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Time of arrival in quantum and Bohmian mechanics

C. R. Leavens
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6

~Received 15 October 1997!

In a recent paper Grot, Rovelli, and Tate~GRT! @Phys. Rev. A54, 4676~1996!# derived an expression for
the probability distributionp(T;X) of intrinsic arrival timesT(X) at positionx5X for a quantum particle with
initial wave functionc(x,t50) freely evolving in one dimension. This was done by quantizing the classical
expression for the time of arrival of a free particle atX, assuming a particular choice of operator ordering, and
then regulating the resulting time of arrival operator. For the special case of a minimum-uncertainty-product
wave packet att50 with average wave number^k& and varianceDk they showed that their analytical
expression forp(T;X) agreed with the probability current densityJ(x5X,t5T) only to terms of order
Dk/^k&. They dismissed the probability current density as a viable candidate for the exact arrival time distri-
bution on the grounds that it can sometimes be negative. This fact is not a problem within Bohmian mechanics
where the arrival time distribution for a particle, either free or in the presence of a potential, is rigorously given
by uJ(X,T)u ~suitably normalized! @W. R. McKinnon and C. R. Leavens, Phys. Rev. A51, 2748~1995!; C. R.
Leavens, Phys. Lett. A178, 27 ~1993!; M. Daumeret al., in On Three Levels: The Mathematical Physics of
Micro-, Meso-, and Macro-Approaches to Physics, edited by M. Fanneset al. ~Plenum, New York, 1994!; M.
Daumer, inBohmian Mechanics and Quantum Theory: An Appraisal, edited by J. T. Cushinget al. ~Kluwer
Academic, Dordrecht, 1996!#. The two theories are compared in this paper and a case presented for which the
results could not differ more: According to GRT’s theory, every particle in the ensemble reaches a pointx
5X, wherec(x,t) andJ(x,t) are both zero for allt, while no particle ever reachesX according to the theory
based on Bohmian mechanics. Some possible implications are discussed.@S1050-2947~98!02008-3#

PACS number~s!: 03.65.Bz, 03.65.Ca, 04.60.2m
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I. INTRODUCTION

Grot, Rovelli, and Tate@1# ~GRT! recently took up the
long-standing challenge@2–6# of formulating within conven-
tional quantum mechanics the concept of the time of arr
T(X) at the spatial locationx5X of a quantum particle with
given initial wave function and of deriving an expression f
the probability distributionp(T;X) of such arrival times.
They maintained that this is a well-posed problem in sim
quantum theory and that there must be a solution. They c
centrated on the special case of a freely evolving parti
leaving the general problem with a nonzero potential fo
future work.

Their approach begins by quantizing the expression
the arrival time for the corresponding, trivially solved, pro
lem in classical mechanics:

T~X!5
m~X2x0!

p0
⇒ T̂~X!5

m~X2 x̂0!

p̂0

, ~1!

wherex0 andp0 are the initial (t50) values of the classica
particle’s position and momentum andx̂0 and p̂0 are the
corresponding Heisenberg operators for the quantum
ticle. GRT tentatively adopted the symmetric ordering

1

p̂0
1/2

x̂0

1

p̂0
1/2

~2!

for the noncommuting operatorsx̂0 andp̂0
21 and then worked

in the Heisenberg momentum (p5\k) basis, writing~for X
50!
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T̂~0!52 i
m

\

1

k1/2

d

dk

1

k1/2, ~3!

with k1/25 i uku1/2 for k,0. To bypass the difficulty that dif-
ferent eigenfunctionsuT& of T̂(0) are not in general orthogo
nal, a problem that they traced to the singular behavior of
~3! at k50, they replaced Eq.~3! by the regulated time of
arrival operator

T̂e~0!52 i
m

\
f e~k!1/2

d

dk
f e~k!1/2, ~4!

with

f e~k!5k21Q~ uku2e!1e22kQ~e2uku!, ~5!

wheree is an arbitrary small positive number. They show
that the ~doubly degenerate! eigenfunctions uT,6&e of
T̂e(0),

^kuT,6&e5Q~6k!S \

2pm fe~k! D
1/2

expS i
\T

m E
6e

k dk8

f e~k8! D ,

~6!

in the k representation, form a complete orthonormal ba
GRT then extended the usual definition of the arrival tim
problem to include arrival times in the interval@2`,0# by
imagining that the particle was prepared att52` in the
state that, in the assumed absence of any interaction, w
evolve in the Schro¨dinger position basis to the desired initi
statec0(x)[c(x,t50), with Fourier transformf(k), at t
50. GRT claimed that for the extended arrival time proble
840
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PRA 58 841TIME OF ARRIVAL IN QUANTUM AND BOHMIAN MECHANICS
just as in the classical case~with p0Þ0!, a free quantum
particle@in a state withf(0)50# is certain to reachx5X at
some timeT(X) in the interval@2`,1`# so that complex
values ofT(X), corresponding to the particle never reachi
X, do not occur.T̂e(X) is then self-adjoint and the standa
probability interpretation applies, leading in a straightfo
ward way@assuming thatf(k50) is negligibly small# to

p~T;0!5 ze^T,1uc& z21 ze^T,2uc& z2

5p1~T;0!1p2~T;0!, ~7!

with1

p6~T;0!5
\

2pm U E
0

6`

dkk1/2 expS 2 i
\k2T

2m Df~k!U2

.

