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Connection between the closeness of classical orbits and the factorization
of the radial Schrödinger equation

Y. F. Liu, W. J. Huo, and J. Y. Zeng
Department of Physics, Peking University , Beijing, China

~Received 22 September 1997; revised manuscript received 20 March 1998!

It is shown that the Runge-Lenz vector of a hydrogen atom is equivalent to the raising and lowering
operators derived from the factorization of the radial Schro¨dinger equation. A similar situation exists for an
isotropic harmonic oscillator. It is seen that there exists an intimate relation between the conserved quantities
responsible for the closeness of classical orbits on the one side and the quantum-mechanical raising and
lowering operators on the other side, which is physically connected with the dynamical symmetry of the
system considered. Some discussions are made about the factorization of a one-dimensional system.
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I. INTRODUCTION

The factorization method of Schro¨dinger @1,2# was ex-
tended to address the radial Schro¨dinger equation of a par
ticle in a central potentialV(r ) @2–7#. It was shown@2,3,7#
that only for two kinds of potential, the Coulomb potenti
and isotropic harmonic oscillator, can the radial Schro¨dinger
equation be factorized. Particularly, it is noted@7# that for a
hydrogen atom, directly from the factorization, we can d
rive only one kind of raising and lowering operatorA6( l )
~with selection rulesD l 561, Dnr571, Dn50, where l
andnr are the angular momentum and radial quantum nu
ber, andn5 l 1nr11), but for an isotropic harmonic oscil
lator, we can derive two kinds of angular momentum a
energy raising and lowering operatorsA6 (D l 561, Dnr

571, Dn571) and B6 (D l 561, Dnr50, Dn561,
wheren5 l 12nr). This reminds us of the famous Bertran
theorem@8# in classical mechanics, which says: ‘‘the on
central forces that result in close orbits for all bound partic
are the inverse square law and Hooke’s law.’’ It is expec
that the factorizability of radial Schro¨dinger equation may be
intimately connected with the closeness of classical orbit

In classical mechanics, the maximum number of fun
tional independent conserved quantities of a closed Ha
tonian system withN degrees of freedom is 2N21 @9#. A
system with independent conserved quantities no fewer
N is called integrable@10#. An integrable classical system
with N1L independent conserved quantities (0<l<N
21) is calledL-fold degenerate, and there existL linear
relations with integer coefficients between theN frequencies
v i ( i 51,2,...,N) of the system@11#. A classical system for
L5N21 is called a completely degenerate system, a
there remains only one independent frequency. For exam
it is well known that for a particle in a central potentialV(r ),
apart from the Hamiltonian, the angular momentuml is also
conserved, and the particle in a general central potentialV(r )
is onefold degenerate and moves in a plane, but the pl
orbits are in general not closed. However, for a class
particle in an attractive Coulomb potential@V(r )52k/r #,
the orbit is always closed forany continuousnegative energy
(E,0) and positive angular momentumL, i.e., an ellipse, of
PRA 581050-2947/98/58~2!/862~7!/$15.00
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which the length of the semimajor axis is (m5k51) a
5 1/2uEu and the eccentricity ise5A12 2uEu/L2. The pe-
riod of motion isT5 1/n 5puEu23/2/A252pa3/2 ~Kepler’s
law!, wheren is the frequency. This is guaranteed by t
existence of an additional conserved quantity—the Run
Lenz vector,a5p3 l2r /r @12,13#. In fact, the direction ofa
is just that of the major axis of the elliptic orbit and th
magnitude ofa is the eccentricity (zaz5e). The existence of
Runge-Lenz vector implies that the Coulomb potential ha
higher dynamical symmetryO4 than its geometric symmetry
O3 @12#. However, it is seen thata–l50, anda252H l211,
so the number of independent conserved quantities is 5,
the hydrogen atom is a completely degenerate system
similar situation exists for an isotropic harmonic oscillato

