PHYSICAL REVIEW A VOLUME 58, NUMBER 2 AUGUST 1998

Weyl functions and their use in the study of quantum interference
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Weyl functions are shown to be an important tool in quantum phase-space studies. Their properties are
studied and relations with other quantities are derived. The use of Weyl functions for the understanding of
guantum interference phenomena is discussed. The general theory is applied to superposiiicoferfent
states uniformly distributed on a circlgeneralized Schdinger cats The properties of these states are
explored and their interference behavior is discussed, using Weyl funct®hd50-294{@8)04508-9

PACS numbdps): 03.65.Ca, 42.50.Dv

[. INTRODUCTION explain that both its Wigner function and its Weyl function
can be decomposed into auto terms and cross terms. The

le in fund tal bl . i hani h cross terms describe the interference between the various
role in tTundamental problems in quantum mechanics w er%tateslsi% and their properties are discussed. In Sec. Il A

they describe the location of a particle in thgp phase space e consider superpositions afi coherent states uniformly

in a way consistent with quantum mechanics and the uncefistripyted on a circle and study their properties. Numerical
tainty principle AxAp=0.5. They also play an important resylts for their quantum statistical properties are presented
role in more applied problems in quantum optics and quanin Sec. 111 B, and for their Wigner and Weyl functions in

tum electronics where they describe the electromagnetic fieldec. |11 C. We conclude in Sec. IV with a discussion of our
in the E-B plane in a way consistent with quantum noise andresults.

the uncertainty principldAEAB=0.5.
The Wigner function and also tHe andQ functions play II. WEYL EUNCTIONS
a central role in these techniques and their properties have
been studied extensivelyl—3]. Numerical calculations of
these functions have been used as a practical tool and pro- We consider the harmonic oscillator Hilbert spake
vided a valuable insight in many quantum optics problemsspanned by the number eigenstaff8);N=0,12...}. We
More recently the Wigner tomographj4]| provided a also consider the coherent states
method of constructing the Wigner function from optical AP . AN
measurements.
The Weyl function which can be defined in many ways |A>=ex% - T) Nzo W|N>:D(A)|O>’ (@)
and which is the Fourier transform of the Wigner function
has been used as an auxiliary quantity in theoretical studies D(A)=exgfAa'—A*a], 2)
(e.g.,[5]); but it has not been studied in its own right and it
has not been exploited as a practical tool in quantum opticaherea’,a are the usual creation and annihilation operators.
problems. In this paper we discuss the properties of the WeyD (A) is the displacement operator which can also be ex-
function with particular emphasis on its use for the study ofpressed in terms of the position and momentum operators
quantum interference phenomena. There has been a lot ¢fp as
work on quantum interference phenomé¢@g| (for a review
seg[8]) and in this paper we show that the Weyl function can
play an important role in these studies. D(x,p)=D
Our general ideas are applied to the important example of
superpositions ofm coherent states uniformly distributed on For later purposes we also define the following moments

a circle (generalized Schrbnger cats The study of these  asqqciated with a state described by a density matrix
states is an interesting problem in its own right. Superposi-

tions of two coherent states have been studied extendi@gly R

both theoretically and experimentally. More generally highly (XM>:Tr[XMP]:J Ma()dx,  a(x)=(x|p|x) (4)

nonclassical states produced as a superposition of many co-

herent states have been studiedlifi]. Superpositions ofn -

coherent states similar to the one considered here have been <DM>=Tr[pMP]=f pMr(p)dp, 7(p)=(plplp) (5)

studied in Refs[11,12. We study several properties of these

states and especially their interference behavior using Weyl _ Ry

functions. (xp+px)=Tr[(xp+px)p]. (6)
In Sec. Il A we introduce the Weyl funCtion and Study |tS From them we can f|nd the uncertainties

properties. In Sec. || B we consider a quantum stafe

which is a superposition af other quantum statds;), and Ax=[{(x3—(x)21¥2 Ap=[(p®>)—(p)2]1*2  (7)

Quantum phase-space methdds-3] play an important

A. Basic formalism

A X+ip) ipx—ixp). (3
= —|=eXpIpX—IX .
" pip p
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1 ~
=5 (XP+Px) = (X)(P)- ) W(X,P)=J J dx dp Wx,p)ex —i(Px—pX)].
(15
The parity operator is
The properties of the Wigner function are well known and
* are not discussed here. We discuss various properties that
Uo=explima'a)= 2 (—1)NIN)(N| (9) elucidate further the physical interpretation of the Weyl
N=0 function. From Eq(13) it is easily seen that

and obeys the relations

W(0,0=1, (16)
Ug=U{, U3=1, - -~
(10) W(X,P)=W*(—-X,—P), 17
UoD(x,p)U{=D(—x,—p). N
|W(X,P)|<1. (18)

