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Volume of the set of separable states
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The question of how many entangled or, respectively, separable states there are in the set of all quantum
states is considered. We propose a natural measure in the space of density matrices% describing
N-dimensional quantum systems. We prove that, under this measure, the set of separable states possesses a
nonzero volume. Analytical lower and upper bounds of this volume are also derived forN5232 andN52
33 cases. Finally, numerical Monte Carlo calculations allow us to estimate the volume of separable states,
providing numerical evidence that it decreases exponentially with the dimension of the composite system. We
have also analyzed a conditional measure of separability under the condition of fixed purity. Our results display
a clear dualism between purity and separability: entanglement is typical of pure states, while separability is
connected with quantum mixtures. In particular, states of sufficiently low purity are necessarily separable.
@S1050-2947~98!02808-X#
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I. INTRODUCTION

The question of quantum inseparability and entanglem
of mixed states has attracted much attention recently. T
problem is, by far, more complicated than the analogous
for pure states@1#, and involves subtle effects like ‘‘hidde
nonlocality’’ @2# or ‘‘distillation of entanglement’’ @3,4#.
Generally speaking, one is interested in inseparable state
the states containing Einstein-Podolsky-Rosen correlati
In fact, all inseparable mixed states have a nonzero ‘‘
tanglement of formation’’@5# which means that to build
them a nonzero amount of pure entangled states is neede
particular if a source emits pairs of particles inunknownpure
states, so that they form a quantum ensemble described b
inseparable density matrix, then it follows that the sou
mustemit some entangled pairs with a nonzero probabil
In this sense the inseparable mixed states can be viewe
entangled, in correspondence to the entangled pure stat

One of the fundamental questions concerning these
jects is to estimate how many entangled~disentangled! states
exist among all quantum states. More precisely, one can
sider the problem of quantum separability or inseparabi
from a measurement theoretical point of view, and ask ab
relative volumes of both sets. There are three main reas
of importance in this problem. The first reason, of so
philosophical implication, may be contained in the questio
‘‘Is the world more classicalor more quantum? Does it con-
tain more quantum-correlated~entangled! states than classi
cally correlated ones?’’ The second reason has a more p
tical origin. Analyzing some features of entanglement, o

*Permanent address: Instytut Fizyki Smoluchowskiego, Uniw
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often has to rely on numerical simulations. It is then impo
tant to know to what extent entangled quantum states ma
considered as typical. Finally, the third reason has a phys
origin. The physical meaning of separability has recen
been associated with the possibility of partial time rever
@6# ~see also Ref.@7#!. Separable states of composite syste
allow time reversal in one subsystem, without losing th
physical relevance. However, for a system of a dimens
N>8, the fact that a state admits partial time reversal is
sufficient to assure separability, and counterexamples h
been found@8#. Moreover, it has recently been shown th
none of those counterexamples can be distilled to a sin
form @9#. Therefore, it seems pertinent to investigate h
frequently such peculiar states appear. At first glance
seems quite likely that such states form a set of meas
zero, and that from a measurement theoretical point of v
the set of separable states and states that admit partial
reversal have equal volumes.

In this paper we make an attempt to answer at least
two first of the above-formulated questions. We also giv
qualitative argument of why the last conjecture fails. To th
aim we propose a simple and natural measure on the setS of
density matrices acting on a finite-dimensional Hilbert spa
H. Using this measure we estimate the relative volume of
set of separable statesSsep. The upper~lower! bound on this
volume is obviously the lower~upper! bound on the relative
volume of the set of inseparable~entangled! statesSinsep
5S\Ssep.

The paper is organized as follows. Sec. II contains
definition of the natural measure inS. In Sec. III, we recall
basic definitions of separable states, and prove that, for
compound systemS, the volume ofSsep is nonzero regard-
less of the number of subsystems it contains and its~finite!
dimension. This is achieved by proving the existence o

r-
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topological lower bound of this volume. Better lower boun
are also calculated analytically by analyzing the relation
tween the purity of the state and its separability. In Sec.
analytic upper bounds on the volume ofSsep are found. The
study of inseparable states with positive partial transposi
is presented in Sec. V. In Sec. VI, we present estimates
the volume of separable states obtained by the Monte C
numerical simulations. This section is self-contained, a
also includes a simplified corollary of the results of Se
II–V, and a discussion of the dualism between purity a
separability. We conjecture that the volume of separa
states decreases exponentially with the dimension of the
bert space. Finally, Sec. VII contains our conclusions a
open questions.

The reader should note that Secs. II–V have a rather
mal mathematical character. The results of these sect
provide a rigorous base for the numerical calculations of S
VI, but detailed knowledge of the proofs is by no mea
necessary to understand the main message of the paper
reader who is not interested in such rigorous proofs of
presented results may well skip Secs. III–V, and go stra
to Secs. VI and VII.

II. NATURAL MEASURE OF THE SET
OF QUANTUM STATES

Let us consider a set of states in anN-dimensional Hilbert
spaceH. In particular,H may describe a composite syste
with m component subsystems:H5 ^ i 51

m Hi , where
) i 51

m Ni5N.
An operator% acting onH describes astate if Tr%51

and if % is a positive operator, i.e.,

Tr~%P!>0, ~1!
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for any projectorP. Any state represented by a density m
trix % can in turn be represented by its spectral decomp
tion:

%5 (
n51

N

LnPn , (
n51

N

Ln51, Ln>0, ~2!

wherePn form a complete set of orthogonal projectors. Th
the set of states can be viewed as a Cartesian product of

S5P3n. ~3!

