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Quantum convolutional error-correcting codes

H. F. Chau*
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong

~Received 27 February 1998!

I report two general methods to construct quantum convolutional codes forN-state quantum systems. Using
these general methods, I construct a quantum convolutional code of rate 1/4, which can correct one quantum
error for every eight consecutive quantum registers.@S1050-2947~98!07608-2#

PACS number~s!: 03.67.Lx, 89.70.1c, 89.80.1h
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A quantum computer is more efficient than a classi
computer in useful applications such as integer factoriza
@1# and database search@2#. However, decoherence remain
one of the major obstacles to building a quantum compu
@3#. Nevertheless, the effect of decoherence can be com
sated for if one introduces redundancy in the quantum st
By first encoding a quantum state into a larger Hilbert sp
H. Then by projecting the wave function into a suitable su
spaceC of H. And finally by applying a unitary transforma
tion to the orthogonal complement ofC according to the
measurement result; it is possible to correct quantum er
due to decoherence. This scheme is called the quantum
correction code~QECC! @4#. Many QECCs have been dis
covered~see, for example, Refs.@4–15#! and various theories
on the QECC have also been developed~see, for example
Refs.@8–18#!. In particular, the necessary and sufficient co
dition for a QECC is@16–19#

^ i encodeuA †Bu j encode&5LA,Bd i j , ~1!

where u i encode& denotes the encoded quantum stateu i & using
the QECC;A,B are the possible errors the QECC c
handle; andLA,B is a complex constant independent
u i encode& and u j encode&. Note that the above condition for
QECC is completely general, working for finite or infinit
number ofN-state quantum registers.1

All QECCs discovered so far are block codes. That is,
original state ket is first divided intofinite blocks of the same
length. Each block is then encoded separately using a c
that is independentof the state of the other blocks~cf. Refs.
@20,21#!.

In addition to block codes, convolutional codes are w
known in classical error correction. Unlike a block code, t
encoding operation depends on current as well as a num
of past information bits@20,21#. For instance, given a~pos-
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sibly infinite! sequence of classical binary numbe
(a1 ,a2 , . . . ,am , . . . ), the encoding (b1 ,c1 ,b2 ,
c2 , . . . ,bm ,cm , . . . ) with

bi5ai1ai 22mod 2, ci5ai1ai 211ai 22mod 2 ~2!

for all i , anda05a2150 is able to correct up to one erro
for every two consecutive bits@22#.

In classical error correction, good convolutional codes
ten can encode with higher efficiencies than their cor
sponding block codes in a noisy channel@20,21#. It is, there-
fore, instructive to find quantum convolutional codes~QCC!
and to analyze their performance. In this paper, I first rep
a way to construct a QCC from a known quantum block co
~QBC!. Then I discuss a way to construct a QCC from
known classical convolutional code. Finally, I report the co
struction of a QCC of rate 1/4, which can correct one qu
tum error for every eight consecutive quantum registers.

Let me first introduce some notations before I constr
QCCs. Suppose each quantum register hasN orthogonal
eigenstates forN>2. Then, the basis of a general quantu
state consisting of many quantum registers can be writte
$uk&%[$uk1 ,k2 , . . . ,km , . . . &% for all kmPZN . And I abuse
the notation by definingkm50 for all m<0.

Supposeuk&°( i 1 ,i 2 , . . . ,i m
ai 1 ,i 2 , . . . ,i m

(k) u i 1 ,i 2 , . . . ,i m& be a

QBC mapping one quantum register to a code of lengthm.
Hence, the rate of the code equals 1/m. The effect of deco-
herence can be regarded as an error operator acting on
tain quantum registers. I denote the set of all possible er
that can be corrected by the above quantum block code bE.
Based on this QBC, one can construct a family of QCCs
follows:

Theorem 1.Given the above QBC and a quantum sta
uk&[uk1 ,k2 , . . . ,kn , . . . & making up of possibly infinitely
many quantum registers, then the encoding
uk&[uk1 ,k2 , . . . ,kn , . . . &°ukencode&[ ^
i 51

1` F (
j i1 , j i2 , . . . ,j im

aj i1 , j i2 , . . . ,j im

~(pm ipkp! u j i1 , j i2 , . . . ,j im&G ~3!

forms a QCC of rate 1/m provided that the matrixm ip is invertible. This QCC can handle errors in the formE^ E^ •••.