The displaced parity operatfs,13] is written as
We next show that for @ure state|s)

U(x,p)=D(x,p)UoD'(x,p)=D(2x,2p)Uq
=UoD(—2%,—2p). (11 ff dX'dP’|W(X',P")|?exdi(P'X—X'P)]

The Wigner function of a state described by a density matrix

— \\ 2
p is defined in terms of the displaced parity operator as =2m|W(X,P)|". (19)

1 1 1 . In order to prove this we use E{L3) to get

W(x,p)—z de X+ §X|p|X—§X exp(—iXp) )

1 1 1 W(X’,P’)zf dx (x+X')s*(x)exp(—iP'x), (20)
=5 f dP< p+ §P|p|p— §P>emex)

1 [W(X’,P’>]*=f dp s (p)s(p—P")exp—ipX’).
= ~TilpU(x,p)]. 12 @)

The equivalence between these expressions is knowiiserting these equations into the left hand side of &§)
[5,13,14. Another function which is useful in phase-spaceand using the Fourier transforms
methods is the Weyl function

+X")exd —i(p+P)X’
\7V(X,P)=Jdx<x+%x|p|x—%x>exp(—ipx) j S(X Jexd —i(p+P)X']
=s(p+P)exdix(p+P)], (22
=f dp(p+3zP|p[p—2P)exp(ipX)
=Tr[pD(X,P)]. (13 f S(p P")exd —i(x—=X)P’']
The equivalence between these two expressions is known =s(x—X)exg —ip(x—X)] 23

[1,5,13,14. For a pure statés) Eq. (13) becomes

_ we get the right hand side of E@19). In the special case
W(X,P)=(s|D(X,P)[s). (14  X=P=0 Eq.(19 becomes

It is seen that the Weyl function of a state is equal to the 1 ~

overlap of the displaced state with the original state. In this > j f dX dAW(X,P)|?=1. (24)

sense, the&X,P are position and momentumcrements The

Weyl function can be understood agganeralized correla-

tion function If we have a functions(x) (e.g., the wave

function in thex representation in order to find the corre- 1

lation we displace it intas(x+X) and take the integral of — f dx|\7v(x,|:>)|2=f dpl(plplp+P)?, (25

s(x)s(x+ X). In the Weyl function we perform a more gen- 2m

eral displacement in phase space, i.e., a displacement in both 1

position and momentum. Therefore the correlation is a spe- ~ 2 2

cial case of the Weyl function witP=0 (or X=0). 27 J dPW(X,P)| _J dx|{x|p[x+X) . (26
The Wigner function is related to the Weyl function

through the two-dimensional Fourier transfofin5,13. In order to prove this we use E{L3) to get

We also prove that
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B. Interference: Auto terms and cross terms

A 2
j dX|W(X,P)| We consider a state which is the superpositiomadther

quantum states
=f dX dx dX{x+ 3X]|p|x—3X)

X (X' =3 X|p|x" + 3 X)exfiP(x'—x)]. |S>:Ni21 i) 33

(27)  The stateds;) are normalized; andV is the normalization

We then use the relations factor of the statgs):

-1/2
= m+ i|si : 4
f dP exiP(x—x')]=278(x—x"), (28 N={ 2, <S'|s'>) (39
We call(x;) and(p;) the average position and momentum of
J dx(x+ 3 X|p[x— 2X)(x= 3 X|p|x+3X) the statels;),
(xiy=(silxs), (35
- [ axixober 0P (29 )
(pi)=(silpsi). (36)
to prove EQ(26). In a similar way we prove Ed25). Equa- Substitution of Eq(33) into Eq.(12) gives the Wigner func-

tions (25), (26) reinforce our interpretation of the Weyl func- tion as

tion as a generalized correlation function. If we consider for

simplicity a pure statés) then the right hand side of E(R6) m

is the correlation of the probability distributiof{x|s)|?. W(x,p)=N22, Wi(x,p)+N2>, Wi(x,p)

