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Connection between the closeness of classical orbits and the factorization
of the radial Schrodinger equation
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It is shown that the Runge-Lenz vector of a hydrogen atom is equivalent to the raising and lowering
operators derived from the factorization of the radial Sdhrger equation. A similar situation exists for an
isotropic harmonic oscillator. It is seen that there exists an intimate relation between the conserved quantities
responsible for the closeness of classical orbits on the one side and the quantum-mechanical raising and
lowering operators on the other side, which is physically connected with the dynamical symmetry of the
system considered. Some discussions are made about the factorization of a one-dimensional system.
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I. INTRODUCTION which the length of the semimajor axis isnE«x=1) a
= 1/2|E| and the eccentricity i®= \1— 2|E[/L%. The pe-
The factorization method of Schiimger [1,2] was ex- riod of motion isT= 1/v = 7|E| %7 2=27ma%? (Kepler's
tended to address the radial Satirger equation of a par- law), wherev is the frequency. This is guaranteed by the
ticle in a central potentiaV/(r) [2—7]. It was shown[2,3,7]  eXistence of an additional conserved quanti;y—t_he Runge-
that only for two kinds of potential, the Coulomb potential &Nz vectora=pxI—r/r [12,13. In fact, the direction o
and isotropic harmonic oscillator, can the radial Sdimger 1S Just that of the major axis of the elliptic orbit and the
equation be factorized. Particularly, it is noted] that for a  Magnitude ofa is the eccentricity lel=e). The existence of
hydrogen atom, directly from the factorization, we can de_Runge-Lenz vector implies that the Coulomb potentlal has a
. ! - . ' higher dynamical symmetr®, than its geometric symmetry
rive only one kind of raising and Io_vvermg operatar. (1) O, [12]. However, it is seen that-1=0, anda?=2HI?+1,
(with selection rulesAl==*1, An, =1, An=0, wherel g5 the number of independent conserved quantities is 5, and
andn, are the angular momentum and radial quantum numthe hydrogen atom is a completely degenerate system. A
ber, andn=1+n,+1), but for an isotropic harmonic oscil- similar situation exists for an isotropic harmonic oscillator.
lator, we can derive two kinds of angular momentum and In Sec. Il it will be shown that for a two-dimension@D)
energy raising and lowering operatofs. (Al=*1, An, hydrogen atom, the Runge-Lenz vector itself is equivalent to
=%1, An=%1) and B, (Al=+1, An,=0, An=+1, the raising and lowering operators derived from the factor-
wheren=1+2n,). This reminds us of the famous Bertrand ization of radial Schrdinger equation. In Sec. Ill, it will be
theorem[8] in classical mechanics, which says: “the only Shown that, for a 3D hydrogen atom, from the Runge-Lenz
central forces that result in close orbits for all bound particles/€CtOr @ and angular momenturiy one can construct three

are the inverse square law and Hooke's law.” It is expectedNds Of raising and lowering operatora =0, Al==1,

that the factorizability of radial Schdinger equation may be .Am:o'i 1), whiqh are equivalent to 'the'raising and Iqwer-
intimately connected with the closeness of classical orbits. N9 operators derived from the factorization of radial Sehro

In classical mechanics, the maximum number of func-dinger equation. In Sec. IV we will address isotropic har-

tional independent conserved quantities of a closed Hamillonic osc!llators, and in terms of the two kinds of raising
tonian system wittN degrees of freedom isNe—1 [9]. A and lowering operators one can construct the conserved

system with independent conserved quantities no fewer thagluantities characterizing elliptic orbits. In Sec. V we discuss