~8!

The corresponding distribution forXÞ0 contains a factor of
exp(ikX) in the integrand of Eq.~8!. The components o
p(T;X) associated with positive and negative values ok
respectively were interpreted as the contributionsp6(T;X)
to the arrival time distribution from particles arriving atx
5X from the left and from the right. This decompositio
follows, according to GRT, from the key point thatT̂e com-
mutes with the operator giving the sign ofk.

Grot, Rovelli, and Tate used their theory to calculate
rival time distributions for the special case in which the ‘‘in
tial’’ ( t50) wave functionc0(x) is a minimum-uncertainty-
product Gaussian. They ignored the contribution fromuku
,e on the grounds thate can be taken to be arbitrarily sma
and in the numerical calculations used parameters such
the relative widthDk/^k& of uf(k)u2 was very small. They
compared their analytic expression forp(T;X) with the
probability current density and found by expansion that th
agreed only to first order inDk/^k&. They stressed the lon
familiar fact @2# that J(X,T) cannot be identified with the
correct arrival time distribution because it can be negativ2

They suggested that whether or not their result forp(T;X)
based on the particular operator ordering~2! is physically
correct might be decided experimentally. An extension
their theory to the relativistic~Klein-Gordon! case by Leo´n
@7# provided some strong support for Eq.~2!.

The purpose of the present paper is to raise the follow
theoretical points. The arrival time problem is simply a
unambiguously solved not only in classical mechanics
also in Bohmian mechanics@8–14# where, for arbitrary scat-
tering potentialV(x), one finds@15–17# for those particles
that actually reach x5X

p~T;X!5
uJ~X,T!u

*2`
1`dtuJ~X,t !u

, ~9!

with

1The author has taken the liberty of correcting a sign error in
argument of the exponential.

2It is the fact thatJ(X,T) can change sign asT is varied, even if
f(k) is nonzero only fork of one sign@2,3,18#, which disqualifies
both 1J(X,T) and2J(X,T) as arrival time distributions.
-

-

at

y

.

f

g

t

p6~T;X!5
6J~X,T!Q„6J~X,T!…

*2`
1`dtuJ~X,t !u

. ~10!

~For the usual formulation of the problem where only arriv
times subsequent to the initial timet50 are considered, the
lower limit on the integrals should be 0.! The arrival time
distribution of Bohmian mechanics is in general differe
and can be qualitatively different, from that derived by GR
GRT’s claim for the extended arrival time problem that e
ery freely evolving particle is certain to reachx5X, for ar-
bitrary X and initial statec0(x) with f(0)50, is definitely
not the case within Bohmian mechanics.3 It is important to
know whether their claim is a rigorous result of convention
quantum mechanics or simply a plausible conjecture.

Section II contains a very brief sketch of the ingredien
of Bohmian mechanics needed for the one-dimensional
rival time problem. Section III compares GRT’s theory
arrival time distributions with that based on Bohmian m
chanics using two simple case studies for illustrative p
poses. Emphasis is given to the key question of whethe
not every free particle in a state havingf(0)50 must arrive
at an arbitrary pointx5X at some~real! time T. Concluding
remarks are made in Sec. IV.

II. ESSENTIALS OF BOHMIAN MECHANICS

In Bohmian mechanics@8–14#, tailored to the problem of
interest here, it is postulated that an electron, say, propa
ing in a potentialV(x) is an actual pointlike particle that i
always associated with a field that probes the potential
guides the particle’s motion accordingly so that it has a w
defined positionx(t) and velocityv(t) at each instant of
time t. It is also postulated that the guiding field in the no
relativistic case is the solutionc(x,t) of the time-dependen
Schrödinger equation and that the particle’s equation of m
tion is v(t)[dx(t)/dt5v(x,t)x5x(t) , where the velocity
field v(x,t) is given by

v~x,t !5
J~x,t !

uc~x,t !u2
, ~11!