Therefore the|W(X,P)|? can be interpreted as a type of =t %)

density for the correlation function whose integral with re- m

spect toP gives the correlation of the probability distribution zsz Wi(x,p)+/\/22_2_ R Wi (x,p)],

|(x|s)[?; and whose integral with respect ¥ogives the cor- =1 =

relation of the probability distributiof{p|s)|?. (37)
We next expand the displacement operafd(x,p)

around the poink=p=0 as where

Wi(x,p)=(si|U(x,p)|s;) (39

are the Wigner functions of this;) states(auto termg and

y =)\ 2
- . X—X
D(x,p)=1+(ipx—ixp)— qu . (30
Substitution of Eq(30) into Eq. (13) gives an expansion of Wi (x,p) =(si|U(x,p)]s;)
the Weyl function around the origin:
1 1 =f dX(x+ 3 X]|s;)(sj|x— 3 X)exp —iXp)
|W(X,P)|?=1— = (Ax)?X2— Z(Ap)2P?+ KA(XP)++- ,
2 2 =W;i* (x,p) (39
(31)
are cross terms. It is clear that we haweauto terms, and

where the uncertaintieAx,Ap,K have been defined in Egs. m(m—1) cross terms. The auto terms are real. The cross

(?), (8). termsW;; are not real; but we can define the cross terms
There are interesting relations between the Weyl functlon
and the Fourier transforms of tieandQ functions, which W =Wj;+Wj;=2 ReWj], (40)

we denote a® and O, correspondingly. They have been
proved in Ref. [15] and here we S|mp|y quote the result in which are real. Note that the ngner function for the mixed

our notation: state
m
~ 1 ~ 1
W(x,P)=exp[E<P2+ Qz)}Q(X,P) =1 2 IsiXsi (41
1 ., contains only the auto terms
=)~ 15 P2+Q?) [P(X,P). (32
1 m
We also point out that the Weyl function for several quantum W(x.p)= m Z (X,p) (42)

states of interest to quantum opti¢s.g., coherent states,
squeezed states, number eigenstates) k&wve been calcu- and therefore the Wigner cross terms describe the interfer-
lated in the Appendix of Ref.16]. ence between the statgs) and distinguish clearly the pure
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state(33) from the corresponding mixed stail). The auto [ N€(| A\)]—Q
termW, is located around the pointx;),(p;)) (this is seen

from the fact thatw, is the Wigner function for the state
|si)). The absolute value cwi’j can be expressed in terms of 8
the two Wigner function®V; andW; as A1 ¢=0

9
9

|Wi,j(xip)|2:f fWi(X+%Xap+%P)

XWj(x—3X,p—3P)dX dP. (43 o
This relation shows clearly that the cross te) is located )l v=1
around the poinf3 ((x;)+(x;)),2((Pi) +(p;)) 1. 2
The proof of Eq.(43) is based on the following relation | (=2

proved by Moyal[17]: k

dxd P 00 015 1 115 2 215 3 35 4

| S (ID OGP ) (uslD(~ X, ~P)us) A
— (g ug)(us|uy) (44) FIG. 1. [N, (|A])]2 as a function ofA| for /=0,1,2.

for arbitrary statesgu,), |u,), |us), and|u,). We choose i
y 1 U2, [Usy, 4 WX, P) = N2, Wi(X.P)+ A2 W (X,P)
i= 1#]

<u1| :<Si|D(va)1

luz)=UoD'(x,p)|si), =N221 Wi(X,P)+ N2, W, (X,P), (51)
i= i1<j

(45
<U3|:<Sj|D(X,p), where
_ t -
|Ug)=UoD (x.p)]s), W(X,P)=(s|D(X,P)|s), (52)
and get are the Weyl functions of thgs;) states(auto termg and
dXdP 7 /! _
| S sIpppcPIUD xpls) Wi (X, P)=(s{D(X.P)ls;)
X (5;|D(x,p)D(—X,~P)UoD'(x,p)|s;) = f dx(x+ 3 X|s)(sj|x— zX)exp(—iPx),
=(si|D(x,p)UoD(x,p)|8j)(s}|D(x,p)UoD (X, p)|s;)- (53
(46) ~ - _
Wi (X,P)=W;;(X,P)+W;;(X,P) (54)
Using Eq.(11) we can now show that
are the cross terms. The auto terms are located around the
(siID(x,p)D(X,P)UoDT(x,p)[si) =W, (x+3X,p+35P), origin.
(47)
lIl. EXAMPLE: SUPERPOSITIONS OF m COHERENT
(s)ID(x,p)D(—=X,—P)UsDT(x,p)]s;) STATES
=W;(x—3X,p—3P), (48) A. Basic formalism
) We consider the usual harmonic oscillator Hilbert space
(si|D(x,p)UoD(x,p)[sj) =W, (49 H which we write as the direct sum
T A — NS m—-1
(sj|D(x,p)UoD'(x,p)|siy=Wj;=W* . (50) H=S H,. (55