N is called integrabld10]. An integrable classical system the facto_rizability of th‘_a Schpﬁnger equatio_n for_a 1D sys-
with N+ A independent conserved quantities<(R<N tem,_whlch has been mv_estlga!ted extenswel_y in supersym-
~1) is called A-fold degenerate, and there exist linear metric quantum mechanics. Finally, conclusions and sum-

relations with integer coefficients between tidrequencies mary are given in Sec. VI.
w; (i=1,2,..,N) of the systen{11]. A classical system for
A=N-1 is called a completely degenerate system, and
there remains only one independent frequency. For example, A. Runge-Lenz vector and a simple algebraic approach

it is well known that for a particle in a central potentigr), to the eigenvalue problem

apart from the Hamiltonian, the angular momentuis also For a 2D hydrogen atom, the quantum version of the
conserved, and the particle in a general central pote¥ifidl  Rynge-Lenz vector reads Em=e=1)

is onefold degenerate and moves in a plane, but the planar

Il. 2D HYDROGEN ATOM

orbits are in general not closed. However, for a classical a= 1 (pxl-Ixp)—e,=pxl—ip—e,, (1
particle in an attractive Coulomb potenti@V/(r)=—«/r], P P
the orbit is always closed fany continuousiegative energy  where p=p,i+p,j, I1=1k=(xp,—ypy)k, p= OE+Y2. 1t

(E<0) and positive angular momentum i.e., an ellipse, of is easily shown that
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[Izvax]:iay’[lzray]:_iax’[axray]:_iZle- (2 JE _<(?H(m)> |m|>0 ©
={——")=—>0.
In the subspace spanned by the bound states with eigenen- o|m| Jjm| p
ergy E (E<0),a, and a, may be replaced byA, . . .
_ 1o ey _ Thus, for states with a given radial quantum number, the
V2Ea.Ay V2Ea,. LetA,=l,, then energyE increases monotonically withm|. Thus,m=0 for
[An Agl=ieasA 3 the ground state. On the other hand, for a gi#ejm| must
ar aBy™ys

have an upper limit, sayny (my>0) . Then
i.e., Ay, Ay, andA, constitute a S@ Lie algebra, and the
eigenvalue oA%?= — 1 — 1/2E is mg(mo+1), my=0,1,2,... A, (Mo) Xm (p):(
Therefore, the energy eigenvalue of a 2D hydrogen atom is 0

d mgt+ 1/2+ 1
dp p mg+1/2

XmO(P) =0.
(10

E=E,=—-1/2n>, n=(my+1/2)=1/2,3/2,5/2,... .(4
" (Mo ) @ So Xmo(p)~pm0+1’2e*9’(m0*1’2). From Eg.(10) we have

Alternatively, defininga.=a,*iay, it is easily shown A_(my+ 1)A+(mo))(mo(p)=0, and using Egs(7) and (8),
that we get

[Iz.a:]=*a., ) [D(m) — LMo+ 1/2)*] xm ()

H =[—2Em,~ UMo+1/2%]xm (p)=0. (1D
aa,=3(2,+1)+1, (6) ° °
Thus  we  get Ep=-1/2(me+1/2)>.  Using
i.e., a. are just the raising and lowering operators of theA_(mp),A_(mg—1),..., successively operating ogy, (p).
n':atgneftl(c—l (?U)am_tlhm 'numbein. th ||§”:>h den0|t|§ tf;e e'%?”' one may get all the degenerate eigenstates belongifig, to
state of {,1,) with eigenvaluesg,m), thena..|Em) are the _ N B - )
eigenstates dfl with energyE and the eigenstates bfwith Xmo m(P), M=Mo,Mo Lo Mo- AIternatlvekl, the dtzagen
eigenvaluesi=1). For a given energy eigenvallg the e_rate eigenstates  belonging  to E,=—1/2n ,_(n
allowed |m| must have an upper liming, anda, [Em,) = L/2,3/2,5/2,.) may be denoted by xnm(p),/m|=n
—0. Hence a_a,|Emy)=0. Using Eq. (6), we get _1\/%’?;23/72;;/;1”1’0’ and it can beshown th_at)(n,m(p)
(E/2) (2mo+1)?=1, which is just Eq.(4). The degenerate _ P e PF(—n,.2m[+1,2p/n), whe_reF is the con-
states belonging td, may be expressed a&|E,m),k fl_ugnltzhypergeiulnzmetnc function, andh,=(n—1/2)—|m|
=0,1,..,2ny, and the degeneracy is nZ(2my+1) ~ ' - (N—172).