The setP denotes the family of complete sets of orthonorm
projectors$Pi% i 51

N , (n51
N Pn5I , whereI is the identity ma-

trix. There exist the unique, uniform measuren onP induced
by the Haar measure on the group of unitary matricesU(N).
Integration over the setP thus amounts to an integration o
the corresponding angles and phases inN-dimensional com-
plex space that determine the families of orthonormal proj
tors ~or, alternatively speaking, the unitary matrix that diag
nalizes%).

The symboln in Eq. ~3! represents there the set of a
Ln’s, which is a subset of the (N21)-dimensional linear
submanifold of real spaceRN, defined by the trace condition
(n51

N Ln51. Geometrically,n is defined as a convex hu
~i.e., a set of all convex combinations of the edge poin!
n5conv$xiPRN:xi5(0, . . . ,1i , . . . ,0), i 51, . . . ,N%.
Since the simplexn is a subset of the (N21)-dimensional
hyperplane, there exist a natural measure onn which is
defined as a usual normalized Lebesgue measureLN21 on
RN21. More specifically, any measurable functionf (.) of
L1 , . . . ,LN can be integrated with the measure
1

Vs
E

0

1

dL1•••E
0

1

dLNf ~L1 , . . . ,LN!dS (
1

N

Ln21D 5
1

Vs
E

0

1

dL1•••E
0

1

dLN21f S L1 , . . . ,LN21,12 (
0

N21

LnD , ~4!
where the normalization constantVs equals the volume o
the setn in RN21, whereasd( ) denotes Dirac’s delta dis
tribution. The two above-discussed measures induce a n
ral measure onS:

m5n3LN21 . ~5!

III. VOLUME OF THE SET OF SEPARABLE STATES

A. Preliminaries—separable states

Throughout this paper we shall assume that the Hilb
space of the considered quantum system has an arbitrar
finite dimension. To make further considerations more cle
we start from the following notation and definitions. Rec
first that the spaceA of operators acting onH constitute a
new Hilbert space~a so-called Hilbert-Schmidt space! with
the scalar product
tu-

rt
but
r,
l

^A,B&5Tr~B†A!. ~6!

It induces a natural norm~a trace norm!

zuAuz5ATr~A†A! ~7!

which, according to the condition dimH,`, is topologically
equivalent to all other norms onA, in particular to the norm
zuAuz85TruAu. Furthermore, let us recall the following.

Definition 1. The state% acting on the Hilbert spaceH
5H1^H2 is called separable1 if it can be approximated in
the trace norm by the states of the form

1The presented definition of separable states is due to Werner@1#,
who called them classically correlated states.



ce

on

n

a

ei
co

c
ca
tw

h

f

i-

y

e

i-

pa
th

a

e-

tri-

real
e

eral

sh.
ow

s

. It
ood

l
at

tates

it

-
e

it

e
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%5(
i 51

k

pi% i ^ %̃ i , ~8!

where% i and %̃ i are states onH1 andH2, respectively.
Usually one deals with a finite-dimensional Hilbert spa

dimH5N. For this case it has been shown@8# that any sepa-
rable state can be written as a convex combination offinite
product pure states, i.e., in those cases the ‘‘approximati
part of the definition is redundant.

It has also been shown@11# that the necessary conditio
for separability of the state% is positivity of its partial trans-
position%T2. The latter is defined in an arbitrary orthonorm
product basisu f i& ^ u f j& as a matrix with elements:

%
mm8,nn8

T2 [^ f mu ^ ^ f m8u%
T2u f n& ^ u f n8&5%mn8,nm8 . ~9!

Although the matrix%T2 depends on the used basis, its
genvalues do not. Consequently, for any state the above
dition can be checked usingan arbitrary product orthonor-
mal basis.2 For systems of dimensions 232 and 233 the
partial transposition condition is also a sufficient one@10#,
and thus the set of separable states is completely chara
ized by this condition. The definition of separable states
be easily generalized to systems composed of more than
subsystems.

Definition 2. The state% acting on the Hilbert spaceH
5 ^ l 51

m Hl is called separable if it can be approximated in t
trace norm by the states of the form

%5(
i 51

k

pi ^ l 51
m % i

l , ~10!

where% i
l are states onHl . Straightforward generalization o

the proof about decomposition from Ref.@8# gives us the
possibility of omitting the approximation part in the defin
tion.

Lemma 1.Any separable state% of a system composed b
m subsystems can be written as

%5(
i 51

k

pi Pprod
i , k<N2 ~11!

where Pprod
i are pure product states having th

m-decomposable form̂ l 51
m Pl , wherePl are projectors act-

ing onHl . It is worth mentioning that minimal decompos
tions with k5N can be always found forN54 @6,12#.