with J(x,t)5(\/m)Im@c* (x,t)]c(x,t)/]x#. ~This is the sim-
plest equation of motion that is Galilean and time-rever
invariant @10#.! It follows from these postulates generalize
to theN-particle case@8# that uc(x,t)u2dx is, as assumed an
partially justified by Bohm, the probability of the particl
beingbetweenx andx1dx at time t @10#. These basic pos
tulates do not mention measurement, which is not regar
as a primary concept in Bohm’s theory~hence the use o
‘‘ being’’ instead of ‘‘being found’’ in the previous sentence!.
An experiment on a quantum particle does not as a rule
veal the intrinsic value of the property supposedly be
measured. An important exception is an ideal position m

e 3We are not concerned here with the quantum analog of free c
sical particles withp050 that never move~these are eliminated a
a source of concern in GRT’s theory by their regulation procedu!
but with free Bohmian particles that can ‘‘turn around’’ befo
reachingx5X and never reach that point.
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842 PRA 58C. R. LEAVENS
surement which plays a central role in the application
Bohm’s theory to measurement in general. The theory w
originally constructed so that, to the extent that any meas
ment is ultimately a position measurement~e.g., that of a
pointer!, it gives precisely the same statistical prediction
any experimental quantity as conventional quantum mech
ics whenever the prediction of the latter is unambiguous.
the usual textbook measurement made at an instant of
selected by the experimentalist~or some deviceexternal to
the system of interest! there is no ambiguity and the statist
cal distribution of pointer positions predicted by the tw
theories are identical.4 However, in a time of arrival mea
surement the experimentalist selects the pointX not the time
T(X) at which a given particle arrives@4# and it is not yet
evident that the conventional quantum theory of measu
ment based on a self-adjoint operator for the intrinsic sys
property of interest can be made to work in this case. I
already clear@2–6,1,7# that, if possible, it will not be an eas
task. Perhaps looking at the problem from the point of vi
of Bohm’s theory will provide some useful insight.

Now, given the initial wave functionc(x,t50) and par-
ticle position x(0)[x(t50) of an electron, its subseque
motion is uniquely determined by simultaneous integrat
of the time-dependent Schro¨dinger equation forc(x,t) and
the equation of motion forx(t) to obtain the Bohm trajectory
x(x(0),t). In Bohm’s deterministic theory uncertainty ente
only through the probability distributionuc(x(0),0)u2 for the
unknown initial positionx(0) of the particle. The probability
distribution for a particle propertyf that is defined for all
trajectories is given by

P~ f ![E
2`

1`

dx~0!uc~x~0!,0!u2d„f 2 f ~x~0!!…, ~12!

where f (x(0)) is the value of the property for a particle fo
lowing the trajectoryx(x(0),t). For particle properties tha
are not defined for some trajectories it is necessary to res
the range of integration in Eq.~12! to exclude those trajec
tories and to normalize the resulting distribution according
This is, in general, the case for the arrival timeT(X). This is
obvious forX on the far side of a barrier. However, even f
electrons propagating freely fromt52` to t51` there
can be trajectories thatneverreach a given pointX so that
the associated arrival times atX are undefined. When only
those particles that actually reachX are included in the
analysis the arrival time distribution is given by Eq.~9!. This
result holds even in the presence of a potential barrier.

The derivation of Eq.~9! is simple when one takes int
account the well-known nonintersection property of Boh
trajectoriesx(x(0),t) with different starting pointsx(0) @but
the same initial wave functionc(x,0)#: If x(0)8Þx(0) then
x(x(0)8,t)Þx(x(0),t) for any t. This means that only a singl
Bohm trajectory contributes to the current densityJ(X,T) at
the particular space-time point (x5X,t5T). With this fact
in mind let us consider the complete range of starting po
x(0) for each of which the associated trajectoryx(x(0),t)

4The microscopic interpretation of the distribution of pointer p
sitions can, however, be very different in the two theories.
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reachesx5X at least once at some time~s! T(X;x(0)) within
the temporal range of interest. Because of the nonintersec
property the desired range ofx(0) must consist of a single
continuous interval, say@xa

(0) ,xb
(0)#. The ~unnormalized! ar-

rival time distribution is

E
xa

~0!

xb
~0!

dx~0!uc~x~0!,0!u2d„T2T~X;x~0!!…. ~13!

Again because of the nonintersection property, there is
and only one value ofx(0) in the interval @xa

(0) ,xb
(0)# for

which the trajectoryx(x(0),t) reachesX at a particular value
of T within the range of interest. In addition, of course, ev
if that trajectory reachesX more than once only one of it
arrival times is equal to the specified value ofT. Hence

d„x~x~0!,t !2X…u t5T5
d„t2T~X;x~0!!…

udx~x~0!,t !/dtu U
t5T

5
d„t2T~X;x~0!!…

uv„x~x~0!,t !,t…u U
t5T

~14!

contains only a single term and Eq.~13! becomes

uv~X,T!u E
xa

~0!

xb
~0!

dx~0!uc~x~0!,0!u2d„x~x~0!,T!2X…. ~15!

