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Volume of the set of separable states
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The question of how many entangled or, respectively, separable states there are in the set of all quantum
states is considered. We propose a natural measure in the space of density matriescribing
N-dimensional quantum systems. We prove that, under this measure, the set of separable states possesses a
nonzero volume. Analytical lower and upper bounds of this volume are also derivét=f@rx 2 andN=2
X 3 cases. Finally, numerical Monte Carlo calculations allow us to estimate the volume of separable states,
providing numerical evidence that it decreases exponentially with the dimension of the composite system. We
have also analyzed a conditional measure of separability under the condition of fixed purity. Our results display
a clear dualism between purity and separability: entanglement is typical of pure states, while separability is
connected with quantum mixtures. In particular, states of sufficiently low purity are necessarily separable.
[S1050-294{@8)02808-X

PACS numbes): 03.67—a, 42.50.Dv, 89.76:¢c

I. INTRODUCTION often has to rely on numerical simulations. It is then impor-
tant to know to what extent entangled quantum states may be

The question of quantum inseparability and entanglementonsidered as typical. Finally, the third reason has a physical
of mixed states has attracted much attention recently. Thierigin. The physical meaning of separability has recently
problem is, by far, more complicated than the analogous onbeen associated with the possibility of partial time reversal
for pure state$1], and involves subtle effects like “hidden [6] (see also Ref.7]). Separable states of composite systems
nonlocality” [2] or “distillation of entanglement’[3,4].  allow time reversal in one subsystem, without losing their
Generally speaking, one is interested in inseparable states pbysical relevance. However, for a system of a dimension
the states containing Einstein-Podolsky-Rosen correlation®y=8, the fact that a state admits partial time reversal is not
In fact, all inseparable mixed states have a nonzero “ensufficient to assure separability, and counterexamples have
tanglement of formation”[5] which means that to build been found8]. Moreover, it has recently been shown that
them a nonzero amount of pure entangled states is needed.mene of those counterexamples can be distilled to a singlet
particular if a source emits pairs of particlesinknownpure ~ form [9]. Therefore, it seems pertinent to investigate how
states, so that they form a quantum ensemble described by fiequently such peculiar states appear. At first glance it
inseparable density matrix, then it follows that the sourceseems quite likely that such states form a set of measure
mustemit some entangled pairs with a nonzero probability.zero, and that from a measurement theoretical point of view
In this sense the inseparable mixed states can be viewed H¥e set of separable states and states that admit partial time
entangled, in correspondence to the entangled pure statesreversal have equal volumes.

One of the fundamental questions concerning these sub- In this paper we make an attempt to answer at least the
jects is to estimate how many entangl@iéentanglegistates  two first of the above-formulated questions. We also give a
exist among all quantum states. More precisely, one can corgualitative argument of why the last conjecture fails. To this
sider the problem of quantum separability or inseparabilityaim we propose a simple and natural measure on th& skt
from a measurement theoretical point of view, and ask abouiensity matrices acting on a finite-dimensional Hilbert space
relative volumes of both sets. There are three main reasorfs. Using this measure we estimate the relative volume of the
of importance in this problem. The first reason, of someset of separable states,,. The upperlower) bound on this
philosophical implication, may be contained in the questions/olume is obviously the lowefuppe) bound on the relative
“Is the world more classicabr more quantur® Does it con-  volume of the set of inseparabl@ntangled states Sse,
tain more quantum-correlatg@ntangled states than classi- =S\ Sy,
cally correlated ones?” The second reason has a more prac- The paper is organized as follows. Sec. Il contains our
tical origin. Analyzing some features of entanglement, onelefinition of the natural measure & In Sec. lll, we recall

basic definitions of separable states, and prove that, for any
compound systens, the volume 0fSge,is nonzero regard-
*Permanent address: Instytut Fizyki Smoluchowskiego, Uniwerless of the number of subsystems it contains andfiitite)
sytet Jagielloaki, Reymonta 4, 30-059 Krakg Poland. dimension. This is achieved by proving the existence of a

1050-2947/98/5@)/88310)/$15.00 PRA 58 883 © 1998 The American Physical Society



884 ZYCZKOWSKI, HORODECKI, SANPERA, AND LEWENSTEIN PRA 58

topological lower bound of this volume. Better lower boundsfor any projectorP. Any state represented by a density ma-
are also calculated analytically by analyzing the relation betrix ¢ can in turn be represented by its spectral decomposi-
tween the purity of the state and its separability. In Sec. IV tion:

analytic upper bounds on the volume &, are found. The

study of inseparable states with positive partial transposition N N

is presented in Sec. V. In Sec. VI, we present estimates on o= Z APy, 2 A=1, A,=0, 2

the volume of separable states obtained by the Monte Carlo n=1 n=1

numerical simulations. This section is self-contained, and

also includes a simplified corollary of the results of SecswhereP,, form a complete set of orthogonal projectors. Thus
lI-V, and a discussion of the dualism between purity andthe set of states can be viewed as a Cartesian product of sets:
separability. We conjecture that the volume of separable

states decreases exponentially with the dimension of the Hil- S=PXA. 3
bert space. Finally, Sec. VII contains our conclusions and
open questions. The setP denotes the family of complete sets of orthonormal