B. Existence of nonzero lower bound
for the volume of separable states

We shall prove now that the volume of the set of se
rable states is nonzero independently of the dimension of
Hilbert space and the number of subsystemsm composing it.
For our purposes we first prove the following simple lemm

2As the full transposition of a positive operator is also positiv
positivity of the partial transposition%T2 is equivalent to positivity
of the partial transposition%T1 ~defined in an analogous way!.
’’
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Lemma 2. If the Hermitian operatorAPA satisfies
^A,^ i 51

m Pi&50 for any product projectorŝ i 51
m Pi , then it

is a trivial zero one.
Proof. Let us consider an arbitrary orthogonal@in the

sense of scalar product~6!# product Hermitian basis in the
space of operatorsA, i.e., a basis such that any of its el
ments is a product of Hermitian matrices~for instance, in the
232 case the basis could consist of products of Pauli ma
cessn^ sm , with n,m50,1,2,3 ands05I ). Hermicity as-
sures that any element of the basis can be written as a
combination of product projectors. Any coefficient of th
expansion ofA in this basis is given by the scalar product~6!
of A and the corresponding basis element. From the gen
assumption of formulas of typêA,^ i 51

m Pi&50, we obtain
immediately that all expansion coefficients must vani
HenceA must be equal to the zero operator. We can n
propose the following theorem.

Theorem 1. Let ne be a simplex defined a
ne5conv$yiPRN:yi5exi1(12e)zI ; i 51, . . . ,N;zI5(1/
N, . . . ,1/N)%. Let us define a setQe5P3ne . Then there
exists some positivee such thatQe,Ssep, whereSseprepre-
sents the set of separable states.

The meaning of the above theorem is straightforward
proposes that all states in the sufficiently small neighborh
of the maximally mixed state% I5I/N @which is represented
in n as a pointzI5(1/N, . . . ,1/N) for any chosen spectra
decomposition of unity# are necessarily separable. Note th
by definition, the simplexne has edgese times smaller than
n, so that its volumem(ne)5eN21m(n)5eN21, since ac-
cording to our normalizationm(n)51.

Proof .Suppose, conversely, that for any positivee the set
Qe contains some inseparable state% insep. It is easy to see
that then there must exist a sequence of inseparable s
% insep

n convergent to the maximally mixed state% I . Accord-
ing to lemma 1 and theorem 1 from Ref.@10#, there exist a
sequence of operatorsAn separating the states% insep

n from the
state% I in the sense that for anyn it holds that^An ,% insep

n &
,0 and ^An ,% I&>0. Moreover, from the quoted results
follows that ^An ,s&>0 for any sPSsep. Let us normalize
the operators An by introducing Ãn5An / zuAnuz( zuAnuz
5A^A†A&). These operators satisfy

^Ãn ,% insep
n &,0, ^Ãn ,s&>0 for anysPSsep. ~12!

In particular it holds that̂ Ãn ,% I&>0. From construction,
the sequenceÃn belongs to the sphere in the finite
dimensional spaceA. As the latter is a compact set, th
sequence includes some subsequenceÃn(k) which is conver-
gent to some nonzero operatorÃ* ( zuÃ* uz51). From Eq.~12!
and continuity of the scalar product, it follows that the lim
operator also satisfies

^Ã* ,s&>0 for anysPSsep. ~13!

Now using Eq.~12! and the Schwarz inequality, we obtain

,
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0<^Ãn~k! ,% I&5^Ãn~k! ,% I2% insep
n~k! &1^Ãn~k! ,% insep

n~k! &

<^Ãn~k! ,% I2% insep
n~k! &< zuÃn~k!uzzu% I2% insep

n~k! uz5 zu% I2% insep
n~k! uz.

~14!

Taking the limit with respect tok, we obtain

TrÃ* 5^Ã* ,% I&5 lim
k→`

^Ãn~k! ,% I&50. ~15!

Hence Ã* is traceless, which is in contradiction with E
~13!. Indeed, if the operatorÃ* is to be nontrivial~the con-
struction implies its unit norm! then there must exist som
product statePprod[ ^ i 51

m Pi such that^Ã* ,Pprod&Þ0 ~see
lemma 2!. Since, on the other hand, one requires the trac
Ã* to vanish, one obtains that̂ Ã* ,Pprod&52^Ã* ,I
2Pprod&. Hence, one of the separable statess8
5Pprod, s95@1/(N21)#(I 2Pprod) violates condition
~13!, which gives the expected contradiction. The abo
theorem leads immediately to the following one.

Theorem 2.The measurem(Ssep) of separable states is
nonzero one. In particular there exists always somee.0
such that the following inequality holds:

m~Ssep!>m~ne!5eN21.0. ~16!

As an illustration of the above theorem, let us consider
232 or 233 cases (N54 and 6! for which separability is
equivalent to the positivity of the partial transposition. It
easy to see that the spectrum of the partially transposed
sity matrix must belong to the interval@2 1

2 ,1#. Hence any
state of the form%5(12p)(I /N)1p%̃, for an arbitrary%̃
andp<2/(21N), has a positively defined partial transpos
tion, and thus is separable for the considered cases. As
maximal value ofp is 1

3 or 1
4 , this means that the value ofe

in the above theorem can be estimated just by1
3 or 1

4 for N
54 or 6, respectively. In Sec. III C we shall show that tho
bounds can be significantly improved.