The integral is just the probability densityuc(X,T)u2 and Eq.
~15! reduces to

uv~X,T!uuc~X,T!u25uJ~X,T!u, ~16!

using Eq.~11!. It is important to note that the modulus sig
is not added by hand but emerges naturally via the stand
formula for changing the argument of a Diracd function.
Normalization gives Eq.~9!, which has the nice property tha
particles that never reachX do not contribute toJ(X,t) at
any time t and are automatically excluded from the arriv
time distribution. The denominator of Eq.~9! is the fraction
of particles in the ensemble that reachX if and only if each
of these particles reachesX just once. Now, it follows from
Eq. ~11! for the velocity fieldv(x,t) that J(X,T).0 corre-
sponds to a particle arriving atx5X at t5T from the left and
J(X,T),0 corresponds to a particle arriving atX at timeT
from the right, leading immediately to the decompositi
~10!.

Neither Eq.~9! nor Eq. ~10! necessarily follows for an
ensemble of classical particles because a positive~or nega-
tive! current at (X,T) can in general have contributions from
both left-going and right-going particles. Hence, contrary
the case in~pure state! Bohmian mechanics, it is possible i
classical mechanics to have exactly zero particle curren
(X,T) with p(T,X) nonzero, even large.5 This is not a prob-
lem in classical mechanics because the particle trajecto
can be used to decompose the current atX into left-going and

5The second case study in Sec. III shows that according to GR
theory this is also possible for a pure state within conventio
quantum mechanics.
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right-going components at any instant of timeT. On the
other hand, within conventional quantum mechanics
right-going and left-going components,J1 andJ2 , respec-
tively, of the probability current density are in general i
defined quantities and some would regard attempts@19–21#
to carry out such a decomposition as a meaningless exer

III. COMPARISON OF TWO ARRIVAL TIME THEORIES

Grot, Rovelli, and Tate stated without explicit proof tha
for the extended definition of time of arrival, a free@V(x)
50# particle in one dimension always reaches an arbitr
positionX so thatT(X) is never complex. If this at first sigh
very plausible claim is true then it should follow from a
exact theory of arrival times based on conventional quan
mechanics. It seems instead to be a basic premise of GR
theory so that the most that one can hope for is to sh
self-consistency. The theory of Muga, Brouard, and Mac´as
@5#, based on their perfectly absorbing complex poten
model for a particle detector, applies only forX located suf-
ficiently far to the left or right of the initial wave packet tha
J(X,t) does not change sign for the ranget>0 of interest.
Hence this theory is not general enough to check GR
claim. In any case, Bohmian mechanics provides an in
nally consistent possible scenario in which their claim is
in general upheld. This is now shown explicitly for tw
simple choices of initial wave functionc0(x), the first with
f~0! very small but nonzero and the second withf~0! ex-
actly zero.

First consider the free evolution of the minimum
uncertainty-product initial wave function investigated in d
tail by GRT

c~x,0!5
1

@2p~Dx!2#1/4expF2S x2a

2Dx D 2

1 iKx G , ~17!

with centroida,0 and mean wave number^k&5K.0 for
definiteness. Integration of the time-dependent Schro¨dinger
equation and the equation of motion gives

x~x~0!,t !5a1\Kt/m1~x~0!2a!S 11
\2t2

4m2~Dx!4D 1/2

~18!

for the Bohm trajectory withx5x(0) at t50. A selection of
such trajectories is shown in Fig. 1. The positionx of a
particle following the trajectory with x(0)5x2

(0)[a
22(Dx)2K increases monotonically fromx52` at t
52` to x5a at t51`, while that of a particle following
the trajectory withx(0)5x1

(0)[a12(Dx)2K increases mono
tonically from x5a at t52` to x51` at t51`. These
two special trajectories are shown as dotted lines in the
ure. They act as bifurcation lines, together separating
trajectories into three distinct groups. Those withx(0),x2

(0)

start atx52` at t52` and end atx52` at t51`. For
a,0, the case under consideration, it follows from the no
intersection property of Bohm trajectories that a particle f
lowing a trajectory withx(0),x2

(0) never reachesx5X50.
Trajectories withx2

(0),x(0),x1
(0) start atx52` at t52`

and end atx51` at t51` passing throughx5X50 once
and only once. Trajectories withx(0).x1

(0) start atx51` at
e

se.

y

m
’s

w

l

’s
r-
t

-

-
e

-
-

t52` and end atx51` at t51`. For a,0, the member
of this group with x(0)5x0

(0)[a1@a214K2(Dx)4#1/2 just
reachesx5X50 where it turns around and heads back in t
direction of x51`. This special trajectory, shown as
dashed line in Fig. 1, divides the third group into those t
pass throughx5X50 twice and those that never reachx
50. For the latter, the solutionT(X50) of x(x(0),T)50 is
complex valued.