The reader should note that Secs. II-V have a rather for:
mal mathematical character. The results of these sectior{)

provide a rigorous base for the numerical calculations of Sec:Dy the Haar measure on the group of unitary matrldés)

VI, but detailed knowledge of the proofs is by no means ntegration over the se® thus amounts to an integration of
necessary to unde(stand the main message of the paper. ttﬁ% corresponding angles and phaseblidimensional com-
reader who is not interested in such rigorous proofs of th

resented results mav well skip Secs. 1=V and ao straiah lex space that determine the families of orthonormal projec-
FO Secs. VI and VI y P ' ’ 9 IMtors (or, alternatively speaking, the unitary matrix that diago-

nalizesp).

The symbolA in Eq. (3) represents there the set of all
Ay’s, which is a subset of theN—1)-dimensional linear
submanifold of real spadé™, defined by the trace condition,

Let us consider a set of states inMrdimensional Hilbert 2r’:|:1An:1' Geometrically,A is defined as a convex hull
space. In particular, ¥ may describe a composite system (i.€., a set of all convex combinations of the edge pgints

rojectors{P;}\_,, =N_,P,=1, wherel is the identity ma-
X. There exist the unique, uniform measuren P induced

Il. NATURAL MEASURE OF THE SET
OF QUANTUM STATES

with m component subsystemsH=&™, %, where A=con{xeR:x=(0,...,%,...,0),i=1,... N},
M, N;=N. Since the simplexA is. a subset of theN— 1)-dimensioqal
An operatore acting on’ describes astateif Tro=1 hyperplane, there exist a natural measureZorwhich is
and if o is a positive operator, i.e., defined as a usual normalized Lebesgue measyre; on
RN~1. More specifically, any measurable functiéf.) of
Tr(eP)=0, (1) A4, ..., Ay can be integrated with the measure

N—-1

11 1 N 1 (1 1
—f dAl---f dAnF(AL, .. ANSI D A—1 :—f dAl---f dAn_1f| Aqy oo A= 2 ALl @
Vslo 0 T Vslo 0 0

where the normalization constant equals the volume of (A,B)=Tr(B'A). (6)
the setA in RN"1, whereass( ) denotes Dirac’s delta dis-
tribution. The two above-discussed measures induce a natu-

ral measure ors: It induces a natural norrta trace norm
m=vXLy-q. ®) [|A[|=VTr(ATA) (7)

which, according to the condition dif<«, is topologically
equivalent to all other norms a4, in particular to the norm
A. Preliminaries—separable states ||Al]"=Tr|A|. Furthermore, let us recall the following.

Throughout this paper we shall assume that the Hilbert Definition 1.The stateg acting on the Hilbert spacg(

space of the considered quantum system has an arbitrary bt/11® M2 is called separabteif it can be approximated in

finite dimension. To make further considerations more clearth® trace norm by the states of the form

we start from the following notation and definitions. Recall

first that the spacel of operators acting oft{ constitute a

new Hilbert spacda so-called Hilbert-Schmidt spacwith 1The presented definition of separable states is due to WEther

the scalar product who called them classically correlated states.

lll. VOLUME OF THE SET OF SEPARABLE STATES
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k 5 Lemma 2.If the Hermitian operatorAe A satisfies
e=2, piei®0;, 8  (A,®",P;)=0 for any product projectors " ;P;, then it
=t is a trivial zero one.

Proof. Let us consider an arbitrary orthogonah the
sense of scalar produ¢6)] product Hermitian basis in the
space of operatorgl, i.e., a basis such that any of its ele-
ments is a product of Hermitian matricéer instance, in the

product pure states, i.e., in those cases the ‘Lapproximationzxz case the basis could consist of products of Pauli matri-
part of the definition is redundant. ceso,® oy, With n,m=0,1,2,3 andoy=1). Hermicity as-

It has also been showfii1] that the necessary condition SU'eS that any element of the basis can be written as a real
for separability of the state is positivity of its partial trans- combination of product projectors. Any coefficient of the

positione T2. The latter is defined in an arbitrary orthonormal €xpansion ofA in this basis is given by the scalar prod(}
product ba5i$fi>®|fj> as a matrix with elements: of A and the corresponding basis element. From the general

assumption of formulas of typfA,® ™ ;P;)=0, we obtain

QLzm,nn,z(fm|®<fm,|QT2|fn>®|fn,>:an,’nm,_ 9) immediately that all expansion coefficients must vanish.