*Electronic address: hfchau@hkusua.hku.hk
1Perhaps the simplest way to see that Eq.~1! holds for infinite number ofN-state registers is to observe that Gottesman’s proof in Ref.@19#

does not depend on the finiteness of the Hilbert space for encoded state.
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Proof. I consider the effects of errorsE[E1^E2^ ••• andE8[E18^E28^ •••PE^ E^ ••• on the encoded quantum registe
by computing

^kencode8 uE8†Eukencode&5)
i 51

` F (
j i1 , . . . ,j im , j i18 , . . . ,j im8

ā
j
i18 , . . . ,j

im8

~(p8m ip8k8p8!
aj i1 , . . . ,j im

~(pm ipkp!
^ j i18 , . . . ,j im8 uE8 i

†Ei u j i1 , . . . ,j im&G . ~4!

Substituting Eq.~1! into Eq. ~4!, we have

^kencode8 uE8†Eukencode&5)
i 51

1` F K S (
p

m ipkp8D
encode

UE8 i
†EiUS (

p
m ipkpD

encode
L G

5)
i 51

1`

@d(pm ipkp ,(pm ipk
p8
LEi ,E

i8
# ~5!
m
ha
r

in
p

for some constantsLEi ,E
i8

independent ofk andk8. Since the

matrix m is invertible,ki5ki8 for all i is the unique solution
of the systems of linear equations(pm ipkp5(pm ipkp8 . Con-
sequently,

^kencode8 uE8†Eukencode&5dk,k8LE,E8 ~6!

for some constantLE,E8 independent ofk andk8. Thus, the
encoding in Eq.~3! is a QECC. h

At this point, readers should realize that the above sche
can be generalized to construct a QCC from a QBC t
mapsn quantum registers tom(.n) registers. It is also clea
that the following two useful corollaries follow directly from
theorem 1:
,
B
p

b
R

a
a

e
t

Corollary 1. The encoding scheme given by Eq.~3! gives
a QCC from a QBC provided that~1! the elements in the
matrix m are either zeros or ones;~2! m ip is a function ofi
2p only; and ~3! m ip5m( i 2p) consists of finitely many
ones.

Corollary 2. The encoding scheme given by Eq.~3! gives
a QCC from a QBC if~1! N is a prime power;~2! m is not a
zero matrix; and~3! m ip is a function ofi 2p only.

Let me illustrate the above analysis by an example.
Example 1.Starting from the spin five register code

Ref. @12#, one knows that the following QCC can correct u
to one error in every five consecutive quantum registers:
uk1 ,k2 , . . . ,km , . . . &° ^
i 51

1` F 1

N3/2 (
pi ,qi ,r i50

N21

vN
~ki1ki 21!~pi1qi1r i !1pi r iupi ,qi ,pi1r i ,qi1r i ,pi1qi1ki1ki 21&G , ~7!
um

e

ta-
r, if

er,
.

wherekmPZN , vN is a primitiveNth root of unity, and all
additions in the state ket are moduloN. The rate of this code
equals 1/5.

Although the QCC in Eq.~3! looks rather complicated
the actual encoding process can be performed readily.
cause m is invertible, one can reversibly ma
uk1 ,k2 , . . . ,kn , . . . & to

U(
p

m1pkp , (
p

m2pkp , . . . , (
p

mnpkp , . . . L
@23–25#. Then, one obtains the above five register QCC
encoding each quantum register using the procedure in
@12#.

Now, I turn to the construction of QCCs from classic
convolutional codes. Let me first introduce two technic
lemmas~which work for both QBCs and QCCs!.

