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Weyl functions and their use in the study of quantum interference

S. Chountasis and A. Vourdas
Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, United Kingdom

~Received 10 November 1997!

Weyl functions are shown to be an important tool in quantum phase-space studies. Their properties are
studied and relations with other quantities are derived. The use of Weyl functions for the understanding of
quantum interference phenomena is discussed. The general theory is applied to superpositions ofm coherent
states uniformly distributed on a circle~generalized Schro¨dinger cats!. The properties of these states are
explored and their interference behavior is discussed, using Weyl functions.@S1050-2947~98!04508-9#

PACS number~s!: 03.65.Ca, 42.50.Dv
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I. INTRODUCTION

Quantum phase-space methods@1–3# play an important
role in fundamental problems in quantum mechanics wh
they describe the location of a particle in thex-p phase space
in a way consistent with quantum mechanics and the un
tainty principle DxDp>0.5. They also play an importan
role in more applied problems in quantum optics and qu
tum electronics where they describe the electromagnetic
in theE-B plane in a way consistent with quantum noise a
the uncertainty principleDEDB>0.5.

The Wigner function and also theP andQ functions play
a central role in these techniques and their properties h
been studied extensively@1–3#. Numerical calculations of
these functions have been used as a practical tool and
vided a valuable insight in many quantum optics problem
More recently the Wigner tomography@4# provided a
method of constructing the Wigner function from optic
measurements.

The Weyl function which can be defined in many wa
and which is the Fourier transform of the Wigner functi
has been used as an auxiliary quantity in theoretical stu
~e.g.,@5#!; but it has not been studied in its own right and
has not been exploited as a practical tool in quantum op
problems. In this paper we discuss the properties of the W
function with particular emphasis on its use for the study
quantum interference phenomena. There has been a lo
work on quantum interference phenomena@6,7# ~for a review
see@8#! and in this paper we show that the Weyl function c
play an important role in these studies.

Our general ideas are applied to the important exampl
superpositions ofm coherent states uniformly distributed o
a circle ~generalized Schro¨dinger cats!. The study of these
states is an interesting problem in its own right. Superpo
tions of two coherent states have been studied extensivel@9#
both theoretically and experimentally. More generally high
nonclassical states produced as a superposition of many
herent states have been studied in@10#. Superpositions ofm
coherent states similar to the one considered here have
studied in Refs.@11,12#. We study several properties of the
states and especially their interference behavior using W
functions.

In Sec. II A we introduce the Weyl function and study i
properties. In Sec. II B we consider a quantum stateus&
which is a superposition ofm other quantum statesusi&, and
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explain that both its Wigner function and its Weyl functio
can be decomposed into auto terms and cross terms.
cross terms describe the interference between the var
statesusi&, and their properties are discussed. In Sec. II
we consider superpositions ofm coherent states uniformly
distributed on a circle and study their properties. Numeri
results for their quantum statistical properties are presen
in Sec. III B, and for their Wigner and Weyl functions i
Sec. III C. We conclude in Sec. IV with a discussion of o
results.

II. WEYL FUNCTIONS

A. Basic formalism

We consider the harmonic oscillator Hilbert spaceH
spanned by the number eigenstates$uN&;N50,1,2 . . .%. We
also consider the coherent states

uA&5expS 2
uAu2

2 D (
N50

`
AN

~N! !1/2uN&5D~A!u0&, ~1!

D~A!5exp@Aa†2A* a#, ~2!

wherea†,a are the usual creation and annihilation operato
D(A) is the displacement operator which can also be
pressed in terms of the position and momentum opera
x̂,p̂ as

D~x,p![DS A5
x1 ip

&
D 5exp~ ipx̂2 ix p̂!. ~3!

For later purposes we also define the following mome
associated with a state described by a density matrixr:

^xM&5Tr@ x̂Mr#5E xMs~x!dx, s~x![^xurux& ~4!

^pM&5Tr@ p̂Mr#5E pMt~p!dp, t~p![^purup& ~5!

^xp1px&5Tr@~ x̂p̂1 p̂x̂!r#. ~6!