’ HenceA must be equal to the zero operator. We can now
Although the matrixg "2 depends on the used basis, its ei- Propose the following theorem.
genvalues do not. Consequently, for any state the above con- Theorem 1. Let A, be a simplex defined as
dition can be checked usiran arbitrary product orthonor- A .=cony;e RN:yi=ex;+(1—€)z;i=1,... N;z=(1/
mal basis’ For systems of dimensionsx2 and 2x3 the N, ...,1N)}. Let us define a se@,=PXx A .. Then there
partial transposition condition is also a sufficient di@],  exists some positive such thatQ C Seep, WhereSge,repre-
and thus the set of separable states is completely characteents the set of separable states.
ized by this condition. The definition of separable states can The meaning of the above theorem is straightforward. It
be easily generalized to systems composed of more than tW§roposes that all states in the sufficiently small neighborhood

wherep; andp; are states ofi{; andH,, respectively.
Usually one deals with a finite-dimensional Hilbert space

dimH=N. For this case it has been shoy8] that any sepa-

rable state can be written as a convex combinatiofinite

subsystems. of the maximally mixed state,=1/N [which is represented
Definition 2. The statep acting on the Hilbert spacg{ in A as a pointz;=(1/N, ... ,1N) for any chosen spectral
=®|L,H, is called separable if it can be approximated in thegecomposition of unifyare necessarily separable. Note that
trace norm by the states of the form by definition, the simplex\ . has edges times smaller than
. A, 30 that its volumqf(AE)zeZﬂM(A)z eV1, since ac-
_ m | cording to our normalizatio =1.
o= igl Pi® =10 (10 Progf .Suppose, conversmél(y, t)hat for any positivthe set

Q. contains some inseparable st@tgse,. It is easy to see
wherep! are states oft, . Straightforward generalization of that then there must exist a sequence of inseparable states
the proof about decomposition from RéB] gives us the @insepCONVergent to the maximally mixed stagg. Accord-
possibility of omitting the approximation part in the defini- ing to lemma 1 and theorem 1 from RéL0], there exist a

tion. sequence of operatofs, separating the stat@é:wepfrom the
Lemma 1Any separable state of a system composed by stateg, in the sense that for any it holds that(A,, 0insep
m subsystems can be written as <0 and(A,,¢,)=0. Moreover, from the quoted results it

follows that(A,,0)=0 for any o € S, Let us normalize

k . . =
_ b <N?2 the operators A, by introducing A,=A,/||A.I([|Al]
e .21 PiPprog: k=N @ V{A'A)). These operators satisfy
where Py, are pure product states having the (A1, 0hsep<0, (A,,0)=0 foranyoeSsp (12

m-decomposable forny | ;P,, whereP, are projectors act-
ing onH, . It is worth mentioning that minimal decomposi-

tions withk=N can be always found faN=4 [6,12]. In particular it holds tha{A,,o,)=0. From construction,
the sequenceA, belongs to the sphere in the finite-
B. Existence of nonzero lower bound dimensional spaced. As the latter is a compact set, the

for the volume of separable states sequence includes some subsequékigg which is conver-

We shall prove now that the volume of the set of sepa-gent to some nonzero operatby (||A, ||=1). From Eq(12)
rable states is nonzero independently of the dimension of thand continuity of the scalar product, it follows that the limit
Hilbert space and the number of subsystemsomposing it.  operator also satisfies
For our purposes we first prove the following simple lemma.

(A, ,0)=0 foranyo e S (13
2As the full transposition of a positive operator is also positive,
positivity of the partial transpositiop "2 is equivalent to positivity
of the partial transpositiog ™t (defined in an analogous way Now using Eq.(12) and the Schwarz inequality, we obtain



886 ZYCZKOWSKI, HORODECKI, SANPERA, AND LEWENSTEIN PRA 58

0<(A.. 0 =(A 01— 0"V (K onK) of the state, together with other quantum Renyi entropies
(Anito1€1) = (Ant €1~ Cinsep) + {Anik » Cinsep Hq(e)=(In[Tre"])/(1—q) is used, forg+#1, as a measure
<(Rnw 01— Qmskce);><||An(k)||||Ql —Qi?](ske);“:”Ql_ Qir;](sng“, of how much a given state is mixed. It has also been applied

for the derivation of some necessary conditions of separabil-
(14 ity in Ref. [16]. In Sec. VI, we shall demonstrate, using
numerical simulations, that the participation ratamd other
von Neumann—Renyi entropiesllows one to establish a
dualism between purity and separability of the states of com-
posite systems. In this subsection we use it to calculate a
natural lower bound on the volume of separable states for
dimensionsN=4 and 6. For this purpose consider the fol-
lowing lemma.

Taking the limit with respect t&, we obtain

TrA, =(A, ,0))= lim (An(k)'QI):O- (15
k— oo

HenceA, is traceless, which is in contradiction with Eq.

