yields

mz~N!5mz~2!
1.985~N21!1.053

N0.569~110.733N0.854!1/3
, ~8!

wheremz(2) is the micromotion of two ions in a trap with
e51. In the largeN(N>20) limit mz(N)→2.20N0.20mz(2),
that is, it depends approximately on the fifth root ofN. This
weak dependence is shown in Fig. 4 and permits trap par
eters to be chosen so that micromotion is of little significan
throughout the rangeN52 –1000, as shown in an examp
below.

This result is unexpected since in three dimensions
micromotion amplitude increases approximately asN1/3, due
to the constant ion density@10#. Why does one-dimensiona
confinement result in a weaker power law ofN1/5? The an-
swer is that in one dimension the density increases withN,
due to more effective cancellation of the Coulomb repuls
of neighboring ions. A related result is that traps filled a
cording to Eq.~7! all have the same value ofd5d0, despite
the reduction of the axial trap force with increasinge.

An elliptical trap can be constructed from single flat ele
trode, for example, an elliptical aperture in a conducting s
face as shown in Fig. 5, which is straightforward to micr

FIG. 4. Maximum micromotion amplitudemz in a linear crystal
of N ions, Eq.~8!. Note the weak dependence onN, which approxi-
matesN1/5 at largeN, due to the confinement properties of on
dimensional Coulomb crystals.

FIG. 5. ‘‘Aperture trap’’ consisting of an elliptical hole in a
conducting surface that generates the potential of Eq.~1! near thez
axis. For the case considered in the text, trap arrays can be g
ated at a density of>100 traps/cm2.
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PRA 58 913ELLIPTICAL ION TRAPS AND TRAP ARRAYS FOR . . .
fabricate in arrays by photolithography. This is in contrast
a linear trap, which consists of a three-dimensional array
four segmented rods@11#. The elliptical aperture generates
potential that reduces to Eq.~1! on thez axis, where the ion
crystal resides. The theory of such ‘‘aperture traps’’ has b
discussed in detail@13# for the circular case and they hav
already been used in quantum optics@14# and quantum logic
experiments@9#. In the circular case the trap parameters c
be derived as coefficients in the Legendre expansion of
potential@13#, but for e.1 the corresponding power serie
contains ellipsoidal harmonics, which are rarely used.
three-dimensional numerical routine has therefore been u
to estimate the three relevant parameters of the potential
efficiency, the ellipticity, and the anharmonic terms. Pote
tials have been computed for apertures with ellipticities o
3, 5, and 10, corresponding toN(e) of 2, 18, 60, and 300 in
Eq. ~7!. The efficiency is defined asE5V0 /Vt , whereVt is
the potential applied to the conducting surface. The rou
yields 0.05,E,0.10 depending on the thickness of the ele
trodes. The ellipticity of the potential is found to be equal
the ellipticity of the aperture within the accuracy of 20% a
the anharmonic terms were found to be comparable to
circular case@13#. Specifically for a 100mm by 300 mm
aperture, thez axis fourth order~anharmonic! term was less
than 1% of the second-order term along a central 100mm
region of thez-axis. It is not apparent from numerical wor
whether an elliptical aperture produces the most accurate
proximation to Eq.~1!, since simpler apertures such as re
angles produce similar fields.

The practicality of elliptical traps can be demonstrated
considering an example based on recent experiments. C
sider first ane51 trap of 100mm radius, similar to Refs
@14,9#. To separately excite each ion for quantum logic,
ion-ion spacingd0 must be greater thanl. Choosingd0
54 mm yields an axial oscillation frequencyvz /2p'1
MHz at an applied potentialVt51000 V rms~efficiency E
50.08) for the ion Ba 137, currently under study in o
laboratory. The Mathieu parameterqz52A2vz /V 5 0.01
for V/2p 5 282 MHz. This yields a micromotionmz510
nm for a two-ion crystal. Now assume that for quantum co
puting we wish to confine 64 ions. Equation~7! yields an
optimum ellipticity e55.2 that determinesqz57.131024.
The crystal lengthl z/2'32d05128 mm, which gives mz
545 nm at the ends of the crystal and proportionately l
near the center. The Doppler sidebands will therefore h
an intensity ofJ1

2(b)<0.06, whereb52pmz /l. This estab-
lishes that the Lamb-Dicke limit is reached for all ions in t
trap. Note that a largermz has been used in a recent expe
ment, which observed interference and superradiance of
trapped ions@14#. Such small micromotion amplitudes ap
pear unrelated to phonon heating rates in circular microtr
@9#, so that elliptical and linear traps should have simi
rates.