=1,3,5,... .
C. Equivalence of the Runge-Lenz vector and the raising

- . . o nd | rin rator
B. Raising and lowering operators derived from factorization and lowering operators

. For a 2D hydrogen atom, the Runge-Lenz vedtrhas
The energy eigenstate of a 2D hydrogen atom may b?wo componerzltsa ganda ora. —a +gia We Wiclcft;how
i i i X Y * x— 1y -
i:ltl(osen _aesim;he Slr/n\?—lt?S%Ui 1elgzensta;endHf,I20, IS:I thata. are equivalent to the angular momentum raising and
P $) =" xm(p)/Np,m=021,22,..., andxm(p) lowering operatorsA. (m). In polar coordinates. can be
d2 m?-1/4 2

isfiesH(m) xm(p) =Exm(p), or expressed as
| 1 a_ll L
235" Y
D(m)=—-2H(m)=—— +—.

D(M)xm(p)=Amxm(p), Am=—2E, (7
dp? p? p Operating on the eigenfunctic®i™?R.,(p), the raising and
lowering of m in the angular function are accomplished by
Directly from the factorization one may derive the raisinge™'?, anda. are equivalent to the operataais (m) operat-

12

and lowering operatdi7], ing onRy(p),
d m+1/2 1 a mz) 10 m }
=—= a.(m=||¥m—+—| -z —*——
Av(m) dp p T ® =(m) [<+ dp p| 2dp 2p
d m-1/2 1 <1+ ) J  m(mx1/2)
- _ =—|z=m|—+ ——>—-1. (13
A-(m) dp+ p m—1/2’ 2 ap P

whose selection rules aE=0 (An=0) and Am=+1. Apart from a trivial constant factora.(m) may be ex-
UsingA. (m), the energy eigenvalues and eigenstates can b¥essed as

easily obtained. From Eq7) it is seen thaE depends only 1

on the absolute value ah. Using the Hellmann-Feynman a,(m)= i_ T+

d m+ 1/2’
theorem p P (14)
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_(9+m ! +1_0a+1 O _+1_1
a,(m)—% ; r—yt T sin Y7 E[CO (Il _+1_1y)
The operatorsa..(m) operating onR,,(p) may be replaced —sind(e 1] +e 1) ,)] - cosh. (19

by A..(m) operating onxm(p) = VoRn(p)

Ml 1
M= i

19 get

d m—1/2 1

Am)= ot e

which are just the angular momentum raising and lowering
operators(8) derived directly from the factorization of the
Schralinger equation.

For a 2D hydrogen atom, apart frol and|,, there
exists an additional conserved quantity—the Runge-Lenz
vector, which guarantees the closeness of classical orbits and
is intimately connected with its dynamical symmetry SO
When such a dynamical symmetry is brokée.g., the
screened Coulomb potential teem- 1/r2 is considered in an
alkali-metal atom[9]), the Runge-Lenz vector no longer
keeps constant and the closeness of orbits, in general, will be, ¥
lost[14]. In this case, it can be showi4] thatno angular
momentumraising and lowering operators can be derived
from the factorization of the radial Schiimger equation,
which is consistent with the equivalence of the Runge-Lenz
vector and the angular momentum raising and lowering op-
erators. Therefore, it is understandable that the closeness of

nim=—

Equationg18) and(19) operating on the simultaneous eigen-
function of (H,12,1,), ¥ yim(r,68,0) =Ry (r)Y,m(8,¢), we

d
a.Vgm= iaRnl(r)[(I + 1)dl,imYI+l,mt1

HldiZ1 - (emen)Yi-1m=1]