In Sec. II it will be shown that for a two-dimensional~2D!
hydrogen atom, the Runge-Lenz vector itself is equivalen
the raising and lowering operators derived from the fact
ization of radial Schro¨dinger equation. In Sec. III, it will be
shown that, for a 3D hydrogen atom, from the Runge-Le
vector a and angular momentuml, one can construct thre
kinds of raising and lowering operators (Dn50, D l 561,
Dm50,61), which are equivalent to the raising and lowe
ing operators derived from the factorization of radial Sch¨-
dinger equation. In Sec. IV we will address isotropic ha
monic oscillators, and in terms of the two kinds of raisin
and lowering operators one can construct the conser
quantities characterizing elliptic orbits. In Sec. V we discu
the factorizability of the Schro¨dinger equation for a 1D sys
tem, which has been investigated extensively in supers
metric quantum mechanics. Finally, conclusions and su
mary are given in Sec. VI.

II. 2D HYDROGEN ATOM

A. Runge-Lenz vector and a simple algebraic approach
to the eigenvalue problem

For a 2D hydrogen atom, the quantum version of t
Runge-Lenz vector reads (\5m5e51)

a5 1
2 ~p3 l2 l3p!2er5p3 l2 ip2er , ~1!

where p5pxi1pyj , l5 l zk5(xpy2ypx)k, r5Ax21y2. It
is easily shown that
862 © 1998 The American Physical Society
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@ l z ,ax#5 iay ,@ l z ,ay#52 iax ,@ax ,ay#52 i2Hl z . ~2!

In the subspace spanned by the bound states with eige
ergy E (E,0),ax and ay may be replaced byAx

5A21/2Eax ,Ay5A21/2Eay . Let Az5 l z , then

@Aa ,Ab#5 i«abgAg , ~3!

i.e., Ax , Ay , and Az constitute a SO3 Lie algebra, and the
eigenvalue ofA252 1

4 2 1/2E is m0(m011), m050,1,2,....
Therefore, the energy eigenvalue of a 2D hydrogen atom

E5En521/2n2, n5~m011/2!51/2,3/2,5/2,... . ~4!

Alternatively, defininga65ax6 iay , it is easily shown
that

@ l z ,a6#56a6 , ~5!

a2a15
H

2
~2l z11!211, ~6!

i.e., a6 are just the raising and lowering operators of t
magnetic quantum numberm. Let uEm& denote the eigen
state of (H,l z) with eigenvalues (E,m), thena6uEm& are the
eigenstates ofH with energyE and the eigenstates ofl z with
eigenvalues (m61). For a given energy eigenvalueE, the
allowed umu must have an upper limitm0, and a1uEm0&
50. Hence a2a1uEm0&50. Using Eq. ~6!, we get
(E/2) (2m011)251, which is just Eq.~4!. The degenerate
states belonging toEn may be expressed asa2

k uEnm0&,k
50,1,...,2m0, and the degeneracy is 2n5(2m011)
51,3,5,... .

B. Raising and lowering operators derived from factorization

The energy eigenstate of a 2D hydrogen atom may
chosen as the simultaneous eigenstate of (H,l z), i.e.,
C(r,f)5eimfxm(r)/Ar,m50,61,62,..., andxm(r) sat-
isfiesH(m)xm(r)5Exm(r), or

D~m!xm~r!5lmxm~r!, lm522E, ~7!

D~m!522H~m!5
d2

dr2
2

m221/4

r2
1

2

r
.

Directly from the factorization one may derive the raisi
and lowering operator@7#,

A1~m!5
d

dr
2

m11/2

r
1

1

m11/2
,

~8!

A2~m!5
d

dr
1

m21/2

r
2

1

m21/2
,

whose selection rules areDE50 (Dn50) and Dm561.
UsingA6(m), the energy eigenvalues and eigenstates ca
easily obtained. From Eq.~7! it is seen thatE depends only
on the absolute value ofm. Using the Hellmann-Feynma
theorem
en-

is

e

be

]E

]umu
5 K ]H~m!

]umu L 5
umu

r2
.0. ~9!

Thus, for states with a given radial quantum number,
energyE increases monotonically withumu. Thus,m50 for
the ground state. On the other hand, for a givenE,umu must
have an upper limit, say,m0 (m0.0) . Then

A1~m0!xm0
~r!5S d

dr
2

m011/2

r
1

1

m011/2Dxm0
~r!50.