(13). Indeed, if the ope_rato?k* is to be nontrivial(the con- Lemma 3If the statep satisfies

struction implies its unit normthen there must exist some

product stateP ,,=®|L,P' such that(A, Py #0 (see R(¢)=N—-1, (18

lemma 2. Since, on the other hand, one requires the trace of

A. to vanish. one obtains tha(ﬂ Porod = _@ | whereN is the dimension of{, thenp "2 is positive defined,
* ’ *x * 1 . . .

~Ppod. Hence, one of the separ’;ble statas’ i.e., its spectruns(o '2) belongs to the simplexX.

=Poogs 0" =[U(N=1)](1-P,o) violates condition _Proof. Let us denote byg(r,P) the ball in the spacg™
(13), which gives the expected contradiction. The aboveVith radiusr and centeP, and bySy(r,P) its surface. Con-
theorem leads immediately to the following one. Q|t|on (18) is |nvar2|ant with Tregpect to _the !oartlal tranTspOS|-
Theorem 2The measurg.(Ss,) of separable states is a ton. because Tg%) =Tr((¢ ?)7). That implies thas(e 2)
nonzero one. In particular there exists always samed € Bn(r,z) with r=1/yN—1 and z=(1N, ... ,IN). Let

such that the following inequality holds: us define the Nl—1)-dimensional linear manifold\y_ 4
={x=(Xq, ... Xn),ZL,x;=1}. We only need to show that
(Ssep=u(L)=€""1>0. (16)  its intersection with the ball is included in the simplé,

i.e., that the new N-—1)-dimensional ball By._,

As an illustration of the above theorem, let us consider the=B(r,z)N My_,CA. This can be seen in the following
2X2 or 2x3 cases =4 and 6 for which separability is  way. It follows, from the high symmetry of the sphere and
equivalent to the positivity of the partial transposition. It is the invariance of the simplex under cyclic permutations of
easy to see that the spectrum of the partially transposed deBoordinates, that the center of this intersection is again
sity matrix must belong to the intervak3,1]. Hence any  Hence the radius’ of By_, can be calculated immediately
state of the formo=(1—p)(I/N)+ pg, for an arbitraryg by taking the distance from an arbitrary point from the sur-
andp=<2/(2+N), has a positively defined partial transposi- face Sy(r.z)NMy-, [say, for example from the point
tion, and thus is separable for the considered cases. As tH{@,1N—1,...,1N—1) to the pointz]. It is elementary to
maximal value ofp is 3 or 7, this means that the value ef  show thatr’=1/{N(N—1). On the other hand, one can cal-
in the above theorem can be estimated justbyr  for N culate the maximal radius” of the ball of the type
=4 or 6, respectively. In Sec. Ill C we shall show that thoseBy,_,(r",z) included inA by calculating the minimal dis-

bounds can be significantly improved. tance ofz to the boundary ofA. To this aim we have to
minimize (")?>=3=N,(x;—1/N)2 with the constraints
C. Purity and separability Ei’\'zlxi=0, andxy=0. Using Lagrange multipliers we im-

As we have shown, all states in the small enough neighMediately obtainr”=r", and henceBy._, belongs toA,
borhood of the totally mixed statg,=1/N are separable. On which ends' the proof. - .
the other hand, we know that in the subspace of all pure Now using t_he e>_<pI|C|t expressions f‘(’{,_‘f)‘g Nv_ollume
states, the measure of separable states is equal t6Zeto  ©f @ (N—1)-dimensional ball (Vy(r)=m re
is, therefore, interesting to investigate the relationship bel [(N—1)/2]), and for the volume of the simplex belong-
tween entanglement and mixture of quantum states. A qualing to the manifoldMy_,[V = YN/(N=1)1], one can ob-
tative characterization of the degree of mixture is provided@in the lower bound of the volume of states with positive
by the von Neumann entrogt;(0) = — Tr(gIng). Another  Partial transposition,
quantity, called the participation ratio,

(N=1)17(N-172

™NT .
(17) NN/Z(N_l)(Nl)/ZF(N;—l)

(19

R(@)=——,
() Ted

is often more convenient for calculations. It varies from theRecalling that for Hilbert spaces of dimensidds-2X 2 and

unity (for pure statesto N (the totally mixed stat@,), and N=2X3 the states with positive partial transposition are the

may be interpreted as an effective number of states in theeparable states, E(.9) leads directly to the following theo-

mixture. This quantity, applied in solid-state physics a longrem.

time ago[15], is related to the von Neumann—Renyi entropy Theorem 3.If the participation ratio satisfiedR()

of order 2,H,(0)=InR(p). The latter, called also the purity =3(R(¢)=5) for N=4 (N=6) then the stat® is sepa-
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rable. Therefore, the measuidSsep) Of separable states is  Lemma 5lf ¢ has an eigenvectd¥’) corresponding to
restricted from below by the inequalite(Ssep= /643  the eigenvalue\ such that the conditiof21) holds, thene