1

+FRn|(r)[|(| +1)d) +mYis1me1

—1(0+1)d _1—(=m+1)Yi—1m+1] ERp(r)

X[ +mYis1me1—d—1—(=m+1)Yi—1m=1], (20

d
- aRnl(r)[(l +1)CI,mYI+1,m_lCI—l,mYI—l,m]

1
+ FRnl(r)[l(l +1)C|,mYI+1,m

+|(| + 1)CI71,mYlfl,m]

classical orbits of a 2D hydrogen atom is closely connected —Ra(O[CmYirimtCio1mYi—1ml, (21
with the factorization of the radial Schitimger equation, and
both are physically related to the dynamical symmetry. where
Ill. 3D HYDROGEN ATOM . [ (1+1)2—m?
L= V7o oo 2y
Now we address the Runge-Lenz vector for a 3D hydro- (21+1)(21+3)
gen atom,
_ (I+m+1)(I+m+2)
a=px|—ip—rlr, (16) dym= 21+1)(21+3) (22
which has three componentsa,(a,,a,), or (a-=ay i
“ia,,a,), Using Egs.(20) and(21), we may get
S A T Y x2ly l_a, Vom=|5-—-+ R [+1)(1+m+2
A==+ ox oy (=D = e = -2 Wan=| G g Re(DU+D+M+2)
7 d I+1 1
. +
a,= Puly—pylx—ip,—2r. XCmYi+1m™T a-ﬁ-T—l—}
In the spherical coordinate system and a, may be ex- o
pressed as XRp(DI(1=m=1)
9 X (I 1,mYI —1,m (23)
a.==*—[cosd |.—sing e"¢(l,+1)]
ar d |
[ J - N |+azwn|m=—{m—r+m Ry(r)(I1+1)(1—m+1)
F—|sind—1.+cost | .(I,=1)Fsing e*'¢l,(1,+1)
r a6 d oy d 1+1 1
—sing eii(b, (18) I,m I+l,m+1+ a—’_ r I_
X Ry (H)I(1+m)
9114 6(e'?l “19] )~ cow
a,=—|=sing(e'’l_—e —co
Zoor|2 * Xdi—1,—(m+1)Yi-1m+1s (24)
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d other two kinds of angular momentum raising and lowering
la;¥om=—|g; — 7 T 77 |Re(D(+ D) +m+1) operators, which also keeps the energy unchanged,
XA —mYieim-at | et =7

Sinll.mN=(l~1-2)a,~l.a,,

S(n,IT,m))=(,—1+1)a_—I_a,,
Xdi—gm-1Y1-1m-1- (25) (32
S(n,l|,m)=(,+I+2)a_—1_a,.

XRy(H)I(1—m)

Now, we may define two operato&. in terms of the con-
served quantitiesthe Runge-Lenz vector and angular mo- ~ Thus, similar to the situation of a 2D hydrogen atom, we
mentum have shown the equivalence of the conserved quantitigs (
responsible for the closeness of classical orbits on the one
S,=l_a,+(,~-1+1)a,, side and the six angular momentum raising and lowering
(26) operators on the other side. Therefore, it is understandable
S =l_a,+(,+1+2)a,. that there exists an intimate connection between the close-
. ] - ness of classical orbits and the factorization of radial Schro
After completing this work, it was noted that in R¢L5]
d ; o )
— — -+ —|Ry(N(I+1)(21+1) the relatlon_ between the raising and lowering operators and
dr r I+1 the dynamical symmetry of hydrogen atom was addressed
using the group theoretical approach.