More generally, for the initial wave function~17! with a
andK arbitrary andDx not infinite, there is no choice ofX
for which T(X) is never complex. However, forDk!K, the
regime in which GRT applied their theory to Eq.~17!, the
overwhelming number of particles havex(0) in the range
(x2

(0) ,x1
(0)), of width 4(Dx)2K52(K/Dk)Dx@2Dx cen-

tered ona, where Bohm trajectories pass precisely on
throughx5X50. We now consider an initial wave functio
c0(x) for which f(k50)50 and no Bohm trajectory
reachesx5X whenX50 and the probability of a particle~of
unknownx(0)! reachingx5X is less than 1/2 for any value
of X.

Consider the initial wave function

c~x,0!5NFexpS 2
~x2a!2

4~Dx!2 1 iKx D
2expS 2

~x1a!2

4~Dx!2 2 iKx D G , ~19!

where

N5H 23/2p1/2DxF12expS 22~Dx!2K22
a2

2~Dx!2D G J 21/2

.

~20!

Its Fourier transform is

FIG. 1. Bohm trajectories for the Gaussian ‘‘initial’’ wave func
tion c(x,0) of Eq. ~17! with a5210 Å, ^k&5K51 Å21, and
Dk5(2Dx)2150.15 Å21. The ‘‘initial’’ positions for the set of
trajectories shown by the continuous curves arex(0)5226,
224, . . . ,0, . . . ,42,44 Å. The dotted curves show the special t
jectories discussed in the text withx(0)5x1

(0) and x2
(0) and the

dashed curve the one withx(0)5x0
(0) . @ t0[uau/(\K/m).#
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844 PRA 58C. R. LEAVENS
f~k!5N2p1/2Dx$exp@2~k2K !2~Dx!22 i ~k2K !a#

2exp@2~k1K !2~Dx!21 i ~k1K !a#% ~21!

and has the important properties thatf(0)50 andf(6`)
50. Solution of the time-dependent Schro¨dinger equation
@with V(x)50# gives

c~x,t !52NDx@~Dx!22 i\t/2m#1/2h1/2 exp@2K2~Dx!2

1 iKa#exp@b01b2x21 i ~g01g2x2!#

3@exp~dx1 i ex!2exp~2dx2 i ex!# ~22!

and

J~x,t !5~\/m!2N2~Dx!2h1/2 exp@22K2~Dx!2#

3exp@2~b01b2x2!#$4g2x@cosh~2dx!2cos~2ex!#

12e sinh~2dx!22d sin~2ex!%, ~23!

where

h[@4~Dx!41~\t/m!2#21, ~24!

b0[h@4~Dx!6K22~Dx!2a222Ka~Dx!2\t/m#, ~25!

b2[2h~Dx!2, ~26!

g0[2h$4Ka~Dx!41@4K2~Dx!42a2#\t/2m%, ~27!

g2[h\t/2m, ~28!

d[2h~Dx!2~a1K\t/m!, ~29!

e[2h@2K~Dx!42a\t/2m#. ~30!

The probability densityuc(x,t)u2 is zero atx50 for all t.
Within ~nonrelativistic! Bohmian mechanics a particle ca
reach a pointx5X at a timet5T when uc(X,T)u250 only
if v(X,T)56` @22#. From Eqs.~22! and~23!, respectively,
it follows that asx→0, for any t, uc(x,t)u2→0 asx2 and
J(x,t)→0 as x3 so thatv(x,t)→0 as x. @The coefficient
multiplying x depends ont allowing v(x,t) to vanish at
points (x,t) with xÞ0 so that particle trajectories can tu
around before reachingx50.# Hence, according to Bohm’s
theory, a particle with the wave function~22! for all time
never reaches the pointx5X50, i.e.,T(0) is complex for all
possible starting pointsx(0). Furthermore, if such a particl
hasx(0),0 then it never reaches a pointx5X.0. On the
other hand, some of the particles withx(0).0 reachx5X
.0 twice, once from the right and once from the left. Th
behavior is completely different from the prediction
GRT’s theory that every free particle in a state withf(0)
50 is certain to arrive at any pointX at some~real! time T.

Since, according to Bohmian mechanics, no partic
reachX50 for the initial wave function~19! the arrival time
distribution is undefined for this special case. According
Fig. 2 compares the6 components of the arrival time distr
butionsp(T;X) of the two theories for the small but finit
value X5a/100,0. According to the calculation based o
Bohm’s theory, for this particular value ofX only about 1
out of every 88 particles in the ensemble reachesX, first
s

,

from the left and then, after turning around, from the rig
According to GRT’s theory, all of the particles in the e
semble reachx5X, half from the right and half from the left
with those from the left arriving slightly earlier on averag
becauseX/uau is small and negative.