~0.302 forN=4, and 872/625,5=0.056 forN="6. is inseparable. _ o
The eigenvalueA can fulfill the above condition if and
IV. UPPER BOUNDS ON THE VOLUME only if it is the largest eigenvalue, because it must be larger
' OF SEPARABLE STATES than. The corresponding normalized eigenvector, however,

is absolutely arbitrary, and, according to invariant measure

In this section we seek for upper bounds on the volume obn the group, it can be generated simply by a uniform prob-
Vsep OF, €quivalently, lower bounds on the set of inseparableability on theN-dimensional unit sphere. This implies, as we
statesVi,sep. Several necessary conditions for separabilityshall see below, that the Schmidt coefficiemtsare also
have recently been established with the aid of positive mapsbsolutely arbitrary and distributed uniformly on the octant
We should use them to determine an upper bound/ Q. of the \/N-dimensional sphere.
As we shall see, these conditions are in some way comple- Consider the N;=N,=K case. Any vector in
mentary, and can be combined to obtain a better estimate ¢ =K?)-dimensional space from the unit sphere can be rep-
the upper bound oW, Our first estimate relies on the resented by a row of complex numbegswith the condition
positivity of the partial transposition. It is valid for any di- ziN|Xi2| =1. In any product basis, we can view it aa K
mension, but we shall apply it to composite systems of dimatrix C;; with i,j=1,... K, and with the condition
mension 2. Note that if a state has a partial transpositionTy(c*C)=1. We seek the uniform distribution on the set of
which is not positively defined, then the state is necessarilgych matrices. But, from the polar decomposition theorem,

inseparable. Before proceeding further we should first recaliny matrix of such a type can be represented in the form
the Schmidt decomposition of a pure stdté)e H="H;

®H2, dimH1=N1, dimszNz, N]_X NZZN, C=U'DU (25)
min(N1,N5)

[wy=" > ale)olf), (200 WwhereU’ and U are some unitary matrices, whil is a

i=1 diagonal matrix with non-negative elemern(&igenvalues

These eigenvalues are nothing else&utThe reason is that

where[e;)®|f;) form a biorthogonal basie;|e;)=(fi|f;)  he above form, which is the analog of the spectral decom-

=3djj, and Osa;<1 denote the coe;‘ﬂuents_ of the Schmidt yosition of the Hermitian matrix, is at the same time the

decomposition with the conditioli;ai=1. It is straightfor-  gchmidt decomposition written in the matrix notation. In our

ward to see thaP,?=(|W)(¥|)™2 has eigenvaluea? for i case(taking into account the above-mentioned trace condi-

=1,...,min(N;,N;) and +aja; for i#j. We can now tion), the spectrum oD is represented by the point belong-

state our first lemma. ing to the octant area of the sphere. This leads to the measure
Lemma 4lf in the range of a state there exist§¥') such

that u' (W) =v(U’ (K)»(U(K)u(D), (26)

I — (21)  Where the first two measures are Haar measures on the uni-
1+max.j(aa) tary groupU(K), and the last one is the uniforthebesgug
measure on the octant of the ball Krdimensional space.
Similar results can be straightforwardly generalized for the
casesN,# N,.

If one calculates now measui26) for |¥'), and combines
it with the uniform measure on the simplex, , one could
estimate an upper bound of separable states:

A=(¥[e Hw)™Y)

theng is inseparable.
Proof. According to Ref.[17], any stateg can be ex-
pressed as

0=APy+(1-A)p, (22)

where Py, is a projector ontgW¥) and ¢ is a (positively
defined state. Thus M(Sse;)$1—f ®(m_axAi—[1+maxﬂ-(aiaj)]*l)
|

eTe=AP2+(1-A)pT2, (23
Xdu'(V)dus (27)
Recall that for anyN; or N,, the eigenvalues o "2 belong
to the interval[ —3,1]. Let |¥ ., denote the eigenvector where® denotes the Heaviside function. The double integra-
corresponding to the minimal eigenvalue  of tion over the unitary groups that contaips (V) can be

p\sz; —max.j(a;a;). We thus have easily performed, since neithdr; nor a; depend on the di-
rection of|W). This is the first qualitative argument that the
<\[/neJQT2|\Irne£>g — A(maxj(aa;))+1-A<0, measure of inseparable states does not vanish.
(24) Moreover, recentlyf18] a new separability condition has

