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Bures distance between two displaced thermal states
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The Bures distance between two displaced thermal states and the corresponding geometric quantities~sta-
tistical metric, volume element, scalar curvature! are computed. Under nonunitary~dissipative! dynamics, the
statistical distance shows the same general features previously reported in the literature by Braunstein and
Milburn for two-state systems. The scalar curvature turns out to have new interesting properties when com-
pared to the curvature associated with squeezed thermal states.@S1050-2947~98!08408-X#

PACS number~s!: 03.65.Bz, 89.70.1c
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In elementary quantum mechanics, there is a natural R
mannian structure defined on the projective Hilbert sp
~the space of ‘‘rays’’!: a distance between two rays and
corresponding metric~the Fubini-Study metric! can be ob-
tained as the smallest transition probability between any
vector states belonging to each of the two rays. The g
metrical structure of mixed~impure! states can be reveale
by applying the same idea this time for the purifications
two such states~a purification of a mixed stater is a pure
state in an extended Hilbert space havingr as the reduced
density matrix!. The result is the so-called Bures~or statisti-
cal! distance and metric.

However, due to the mathematical difficulties in comp
ing this metric, few concrete results have been found in
geometry of mixed~impure! quantum states. The Bures di
tance and the metric have been computed for the spin-1

2 sys-
tem @1# and for the spin-1 system@2#. Recently the Bures
distance between two undisplaced thermal squeezed s
was obtained@3#. This is a remarkable result because it is t
first example of this type in an infinite dimensional Hilbe
space. A general formula for the transition probability b
tween any impure state and a pure squeezed state wa
tained in@4#. A class of thermal states that is not treated
@3# is that of displaced thermal states, also called cohe
thermal states@5#. The main results of this paper are th
formulas for the transition probability and the Bures distan
between two displaced thermal states.

The transition probability between two quantum states
scribed by the density matricesr1 and r2 in the Hilbert
spaceH is given by@6#

P~r1 ,r2!5~TrAAr1r2Ar1!2, ~1!

and the Bures distance is given by

DB
2~r1 ,r2!52@12AP~r1 ,r2!#. ~2!
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The density matrix of a displaced thermal state is para
etrized in the form

r„b,~p,q!…5D~p,q!r~b!D~p,q!†, ~3!

where r(b)5@1/Z(b)#exp(2bH) with H5 1
2 (P2

1Q2), @Q,P#5 i I , Z(b)5Tr exp(2bH)5(2sinhb/2)21,
andD(p,q)5exp i(pQ2qP). Herep andq are the displace-
ments in momentum and coordinate andb is the inverse
temperature. Then, as follows from@3#, one has
Ar„b,(p,q)…5D(p,q)Ar(b)D(p,q)†. It is well known @6#
that the transition probability is invariant under the unita
transformations inH,

P~Ur1U†,Ur2U†!5P~r1 ,r2!, ~4!

and is symmetric

P~r1 ,r2!5P~r2 ,r1!. ~5!

Hence it suffices to compute TrAA†A where A
5Ar„b2 ,(p,q)…Ar(b1) and p5p22p1 , q5q22q1. The
following equation, proven in@7#, allows the computation of
AA†A:

exp$g1@~P2n1!21~Q2v1!2#%

3exp$g2@~P2n2!21~Q2v2!2#%

5exp$~g11g2!@~P2n!21~Q2v!2#1uI %,

~6!

with

u5@~n12n2!21~v12v2!2# f ~g1 ,g2!,

n5n1g~g1 ,g2!1n2g~g2 ,g1!2 i ~v22v1! f ~g1 ,g2!,

and

v5v1g~g1 ,g2!1v2g~g2 ,g1!2 i ~n12n2! f ~g1 ,g2!.

The following notations have been used

f ~g1 ,g2!5
sinhg1sinhg2

sinh~g11g2!
, g~g1 ,g2!5

sinhg1coshg2

sinh~g11g2!
.

~7!

Then

,
-
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A5
1

AZ~b1!Z~b2!
expH 2

~b11b2!

4
@~P2j!2

1~Q2h!2#1tI J , ~8!

with t52(p21q2) f (b1/4,b2/4), j5pg(b2/4,b1/4)
2 iq f (b1/4 ,b2/4) andh5qg(b2/4,b1/4)1 ip f (b1/4,b2/4).
It follows that

A†5
1

AZ~b1!Z~b2!
expH 2

~b11b2!

4
@~P2 j̄ !2

1~Q2h̄ !2#1tI J , ~9!

and

A†A5
1

Z~b1!Z~b2!
expH 2

~b11b2!

2
@~P2 p̃!2

1~Q2q̃!2#1~2t1 t̃ !I J ~10!

where

t̃54~p21q2!
@sinh~b1/4!sinh~b2/4!#2

sinh~b11b2!/2
. ~11!

Because

A†A5
1

Z~b1!Z~b2!
exp~2t1 t̃ !D~ p̃,q̃!

3expH 2
~b11b2!

2
@P21Q2#J D~ p̃,q̃!†, ~12!

it follows that

AA†A5
1

AZ~b1!Z~b2!
expS t1

t̃

2DD~ p̃,q̃!

3expH 2
~b11b2!

4
@P21Q2#J D~ p̃,q̃!†, ~13!

and

TrAA†A5
Z@~b11b2!/2#

AZ~b1!Z~b2!
expS t1

t̃

2D . ~14!