Lemma 1.Suppose the QECC

uk&° (
j 1 , j 2 , . . .

aj 1 , j 2, . . .
~k! u j 1 , j 2 , . . . & ~8!
e-

y
ef.

l
l

corrects ~independent! spin flip errors in certain quantum
registers withj iPZN . Then, the following QECC, which is
obtained by discrete Fourier transforming every quant
register in Eq.~8!,

uk&° (
j 1 , j 2 , . . . ,p1 ,p2 , . . .

aj 1 , j 2 , . . .
~k!

3)
i 51

1` S 1

AN
vN

j i pi D up1 ,p2 , . . . & ~9!

corrects~independent! phase errors occurring in the sam
quantum registers. The converse is also true.

Proof. Observe that one can freely choose a compu
tional basis for the encoded quantum state. In particula
one chooses the discrete Fourier transformed basis$um̃&%
[$( j 50

N21vN
jmu j &% for each of the encoded quantum regist

then the encoding in Eq.~9! is reduced to the encoding in Eq
~8!. Thus, the code in Eq.~9! handles spin flip errors with
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respect to the discrete Fourier transformed basis$um̃&%. Con-
sequently, the same code handles phase errors in the ori
$um&% basis.

Conversely, suppose one chooses the original$um&% basis
to encode a phase error correcting code. Then with respe
the $um̃&% basis, it is easy to check that the same code c
rects spin flip errors. h

Lemma 2.Suppose a QECC handles errorsE1 and E2

satisfying ~a! for all EiPEi ( i 51,2), there existsE28PE2

such thatE 2
†+E15E 1

†+E28 ; and ~b! for Ei ,Ei8PEi( i 51,2),
E i

†+Ei8PEi whenever errorsEi andEi8 occur at the same set o
quantum registers; then the QECC actually handles error
E1+E2[$E1+E2 :E1PE1 ,E2PE2 and errorsE1 ,E2 occur at
the same set of quantum registers%.

Proof. One knows from Eq. ~1! that
^kencode8 uE i

†Ei8ukencode&5dk,k8LEi ,E
i8

for someLEi ,E
i8

indepen-

dent ofk ( i 51,2). Also, Eq.~1! implies that the effect of an
errorEi is simply to rigidly rotate and to contract~or expand!
the encoded ket space independent of the stateukencode& itself.
Thus, one concludes that

^kencode8 u~E11E2!†~E11E2!ukencode&5dk,k8GE1 ,E2
~10a!

and

^kencode8 u~E11 iE2!†~E11 iE2!ukencode&5dk,k8GE1 ,E2
8

~10b!

for all EiPEi ( i 51,2), whereGE1 ,E2 andGE1 ,E2
8 are indepen-

dent ofk. By expanding Eqs.~10a! and~10b!, one arrives at

^kencode8 uE 1
†E2ukencode&5dk,k8JE1 ,E2 ~11!

for someJE1 ,E2 independent ofk. Finally, I consider errors

Ei ,Ei8PEi ( i 51,2) occurring at the same set of quantu
registers, then

^kencode8 u~E18E28!†~E1E2!ukencode&5^kencode8 uE28
†E18

†E1E2ukencode&

5^kencode8 uE19E29ukencode&
~12!

for someEi9PEi( i 51,2). Hence from Eqs.~1! and ~11!, I
conclude that the QECC handles errors in the setE1+E2. h

The next corollary follows directly from Lemma 2.
Corollary 3. A QECC handles general quantum error

and only if it handles both spin flip and phase errors in
corresponding quantum registers.

Now, I am ready to prove the following theorem regar
ing the construction of quantum codes from classical cod

Theorem 2.Suppose QECCsC1 and C2 handle phase
shift and spin flip errors, respectively, for the same set
quantum registers. Then, pasting the two codes togethe
first encoding the quantum state usingC1 then further en-
coding the resultant quantum state usingC2, one obtains a
QECCC that corrects general errors in the same set of qu
tum registers.
nal

to
r-

in

e

-
s.

f
by

n-

Proof. From Corollary 3, it suffices to show that the ne
QECC C corrects both spin flip and phase errors. By t
construction ofC, it clearly can correct spin flip errors. An
using the same trick in the proof of Lemma 2, it is easy
check thatC can correct phase shift errors as well.