5 been introduced with the aid of positive maps condifib@):
because(\I'neJQTZPIfneg)sl. The above inequality implies if the stateg is separable, theh® ¢, — ¢ must be positive,
that ¢ "2 is not positively defined when conditiq@1) holds, ~ where g, is the reduced density matrix. It implies for any
and thereforep is not separable. Note, that the lemma 4 can¥) that T{(I®,)Py]=Tr(oPy). Straightforward esti-
be applied in particular to the eigenvectorsaof mation tells us that for any separable state it must hold that
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(|e|¥)y<maxa?, wherea; are again the Schmidt decom- large N we obtain a trivial resulfu(Sse) <1. At the same
position coefficients oft’. That implies a lemma analogous time, the numerical results which we shall present subse-

to lemma 4. guently strongly suggest that there should exist an upper
Lemma 6lf in the range of a statg there exist$¥) such  bound for u(Ssep converging to zero. So far, the rigorous
that proof that in the limit of higher dimensiong(Ssep) —0 re-
mains an open problem.
A=(¥|e|¥)>maxa, (28)

V. INSEPARABLE STATES WITH POSITIVE

heng is in rable.
thene Is insepa able PARTIAL TRANSPOSITION

This lemma is neither stronger nor weaker than lemma 4.
If we apply it to eigenvectors op, however, the relevant  As it was mentioned in Sec. I, fdd=8, there are states
eigenvalue need not be the maximal. In the cag@2ve can  which are inseparable but have positive partial transposition
combine both conditiondemmas 4-§to obtain a better es- [8,10]. Moreover, it was recently shown that all states of
timate on the upper bound @#(Ssep such type represent “bound” entanglement in the sense that
they cannot be distilled to the singlet fof®]. The immedi-
1— 1(Seep= 4 ate question that arises is how frequently such peculiar states
VaVoc appear in the set of all the states of a given composite sys-
tem. This question is related to the role of time reversal in

X JldAljl AldAzfl M Asz3 the context of entanglement of mixed sta6s/]. Below we
0 0 0 provide a qualitative argument that the volume of the set of
those states is also nonzero.
Xf dalf da, Lemma 7.For N=8, the set of inseparable states with
a;=0 a;=0 positive partial transposition includes a nonempty ball.

_ 2 9 Proof. Consider the two sets of quantum states for some
XO[A1~(1+a13,) 1O(A;—maxay,a3) composite system: the set of separable st8fgsand the set
x 8(ad+ad—1). (29  of states with positive partial transpositidn The first of
them is convex and compact. The second one is a convex
Notice that in the above expression the first three integralset® Since positivity of partial transposition is necessary for
are over the eigenvalues pfthat are located in the simplex separability, we have obvious.,c T. Consider any state
A, whereas the remaining two integrals are on the eigenvale belonging toT but not to S, (We know that forN=8
ues ofD from the octant area of the sphere. The integrals casuch states existLet us take the balB(r,¢,) around the
be calculated analytically, but the resulting expressions argaximally chaotic stat@, such that the whol®(r,¢,) be-
very complex. After a tedious, but straightforward, calcula-longs toSg, (the ball can be in principle defined in an arbi-
tion we obtain trary norm, as all norms are topologically equivalent; cf. Sec.
[II'). Obviously such a ball exists; otherwigg would belong
(Ssep <0.863. (30 to the boundary 08, It can be shown that the latter would
contradict the fact of a nonzero volunigee Sec. I). Con-

o . : sider the sequence of balls obtained frBigr,0,) by a trans-
=min(N1,N,); 1-1(Sse9 can be estimated from below by lation of the centerr, and a rescalingB,=B(r/n,[1

a boundb(N4,N,) using the above method. This bound, on —(1/n)]o+(1n)e,). SomeB,’s have to include no sepa-

the other hand, can be estimated from above by the V°|umFabI i ;
. Y i x e states. Otherwise, if ary, included some separable
of the "comers” of the simplexA of the sides 1 (1/K) states, e.g.¢,", by virtue of compactivity ofS, the state

regardless Of. the uniform. measure on pure states, by setjcin(g would be separable as the limit of a sequence of separable
it equal to unity there. This follows from the fact that condi- sep

tion (28) can only then be fulfilled, when an eigenvaluegof statesg,™. Hence somdy s do not belong to set of _sepa-
is larger than maa?=1/K. The relative volume of such cor- rable states. But on the other hand, any state fEymis a
ners equal$N[ 1— (1/K)]N 1. Keeping formula20) in mind ~ convex combination of elements @t Thus the whole ball
the above simple estimation leads to the following corollary:B,, belongs toT, as the latter is a convex set. In this way we

Corollqry. Consider. a quantum systene H;Q H,, have shown that there is some bBI,LOCT that does not
where dintt; =N, dimH;=Np, N=NiXN,, and K jntersect withS,.,. But the inseparable states with positive
=min(Ny,Np). Then using lemmas 46, the volume of sepa-pa g transposition are just the ones belonging @nd not
rable states is restricted from above by t0 Sep. This ends the proof of the lemma.