Now consider an entirely different situation in which ha
of the particles in the ensemble have an initial wave funct
that is just the first component of Eq.~19! @i.e., Eq.~17!# and
half have an initial wave function that is the second comp
nent, both suitably renormalized. ForuKDxu@1 the fraction
of the particles that, according to Bohmian mechanics, t
around before reachingX50 ~or X5a/100! is negligible and
the results for the distributionsp6(T;X) for the entire mixed
ensemble will be very close to the corresponding results
GRT’s theory. These in turn will be virtually indistinguish
able from GRT’s results for the ensemble described by
pure state~19! because the first term of Eq.~19! is dominated
by Fourier components withk;K.0 and contributes almos
exclusively top1(T;X) while the second contributes almo
exclusively top2(T;X). For the theory based on Bohmia
mechanics, interference between the two time-evolved c
ponents of the pure state~19! has a dramatic effect on th
distribution of arrival times atX for uX/au!1, while it has
virtually no effect according to GRT’s theory, which de
couples thek.0 and k,0 contributions top(T;X). This
decoupling follows from the ‘‘key point’’ that the regulate
operatorT̂e commutes with the operator sgn̂ that gives the
sign of k. I find it a cause for concern that this importa
ingredient of the theory apparently emerges as a consequ
of regulation. Now

@ T̂e ,sgn̂#F~k!52 i ~2m/\!e22kF~k!d~k!, ~31!

while

@ T̂,sgn̂#F~k!52 i ~2m/\k!F~k!d~k!, ~32!

FIG. 2. Arrival time distribution componentsp6(T;X) for those
free particles that actually reach the positionx5X5a/100 at some
time~s! T in the range@2`,1`# calculated for the initial wave
function ~19! with K51 Å21, Dk5(2Dx)2150.01 Å21, and a
52150 Å. The6 components of GRT’s distribution are shown b
the long-dashed and short-dashed curves, respectively; those o
distribution based on Bohmian mechanics are shown by the s
and dash-dotted curves, respectively.
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so that regulation has considerably enlarged the clas
functionsF(k) for which the above-mentioned commutat
is zero for allk, includingk50. In the absence of regulatio
F(k) must approach zero faster thank ask→0 while regu-
lation allowsF(k) to diverge provided that it does so mo
slowly thank21.

It should be mentioned at this point that in a recent pa
@23# Delgado and Muga, using a very different approach t
involves neither operator ordering difficulties nor regulatio
obtained an arrival time distribution that can be shown to
identical to that derived by Grot, Rovelli, and Tate. How
ever, the stated region of applicability of Delgado a
Muga’s theory is narrower. In particular,f(k) must be non-
zero only fork of one sign so that eitherp1 or p2 is zero.
Hence their theory is not applicable to either of the ca
considered in this section.

The prediction of Bohmian mechanics that it is possi
for some freely propagating electrons to come to rest m
mentarily and then change their direction of motion is c
tainly counterintuitive from the point of view of classica
mechanics and, if one allows oneself to think of such thin
perhaps also of quantum mechanics. However, in Boh
theory a particle withV(x)50 is not really free because it i
always under the guiding influence of the wave functio
Now consider a particle prepared in the initial state~17! with
uau@Dx and incident on the infinite potential stepV(x)
5V0Q(x), with V05`. In this case the prediction of Bo
hmian mechanics that the particle will turn around witho
ever reaching the regionx.0 is no surprise. However, fo
x<0 and for allt the wave functionc(x,t) of this particle is
identical, aside from an unimportant normalization factor,
Eq. ~22! and the corresponding trajectoriesx(x(0),t) for
x(0),0 are also identical. With this in mind, the turnin
around of the freely propagating particles described by
~22! does not seem so strange.

When V(x)50 the wave-number distributionuf(k;t)u2

for the ensemble of particles is, of course, independent ot.
Now, if one assumesthat each particle in the ensemb
moves with a time-independent velocityv5\k/m, with v
varying only from particle to particle@consistent with
uf(k)u2#, then it follows that every particle withvÞ0 must
reach an arbitrary positionX once and only once at som
time T between2` and 1`. However, there is, in my
opinion, no justification for this assumption within standa
quantum mechanics.6 If this is in fact the case, then there
a corresponding lack of justification for regarding the po
sible turning around of free particles in Bohm’s theory
unphysical.

Suppose thatf(k) is nonzero only fork.0. Then GRT’s
theory predicts that free particles arrive atx5X only from
the left, i.e., p2(T,X)50. However, it is well known
@2,3,18# thatf(k) being nonzero only for positivek does not
guarantee thatJ(x,t) be non-negative for allx andt. Now, if
J(X,T) is negative forT1,T,T2 then the prediction that no
particles will be found to arrive atX from the right during
this time interval, during which the integrated probabili

6There is no implication here that GRT made this assumption.
intended only as a scenario that would support their claim.
of
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density for the region@2`,X# is monotonically increasing
must be regarded as counterintuitive. It is certainly contr
to the simple self-consistent picture provided by Bohm
theory of particles arriving atX from the right whenever
J(X;t) is negative.