The above 64-ion trap occupies an area of,2
31023 cm2 and may be placed in an array at a density
'100 traps/cm2, yielding a density of 6400 ions/cm2. A 30-
cm-diam disk could therefore support 64 000 traps hold
43106 ions, all in the Lamb-Dicke limit. Such a disk drive
at 1000 V rms at 282 MHz will dissipate only 3 W, assumi
Q55000. The laser power required to excite every ion
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such an array is also nominal, since recent experiments h
saturated single ions with'1027 W of resonant light. This
array could be used to increase the signal-to-noise ratio
single atom frequency standard@32# by a factor of AN
52000.

To be useful for quantum computing, the trap array m
have a method of sharing entanglement between sepa
traps. Quantum optical interconnects that have been
posed for parallel and distributed computing@23–26# could
in principle serve this purpose. These methods typically
sume that the atoms are at rest in an optical cavity that ob
the ‘‘strong coupling’’ condition of cavity quantum electro
dynamics@27#, which requires that the cavity mode volum
Vm obeyVm,Vr , whereVr5s0c/G is the atomic radiative
volume,s053l2/2p, G is the atom’s spontaneous emissio
decay rate, and c is the speed of light. SinceVr'(100mm)3

for ions of interest, cavity lengths'1 mm. No such method
has yet been tested. Elliptical aperture traps are consis
with quantum optical interconnects since their flat struct
permits dielectric mirrors to be brought within several hu
dred micrometers of the trap center. The effect of such m
rors has been studied by including disks of quartz 1 m
diam and 100mm thickness in the numerical solutions fo
the trap fields. A pair of disks spaced6300 mm from the
center of a 100mm by 300 mm radius elliptical trap pro-
duced only a 15% change in the trap fields while preserv
their symmetry. The presence of these dielectrics will n
affect the ion crystal structure because of the relatively la
spacing and small size of the image charges.

The combination of quantum optical interconnects w
ion trap arrays provides a specific physical model of a sc
able quantum computer. The original Cirac-Zoller model,
which all the ions are placed in one trap, cannot accomm
date the 106 ions needed for a full-scale quantum compu
tion, even in principle. One limit is that the c.m. phono
frequency vz}1/AN, so that a trap containing 106 ions
would havevz<100 Hz. Evaluating the 1011 operations re-
quired for Shor’s algorithm would therefore take over 19

sec~30 years! without error correction. The trap array mod
proposed here containsM separate elliptical ion traps eac
containingN ions, withM or more quantum optical intercon
nects being used to transmit entanglement between the t
This model remains highly speculative since such interc
nects have not yet been realized in practice. However,
trap arrays themselves withM564 000 andN564 are rela-
tively low risk, as discussed above. Since each trap cont
,1000 ions, the phonon frequency remains large, in
above example,vz5125 KHz for N564. This is 103 faster
than the single-trap model. Moreover, the array posse
both classical as well as quantum-mechanical paralleli
since there areM independent Cirac-Zoller processors ope
ating simultaneously, which can be placed in entangled st
when necessary by the interconnects. It is interesting to
how much thisM -fold parallelism would reduce the execu
tion time and number of gate operations estimated in
original Cirac-Zoller model for the modular exponentiatio
@20# in Shor’s algorithm.

In conclusion, the elliptical ion trap presents a solution
the problem of confining large numbers of ions in the Lam
Dicke limit, as is required for precision spectroscop
trapped ion frequency standards, quantum computation
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914 PRA 58RALPH G. DeVOE
other studies of quantum-mechanical ion motion. It was p
viously thought that only linear traps, which use a dc ax
field requiring a complex three-dimensional electrode str
ture, could achieve this. The linear crystal stability conditio
Eq. ~7!, and the micromotion relation, Eq.~8!, are the two
main results that define the Lamb-Dicke confinement pr
erties of elliptical traps. The former shows that traps of mo
erate ellipticity can confine a useful number of ions; for e
ample,e55 traps 60 ions, sufficient for all current tests
quantum computing. The latter shows that micromot
grows very slowly with ion numberN, approximately as the
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1/5 root, so that 1000 ions have less than 10 times the
cromotion of two ions. Proper choice of the Mathieu para
eterq can therefore put all ions in the Lamb-Dicke regim
The simple one-conductor electrode structure permits elli
cal traps to be smaller and stronger than linear traps~note the
vz51 MHz derived above!, and to be microfabricated in
large arrays.

I have benefitted from helpful comments on the man
script from C. Kurtsiefer and D. DiVincenzo.
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