~10!

So xm0
(r);rm011/2e2r/(m011/2). From Eq. ~10! we have

A2(m011)A1(m0)xm0
(r)50, and using Eqs.~7! and ~8!,

we get

@D~m0!21/~m011/2!2#xm0
~r!

5@22Em0
21/~m011/2!2#xm0

~r!50. ~11!

Thus we get Em0
521/2(m011/2)2. Using

A2(m0),A2(m021),..., successively operating onxm0
(r),

one may get all the degenerate eigenstates belonging toEm0
,

xm0 ,m(r), m5m0 ,m021,...,2m0. Alternatively, the degen-

erate eigenstates belonging to En521/2n2,(n
51/2,3/2,5/2,...) may be denoted by xn,m(r),umu5n
21/2,n23/2,...,1,0, and it can beshown that xn,m(r)
;r umu11/2e2r/nF(2nr ,2umu11,2r/n), whereF is the con-
fluent hypergeometric function, andnr5(n21/2)2umu
50,1,2,...,(n21/2).

C. Equivalence of the Runge-Lenz vector and the raising
and lowering operators

For a 2D hydrogen atom, the Runge-Lenz vector~1! has
two components,ax anday , or a65ax6 iay . We will show
that a6 are equivalent to the angular momentum raising a
lowering operatorsA6(m). In polar coordinatesa6 can be
expressed as

a65e6 ifF S 7
]

]r
1

1

r
l zD l z2

1

2S ]

]r
7

1

r
l zD21G . ~12!

Operating on the eigenfunctioneimfRm(r), the raising and
lowering of m in the angular function are accomplished b
e6 if, anda6 are equivalent to the operatorsa6(m) operat-
ing on Rm(r),

a6~m!5F S 7m
]

]r
1

m2

r D2
1

2

]

]r
6

m

2r
21G

52S 1

2
6mD ]

]r
1

m~m61/2!

r
21. ~13!

Apart from a trivial constant factor,a6(m) may be ex-
pressed as

a1~m!5
]

]r
2

m

r
1

1

m11/2
,

~14!
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a2~m!5
]

]r
1

m

r
2

1

m21/2
.

The operatorsa6(m) operating onRm(r) may be replaced
by A6(m) operating onxm(r)5ArRm(r)

A1~m!5
]

]r
2

m11/2

r
1

1

m11/2
,

~15!

A2~m!5
]

]r
1

m21/2

r
2

1

m21/2
,

which are just the angular momentum raising and lower
operators~8! derived directly from the factorization of th
Schrödinger equation.

For a 2D hydrogen atom, apart fromH and l z , there
exists an additional conserved quantity—the Runge-L
vector, which guarantees the closeness of classical orbits
is intimately connected with its dynamical symmetry SO3.
When such a dynamical symmetry is broken~e.g., the
screened Coulomb potential term}21/r 2 is considered in an
alkali-metal atom@9#!, the Runge-Lenz vector no longe
keeps constant and the closeness of orbits, in general, wi
lost @14#. In this case, it can be shown@14# that no angular
momentumraising and lowering operators can be deriv
from the factorization of the radial Schro¨dinger equation,
which is consistent with the equivalence of the Runge-Le
vector and the angular momentum raising and lowering
erators. Therefore, it is understandable that the closene
classical orbits of a 2D hydrogen atom is closely connec
with the factorization of the radial Schro¨dinger equation, and
both are physically related to the dynamical symmetry.

III. 3D HYDROGEN ATOM

Now we address the Runge-Lenz vector for a 3D hyd
gen atom,

a5p3 l2 ip2r /r , ~16!

which has three components (ax ,ay ,az), or (a65ax
6 iay ,az),

a657S ]

]x
6 i

]

]yD ~ l z61!6
]

]z
l 62

x6 iy

r
,

~17!

az5pxl y2pyl x2 ipz2z/r .