C. Purity and separability

As we have shown, all states in the small enough nei
borhood of the totally mixed state% I5I /N are separable. On
the other hand, we know that in the subspace of all p
states, the measure of separable states is equal to zero@2#. It
is, therefore, interesting to investigate the relationship
tween entanglement and mixture of quantum states. A qu
tative characterization of the degree of mixture is provid
by the von Neumann entropyH1(%)52Tr(% ln%). Another
quantity, called the participation ratio,

R~% !5
1

Tr~%2!
, ~17!

is often more convenient for calculations. It varies from t
unity ~for pure states! to N ~the totally mixed state% I), and
may be interpreted as an effective number of states in
mixture. This quantity, applied in solid-state physics a lo
time ago@15#, is related to the von Neumann–Renyi entro
of order 2,H2(%)5 lnR(%). The latter, called also the purit
of
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of the state, together with other quantum Renyi entrop
Hq(%)5(ln@Tr%q#)/(12q) is used, forqÞ1, as a measure
of how much a given state is mixed. It has also been app
for the derivation of some necessary conditions of separa
ity in Ref. @16#. In Sec. VI, we shall demonstrate, usin
numerical simulations, that the participation ratio~and other
von Neumann–Renyi entropies! allows one to establish a
dualism between purity and separability of the states of co
posite systems. In this subsection we use it to calculat
natural lower bound on the volume of separable states
dimensionsN54 and 6. For this purpose consider the fo
lowing lemma.

Lemma 3.If the state% satisfies

R~% !>N21, ~18!

whereN is the dimension ofH, then%T2 is positive defined,
i.e., its spectrums(%T2) belongs to the simplexn.

Proof. Let us denote byBN(r ,P) the ball in the spaceRN

with radiusr and centerP, and bySN(r ,P) its surface. Con-
dition ~18! is invariant with respect to the partial transpos
tion, because Tr(%2)5Tr„(%T2)2

…. That implies thats(%T2)
PBN(r ,zI) with r 51/AN21 and zI5(1/N, . . . ,1/N). Let
us define the (N21)-dimensional linear manifoldMN21

5$x5(x1 , . . . ,xN),( i 51
N xi51%. We only need to show tha

its intersection with the ball is included in the simplexn,
i.e., that the new (N21)-dimensional ball BN218
[BN(r ,zI)ùMN21,n. This can be seen in the following
way. It follows, from the high symmetry of the sphere a
the invariance of the simplex under cyclic permutations
coordinates, that the center of this intersection is againzI .
Hence the radiusr 8 of BN21 can be calculated immediatel
by taking the distance from an arbitrary point from the s
face SN(r ,zI)ùMN21 @say, for example from the poin
(0,1/N21, . . . ,1/N21) to the pointzI#. It is elementary to
show thatr 851/AN(N21). On the other hand, one can ca
culate the maximal radiusr 9 of the ball of the type
BN219 (r 9,zI) included inn by calculating the minimal dis-
tance ofzI to the boundary ofn. To this aim we have to
minimize (r 9)25( i 51

N (xi21/N)2 with the constraints
( i 51

N xi50, andx050. Using Lagrange multipliers we im
mediately obtainr 95r 8, and henceBN21 belongs ton,
which ends the proof.

Now using the explicit expressions for the volum
of a (N21)-dimensional ball „VN(r )5p (N21)/2r N21/
G@(N21)/2#…, and for the volume of the simplexn belong-
ing to the manifoldMN21@Vn5AN/(N21)!#, one can ob-
tain the lower bound of the volume of states with positi
partial transposition,

tN5
~N21!!p~N21!/2

NN/2~N21!~N21!/2GS N11

2 D . ~19!

Recalling that for Hilbert spaces of dimensionsN5232 and
N5233 the states with positive partial transposition are
separable states, Eq.~19! leads directly to the following theo
rem.

Theorem 3. If the participation ratio satisfiesR(%)
>3(R(%)>5) for N54 (N56) then the state% is sepa-
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rable. Therefore, the measurem(Ssep) of separable states i
restricted from below by the inequalitym(Ssep)> p/6A3
.0.302 forN54, and 8p2/625A5.0.056 forN56.

IV. UPPER BOUNDS ON THE VOLUME
OF SEPARABLE STATES

In this section we seek for upper bounds on the volume
Vsep, or, equivalently, lower bounds on the set of insepara
statesVinsep. Several necessary conditions for separabi
have recently been established with the aid of positive ma
We should use them to determine an upper bound onVsep.
As we shall see, these conditions are in some way com
mentary, and can be combined to obtain a better estima
the upper bound ofVsep. Our first estimate relies on th
positivity of the partial transposition. It is valid for any d
mension, but we shall apply it to composite systems of
mension 232. Note that if a state has a partial transpositi
which is not positively defined, then the state is necessa
inseparable. Before proceeding further we should first re
the Schmidt decomposition of a pure stateuC&PH5H1
^H2, dimH15N1 , dimH25N2 , N13N25N,

uC&5 (
i 51

min~N1 ,N2!

ai uei& ^ u f i&, ~20!

where uei& ^ u f i& form a biorthogonal basiŝei uej&5^ f i u f j&
5d i j , and 0<ai<1 denote the coefficients of the Schmi
decomposition with the condition( iai

251. It is straightfor-
ward to see thatPC

T25(uC&^Cu)T2 has eigenvaluesai
2 for i

51, . . . ,min (N1 ,N2) and 6aiaj for iÞ j . We can now
state our first lemma.