From them we can find the uncertainties

Dx5@^x2&2^x&2#1/2, Dp5@^p2&2^p&2#1/2, ~7!
848 © 1998 The American Physical Society
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K25
1

2
^xp1px&2^x&^p&. ~8!

The parity operator is

U05exp~ ipa†a!5 (
N50

`

~21!NuN&^Nu ~9!

and obeys the relations

U05U0
† , U0

251,
~10!

U0D~x,p!U0
†5D~2x,2p!.

The displaced parity operator@5,13# is written as

U~x,p!5D~x,p!U0D†~x,p!5D~2x,2p!U0

5U0D~22x,22p!. ~11!

The Wigner function of a state described by a density ma
r is defined in terms of the displaced parity operator as

W~x,p!5
1

2p E dXK x1
1

2
Xurux2

1

2
XL exp~2 iXp!

5
1

2p E dPK p1
1

2
Purup2

1

2
PL exp~ iPx!

5
1

p
Tr@rU~x,p!#. ~12!

The equivalence between these expressions is kn
@5,13,14#. Another function which is useful in phase-spa
methods is the Weyl function

W̃~X,P!5E dx^x1 1
2 Xurux2 1

2 X&exp~2 iPx!

5E dp^p1 1
2 Purup2 1

2 P&exp~ ipX!

5Tr@rD~X,P!#. ~13!

The equivalence between these two expressions is kn
@1,5,13,14#. For a pure stateus& Eq. ~13! becomes

W̃~X,P!5^suD~X,P!us&. ~14!

It is seen that the Weyl function of a state is equal to
overlap of the displaced state with the original state. In t
sense, theX,P are position and momentumincrements. The
Weyl function can be understood as ageneralized correla-
tion function. If we have a functions(x) ~e.g., the wave
function in thex representation!, in order to find the corre-
lation we displace it intos(x1X) and take the integral o
s(x)s(x1X). In the Weyl function we perform a more gen
eral displacement in phase space, i.e., a displacement in
position and momentum. Therefore the correlation is a s
cial case of the Weyl function withP50 ~or X50!.

The Wigner function is related to the Weyl functio
through the two-dimensional Fourier transform@1,5,13#.
x

n

n

e
s

oth
e-

W̃~X,P!5E E dx dp W~x,p!exp@2 i ~Px2pX!#.

~15!

The properties of the Wigner function are well known a
are not discussed here. We discuss various properties
elucidate further the physical interpretation of the We
function. From Eq.~13! it is easily seen that

W̃~0,0!51, ~16!

W̃~X,P!5W̃* ~2X,2P!, ~17!

uW̃~X,P!u<1. ~18!

We next show that for apure stateus&

E E dX8dP8uW̃~X8,P8!u2exp@ i ~P8X2X8P!#

52puW̃~X,P!u2. ~19!

In order to prove this we use Eq.~13! to get

W̃~X8,P8!5E dx s~x1X8!s* ~x!exp~2 iP8x!, ~20!

@W̃~X8,P8!#* 5E dp s* ~p!s~p2P8!exp~2 ipX8!.

~21!

Inserting these equations into the left hand side of Eq.~19!
and using the Fourier transforms

E dX8

A2p
s~x1X8!exp@2 i ~p1P!X8#

5s~p1P!exp@ ix~p1P!#, ~22!

E dP8

A2p
s~p2P8!exp@2 i ~x2X!P8#

5s~x2X!exp@2 ip~x2X!# ~23!

we get the right hand side of Eq.~19!. In the special case
X5P50 Eq. ~19! becomes

1

2p E E dX dPuW̃~X,P!u251. ~24!

We also prove that

1

2p E dXuW̃~X,P!u25E dpz^purup1P& z2, ~25!

1

2p E dPuW̃~X,P!u25E dxz^xurux1X& z2. ~26!

In order to prove this we use Eq.~13! to get
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850 PRA 58S. CHOUNTASIS AND A. VOURDAS
E dXuW̃~X,P!u2

5E dX dx dx8^x1 1
2 Xurux2 1

2 X&

3^x82 1
2 Xurux81 1

2 X&exp@ iP~x82x!#.

~27!