In the spherical coordinate systema6 and az may be ex-
pressed as

a656
]

]r
@cosu l 62sinu e6 if~ l z61!#

7
1

r Fsinu
]

]u
l 66cosu l 6~ l z61!7sinu e6 ifl z~ l z61!G

2sinu e6 if, ~18!

az5
]

]r F1

2
sinu~eifl 22e2 ifl 1!2cosuG
g

z
nd

be

z
-
of
d

-

1
1

r H sinu
]

]u
1

1

2
@cosu~ l 1l 21 l 2l 1!

2sinu~eifl zl 21e2 ifl zl 1!#J 2cosu. ~19!

Equations~18! and~19! operating on the simultaneous eige
function of (H,l2,l z),Cnlm(r ,u,f)5Rnl(r )Ylm(u,f), we
get

a6Cnlm56
d

dr
Rnl~r !@~ l 11!dl ,6mYl 11,m61

1 ldl 21,2~6m11!Yl 21,m61#

7
1

r
Rnl~r !@ l ~ l 11!dl ,6mYl 11,m61

2 l ~ l 11!dl 21,2~6m11!Yl 21,m61#6Rnl~r !

3@dl ,6mYl 11,m612dl 21,2~6m11!Yl 21,m61#, ~20!

azCnlm52
d

dr
Rnl~r !@~ l 11!cl ,mYl 11,m2 lc l 21,mYl 21,m#

1
1

r
Rnl~r !@ l ~ l 11!cl ,mYl 11,m

1 l ~ l 11!cl 21,mYl 21,m#

2Rnl~r !@cl ,mYl 11,m1cl 21,mYl 21,m#, ~21!

where

cl ,m5A ~ l 11!22m2

~2l 11!~2l 13!
,

dl ,m5A~ l 1m11!~ l 1m12!

~2l 11!~2l 13!
. ~22!

Using Eqs.~20! and ~21!, we may get

l 2a1Cnlm5F d

dr
2

l

r
1

1

l 11GRnl~r !~ l 11!~ l 1m12!

3cl ,mYl 11,m1F d

dr
1

l 11

r
2

1

l G
3Rnl~r !l ~ l 2m21!

3cl 21,mYl 21,m, ~23!

l 1azCnlm52F d

dr
2

l

r
1

1

l 11GRnl~r !~ l 11!~ l 2m11!

3dl ,mYl 11,m111F d

dr
1

l 11

r
2

1

l G
3Rnl~r !l ~ l 1m!

3dl 21,2~m11!Yl 21,m11 , ~24!
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l 2azCnlm52F d

dr
2

l

r
1

1

l 11GRnl~r !~ l 11!~ l 1m11!

3dl ,2mYl 11,m211F d

dr
1

l 11

r
2

1

l G
3Rnl~r !l ~ l 2m!

3dl 21,m21Yl 21,m21 . ~25!

Now, we may define two operatorsS6 in terms of the con-
served quantities~the Runge-Lenz vector and angular m
mentum!

S15 l 2a11~ l z2 l 11!az ,
~26!

S25 l 2a11~ l z1 l 12!az .

It is easily verified that

S1Cnlm5S d

dr
2

l

r
1

1

l 11DRnl~r !~ l 11!~2l 11!

3cl ,mYl 11,m~u,f!

}a1~ l !Rnl~r !Yl 11,m~u,f!,

S2Cnlm5S d

dr
1

l 11

r
2

1

l DRnl~r !l ~2l 11!

3cl 21,mYl 21,m~u,f!

}a2~ l !Rnl~r !Yl 21,m~u,f!, ~27!

where

a1~ l !5S d

dr
2

l

r
1

1

l 11D , a2~ l !5S d

dr
1

l 11

r
2

1

l D ,

~28!

which are equivalent to the angular momentum raising
lowering operatorsA6( l ) derived from the factorization o
radial Schro¨dinger equation for a 3D hydrogen atom@7#

A1~ l !5S d

dr
2

l 11

r
1

1

l 11D , A2~ l !5S d

dr
1

l

r
2

1

l D ,

~29!

operating on the radial wave functionxnl(r )5rRnl(r ). It is
seen that the effect ofS1 (S2) is to increase~decrease! the
angular momentuml by 1, but keep the energy and magne
quantum numberm unchanged@note that consideringn5 l
1nr11, A1 (A2) decreases~increases! the radial quantum
numbernr by 1#. Therefore, to clearly indicate the selectio
rules,S1 andS2 may be relabeled as

S1→S~n,l↑,m!5 l 2a11~ l z2 l 11!az ,
~30!