Readers should note that the order of pasting in Theo
2 is important. Reversing the order of encoding does not g
a good quantum code. Also, proofs of Corollary 3 and Th
rem 2 for the case ofN52 can also be found, for example, i
Ref. @9#.

Theorem 3.SupposeC is a classical~block or convolu-
tional! code of rater that can correctp ~classical! errors for
everyq consecutive registers. Then,C can be extended to a
QECC of rater 2 that can correct at leastp quantum errors
for everyq2 consecutive quantum registers.

Proof. SupposeC is a classical code. By mappingm to
um& for all mPZN ,C can be converted to a quantum code f
spin flip errors. LetC8 be the QECC obtained by Fourie
transforming each quantum register ofC. Then Lemma 1
implies thatC8 is a code for phase shift errors. From The
rem 2, pasting codesC andC8 together will create a QECC
C9 of rate r 2. Finally, one can verify the error correctin
capability ofC9 readily @26#. h

Theorem 3 is useful to create high rate QCCs from h
rate classical convolutional codes. Note that one of the s
plest classical convolutional code with rate 1/2 is given
Eq. ~2!. Being a nonsystematic2 and non-catastrophic3 code
@22#, it serves as an ideal starting point to construct go
QCCs. First, let me write down this code in quantum m
chanical form:

Lemma 3:The QCC

uk1 ,k2 , . . . & ^
i 51

1`

uki1ki 22 ,ki1ki 211ki 22& ~13!

for all kiPZN , where all additions in the state ket are modu
N, can correct up to one spin flip error for every four co
secutive quantum registers.

Proof. Using notations as in the proof of Theorem 1,
consider^kencode8 uE8†Eukencode&. Clearly, the worst case hap
pens when errorsE andE8 occur at different quantum regis
ters. And in this case, Eq.~13! implies that exactly two of the
following four equations hold:

k2i1k2i 225k2i8 1k2i 228 ,

k2i1k2i 211k2i 225k2i8 1k2i 218 1k2i 228 ,

k2i 111k2i 215k2i 118 1k2i 218 , ~14!

k2i 111k2i1k2i 215k2i 118 1k2i8 1k2i 218

2That is, bothbi andci are not equal toai .
3That is, a finite number of channel errors does not create

infinite number of decoding errors.
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for all i . One may regardki ’s as unknowns andki8’s as arbi-
trary but fixed constants. Then, by straightforward compu
tion, one can show that pickingany two equations out of Eq
~14! for eachi will form an invertible system with the uniqu
ry

ic
th
o

-
solution ki5ki8 for all i . Thus, ^kencode8 uE8†Eukencode&
5dk,k8dE,E8 and hence this lemma is proved. h

Example 2.Theorem 3 and Lemma 3 imply that the fo
lowing QCC of rate 1/4:
tive
registers

es. By

rd
ue
uk1 ,k2 , . . . &°ukencode&

[ ^
i 51

1` F (
p1 ,q1 , . . .

1

N
vN

~ki1ki 22!pi1~ki1ki 211ki 22!qiupi1pi 21 ,pi1pi 211qi 21 ,qi1qi 21 ,qi1qi 211pi&G ~15!

for all kiPZN , where all additions in the state ket are moduloN can correct at least one error for every 16 consecu
quantum registers. But, in fact, this code is powerful enough to correct one error for every eight consecutive quantum
~see also Ref.@26#!.