We then use the relations

E dP exp@ iP~x2x8!#52pd~x2x8!, ~28!

E dx^x1 1
2 Xurux2 1

2 X&^x2 1
2 Xurux1 1

2 X&

5E dxz^xurux1X& z2 ~29!

to prove Eq.~26!. In a similar way we prove Eq.~25!. Equa-
tions ~25!, ~26! reinforce our interpretation of the Weyl func
tion as a generalized correlation function. If we consider
simplicity a pure stateus& then the right hand side of Eq.~26!
is the correlation of the probability distributionz^xus& z2.
Therefore theuW̃(X,P)u2 can be interpreted as a type
density for the correlation function whose integral with r
spect toP gives the correlation of the probability distributio
z^xus& z2; and whose integral with respect toX gives the cor-
relation of the probability distributionz^pus& z2.

We next expand the displacement operatorD(x,p)
around the pointx5p50 as

D~x,p!511~ ipx̂2 ix p̂!2
~px̂2xp̂!2

2
1¯ . ~30!

Substitution of Eq.~30! into Eq. ~13! gives an expansion o
the Weyl function around the origin:

uW̃~X,P!u2512
1

2
~Dx!2X22

1

2
~Dp!2P21K2~XP!1¯ ,

~31!

where the uncertaintiesDx,Dp,K have been defined in Eqs
~7!, ~8!.

There are interesting relations between the Weyl funct
and the Fourier transforms of theP andQ functions, which
we denote asP̃ and Q̃, correspondingly. They have bee
proved in Ref.@15# and here we simply quote the result
our notation:

W̃~X,P!5expF 1

16
~P21Q2!GQ̃~X,P!

5expF2
1

16
~P21Q2!G P̃~X,P!. ~32!

We also point out that the Weyl function for several quant
states of interest to quantum optics~e.g., coherent states
squeezed states, number eigenstates, etc.! have been calcu
lated in the Appendix of Ref.@16#.
r

n

B. Interference: Auto terms and cross terms

We consider a state which is the superposition ofm other
quantum states

us&5N(
i 51

m

usi&. ~33!

The statesusi& are normalized; andN is the normalization
factor of the stateus&:

N5S m1(
iÞ j

^si usj& D 21/2

. ~34!

We call^xi& and^pi& the average position and momentum
the stateusi&,

^xi&5^si ux̂usi&, ~35!

^pi&5^si u p̂usi&. ~36!

Substitution of Eq.~33! into Eq.~12! gives the Wigner func-
tion as

W~x,p!5N 2(
i 51

m

Wi~x,p!1N 2(
iÞ j

Wi j8 ~x,p!

5N 2(
i 51

m

Wi~x,p!1N 22(
i , j

Re@Wi j8 ~x,p!#,

~37!

where

Wi~x,p!5^si uU~x,p!usi& ~38!

are the Wigner functions of theusi& states~auto terms!; and

Wi j8 ~x,p!5^si uU~x,p!usj&

5E dX^x1 1
2 Xusi&^sj ux2 1

2 X&exp~2 iXp!

5Wji8* ~x,p! ~39!

are cross terms. It is clear that we havem auto terms, and
m(m21) cross terms. The auto terms are real. The cr
termsWi j8 are not real; but we can define the cross terms

Wi j 5Wi j8 1Wji8 52 Re@Wi j8 #, ~40!

which are real. Note that the Wigner function for the mix
state

r5
1

m (
i 51

m

usi&^si u ~41!

contains only the auto terms

W~x,p!5
1

m (
i 51

m

Wi~x,p! ~42!

and therefore the Wigner cross terms describe the inter
ence between the statesusi& and distinguish clearly the pur
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state~33! from the corresponding mixed state~41!. The auto
term Wi is located around the point (^xi&,^pi&) ~this is seen
from the fact thatWi is the Wigner function for the stat
usi&). The absolute value ofWi j8 can be expressed in terms
the two Wigner functionsWi andWj as

uWi j8 ~x,p!u25E E Wi~x1 1
2 X,p1 1

2 P!

3Wj~x2 1
2 X,p2 1

2 P!dX dP. ~43!

This relation shows clearly that the cross termWi j8 is located

around the point@ 1
2 (^xi&1^xj&),

1
2 (^pi&1^pj&)#.