S Vhm=

X CI,mYIJrl,m( 0:¢’)
o<a+(I)Rn,(r)Y,+1,m( 0,9), IV. ISOTROPIC HARMONIC OSCILLATORS
d I1+1 1 It is well known that amD isotropic harmonic oscillator
SWom=|gqrt—— —) Rni(r)I(21+1) has the dynamical symmetry SUFor a 3D isotropic har-
dr r I monic oscillator, apart from the Hamiltoniah and angular
XC_1mY)—_1m( 0, b) momentum, there exist five additional conserved quantities,
‘ ’ which constitute a quadruple tensor
xa_(DRy(NY—1m(6,6), (27)
Qxy= XY+ PyPy, Qyz= YyZ+pyp,, Qzx=zZX+ PPy,
where
— 1 2 2 2 2
d | 1 d I1+1 1 Qu=5[(x"=y9) +(px—py1, (33
a=lg v Tirz) +0=lg 77/
(28) 1
Qo=——=[(X*+y*—22%) +(pi+py—2p2)].
which are equivalent to the angular momentum raising and 2\3
lowering operator® . () derived from the factorization of . . .
radial Schidinger equation for a 3D hydrogen atdii It can be shown t_h_at there exist f_our relgtlons among th_e nine
conserved quantities, so a 3D isotropic harmonic oscillator
d I1+1 1 d |1 1 also is a completely degenerate system and moves, in gen-
AL(h= (a T A(|)=(a to- |—>, eral, along an elliptic orbit and the direction of the semiaxes

(29) and eccentricity are characterized by the quadruple tensor. It
has been showf?,3,7] that the radial Schidinger equation
operating on the radial wave function,(r)=rR,,(r). Itis ~ Of an isotropic harmonlc oscillator as well as a hydrogen
seen that the effect &, (S.) is to increasddecreasgthe ~ @tom can be factorized. Nevertheless, it was noted that for an
angular momenturhby 1, but keep the energy and magnetic iS0tropic harmonic oscillatotwo (rather than onekinds of
quantum numbem unchangednote that considering=1  aising and lowering operators can be derived directly from
+n,+1,A, (A_) decreasefincreasesthe radial quantum factorization. Moreover, the selection rules for the raising
numbern, by 1]. Therefore, to clearly indicate the selection @nd lowering operators are quite different for a hydrogen

rules,S, andS_ may be relabeled as atom and an isotropic harmonic oscillator. For a hydrogen
atom, the raising and lowering operators as well as the
S.—S(nIT,m=l_a,+(I,—-1+1)a,, Runge-Lenz vector are conserved quantities, thus the equiva-

(300 lence of the Runge-Lenz vector and the raising and lowering

S_—S(nll,m=l_a,+(l,+1+2)a,. operators are straightforward. For an isotropic harmonic os-

cillator, the two kinds of raising and lowering operatofs.(
It is noted that in the radial Schdiner equation the magne- andB..) themselves are not conserved quantities. Thus the
tite quantum numbem disappears. When the shift af is  equivalence of the raising and lowering operatois. (and
considered, using the Runge-Lenz vectar. (anda,) and B.) and the conserved quantitiésnergy, angular momen-
angular momentum operator.(,l,), one may construct the tum, and quadrupole tensgiis not so straightforward. How-
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ever, it is noted that, though both. andB. are angular
momentum raising and lowering operatosl & +1), the
other selection rules are different, i.e., while. (A_) de-

creasegincreasesboth the radial quantum number and en-

ergy by 1 An,=%1,AE=%1),B, (B_) keeps the radial
guantum numberAn,=0), but increase&ecreaseghe en-

ergy by 1 AE==*1). Therefore, by using these differences,
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b_=e ¢

J + 1| +
% I_) zT P
It is easily shown that, similar to E@5) for a 2D hydrogen

atom, for a 2D isotropic oscillator we have

[lzvai]:iat ![Izvbi]:ibiy

(37

it can be shown that in terms of the two kinds of raising and
lowering operators one can construct the conserved quanti-€., botha.. andb.. are angular momentum raising and low-
ties (energy, angular momentum, and quadrupole temsorsering operators, but unlike the hydrogen atom, hereand

characterizing an elliptic orbit.