Lemma 4.If in the range of a state% there existsuC& such
that

L5^Cu%21uC&21&
1

11maxiÞ j~aiaj !
, ~21!

then% is inseparable.
Proof. According to Ref.@17#, any state% can be ex-

pressed as

%5LPC1~12L!%̃, ~22!

where PC is a projector ontouC& and %̃ is a ~positively
defined! state. Thus

%T25LPC
T21~12L!%̃T2. ~23!

Recall that for anyN1 or N2, the eigenvalues of%̃T2 belong
to the interval@2 1

2 ,1#. Let uCneg& denote the eigenvecto
corresponding to the minimal eigenvalue
PC

T2 : 2maxiÞ j (aiaj ). We thus have

^Cnegu%T2uCneg&<2L„maxiÞ j~aiaj !…112L,0,
~24!

becausê Cnegu%̃T2uCneg&<1. The above inequality implies
that%T2 is not positively defined when condition~21! holds,
and therefore% is not separable. Note, that the lemma 4 c
be applied in particular to the eigenvectors of%.
f
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e-
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Lemma 5.If % has an eigenvectoruC& corresponding to
the eigenvalueL such that the condition~21! holds, then%
is inseparable.

The eigenvalueL can fulfill the above condition if and
only if it is the largest eigenvalue, because it must be lar
than 2

3 . The corresponding normalized eigenvector, howev
is absolutely arbitrary, and, according to invariant meas
on the group, it can be generated simply by a uniform pr
ability on theN-dimensional unit sphere. This implies, as w
shall see below, that the Schmidt coefficientsai are also
absolutely arbitrary and distributed uniformly on the octa
of the AN-dimensional sphere.

Consider the N15N25K case. Any vector in
(N5K2)-dimensional space from the unit sphere can be r
resented by a row of complex numbersxi with the condition
( i

Nuxi
2u51. In any product basis, we can view it as aK3K

matrix Ci j with i , j 51, . . . ,K, and with the condition
Tr(C†C)51. We seek the uniform distribution on the set
such matrices. But, from the polar decomposition theore
any matrix of such a type can be represented in the form

C5U8DU ~25!

where U8 and U are some unitary matrices, whileD is a
diagonal matrix with non-negative elements~eigenvalues!.
These eigenvalues are nothing else butai . The reason is tha
the above form, which is the analog of the spectral deco
position of the Hermitian matrix, is at the same time t
Schmidt decomposition written in the matrix notation. In o
case~taking into account the above-mentioned trace con
tion!, the spectrum ofD is represented by the point belong
ing to the octant area of the sphere. This leads to the mea

m8~C!5n„U8~K !…n„U~K !…m~D !, ~26!

where the first two measures are Haar measures on the
tary groupU(K), and the last one is the uniform~Lebesgue!
measure on the octant of the ball inK-dimensional space
Similar results can be straightforwardly generalized for
casesN1ÞN2.

If one calculates now measure~26! for uC&, and combines
it with the uniform measure on the simplexmn , one could
estimate an upper bound of separable states:

m~Ssep!<12E Q„max
i

L i2@11maxiÞ j~aiaj !#
21

…

3dm8~C!dmn , ~27!

whereQ denotes the Heaviside function. The double integ
tion over the unitary groups that containsm8(C) can be
easily performed, since neitherL i nor ai depend on the di-
rection of uC&. This is the first qualitative argument that th
measure of inseparable states does not vanish.

Moreover, recently@18# a new separability condition ha
been introduced with the aid of positive maps condition@10#:
if the state% is separable, thenI ^ %12% must be positive,
where%1 is the reduced density matrix. It implies for an
uC& that Tr@(I ^ %1)PC#>Tr(%PC). Straightforward esti-
mation tells us that for any separable state it must hold
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^Cu%uC&<maxiai
2 , whereai are again the Schmidt decom

position coefficients ofC. That implies a lemma analogou
to lemma 4.

Lemma 6.If in the range of a state% there existsuC& such
that

L5^Cu%uC&.maxiai
2 , ~28!

then% is inseparable.
This lemma is neither stronger nor weaker than lemma

If we apply it to eigenvectors of%, however, the relevan
eigenvalue need not be the maximal. In the case 232 we can
combine both conditions~lemmas 4-6! to obtain a better es
timate on the upper bound ofm(Ssep)

12m~Ssep!>
4

VDVoct

3E
0

1

dL1E
0

12L1
dL2E

0

12L12L2
dL3

3E
a1>0

da1E
a2>0

da2

3Q@L12~11a1a2!21#Q„L12max~a1
2 ,a2

2!…

3d~a1
21a2

221!. ~29!

Notice that in the above expression the first three integ
are over the eigenvalues of% that are located in the simple
D, whereas the remaining two integrals are on the eigen
ues ofD from the octant area of the sphere. The integrals
be calculated analytically, but the resulting expressions
very complex. After a tedious, but straightforward, calcu
tion we obtain

m~Ssep!<0.863. ~30!

In general for an arbitrary dimensionN5N13N2 andK
5min(N1 ,N2); 12m(Ssep) can be estimated from below b
a boundb(N1 ,N2) using the above method. This bound,
the other hand, can be estimated from above by the volu
of the ‘‘corners’’ of the simplexD of the sides 12(1/K)
regardless of the uniform measure on pure states, by se
it equal to unity there. This follows from the fact that cond
tion ~28! can only then be fulfilled, when an eigenvalue of%
is larger than maxiai

2>1/K. The relative volume of such cor
ners equalsN@12(1/K)#N21. Keeping formula~20! in mind
the above simple estimation leads to the following corolla

Corollary. Consider a quantum systemPH1^H2,
where dimH15N1 , dimH25N2 , N5N13N2, and K
5min(N1,N2). Then using lemmas 4–6, the volume of sep
rable states is restricted from above by

m~Ssep!<12b~N1 ,N2!, ~31!

where

b~N1 ,N2!<S 12
1

K D N21

. ~32!