The proof of Eq.~43! is based on the following relation
proved by Moyal@17#:

E dXdP

2p
^u1uD~X,P!uu2&^u3uD~2X,2P!uu4&

5^u1uu4&^u3uu2& ~44!

for arbitrary statesuu1&, uu2&, uu3&, anduu4&. We choose

^u1u5^si uD~x,p!,

uu2&5U0D†~x,p!usi&,
~45!

^u3u5^sj uD~x,p!,

uu4&5U0D†~x,p!usj&,

and get

E dXdP

2p
^si uD~x,p!D~X,P!U0D†~x,p!usi&

3^sj uD~x,p!D~2X,2P!U0D†~x,p!usj&

5^si uD~x,p!U0D~x,p!usj&^sj uD~x,p!U0D†~x,p!usi&.

~46!

Using Eq.~11! we can now show that

^si uD~x,p!D~X,P!U0D†~x,p!usi&5Wi~x1 1
2 X,p1 1

2 P!,

~47!

^sj uD~x,p!D~2X,2P!U0D†~x,p!usj&

5Wj~x2 1
2 X,p2 1

2 P!, ~48!

^si uD~x,p!U0D~x,p!usj&5Wi j8 , ~49!

^sj uD~x,p!U0D†~x,p!usi&5Wji8 5Wi j8* . ~50!

This completes the proof of Eq.~43!. The physical signifi-
cance of this equation lies in the fact that it shows that
Wigner auto terms define uniquely the absolute value~but
not the phase! of the Wigner cross terms.

A similar decomposition into auto terms and cross ter
can be given for the Weyl function. Substitution of Eq.~33!
into Eq. ~13! gives
e

s

W̃~X,P!5N 2(
i 51

m

W̃i~X,P!1N 2(
iÞ j

W̃i j8 ~X,P!

5N 2(
i 51

m

W̃i~X,P!1N 2(
i , j

W̃i j ~X,P!, ~51!

where

W̃~X,P!5^si uD~X,P!usi&, ~52!

are the Weyl functions of theusi& states~auto terms!; and

W̃i j8 ~X,P!5^si uD~X,P!usj&

5E dx^x1 1
2 Xusi&^sj ux2 1

2 X&exp~2 iPx!,

~53!

W̃i j ~X,P!5W̃i j8 ~X,P!1W̃ji8 ~X,P! ~54!

are the cross terms. The auto terms are located around
origin.

III. EXAMPLE: SUPERPOSITIONS OF m COHERENT
STATES

A. Basic formalism

We consider the usual harmonic oscillator Hilbert spa
H which we write as the direct sum

H5 (
l 50

m21

H l , ~55!

whereH l is spanned by the number eigenstates

H l 5$umN1l &; N50,1,2, . . .%. ~56!

We call p l the projection operators into the Hilbert spa
H l ,

FIG. 1. @Nl (uAu)#22 as a function ofuAu for l 50,1,2.
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p l 5 (
N50

`

umN1l &^mN1l u, ~57!

(
l 50

m21

p l 51. ~58!

We now introduce the ‘‘generalized Schro¨dinger cats’’ as
superpositions ofm coherent states uniformly distributed o
a circle with center at the origin:

uA;l &5Nl ~ uAu! (
k50

m21

v2l kuAvk&, ~59!

v5expS i
2p

m D , ~60!

whereNl (uAu) is the normalization factor:

FIG. 2. ^N& l as a function ofuAu for l 50,1,2.

FIG. 3. gl
(2) as a function ofuAu for l 50,1,2.
Nl ~ uAu!5S m(
a50

m21

v2l aexp@ uAu2~va21!# D 21/2

. ~61!

It is easy to see that they are eigenstates at the operatoram,

amuA,l &5AmuA;l &. ~62!

A useful relation is that for integersl ,k in Zm ~the integers
modulom!:

1

m (
k50

m21

v l k5d l 0 , ~63!

whered l 0 is equal to 1 ifl 50 (modm); and equal to 0 if
l Þ0 (modm). Substituting Eq.~1! into Eq. ~59! and using
Eq. ~63! we find that

FIG. 4. DxDp as a function ofuAu for arg(A)50.