IV. DISCUSSION AND CONCLUDING REMARKS

Suppose that one were to base a calculation of the di
bution of arrival times on a Hamiltonian describing an ot
erwise freely propagating electron that is coupled atx5X to
the quantum analog of a classical stopwatch that indica
the timeT(X) at which a classical particle arrives atx5X.7

Also suppose that a single microscopic stopwatch ‘‘pointe
variableu(X) when amplified to the macroscopic level wit
negligible loss in resolution gives the experimental va
Texpt(X) for an individual run. Since the calculated distrib
tion of u(X) values for an ensemble of coupled electro
stopwatch systems is common to both conventional quan
mechanics and Bohmian mechanics the two theories
give precisely the same predictions for the distribution
Texpt(X) values. The possibility of disagreement sets in wh
it is assumed that it is possible, in principle at least, to des
a quantum stopwatch~to say nothing of the amplification
apparatus! that reveals the intrinsic value ofT(X) so that one
can predict the measured distribution of arrival times by c
culating the distribution of arrival times in the absence of t
microscopic stopwatches. The theoretical expression for
distribution of such intrinsic arrival times derived withi
conventional quantum mechanics by Grot, Rovelli, and T
using the particular operator ordering~2! is not the same as
the expression derived within Bohmian mechanics. A qu
tion that immediately arises is whether or not a differe
choice of operator ordering in GRT’s theory could remo
the discrepancy between the two theories. Another
whether or not the two theories are timing the same quan
entities. A short digression at this point on a related probl
will hopefully clarify the subsequent discussion.

The mean dwell timetD(x1 ,x2) is defined as the averag
time spent in the regionx1,x,x2 subsequent tot50 by an
ensemble of electrons prepared in the initial statec(x,0) in
the presence of an arbitrary potentialV(x). Jaworsky and
Wardlaw @24# postulated the following widely, but not uni
versally, accepted expression for this quantity:

tD~x1 ,x2!5E
0

`

dtE
x1

x2
dxuc~x,t !u2. ~33!

This is identical to the expression for the intrinsic dwell tim
derived @25,16# using Bohmian mechanics. The stationar
state-scattering limit of Eq.~33! is identical to the expression
for the mean dwell timetD(x1 ,x2 ;k) derived@26# by very
weakly coupling the scattering particle while ‘‘in’’ the re
gion @x1 ,x2# to a calibrated version of the quantum ‘‘stop
watch’’ of Salecker and Wigner@27#. In this case the though
experiment accurately reveals the average value of the in

is

7We are now considering the usual arrival time problem in wh
the particle is timed fromt50 so that we do not have to worr
about initializing the stopwatch att52`.
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sic time of interest. Unfortunately, this agreement betwe
the intrinsic quantity calculated within Bohmian mechan
and the corresponding result of the thought experim
breaks down when one attempts to derive mean transmis
and reflections timestT and tR by analyzing the Salecker
Wigner ~SW! clock readings separately for the two sube
sembles distinguished by whether the scattered particl
found to be transmitted or reflected byV(x), respectively.

Brouard, Sala, and Muga@28# assumedthe correctness o
Eq. ~33! within conventional quantum mechanics and, wr
ing it in the equivalent form

tD~x1 ,x2!5E
0

`

dtE
2`

`

dxc* ~x,t !D̂~x1 ,x2!c~x,t !, ~34!

where the projector D̂(x1 ,x2) is defined by
D̂(x1 ,x2)c(x,t)5Q(x2x1)Q(x22x)c(x,t), investigated
the decomposition oftD into parts associated with transmi
sion and reflection. Their approach was based on the pro
tors T̂ and R̂ defined by T̂c(x,t)5cT(x,t) and R̂c(x,t)
5cR(x,t), wherecT andcR are the~to be! transmitted and
reflected components ofc respectively. UsingT̂1R̂51̂,
D̂n5D̂ (n51,2, . . . ), and theambiguity in operator ordering
resulting from the fact thatD̂ does not commute withT̂ and
R̂, they showed thatD̂ in Eq. ~34! could be replaced by an
infinite number of equivalent operators, e.g., (T̂D̂1R̂D̂) or
(D̂T̂1D̂R̂), leading to an infinity of differentT-R decom-
positions oftD . The simplest of these corresponded to we
known expressions fortT andtR already existing in the lit-
erature and derived by a variety of methods. However, it w
shown@21# that no choice of operator ordering could lead
intrinsic mean transmission and reflection times in agreem
with the ~unique! results of Bohmian mechanics. It was co
cluded that the basic difference between the two approa
is simply that they clock fundamentally different entitie
Schrödinger waves in the projector approach and~postu-
lated! pointlike particles in the approach based on Bohm
mechanics. The predicted mean transmission and reflec
times ‘‘measured’’ by the SW quantum clock are identical
the intrinsic mean transmission and reflection times obtai
in the projector approach from the particular decomposit
D̂5(1/2)@ T̂D̂1D̂T̂#1(1/2)@R̂D̂1D̂R̂#. This might lead
one to reject the intrinsic times based on Bohmian mech
ics. However, it has been shown@26# that there are situation
in which the SW quantum clock results fortT or tR are
clearly unphysical~e.g.,tR,0!, casting doubt on the inter
pretation of theT- andR-subensemble averaged clock rea
ings in terms of particle times in the general case.