Proof. Let E andE8 be two quantum errors affecting at most one quantum register per every eight consecutive on
considerinĝ kencode8 uE8†Eukencode&, I know that at least six of the following eight equations hold:

p2i 211p2i 225p2i 218 1p2i 228 ,

p2i 211p2i 221q2i 225p2i 218 1p2i 228 1q2i 228 ,

q2i 211q2i 225q2i 218 1q2i 228 ,

q2i 211q2i 221p2i 215q2i 218 1q2i 228 1p2i 218 , ~16!

p2i1p2i 215p2i8 1p2i 218 ,

p2i1p2i 211q2i 215p2i8 1p2i 218 1q2i 218 ,

q2i1q2i 215q2i8 1q2i 218 ,

q2i1q2i 211p2i5q2i8 1q2i 218 1p2i8

for all i PZ1. Let me regardpi andqi as unknowns; andpi8 andqi8 as arbitrary but fixed constants. Then, it is straightforwa
to show that choosingany six equations in Eq.~16! for each i PZ1 would result in a consistent system having a uniq
solution ofpi5pi8 andqi5qi8 for all i PZ1. Consequently,

^kencode8 uE8†Eukencode&5 (
p1 ,q1 ,p2 ,q2 , . . .

H)
i 51

1`

@vN
( j 52i 21

2i pj ~kj 1kj 222kj82kj 228 !1qj ~kj 1kj 211kj 222kj82kj 218 2kj 228 !

3^ f i uE8 i
†u f i&^gi uEugi&#J ~17!

for some linearly independent functionsf i(p1 ,q1 ,p2 ,q2 , . . . ) andgi(p1 ,q1 ,p2 ,q2 , . . . ).
Now, I consider a basis$hi(p1 ,q1 ,p2 ,q2 , . . . )% for the orthogonal complement of the span of$ f i ,gi% i PZ1. By summing

over allhi ’s while keepingf i ’s andgi ’s constant in Eq.~17!, one ends up with the constraints thatki5ki8 for all i PZ1. Thus,

^kencode8 uE8†Eukencode&5dk,k8 (
p1 ,q1 ,p2 ,q2 , . . .

F)
i 51

1`

@^ f i~p1 ,q1 , . . . !uE8†u f i~p1 ,q1 , . . . !&^gi~p1 ,q1 , . . . !uEugi~p1 ,q1 , . . . !&#G .

~18!
n-
ne
-
rror
Hence, Eq.~15! corrects up to one quantum error per eve
eight consecutive quantum registers. h

The above rate 1/4 QCC is constructed from a class
convolutional code of rate 1/2. One may further boost up
code performance by converting other efficient classical c
al
e
n-

volutional codes@such as variousk/(k11)-rate codes in Ref.
@27## into QCCs. On the other hand, it is impossible to co
struct a four quantum register QBC that can correct o
quantum error@12,16#. With modification, the same argu
ment can be used to show that no QCC can correct one e
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for every four consecutive quantum registers@26#. It is in-
structive to compare the performances of QBCs and QCC
other situations.

In addition, in order use QCCs in quantum computati
one must investigate the possibility of fault tolerant comp
tation on them. Moreover, it would be ideal if the fault to
erant implementation of single- and two-quantum regis
operations must involve only a finite number of quantu
registers in the QCC. While a general QCC may not adm
finite fault tolerant implementation, many QCCs with fini
memories4 can be manipulated fault tolerantly.

Example 3.By subtracting those quantum registers co
tainingpi , pi 12, qi , qi 11, andqi 12 by one in Eq.~15!, one

4That is, codes with encoding schemes that depend on a fi
number of quantum registers inuk&.
on
r

o-

ys

A

e

nt
in

,
-

r

a

-

ends up with changing uk1 ,k2 , . . . ,ki , . . . ,encode& to
uk1 ,k2 , . . . ,ki 21 ,ki11,ki 11 , . . . ,encode&. Clearly, the above
operation is fault tolerant and involves only a finite numb
of quantum registers. Fault tolerant implementation of sin
register phase shift can be obtained in a similar way. Furt
results on fault tolerant implementation on QCCs will
reported elsewhere@29#.

Finally, decoding a classical convolutional code can
quite involved@28#. So, it is worthwhile to investigate the
efficiency of decoding a QCC. I plan to report them in futu
works @29#.

I would like to thank T. M. Ko for introducing me to the
subject of convolutional codes. I would also like to tha
Debbie Leung, H.-K. Lo, and Eric Rains for their usef
discussions. This work is supported by Hong Kong Gove
ment RGC Grant No. HKU 7095/97P.
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