FIG. 5. W(x,p) for the stateu3.2i ;0& of Eq. ~59!.



t
s

l-

ce

ll
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uA;l &5Nl ~ uAu!expS 2
uAu2

2 D (
N50

`
AmN1l

@~mN1l !! #1/2umN1l &

5Nl ~ uAu!p l uA&. ~64!

It is clear that the stateuA;l & belongs entirely in the Hilber
subspaceH l . We can easily prove the following propertie
for these states:

uAv;l &5v l uA;l &, ~65!

(
l 50

m21

@Nl ~ uAu!#21uA;l &5uA&, ~66!

^A;l uB;k&5d l kNl ~ uAu!Nl ~ uBu!

3Fm(
a50

m21

v2l a

3expS 2
uAu2

2
2

uBu2

2
1A* BvaD G . ~67!

Equation~65! shows that it is sufficient to consider the va
ues ofA in

C15H A5r exp~ if!; 0<f,
2p

m
; r .0J . ~68!

FIG. 6. uW̃(X,P)u for the stateu3.2i ;0& of Eq. ~59!.

FIG. 7. W(x,p) for the stateu0.2i ;0& of Eq. ~59!.
The rest of the values atA give the same coherent states~up
to a trivial phase factor!. Using the integral

E
C

d2z

p
exp~2uzu2!zN~z* !M5~N! !dNM ~69!

we can write a resolution of the identity in the Hilbert spa
H l using the statesuA;l &,

E
C

d2A

p
@Nl ~ uAu!#22uA;l &^A;l u5p l . ~70!

It is clear that in Eq.~70! we can integrate overC1 only, if at
the same time multiply the left hand side bym. Summing
over l we can have a resolution of the identity in the fu
Hilbert spaceH.

(
l

E
C

d2A

p
@Nl ~ uAu!#22uA;l &^A;l u51. ~71!

Equations~67!, ~71! show that the$uA;l &;APC1 ,l PZm%
form an overcomplete set of states. Note that statesuA;l &
and uB,m& with l Þm are orthogonal.

FIG. 8. W(x,p) for the stateu0.2i ;1& of Eq. ~59!.

FIG. 9. W(x,p) for the stateu0.2i ;2& of Eq. ~59!.
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B. Quantum statistical properties of these states
for the casem53

The casem52 has been studied in the literature in t
context of Schro¨dinger cats@1#, so we consider here ex
amples withm53. Using Eq.~59! we calculate the prob
abilities

pl ~N![ z^NuA,l & z25@Nl ~ uAu!#2exp~2uAu2!

3U AN

~N! !1/21
~Av!Nv2l

~N! !1/2 1
~Av2!Nv22l

~N! !1/2 U2

.

~72!

It is seen thatpl (N) depends only onuAu and is independen
of arg(A). Using this we calculate the average number
photons

^N& l [ (
N50

`

Npl ~N!5@Nl ~ uAu!#2uAu2

3$312v~12l !exp@ uAu2~v21!#

12v~ l 21!exp@ uAu2~1/v21!#

1v2~12l !exp@ uAu2~v221!#

1v2~ l 21!exp@ uAu2~1/v221!#%. ~73!

We also calculate numerically the quantities

^N2& l [ (
N50

`

N2pl ~N! ~74!

and the

gl
~2!5

^N2& l 2^N& l

^N& l
2 . ~75!

In Fig. 1 we present the normalization constant@Nl (uAu)#22

as a function ofuAu. It is seen that for largeuAu, when the
three coherent states of Eq.~59! become ‘‘almost orthogo-
nal,’’ it takes a value very close to 3. It is also seen that
l 51,2 it takes very small values foruAu close to zero; and
for this reason all our numerical results are foruAu.0.1. In
Fig. 2 we present thêN& l as a function ofuAu. Equation

FIG. 10. uW̃(X,P)u for the stateu0.2i ;0& of Eq. ~59!.
f

r

~64! shows that for smalluAu the stateuA;l & is approxi-
mately the number eigenstateul &. Therefore, foruAu close to
zero, the^N& l takes the values 0,1,2 forl 50,1,2 corre-
spondingly. In Fig. 3 we presentgl

(2) as a function ofuAu. It
is seen that forl 51,2 we have antibunching~i.e., gl

(2),1!
for uAu,1.5. For large values ofuAu the gl

(2) is approxi-
mately equal to 1.