S2→S~n,l↓,m!5 l 2a11~ l z1 l 12!az .

It is noted that in the radial Schro¨diner equation the magne
tite quantum numberm disappears. When the shift ofm is
considered, using the Runge-Lenz vector (a6 and az) and
angular momentum operator (l 6 ,l z), one may construct the
d

other two kinds of angular momentum raising and loweri
operators, which also keeps the energy unchanged,

S~n,l↑,m↑ !5~ l z1 l 21!a12 l 1az ,
~31!

S~n,l↓,m↑ !5~ l z2 l 22!a12 l 1az ,

S~n,l↑,m↓ !5~ l z2 l 11!a22 l 2az ,
~32!

S~n,l↓,m↓ !5~ l z1 l 12!a22 l 2az .

Thus, similar to the situation of a 2D hydrogen atom, w
have shown the equivalence of the conserved quantitiesl,a)
responsible for the closeness of classical orbits on the
side and the six angular momentum raising and lower
operators on the other side. Therefore, it is understand
that there exists an intimate connection between the clo
ness of classical orbits and the factorization of radial Sch¨-
dinger equation.

After completing this work, it was noted that in Ref.@15#
the relation between the raising and lowering operators
the dynamical symmetry of hydrogen atom was addres
using the group theoretical approach.

IV. ISOTROPIC HARMONIC OSCILLATORS

It is well known that annD isotropic harmonic oscillator
has the dynamical symmetry SUn . For a 3D isotropic har-
monic oscillator, apart from the HamiltonianH and angular
momentuml, there exist five additional conserved quantitie
which constitute a quadruple tensor

Qxy5xy1pxpy , Qyz5yz1pypz , Qzx5zx1pzpx ,

Q15
1

2
@~x22y2!1~px

22py
2!#, ~33!

Q05
1

2A3
@~x21y222z2!1~px

21py
222pz

2!#.

It can be shown that there exist four relations among the n
conserved quantities, so a 3D isotropic harmonic oscilla
also is a completely degenerate system and moves, in
eral, along an elliptic orbit and the direction of the semiax
and eccentricity are characterized by the quadruple tenso
has been shown@2,3,7# that the radial Schro¨dinger equation
of an isotropic harmonic oscillator as well as a hydrog
atom can be factorized. Nevertheless, it was noted that fo
isotropic harmonic oscillator,two ~rather than one! kinds of
raising and lowering operators can be derived directly fr
factorization. Moreover, the selection rules for the raisi
and lowering operators are quite different for a hydrog
atom and an isotropic harmonic oscillator. For a hydrog
atom, the raising and lowering operators as well as
Runge-Lenz vector are conserved quantities, thus the equ
lence of the Runge-Lenz vector and the raising and lower
operators are straightforward. For an isotropic harmonic
cillator, the two kinds of raising and lowering operators (A6

and B6) themselves are not conserved quantities. Thus
equivalence of the raising and lowering operators (A6 and
B6) and the conserved quantities~energy, angular momen
tum, and quadrupole tensors! is not so straightforward. How-
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ever, it is noted that, though bothA6 and B6 are angular
momentum raising and lowering operators (D l 561), the
other selection rules are different, i.e., whileA1 (A2) de-
creases~increases! both the radial quantum number and e
ergy by 1 (Dnr571, DE571), B1 (B2) keeps the radia
quantum number (Dnr50), but increases~decreases! the en-
ergy by 1 (DE561). Therefore, by using these difference
it can be shown that in terms of the two kinds of raising a
lowering operators one can construct the conserved qu
ties ~energy, angular momentum, and quadrupole tens!
characterizing an elliptic orbit.