For simplicity, we take a 2D isotropic harmonic oscillator
as an example. A 2D isotropic harmonic oscillator has the

dynamical symmetry S4) which is locally isomorphic to
SO, (the dynamical symmetry of a 2D hydrogen ajorror

b. are not conserved quantities,
[H,a.]==a.,[Hb.]==*b.. (38

Therefore, the operators.. and b, themselves cannot be

a classical 2D isotropic harmonic oscillator, the planar orbitdirectly equivalent to the conserved quantities characterizing

is also an ellipse, and the lengths of its semimajor axéd
semiminor axis are determined by the ener§yand angu-
lar momenturmL (2=w=1), E=%(a?+b?), andL=a?b.
The intersection angle of the major axis with the axis is
determined by tan2=Q,,/Q;, and the eccentricity:[ QF,
211/2

+Q1]™

In Ref. [7], it was shown that from the factorization of
radial Schrdinger equation for a 2D isotropic oscillator, two
kinds of raising and lowering operators,. andB.., oper-
ating on the radial wave functiog,(p), can be derived

A.(m) d _mt1/2+
+(M)=—F+ *p,
- d
P p (34)
B.(m) d mx1/2
+(M)= -+ +pP.
* dp o P

The selection rules forA. are Am==1An,=+1AE
=1, and forB., Am=*1An,=0AE==*1. Now, it
will be shown that in terms oA. andB.., the conserved
guantities characterizing a closed ortilie angular momen-
tuml,, energyE, and quadrupole tens@,, andQ,) can be
constructed. The operatofs. may be replaced bw. (m)

andb..(m) operating orRy(p) = xm(p)/p,

(m) d _m+
a.(m=-—F—=p,
d
p P (35)
d m_
b:(m):£+;+p.

When operating on the whole wave functief?R(p),
a..(m) andb.(m) may be replaced bg. andb.,

a, =4 L% +p
+ &p p z ’
1o 1
a_=e " —+—I —p}
1% z ’
p P (36)
I A |
= — - | —
b,=e dp p? P}v

an elliptic orbit. However, it can be shown by straightfor-
ward calculation that, as expected, the conserved quantities
(I, energyE, and quadrupole tensof3; andQ,,) can be
constructed in terms ad.. andb.. as follows:

l,=3(a_a,—b,b_),

H=3%(a_a,+b b_)+1,

(39

Q;=—3i(a_b_+bia,),

i
Qxy: - Z(a,b,—b+a+).

V. 1D SYSTEMS

The Schrdinger’s factorization method and the concept
of raising and lowering operators were extended extensively
in supersymmetric quantum mechanjd$—2Q to treat the
Schralinger equation for a particle in a general 1D potential
V(x). It was shown that for a potentid(x), provided the
ground bound state enerdyy is finite (Eq# —<) and the
ground-state wave functionVy(x) is differentiable, the
Schralinger equation can always be factorized and the cor-
responding raising and lowering operatoks, andA, can be
constructed. It is interesting to note that classical orbits of all
bound particles in a regular 1D potential are obviously
closed. The supersymmetric partner HamiltoniaH,_
=A'A andH,=AA", have the same energy spectea’’
=E,;; (n=0,1,2,..,), except the ground-state energy of
H_ (E{=0), and the eigenstates with the same eigenvalue
of H_ andH, are connected with each other By andA.

It was shown that this is due to the shape invarigi&® of
V(x), which may also be considered as a special kind of
dynamical symmetry.