This completes the proof of E¢43). The physical signifi-
cance of this equation lies in the fact that it shows that theyhereH , is spanned by the number eigenstates
Wigner auto terms define uniquely the absolute vdlmet
not the phaseof the Wigner cross terms. H,={ImN+/); N=0,1,2,.. }. (56)
A similar decomposition into auto terms and cross terms
can be given for the Weyl function. Substitution of E§3)  We call 7, the projection operators into the Hilbert space
into Eq. (13) gives H,,
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FIG. 2. (N), as a function ofA| for /=0,1,2.
FIG. 4. AxAp as a function ofA| for arg(d)=0.
”/:NZO ImN+/)mN+ /], (57) o 1
NAAD={m2, o™ exid|AX(0*=1)]| . (61
m—1 a=
> m,=1 (58)
/=0

) It is easy to see that they are eigenstates at the opexdior
We now introduce the “generalized Schlinger cats” as
superpositions o coherent states uniformly distributed on

a circle with center at the origin: amA,/)=A"A; /). 62
m—1
DA —/K| A K
A7) J\//(|A|)k20 o A0, (59 A useful relation is that for integers,k in Z,, (the integers
modulom):
2T
w=ex;{ I —) (60)
m 1 m—1
/k_

where N, (|A|) is the normalization factor: m IZO w’"=6,0, (63

(2)
gf where s, is equal to 1 if/=0 (modm); and equal to O if
/#0 (modm). Substituting Eq(1) into Eq.(59) and using

Eq. (63) we find that

25
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FIG. 3. g'? as a function ofA| for /=0,1,2. FIG. 5. W(x,p) for the statg3.2;0) of Eq. (59).
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FIG. 6. |W(X,P)| for the state3.2;0) of Eq. (59). FIG. 8. W(x,p) for the state0.2;1) of Eq. (59).
|A|2 * AmN+/
A /)= Aexp — — | MN+/
IN/(|A|)7T/|A>-

(64)
It is clear that the statfA; /") belongs entirely in the Hilbert
for these states:

The rest of the values 4t give the same coherent statep
to a trivial phase fact9r Using the integral
subspaced . We can easily prove the following properties

d22 2\,N M
j —exp(—[2]9)Z2N(z*)M=(N!) ypm (69
c
we can write a resolution of the identity in the Hilbert space
|Aw'/>=w/|A'/> (65) H, using the statelsA;/’),
m-1 d2A
S OA A=, 69 J.
(AZ]B;K)= AN (|ADN(|B])
X

m-1
m E w*/a
a=0

p( Al 8|
exp — —5——

2
v * @
5 5 +A*Bow ) . (67)
Equation(65) shows that it is sufficient to consider the val-
ues ofA in

—INAIADT A WA =,

(70)

It is clear that in Eq(70) we can integrate oveZ, only, if at
the same time multiply the left hand side by, Summing
Hilbert spaceH.

over| we can have a resolution of the identity in the full

d?A
iy “2( A AN —
2/: fc T [NAADT A/ KA/ =1 (72)
. 2
C1={A=rexr(l¢); Os¢<ﬁ, r>0]_

Equations(67), (71) show that the{|A;/);AeC,,/ € Zy}
form an overcomplete set of states. Note that stpdeg’)
(68  and|B,m) with /'#m are orthogonal.
W(l:. P) W(I : 7’)
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FIG. 7.

W(x,p) for the statd0.2;0) of Eq. (59

FIG. 9. W(x,p) for the statd0.2;2) of Eq. (59).



854

S. CHOUNTASIS AND A. VOURDAS

W(X,P)|

g
TN

XSII
B R
S AR

FIG. 10. |W(X,P)| for the statd0.2;0) of Eq. (59).

B. Quantum statistical properties of these states

amples withm=3. Using Eq.(59) we calculate the prob-

abilities

for the casem=3

PAN)=KNIA, /) P=[N(|A]) 1?exp(—|A[?)

It is seen thap,(N) depends only ohA| and is independen
of arg(d). Using this we calculate the average number o
photons

AN (A(,())N(x)i/ (AwZ)Nw72/‘2
N!)1/2+ (N!)llz (N!)l/Z ‘
(72

aln

<N>/EN§0 Np,(N)=[N,(|A)]?A[2

X {3+ 20 Dexd |A|2(w—1)]
+20" Yexd |A|2(1lw—1)]
+ 0?1 Dexd |AlA(w?—1)]

+ w2 Yexd |Al2(Lw?—1)]}. (73

We also calculate numerically the quantities

and the

<N2>/ENZO N2p,(N) (74

(2):<N2>/_<N>/

In Fig. 1 we present the normalization constakf (|A])] 2

as a function ofA|. It is seen that for largeA|, when the
three coherent states of E(9) become “almost orthogo-
nal,” it takes a value very close to 3. It is also seen that for
/=1,2 it takes very small values f¢A| close to zero; and
for this reason all our numerical results are fat>0.1. In
Fig. 2 we present théN), as a function offA|. Equation

W(X,P)|

1
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FIG. 11. |W(X,P)| for the statd0.2;1) of Eq. (59).