For simplicity, we take a 2D isotropic harmonic oscillat
as an example. A 2D isotropic harmonic oscillator has
dynamical symmetry SU2, which is locally isomorphic to
SO3 ~the dynamical symmetry of a 2D hydrogen atom!. For
a classical 2D isotropic harmonic oscillator, the planar or
is also an ellipse, and the lengths of its semimajor axisa and
semiminor axisb are determined by the energyE and angu-
lar momentumL (\5v51), E5 1

2 (a21b2), andL5a2b2.
The intersection angleg of the major axis with thex axis is
determined by tan2g5Qxy /Q1, and the eccentricity}@Qxy

2

1Q1
2#1/2.

In Ref. @7#, it was shown that from the factorization o
radial Schro¨dinger equation for a 2D isotropic oscillator, tw
kinds of raising and lowering operators,A6 andB6 , oper-
ating on the radial wave functionxm(r), can be derived

A6~m!5
d

dr
7

m61/2

r
6r,

~34!

B6~m!5
d

dr
7

m61/2

r
7r.

The selection rules forA6 are Dm561,Dnr571,DE
571, and for B6 , Dm561,Dnr50,DE561. Now, it
will be shown that in terms ofA6 and B6 , the conserved
quantities characterizing a closed orbit~the angular momen
tum l z , energyE, and quadrupole tensorQxy andQ1) can be
constructed. The operatorsA6 may be replaced bya6(m)
andb6(m) operating onRm(r)5xm(r)/Ar,

a6~m!5
d

dr
7

m

r
6r,

~35!

b6~m!5
d

dr
7

m

r
7r.

When operating on the whole wave functioneimfRm(r),
a6(m) andb6(m) may be replaced bya6 andb6 ,

a15eifF ]

]r
2

1

r
l z1rG ,

a25e2 ifF ]

]r
1

1

r
l z2rG ,

~36!

b15eifF ]

]r
2

1

r
l z2rG ,
,
d
ti-
s

e

it

b25e2 ifF ]

]r
1

1

r
l z1rG .

It is easily shown that, similar to Eq.~5! for a 2D hydrogen
atom, for a 2D isotropic oscillator we have

@ l z ,a6#56a6 ,@ l z ,b6#56b6 , ~37!

i.e., botha6 andb6 are angular momentum raising and low
ering operators, but unlike the hydrogen atom, herea6 and
b6 are not conserved quantities,

@H,a6#57a6 ,@H,b6#56b6 . ~38!

Therefore, the operatorsa6 and b6 themselves cannot b
directly equivalent to the conserved quantities characteriz
an elliptic orbit. However, it can be shown by straightfo
ward calculation that, as expected, the conserved quant
( l z , energyE, and quadrupole tensorsQ1 andQxy) can be
constructed in terms ofa6 andb6 as follows:

l z5
1
4 ~a2a12b1b2!,

H5 1
4 ~a2a11b1b2!11,

~39!

Q152 1
4 ~a2b21b1a1!,

Qxy52
i

4
~a2b22b1a1!.

V. 1D SYSTEMS

The Schro¨dinger’s factorization method and the conce
of raising and lowering operators were extended extensiv
in supersymmetric quantum mechanics@16–20# to treat the
Schrödinger equation for a particle in a general 1D potent
V(x). It was shown that for a potentialV(x), provided the
ground bound state energyE0 is finite (E0Þ2`) and the
ground-state wave functionC0(x) is differentiable, the
Schrödinger equation can always be factorized and the c
responding raising and lowering operators,A1 andA, can be
constructed. It is interesting to note that classical orbits of
bound particles in a regular 1D potential are obviou
closed. The supersymmetric partner Hamiltonian,H2

5A1A andH15AA1, have the same energy spectra,En
(1)

5En11
2 (n50,1,2,...,), except the ground-state energy

H2 (E0
(2)50), and the eigenstates with the same eigenva

of H2 andH1 are connected with each other byA1 andA.
It was shown that this is due to the shape invariance@20# of
V(x), which may also be considered as a special kind
dynamical symmetry.