The main result of the paper is

P~r~b1!,r„b2 ,~p,q!…!

5
Z@~b11b2!/2#2

Z~b1!Z~b2!
expH 2

Z~b11b2!

2Z~b1!Z~b2!
~p21q2!J .

~15!

Now, using Eq.~2!, the statistical distance between any tw
displaced thermal states can be readily obtained.
Whenb2→` the stater„b2 ,(p,q)… becomes a coheren
state and one reobtains the well-known result Eq.~4.4.15! in
Ref. @8#. When bothb1 ,b2→` one obtains also the correc
result Eq.~4.4.7! in Ref. @8#.

The Bures or statistical distance metric is obtained eit
by considering two states close to each other and makin
Taylor expansion with respect to the infinitesimal paramet
or, equivalently, as@3#

dsB
25gmndxmdxn ~16!

5
1

2

d2

dt2
DB

2
„r~b!,r~b1tdb,tdp,tdq!…u t50 , ~17!

which becomes in our case

dsB
25

1

2
tanh

b

2
~dp21dq2!1

1

16~sinh b/2!2
db2. ~18!

What this formula shows is that the square of the infi
tesimal Bures distance consists of two parts: one given
the difference in the displacementsp andq and the other of
thermal origin. For b→` ~pure states! we recover the
Fubini-Study ~Euclidean! metric dsFS

2 5 1
2 (dp21dq2) Eq.

~2.27! of Ref. @9# for coherent states. The thermal pa
1

16 (sinhb/2)22db2, which is obtained from Eq.~18! for dp
5dq50, also appears in Twamley’s formula@Eq. ~29! of
@3## as a squeezing–independent, purely thermal contr
tion.

Under certain classes of Hamiltonian dynamics the te
peratureb may remain constant so only the first term of t
right-hand side of Eq.~18! is responsible for changes in th
statistical distance. But the temperature can be altered
nonunitary transformations. For example, a well-know
model from quantum optics@10# for the damped quantum
oscillator yields the following master equation of the stat
tical matrix r[r„b,(p,q)…:

ṙ52 i @va1a,r#1g↓$@a,ra1#1@ar,a1#%1g↑$@a1,ra#

1@a1r,a#%, ~19!

with a5(1/A2)(Q1 iP), g↓.g↑>0, v.0. With the no-
tationsk[g↓2g↑ andb`[ lng↓ /g↑ it can be shown@10# that
the parametersp, q, and b, which characterize the stat
r(b,(p,q)) at any momentt have the following behavior:

qt5~q0cosvt1p0sin vt !e2kt, ~20!

pt5~2q0sin vt1p0cosvt !e2kt, ~21!

coth
b t

2
5e22ktcoth

b0

2
1~12e22kt!coth

b`

2
. ~22!

The rate of change in the statistical distance is then

S ds

dt D
2

5
1

2
tanh

b t

2
~k21v2!~qt

21pt
2!

1k2sinh2
b t

2 S coth
b t

2
2coth

b`

2 D 2

. ~23!
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A similar quantity has been previously analyzed by Brau
stein and Milburn for a two-state system under nonunit
dynamics@11#. They found that (ds/dt)→` at t50 if the
system is initially in a pure state. From Eq.~23! we see that
if b0→` ~initial pure coherent state!, then indeed
(ds/dt) t50→`. At t→`, the thermal contribution ofds/dt
vanishes, a feature that also appeared in@11#. The practical
consequence of Braunstein and Milburn’s results was an
provement in the accuracy of ‘‘one-tick’’ clocks; we can s
now that their conclusions can be extended from tw
dimensional to infinite-dimensional spaces.

The volume element isdv5 1
8 sech(b/2)dpdqdb. It was

noticed in the literature@12# that, since the Bures metric i
proportional~up to a factor of four! to the statistical distin-
guishability metric@13#, the volume element has the signifi
cance of a quantum analog of the~classical! Jeffrey’s prior
@12#. A similar quantity has been calculated and studied
finite-dimensional systems~spin 1

2 and 1) and for squeeze
thermal states@12#.

The scalar curvature associated with the Riemannian m
ric ~18! is found to be

R526114 tanh2
b

2
. ~24!
-
y
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-
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A new feature with respect to the result of@3# is the vanish-
ing of the scalar curvature forb52tanh21A3/7 and any
value of p and q. Also, for b→` the curvature is 8, so it
does not diverge. This shows that, whileds is indeed a mea-
sure of the distinguishability of two states,R has a more
complicated significance than that suggested in@3#, charac-
terizing locally a relation between not only two, but three~or
more! states. Indeed, the connection between Bures dista
and statistical distinguishability provides a natural partiti
of the three-dimensional Riemannian manifold defined
Eq. ~18! into cells@3,11,13#: by imposing a maximum num
ber of generalized measurements performed on identic
prepared copies of the system, one can fix the dimension
the cells to arbitrary~small! values. The manifold is therefor
discretized into minimal distinguishable states~each such
state being contained in a different cell!. Now, roughly
speaking, the curvatureR is a local measure of the number o
states~as defined by the above partition! equally distinguish-
able from a certain stateb,(p,q)—R actually shows how big
is the difference between the number of cells intersected b
sphere centered inb,(p,q) and the corresponding numbe
for a flat space. Also, one can see that this number depe
only of temperature, and not of the other parameters of
state—a property that was also noticed for squeezed the
states.
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