The volume@Eq. ~32!#, however, converges asymptot
cally to the value 1 asN1 andN2 grow, so that in the limit of
4.

ls

l-
n
re
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-

large N we obtain a trivial resultm(Ssep),1. At the same
time, the numerical results which we shall present sub
quently strongly suggest that there should exist an up
bound form(Ssep) converging to zero. So far, the rigorou
proof that in the limit of higher dimensionsm(Ssep)→0 re-
mains an open problem.

V. INSEPARABLE STATES WITH POSITIVE
PARTIAL TRANSPOSITION

As it was mentioned in Sec. I, forN>8, there are states
which are inseparable but have positive partial transposi
@8,10#. Moreover, it was recently shown that all states
such type represent ‘‘bound’’ entanglement in the sense
they cannot be distilled to the singlet form@9#. The immedi-
ate question that arises is how frequently such peculiar st
appear in the set of all the states of a given composite
tem. This question is related to the role of time reversal
the context of entanglement of mixed states@6,7#. Below we
provide a qualitative argument that the volume of the se
those states is also nonzero.

Lemma 7.For N>8, the set of inseparable states wi
positive partial transposition includes a nonempty ball.

Proof. Consider the two sets of quantum states for so
composite system: the set of separable statesSsepand the set
of states with positive partial transpositionT. The first of
them is convex and compact. The second one is a con
set.3 Since positivity of partial transposition is necessary
separability, we have obviouslySsepPT. Consider any state
s belonging toT but not toSsep ~we know that forN>8
such states exist!. Let us take the ballB(r ,% I) around the
maximally chaotic state% I such that the wholeB(r ,% I) be-
longs toSsep ~the ball can be in principle defined in an arb
trary norm, as all norms are topologically equivalent; cf. S
III !. Obviously such a ball exists; otherwise% I would belong
to the boundary ofSsep. It can be shown that the latter woul
contradict the fact of a nonzero volume~see Sec. III!. Con-
sider the sequence of balls obtained fromB(r ,% I) by a trans-
lation of the center r , and a rescalingBn5B„r /n,@1
2(1/n)#s1(1/n)% I…. SomeBn’s have to include no sepa
rable states. Otherwise, if anyBn included some separabl
states, e.g.,%n

sep, by virtue of compactivity ofSsep, the state
s would be separable as the limit of a sequence of separ
states%n

sep. Hence someBn0
’s do not belong to set of sepa

rable states. But on the other hand, any state fromBn0
is a

convex combination of elements ofT. Thus the whole ball
Bn0

belongs toT, as the latter is a convex set. In this way w

have shown that there is some ballBn0
,T that does not

intersect withSsep. But the inseparable states with positiv
partial transposition are just the ones belonging toT and not
to Ssep. This ends the proof of the lemma.

VI. NUMERICAL RESULTS

In this section we provide rather precise estimates of
measurem(Ssep) for N54 and 6, as well as upper bounds

3In fact it is also compact, but we shall not need this prope
here.
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such measure forN.6. Our results are obtained numer
cally. This section is self-contained, in the sense that it
be read directly without passing though the more techn
sections III–V. It also includes the results obtained in the
previous sections.

A. Estimation of volume of separable states

Our goal is to estimate the volume of the set of separa
statesm(Ssep). For simplicity we discuss states consisting
two subsystems. Any state describing a mixture ofN1- and
N2-dimensional subspaces may be represented by a pos
defined (N1N2)3(N1N2) Hermitian matrix % with trace
equal to unity.%T2 denotes, as before, the matrix partia
transposed with respect to the second subsystem. As m
tioned previously, if% is separable, then necessarily%T2 is
positive @11#. Moreover, for the simplest 232 and 233
problems this condition is also a sufficient one@10#, which is
not true in the general caseN>8 @8,10#. Therefore, the set o
separable states isa subsetof states with positive partia
transpositions. Thus, in order to estimate the volume of se
rable states from above, it is sufficient to find the volume
the set of states with positive partial transpositions.

Let us remind the reader that, according to Sec. II, a
state~any density matrix! can be represented in a familyP of
complete sets of orthogonal projectors, and the simplexn
representing all possible spectra,

S5P3n. ~33!

On the other hand, any element ofP can be represented by
unitary transformation, and any element ofn as a diagonal
matrix D with the matrix elementsL i j 5d i j L i , such that
they fulfill ( i 51

N L i51. Such a representation corresponds
the form

%5UDU†. ~34!

Thus a uniform distribution on the set of all density matric
represented by Eq.~33! is constructed naturally by postula
ing an uniform distribution on unitary transformationsU(N)
~the Haar measure!, and an uniform distribution on diagona
matricesD.