In general for an arbitrary dimensidd=N; XN, andK

S —
#(Sse) <1701 N2, 39 VI. NUMERICAL RESULTS
where . . . . .
In this section we provide rather precise estimates of the
1\N-1 measureu(Sse) for N=4 and 6, as well as upper bounds of
b(N;,Ny) < 1_R> (32

The volume[Eq. (32)], however, converges asymptoti- 3n fact it is also compact, but we shall not need this property
cally to the value 1 abl; andN, grow, so that in the limit of  here.
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such measure foN>6. Our results are obtained numeri- Py
cally. This section is self-contained, in the sense that it can 0.6
be read directly without passing though the more technical
sections 1l1-V. It also includes the results obtained in these

previous sections.
04

A. Estimation of volume of separable states

Our goal is to estimate the volume of the set of separable
statesu(Ssep . For simplicity we discuss states consisting of
two subsystems. Any state describing a mixtureNgf and
N,-dimensional subspaces may be represented by a positive
defined (N;N,) X (N;N,) Hermitian matrix ¢ with trace
equal to unity.o "2 denotes, as before, the matrix partially
transposed with respect to the second subsystem. As men-
tioned previously, ife is separable, then necessardy? is
positive [11]. Moreover, for the simplest 22 and 2x3

0.2

4 8 12 16 20 24 N
FIG. 1. Probability of finding a state with a positive partial
transpose as a function of the dimension of the probidenfror N

. o S S >6, this gives an upper bound only of the relative volume of the
problems this condition is also a sufficient dr#), which is separable states. Different symbols distinguish different sizes of one

not true in the general cadé=8 [8,10]. Therefore, the set of subsystenik=2(% ), 3(A), and 4(<)], while the solid line rep-
separable states ig subsetof states with positive partial resents the exponential fit

transpositions. Thus, in order to estimate the volume of sepa-
rable states from above, it is sufficient to find the volume of

the set of states with positive partial transpositions. We should recall that in previous sections we have ob-

Let us remind the reader that, according to Sec. Il, an)}amed rigorous analytical lower and upper bounds of

state(any density matrixcan be represented in a famiof 'g (SS%F)' ;'Eil" Wef hav?hpr?vetnﬂt]h?t:r?u (?5‘;3< 1.ﬁ:|_'h_e Iﬁwelr
complete sets of orthogonal projectors, and the simglex tOl:r:] St tOIIOW FO”(; tetac at the Sb? efs Sl‘l;illl\(;\llenhy close
representing all possible spectra, 0 the tolally mixed stale aré separable for € have

also shown that states which have sufficiently large partici-

S=PXA. (33 pation ratio(i.e. which are sufficiently mixedhave a posi-

tive partial transpose, and are thus separabl&fert and 6.
On the other hand, any element®fcan be represented by a On the other hand, the upper bounds come from the fact that
unitary transformation, and any element/fas a diagonal Matrices with large eigenvalues corresponding to an en-
matrix D with the matrix elements\;;=&;A;, such that tangled eigenvector, are_necessarlly inseparable. Let us de-
they fulfill =N ,A;=1. Such a representation corresponds to"0té the measurg:(Ssep in the Ny XN, case byPy, xn,:
the form Our analytical bounds for the casex 2 and 2< 3 are sum-
marized below:
e=UDU". (34)
0.30<P,,,<0.863, 0.056P,3. (35
Thus a uniform distribution on the set of all density matrices
represented by Eq33) is constructed naturally by postulat-
ing an uniform distribution on unitary transformatiodgN)
(the Haar measuyeand an uniform distribution on diagonal
matricesD.
We have numerically calculated the volume of the set of

matrices with positive partial transpose, and in such a way  P2x2~0.632£0.002 and P,3~0.384+0.002.
have estimated the volume of the separable states. An algo- (36)
rithm to generate randotd (N) matrices was recently given
in Refs.[13,14. The random diagonal matri® fulfills that ~ For higher dimensions, our results are summarized in Fig. 1.
SN A{=1, so the vectoA =(A,, ...,Ay) is localized on This figure displ_ay$ the probabilityy that the partially
the (N—1)-dimensional simplex\ (see Sec. )l Physically ~ transposed matrix 2 is positive as a function oN=N,
speaking, no component of this vector is distinguished in any<N2- FOrN=4 and 6, this is just the required probability of

sense. Random vectors are thus generatedniformly on encountering a separable state, while for-6 it gives an

this subspace according to the simple method described iRPRer bound for this quantity.

Appendix A. Due to symmetry of the probleiy ., must be gqual to.
The numeric algorithm is then straightforward: first, we Pn,xn,- Numerical results strongly suggest that this quantity

generate random density matrices of any gize N; X Ny; depends only on the produdi=N;XN,, e.g., Poyg

second, we construct their partial transpositions; and finally= P3. 4. Moreover, the dependence can be well reproduced

we diagonalize them and we check whether their eigenvaludsy an exponential decay. The best fit giveg~1.8e~ 2N,

\i;i=1,... N are all positive. This procedure has been re-We conjecture, therefore, that the measure of separable states

peated several million times in order to obtain an accuracylecreases exponentially with the size of the system under

on the order ofrgss. consideration.