For a 1D harmonic oscillator, the energy eigenvalues and
eigenstates are well known, which are quite similar to those
for a 3D isotropic harmonic oscillatot £ 0 case. The rais-
ing and lowering operators derived from factorization are
at=(1/y2) (x— d/dx) and a= (1/y/2) (x+ d/dx), which
connect the neighboring eigenstates wihpposite parity
(AN=1). However, it should be noted that the 1D harmonic
oscillator potential formally corresponding to a 3D isotropic
oscillator[V(r)=r?/2,r=0] is
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X212, x=0 B(—0N _( d X ("
M PR 40 (I=OND={xgy ~ g * M5z
whose energy levels arEy=(N+1/2), N=1,3,5,... The
usually adopted 1D harmonic oscillator\&§x) =x?/2 (—o d X n
<x<+) with reflection symmetry, whose levels ais, B(I=0,Nl)=(x&+m—n)M(m> (n>1).
=(N+1/2),N=0,1,2,3,.., and theneighboring eigenstates (44)

are of opposite parity. From this, one can understand why

there exist two kinds of raising and lowering operatdks,

andB.., for annD (n=2) isotropic harmonic oscillator, and

A. andB. are different in form from the operatoss™ and VI. CONCLUSIONS AND SUMMARY

a for a 1D harmonic oscillator._ However, one may use the | the preceding sections we have shown the equivalence
product operator oA andB [7], i.e., the operatoC, as the  qf the raising and lowering operators derived from the fac-
raising and lowering operators connecting the neighboringgyization of the radial Schrbinger equation on the one side
eigenstates with theame parity In fact, for a 3D isotropic  and the conserved quantities responsible for the closeness of

harmonic oscillatof 7] classical orbits on the other side, and from the physical point
) of view, both are intimately connected with the dynamical

C(I=0NT1)= d—+r2—2ri—1 (41) symmetry of hydro_gen atoms and isotropic ha_rmonic oscil-

dr? dr lators. For a classical hydrogen atom, the orbits are always

_ closed forany continuousiegative energf <0 and positive
is the same form as& a= d?/dx* +x*—2xd/dx—1 fora  angular momentuni.>0. In quantum mechanics, both the
1D harmonic oscillator, and both have the selection ruleangular momentum and bound energy eigenvaluesdire

AN=2. crete Thus, it seems understandable that for hydrogen atoms
As for the 1D hydrogen atorf21] with a quite singular there exist four kinds of operators connecting neighboring
potential, energy and angular momentum eigenstates. Particularly,
1 these operators casimultaneouslyraise or lower both the
V(X)=V(—X)= — — (—0<xX<+m®), 42 energy and angular momentum. If the dynamical symmetry
()=V(=x) || ( ) 42 is broken(e.g., the screened Coulomb potentiat 1/r? is

. . . considered in an alkali atomthe Runge-Lenz vector no
to our knowledge, the corresponding Safirger equation Jlonger keeps constant and the closeness of classical drbits,
cannot be factorized. This is understandable because '[‘j%nera] is lost[14]. On the other hand, it is shown4] that
ground-state energ¥qo=—o, and Wo(x)~\4&(x), is not  in this case, only thenergyraising and lowering operators
differentiable at the origin. In fact, the 1D hydrogen atomcan pe constructed from the factorization of the radial Schro
formally corresponding to a 3D hydrogen atofV(r)  dinger equation, buto angular momentunaising and low-
=—1Ir, r>0]is ering operators can be derived. The situation for isotropic
harmonic oscillators is similar. Therefore, it seems under-

(43) standable that there exist simple relations between the raising
o, x<0. and lowering operators in quantum mechanics on the side

) . ) and the conserved quantities charactering the closeness of
For this 1D potential, the energy levels,=—1/2n%, N (jassical orbits on the other side, and both are physically

=1,2,.., arenondegenerate, which are the same as the spegpnnected with the dynamical symmetry of the system con-
tra of | =0 states for a 3D hydrogen atom. Thus it is under-gjgered.

standable why for a 1D hydrogen atom there exists no analo-
gous raising and lowering operatord. connecting
degenerate states with the same energy of a 3D hydrogen ACKNOWLEDGMENTS
atom.
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