We have numerically calculated the volume of the set
matrices with positive partial transpose, and in such a w
have estimated the volume of the separable states. An a
rithm to generate randomU(N) matrices was recently give
in Refs.@13,14#. The random diagonal matrixD fulfills that
( i 51

N L i51, so the vectorL̃5(L1 , . . . ,LN) is localized on
the (N21)-dimensional simplexn ~see Sec. II!. Physically
speaking, no component of this vector is distinguished in
sense. Random vectorsL̃ are thus generateduniformly on
this subspace according to the simple method describe
Appendix A.

The numeric algorithm is then straightforward: first, w
generate random density matrices of any sizeN5N13N2;
second, we construct their partial transpositions; and fina
we diagonalize them and we check whether their eigenva
l i ; i 51, . . . ,N are all positive. This procedure has been
peated several million times in order to obtain an accur
on the order of 1

1000.
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We should recall that in previous sections we have
tained rigorous analytical lower and upper bounds
m(Ssep), i.e., we have proven that 0,m(Ssep),1. The lower
bounds follow from the fact that the states sufficiently clo
to the totally mixed state are separable for allN. We have
also shown that states which have sufficiently large part
pation ratio~i.e. which are sufficiently mixed! have a posi-
tive partial transpose, and are thus separable forN54 and 6.
On the other hand, the upper bounds come from the fact
matrices with large eigenvalues corresponding to an
tangled eigenvector, are necessarily inseparable. Let us
note the measurem(Ssep) in the N13N2 case byPN13N2

.

Our analytical bounds for the cases 232 and 233 are sum-
marized below:

0.302,P232,0.863, 0.056,P233 . ~35!

Our numerical results agree with these bounds, but to
surprise the probability that a mixed state%PH23H2 is
separable exceeds 50%. The results are

P232'0.63260.002 and P233'0.38460.002.
~36!

For higher dimensions, our results are summarized in Fig
This figure displays the probabilityPN that the partially
transposed matrix%T2 is positive as a function ofN5N1
3N2. For N54 and 6, this is just the required probability o
encountering a separable state, while forN.6 it gives an
upper bound for this quantity.

Due to symmetry of the problemPN13N2
must be equal to

PN23N1
. Numerical results strongly suggest that this quan

depends only on the productN5N13N2, e.g., P236
5P334. Moreover, the dependence can be well reprodu
by an exponential decay. The best fit givesPN;1.8e20.26N.
We conjecture, therefore, that the measure of separable s
decreases exponentially with the size of the system un
consideration.

FIG. 1. Probability of finding a state with a positive parti
transpose as a function of the dimension of the problemN. For N
.6, this gives an upper bound only of the relative volume of t
separable states. Different symbols distinguish different sizes of
subsystem@k52(L), 3(n), and 4(3)], while the solid line rep-
resents the exponential fit.
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B. Purity versus separability

Here we would like to illustrate the physical connecti
between the participation ratio and entanglement, which
already discussed in Sec. III C. We recall that the partici
tion ratio R(%)51/Tr(%2) gives a characterization of th
degree of mixture, and can be interpreted as the effec
number of states on the mixture. We have demonstrated
if the state% has a sufficiently large participation ratio, o
equivalently a sufficiently low von Neuman–Renyi entro
H2(%)5 lnR(%), then its partially tranposed density matrix
always positive. This holds for any arbitraryN, so in particu-
lar it means it is separable forN54 and 6. A more precise
estimate can be performed numerically.

For example consider the (N54)-dimensional Hilbert
space. A manifold of the constant participation ratioR is
given by the ellipsoid in the space of eigenvalues:

L1
21L2

21L3
21~12L12L22L3!251/R.

The probability distributionP(R) obtained numerically us
ing the natural uniform measure on the three-dimensio
~3D! simplex is plotted in Fig. 2~a!. This corresponds to the
relative volume of the cross section of a 3D hypersphere
radiusR21/2 centered at (0,0,0,0), with the simplex defin
by a conditionL11L21L31L451. For N54 andR.3,
we obtainP(R)56pR22A1/R21/4.

We have randomly generated a million points in the
simplex, computed the corresponding participation ratio,
tated the corresponding state by a random unitary matrixU,
and checked whether the generated state is separable.

FIG. 2. Purity and separability in (N54)-dimensional Hilbert
space:~a! probability of finding a quantum state with a participatio
ratio R; ~b! probability of finding a separable stateP232 as a func-
tion of the participation ratioR ~crosses!. All states beyond the
dashed vertical line placed atR5N21 are separable. Circles sho
the mean entanglement^t&, as defined in Appendix B.
s
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procedure allows us to investigate the dependence of
probability of the separable states on the participation ra
Our numerical results are summarized in Fig. 2~b!, and,
again, are fully compatible with the theorems and lemm
obtained in the previous sections.

Similar results and compatibility are obtained for the ca

FIG. 3. Same as in Fig. 2 forN56.