(64) shows that for smallA| the state|A;/) is approxi-

o _ _ mately the number eigenstdt€). Therefore, fofA| close to
The casem=2 has been studied in the literature in the zero, the(N), takes the values 0,1,2 fof=0,1,2 corre-

context of Schrdinger cats[1], so we consider here ex- spondingly. In Fig. 3 we presenf?) as a function ofA|. It

is seen that for’=1,2 we have antibunchingi.e., g‘?<1)

for |A|<1.5. For large values ofA| the g'») is approxi-
mately equal to 1.

With regard to the uncertainties of these states, it is easily
seen tha{x)=(p)=0. In Fig. 4 we present the uncertainty
productAxAp as a function ofA| for arg(d)=0°. Note that
in the case arg{)=0° considered hereK=0. As we have
explained, for smallA| the statdA;/’) is approximately the

t number eigenstatp”) and therefore thé\xAp is equal to

¢/ +73. For large|A| the AxAp takes large values.

C. Wigner and Weyl functions

In this section we apply the formalism developed in Sec.
Il B to the state§A;/) of Eq. (59) (with m=3). We con-
sider the statg3.2;0) and present its Wigner function
W(x,p) in Fig. 5. We see clearly the three Gaussian auto
terms which ardup to normalizationthe Wigner functions
of the coherent statd8.2), |3.2 w), and|3.2 w?); and also
the three cross term&/,,, W,3, andW,5 which describe the
interference. We also present the Weyl function for the state
|3.2;0) in Fig. 6. We see clearly the sum of all the auto
terms located around the center; and also the six cross terms

W (X, P)l

1

08

0.6
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FIG. 12. |W(X,P)| for the statd0.2;2) of Eq. (59).
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Wi"]__ The cross terms are located at tho¥eR) for which ~ scription of quantum interferenge phenomeng_. The general
displacements of the stdt&.2i;0) by (X,P) produce another case of a quantum state which is a superpositiomafther
state which overlaps significantly with the original one. Forquantum states has been considered, and both its Wigner
example, displacement of thg3.2;0) by (X=3.9, function and its Weyl function have been decomposed into
P=—6.75 brings the coherent sta8.2) to overlap with ~ auto terms and cross terms. The cross terms provide a valu-
the coherent sta.2 w); and for this reason we get signifi- able insight into the interference.
cant cross terms around the poit=3.9, P=—6.75. We The study of superpositions aoh coherent states uni-
see clearly here the role of the Weyl functions as generalizetPrmly distributed on a circle is an interesting problem in its
correlation functions where displacements in both positiorPWn right. Here we have studied the properties of these states
and momentum are performed. and shown that they form an overcomplete basis in the Hil-
In the above examples we only present the case0  bertspace, that there is a resolution of the identity in terms of

because the cases=1 and/ =2 do not present any differ- them, etc. Numerical resuligor m=3) have demonstrated
ences which are easily visible. In Figs. 7, 8, and 9 we preserih® quantum statistical properties of these states and shown
the Wigner function for the statel.2;0), [0.2;1), and clearly the cross terms in their Wigner and Weyl functions
|0.21;2) correspondingly. It is clear that there are significantand the interference effects. S
differences between these three cases. In Figs. 10, 11, and 12/As a final comment we point out that there is a similarity
we present the absolute value at the Weyl function for thd?€tween the phase-space techniques in quantum mechanics
states]0.2;0), |0.2;1), and|0.2;2) correspondingly. Here and the so-called time-frequency methods in signal process-

again there are significant differences between the threld, as has been explained by Gabor and Vfll§,19. In
cases. this context also the Wigner function and the so-called am-

biguity function(which is similar to the Weyl function play
an important role.
It is our belief that the Weyl function should play a cen-
The Weyl functions are an important tool in the area oftral role in quantum mechanics and quantum optics, espe-
guantum phase-space methods. We have studied their progially in problems where quantum interference takes place
erties emphasizing in particular their significance for the de{20].

IV. DISCUSSION
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