For a 1D harmonic oscillator, the energy eigenvalues a
eigenstates are well known, which are quite similar to tho
for a 3D isotropic harmonic oscillator (l 50 case!. The rais-
ing and lowering operators derived from factorization a
a15(1/A2) (x2 d/dx) and a5 (1/A2) (x1 d/dx), which
connect the neighboring eigenstates withopposite parity
(DN51). However, it should be noted that the 1D harmon
oscillator potential formally corresponding to a 3D isotrop
oscillator @V(r )5r 2/2, r>0# is
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V~x!5H x2/2, x>0

`, x,0,
~40!

whose energy levels areEN5(N11/2), N51,3,5,.... The
usually adopted 1D harmonic oscillator isV(x)5x2/2 (2`
,x,1`) with reflection symmetry, whose levels areEn
5(N11/2), N50,1,2,3,..., and theneighboring eigenstate
are of opposite parity. From this, one can understand w
there exist two kinds of raising and lowering operators,A6

andB6 , for annD (n>2) isotropic harmonic oscillator, an
A6 andB6 are different in form from the operatorsa1 and
a for a 1D harmonic oscillator. However, one may use
product operator ofA andB @7#, i.e., the operatorC, as the
raising and lowering operators connecting the neighbor
eigenstates with thesame parity. In fact, for a 3D isotropic
harmonic oscillator@7#

C~ l 50,N↑↑ !5
d2

dr2
1r 222r

d

dr
21 ~41!

is the same form as 2a1a5 d2/dx2 1x222x d/dx21 for a
1D harmonic oscillator, and both have the selection r
DN52.

As for the 1D hydrogen atom@21# with a quite singular
potential,

V~x!5V~2x!52
1

uxu ~2`,x,1`!, ~42!

to our knowledge, the corresponding Schro¨dinger equation
cannot be factorized. This is understandable because
ground-state energyE052`, and C0(x);Ad(x), is not
differentiable at the origin. In fact, the 1D hydrogen ato
formally corresponding to a 3D hydrogen atom@V(r )
521/r , r .0# is

V~x!5H 21/x, x.0

`, x<0.
~43!

For this 1D potential, the energy levelsEn521/2n2, n
51,2,..., arenondegenerate, which are the same as the s
tra of l 50 states for a 3D hydrogen atom. Thus it is und
standable why for a 1D hydrogen atom there exists no an
gous raising and lowering operatorsA6 connecting
degenerate states with the same energy of a 3D hydro
atom.

However, similar to a 3D hydrogen atom@7#, one may
construct the energy raising and lowering operators for a
hydrogen atom
s.
y

e

g

e

its

c-
-
o-

en

D

B~ l 50,N↑ !5S x
d

dx
2

x

n11
1nD M S n

n11D ,

B~ l 50,N↓ !5S x
d

dx
1

x

n21
2nD M S n

n21D ~n.1!.

~44!

VI. CONCLUSIONS AND SUMMARY

In the preceding sections we have shown the equivale
of the raising and lowering operators derived from the fa
torization of the radial Schro¨dinger equation on the one sid
and the conserved quantities responsible for the closene
classical orbits on the other side, and from the physical po
of view, both are intimately connected with the dynamic
symmetry of hydrogen atoms and isotropic harmonic os
lators. For a classical hydrogen atom, the orbits are alw
closed forany continuousnegative energyE,0 and positive
angular momentumL.0. In quantum mechanics, both th
angular momentum and bound energy eigenvalues aredis-
crete. Thus, it seems understandable that for hydrogen at
there exist four kinds of operators connecting neighbor
energy and angular momentum eigenstates. Particula
these operators cansimultaneouslyraise or lower both the
energy and angular momentum. If the dynamical symme
is broken~e.g., the screened Coulomb potential}21/r 2 is
considered in an alkali atom!, the Runge-Lenz vector no
longer keeps constant and the closeness of classical orbiin
general, is lost @14#. On the other hand, it is shown@14# that
in this case, only theenergyraising and lowering operator
can be constructed from the factorization of the radial Sch¨-
dinger equation, butno angular momentumraising and low-
ering operators can be derived. The situation for isotro
harmonic oscillators is similar. Therefore, it seems und
standable that there exist simple relations between the rai
and lowering operators in quantum mechanics on the s
and the conserved quantities charactering the closenes
classical orbits on the other side, and both are physic
connected with the dynamical symmetry of the system c
sidered.
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