With regard to the uncertainties of these states, it is ea
seen that̂ x&5^p&50. In Fig. 4 we present the uncertain
productDxDp as a function ofuAu for arg(A)50°. Note that
in the case arg(A)50° considered here,K50. As we have
explained, for smalluAu the stateuA;l & is approximately the
number eigenstateul & and therefore theDxDp is equal to
l 1 1

2 . For largeuAu the DxDp takes large values.

C. Wigner and Weyl functions

In this section we apply the formalism developed in S
II B to the statesuA;l & of Eq. ~59! ~with m53!. We con-
sider the stateu3.2i ;0& and present its Wigner function
W(x,p) in Fig. 5. We see clearly the three Gaussian a
terms which are~up to normalization! the Wigner functions
of the coherent statesu3.2i &, u3.2iv&, andu3.2iv2&; and also
the three cross termsW12, W13, andW23 which describe the
interference. We also present the Weyl function for the st
u3.2i ;0& in Fig. 6. We see clearly the sum of all the au
terms located around the center; and also the six cross te

FIG. 11. uW̃(X,P)u for the stateu0.2i ;1& of Eq. ~59!.

FIG. 12. uW̃(X,P)u for the stateu0.2i ;2& of Eq. ~59!.
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PRA 58 855WEYL FUNCTIONS AND THEIR USE IN THE STUDY . . .
W̃i , j8 . The cross terms are located at those (X,P) for which
displacements of the stateu3.2i ;0& by (X,P) produce another
state which overlaps significantly with the original one. F
example, displacement of theu3.2i ;0& by ~X53.9,
P526.75! brings the coherent stateu3.2i & to overlap with
the coherent stateu3.2iv&; and for this reason we get signifi
cant cross terms around the point~X53.9, P526.75!. We
see clearly here the role of the Weyl functions as general
correlation functions where displacements in both posit
and momentum are performed.

In the above examples we only present the casel 50
because the casesl 51 andl 52 do not present any differ
ences which are easily visible. In Figs. 7, 8, and 9 we pres
the Wigner function for the statesu0.2i ;0&, u0.2i ;1&, and
u0.2i ;2& correspondingly. It is clear that there are significa
differences between these three cases. In Figs. 10, 11, an
we present the absolute value at the Weyl function for
statesu0.2i ;0&, u0.2i ;1&, andu0.2i ;2& correspondingly. Here
again there are significant differences between the th
cases.

IV. DISCUSSION

The Weyl functions are an important tool in the area
quantum phase-space methods. We have studied their p
erties emphasizing in particular their significance for the
,

c

s.

m

tt
r

d
n

nt

t
12

e

e

f
op-
-

scription of quantum interference phenomena. The gen
case of a quantum state which is a superposition ofm other
quantum states has been considered, and both its Wi
function and its Weyl function have been decomposed i
auto terms and cross terms. The cross terms provide a v
able insight into the interference.

The study of superpositions ofm coherent states uni
formly distributed on a circle is an interesting problem in
own right. Here we have studied the properties of these st
and shown that they form an overcomplete basis in the H
bert space, that there is a resolution of the identity in term
them, etc. Numerical results~for m53! have demonstrated
the quantum statistical properties of these states and sh
clearly the cross terms in their Wigner and Weyl functio
and the interference effects.

As a final comment we point out that there is a similar
between the phase-space techniques in quantum mech
and the so-called time-frequency methods in signal proc
ing, as has been explained by Gabor and Ville@18,19#. In
this context also the Wigner function and the so-called a
biguity function~which is similar to the Weyl function!, play
an important role.

It is our belief that the Weyl function should play a ce
tral role in quantum mechanics and quantum optics, es
cially in problems where quantum interference takes pl
@20#.
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