FIG. 4. ~a! Probability of separable statesP232 for N54 vs von
Neumann–Renyi entropies HqP@0,ln(4)# for q51(!),
2(s), 3(n), and 10(L). ~b! Integrated distribution function
D(Hq). The vertical line drawn atD;0.7 corresponds to thes
values ofHq for which Psep51.
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N56. In this case we deal with a 5D simplex. Numeric
data, displayed in Fig. 3, support the general fact that
quantum states withR(%)>N21 have positive partial trans
pose ~i.e., are separable forN54 and 6! in the
N-dimensional Hilbert space. It is interesting to note that
relative amount of separable states unambiguously incre
as the participation ratio grows. Moreover, the mean ‘‘deg
of entanglement’’^t&, defined in Appendix B, decrease
monotonically withR. This illustrates that for composite sys
tems there exist adualismbetween two quantities: the purit
and separability of the state. The purer a quantum state is
smaller its probability of being separable. This conclusion
supported by Fig. 4, where we plot the dependence of
probability of finding a separable statePsep on the values of
several quantum Renyi entropiesHq(%). ForqÞ1 the Renyi
entropy is defined asHq(%):5(ln@Tr%q#)/(12q), while in
the limit q→1 it tends to the standard von Neumann entro
H1(%)52Tr% ln%. We have not been able to generalize r
orously the results forq52, for which large entropy implies
necessarily the positivity of the partial transpose. Nevert
less, the numerical results suggest that a similar result h
for arbitrary values of the Renyi parameterq. All states with
sufficiently largeHq(%) are separable, as shown in Fig. 4~a!.
Can this fact be used to obtain a better lower bound
PN13N2

? Figure 4~b! suggests that this is not the case: t

cumulative probabilityP of Hq(%) attains more or less th
same value for allq at the point at whichPsepbecomes.1.

VII. CONCLUSIONS

Summarizing, we have developed a measurement the
ical approach to the separability-inseparability problem.
this aim, we have proposed a natural measure in the spa
density matrices% on the N-dimensional space. We hav
proven that, under this measure, the set of separable s
has a nonzero volume, although this volume is not maxim
in the set of all states. Analytical lower and upper bounds
this volume have been found forN5232 and N5233
cases. We have also provided qualitative evidence that
N>8 the peculiar set of inseparable states with positive p
tial transposition has, under this measure, a nonzero volu

We have used Monte Carlo simulations to estimate w
much higher precision the volume of separable states.
numerical simulations give strong evidence that this volu
decreases exponentially with the dimension of the compo
quantum system. Finally, we have also discussed the dua
between purity and separability, and have shown that w
entanglement is typical of pure states, separability is c
nected with quantum mixtures.

Several questions concerning this subject remain stil
open problems, and, so far, we have not been able to p
them rigorously. Particularly challenging are the two follow
ing related questions.~i! Does the volume of the set of sep
rable states really go to zero as the dimension of the c
posite systemN grows, and how fast?~ii ! Does the set of
separable states really have a volume strictly smaller than
volume of the set of states with a positive partial transpo
l
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APPENDIX A: GENERATION OF UNIFORM
DISTRIBUTION ON THE SIMPLEX

Our aim is to construct the uniform distribution of th
points on the manifold given by( i 51

N L i51, where each
componentL i is non-negative. Letj i ; i 51, . . . ,N21 be in-
dependent random numbers generated uniformly in the in
val (0,1). We start with uniform distributionsinside the (N
21)-dimensional simplexDn21 defined by( i 51

N21L i,1. Its
volume is proportional to the product)k51

N21xk
N212kdxk

5)k51
N21d@xk

N2k#, which enables us to find the required de
sities for each component. Since the vertex of the simp
DN21 is situated at$0, . . . ,0%, the largest weight correspond
to the small values ofx1. Therefore,

L1512j1
1/~N21! ,

L25@12j2
1/~N22!#~12L1!,

Lk5@12jk
1/~N2k!#S 12 (

i 51

k21

L i D ,

•••

LN215@12jN21#S 12 (
i 51

N22

L i D .

Eventually the last componentLN is already determined as

LN512 (
i 51

N21

L i .

The vectorL̃5$L1 , . . . ,LN% constructed in this way is dis
tributed uniformly in the requested subspace. An alterna
procedure, albeit more time consuming, is to take any ve
of anN3N auxiliary random unitary matrixV and obtain the
random vector asLk5uVk ju2 with arbitrary j .

APPENDIX B:
AVERAGED ‘‘DEGREE OF ENTANGLEMENT’’

The problem of defining a quantity capable of measur
a ‘‘degree of entanglement’’ is a subject of several rec
studies@19–22#. Let us define, for a given density matrix%,
the quantity
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t:5(
i 51

N

ul i8u21,

where l i8 ,i 51, . . . ,N denotes the eigenvalues of the pa
tially transposed matrix%T2. For any separable matrix a
eigenvalues are positive; its trace is equal to unity andt is
equal to zero. On the other hand, for the maximally e
tangled states belonging to a 232 system, the spectrum o
eigenvaluesl8 consists of$2 1

2 , 1
2 , 1

2 , 1
2 %, so thatt51. More-

over, for the often studied 232 Werner states@1# depending
on the parameterx, the quantityt vanishes forx, 2

3 ~sepa-
r,

v

t-

nt

nt

A

-

rable states! and equalst5(3x22)/(423x) for entangled
states (23 <x<1).

We could not resist the temptation to investigate the m
value of t averaged over random density matrices genera
as described above. For the 232 problem the mean valuêt&
equals 0.057 and increases to 0.076 for the 233 problem.
For large systems this quantity seems to saturate att;0.10,
as the ratio of the matrices with positive values oft ~some
eigenvalues of%T2 are negative! tends to unity. Moreover, as
shown in Figs. 2~b! and 3~b!, the average degree of entangl
ment^t& decreases monotonically with the participation ra
R, which provides a quantitative characterization of the re
tion between the entanglement and purity of mixed quant
states.
ys.
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