Our numerical results agree with these bounds, but to our
surprise the probability that a mixed stapes Ho X H, is
separable exceeds 50%. The results are
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P(R) P(R)
0.6 0.6 a)
04 04
0.2 0.2
0.0 0.0
1.0 . 1.0 ]
Pyx2 b) P2x3 | b)
05 0.5
"0 2 3 4 W3 e 5 6
R R
FIG. 2. Purity and separability inN=4)-dimensional Hilbert FIG. 3. Same as in Fig. 2 fdd=6.

spaceia) probability of finding a quantum state with a participation

ratio R; (b) probability of finding a separable staf ., as a func-  procedure allows us to investigate the dependence of the
tion of the participation raticR (crosses All states beyond the probability of the separable states on the participation ratio.
dashed vertical line placed R=N—1 are separable. Circles show Qur numerical results are summarized in Figb)2 and,

the mean entangleme(t), as defined in Appendix B. again, are fully compatible with the theorems and lemmas
obtained in the previous sections.
B. Purity versus separability Similar results and compatibility are obtained for the case

Here we would like to illustrate the physical connection
between the participation ratio and entanglement, which was 1.0
already discussed in Sec. lll C. We recall that the participa- P22
tion ratio R(¢)=1/Tr(e?) gives a characterization of the
degree of mixture, and can be interpreted as the effective
number of states on the mixture. We have demonstrated that 05
if the statep has a sufficiently large participation ratio, or
equivalently a sufficiently low von Neuman—Renyi entropy
H,(0)=InR(p), then its partially tranposed density matrix is
always positive. This holds for any arbitray so in particu-
lar it means it is separable fdd=4 and 6. A more precise
estimate can be performed numerically.

For example consider theNE4)-dimensional Hilbert
space. A manifold of the constant participation raRois
given by the ellipsoid in the space of eigenvalues:

AZ+AZ+AS+H(1-A—A,—Ag)?=1R.

The probability distributionP(R) obtained numerically us-
ing the natural uniform measure on the three-dimensional
(3D) simplex is plotted in Fig. @). This corresponds to the
relative volume of the cross section of a 3D hypersphere of

radiusR™*2 centered at (0,0,0,0), with the simplex defined '00.0 0.4 0.8 12 H
by a conditionA;+A,+Az+A,=1. ForN=4 andR>3, q
we obtainP(R)=67R™?\1/R— 1/4. FIG. 4. (a) Probability of separable stat€ ., for N=4 vs von

We have I’andomly generated a million pOintS in the SDNeumann_Renyi entropies qu[0’|n(4)] for q:l(*)’
simplex, computed the corresponding participation ratio, r02(0), 3(A), and 10©). (b) Integrated distribution function
tated the corresponding state by a random unitary métrix D(H,). The vertical line drawn aD~0.7 corresponds to these
and checked whether the generated state is separable. Thisiues ofH, for which Pe=1.
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smaller its probability of being separable. This conclusion is

supported by Fig. 4, where we plot the dependence of the APPENDIX A: GENERATION OF UNIFORM
probability of finding a separable stafge,on the values of DISTRIBUTION ON THE SIMPLEX
several quantum Renyi entropieig(¢). Forg# 1 the Renyi
entropy is defined aBly(¢):=(In[Tre])/(1—q), while in
the limitg— 1 it tends to the standard von Neumann entrop

Ha(e)="—Trelne. We have not been able to generalize rig- dependent random numbers generated uniformly in the inter
ly th Its fog=2, f hich | impli )
orously the results - for which farge entropy implies val (0,1). We start with uniform distributionsside the (N

necessarily the positivity of the partial transpose. Neverthe : ) . : N—1
less, the numerical results suggest that a similar result holds 1)-dimensional simplex,,, defined by;_{'A;<1. lts

H : N-1,N—-1-k
for arbitrary values of the Renyi parametgrAll states with volume is proportional to the produdi ;X dx

_N=14r N—K ; - ;
sufficiently largeH (o) are separable, as shown in Figad ~ — lk=1d[X ], which enables us to find the required den-
sities for each component. Since the vertex of the simplex

Ay_q is situated af0, . . . ,@, the largest weight corresponds
to the small values of;. Therefore,

Our aim is to construct the uniform distribution of the
ypoints on the manifold given byEiN=lAi=1, where each
component\; is non-negative. Lef;;i=1,... N—1 be in-

Pn,xn,? Figure 4b) suggests that this is not the case: the

cumulative probabilityP of H,(e) attains more or less the
same value for alyj at the point at whiclPs,becomes=1. A=1-— ﬁ/(N_l)

Ap=[1-&™P](1-Ay),
VII. CONCLUSIONS -1

Summarizing, we have developed a measurement theoret- A=[1- fﬁ/(N_k)]( 1- 2 Ai) :

ical approach to the s