Returning to the intrinsic arrival time problem, there is
obvious reason why a different ordering of the operatorsx̂0

and p̂0
21 within GRT’s approach should lead to the arriv

time distribution~9! of Bohmian mechanics. In fact, this ap
pears most unlikely as long as the decoupling ofk,0 and
k.0 contributions to p(T;X) is maintained in GRT’s
theory. Moreover, regardless of which ordering is chos
GRT’s arrival time distribution will involve the square
modulus of an integral overk, while that based on Bohmia
mechanics will involve the modulus of a product of tw
n
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different integrals overk @obtained by Fourier transforming
c* (x,t) andc(x,t) in the expression forJ(x,t)#. In general,
these will not give equivalent results forp(T;X). Again, a
fundamental difference between the two approaches for
culating intrinsic arrival times is that they clock fundame
tally different entities. On the other hand, if one introduce
particle detector ‘‘at’’x5X and measures the time at whic
it fires then conventional quantum mechanics and Bohm
mechanics are presumably concerned with the same poin
particle at the instant of detectionand they should agree in
their predictions for the distribution of firing times for th
detector, provided~a model of! the detector is included in the
Hamiltonian. GRT have based their approach on the exp
tation that their expression~or another one based on a diffe
ent operator ordering! for the distribution of intrinsic arrival
times will give the distribution of firing times for an idea
detector. Hopefully, this issue will be resolved experime
tally in the not too distant future. In Bohmian mechanics,
the other hand, there is no general expectation that the in
sic particle property of interest will be revealed in
quantum-mechanical measurement. For the case of ar
times, before making such a claim it would, of course,
necessary to show that the presence of the detector has
ligible effect on the calculated trajectories at least until t
actual instant of detection.

In conclusion, Grot, Rovelli, and Tate’s theory for th
distribution of intrinsic arrival times for freely propagatin
quantum particles can in some circumstances lead to re
that are very different from those based on Bohmian m
chanics; both theories contain counterintuitive featur
GRT’s theory contains some basic assumptions~beyond their
particular choice of operator ordering and regulation! that
need to be justified, in particular the assumption thatk.
(,)0 corresponds to arrival from the left~right!. The impor-
tant question is whether it is possible to perform sufficien
noninvasive experiments to meaningfully test the predictio
of these theories. Unfortunately, the case study that exhib
a dramatic difference between the predictions of the t
theories depended on the coherent interference between
two components of the wave function at the positionX
where one would have to insert the particle detector to p
form the experiment. It could turn out that the two theori
will agree within experimental error whenever it is possib
to perform a meaningful measurement of the arrival tim
distribution reasonably unperturbed by the presence of
detector.8 This would at least reconcile the present status
the arrival time problem with statements such as the follo
ing @29#: ‘‘As an intellectual apparatus that allows us to fi
ure out what will happen in all conceivable kinds of situ
tions, quantum mechanics works just fine and tells
whatever answers we need to know.’’ Clearly, further wo
is needed to determine whether or not this optimistic ass
ment of conventional quantum mechanics is justified with
the context of arrival times.

Notes added

Recently I came across three relevant works prior to p
lication, two of which have since been published.

8The restrictions placed by Delgado and Muga on the initial st
for the applicability of Eq.~8! within their theory is a step in this
direction.
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In the first @30#, Delgado reformulates the arrival tim
theory of Delgado and Muga@23# in terms of an operator fo
the modulus of the current. Changing Delgado’s notation
this operator fromĴ1(X) to uĴ(X)u, one can contrast the
result for the arrival time distribution obtained using Bohm
ian mechanics with that obtained by Delgado and Mu
~within the restricted range of applicability of their theor!

very succintly:u^Ĵ&u versus^uĴu&, respectively.
In the second article, Halliwell and Zafiris@31# apply the

decoherent histories generalization of quantum mechanic
the arrival time problem. Of particular relevance to t
present paper is their brief review of the work of Yama
and Takagi@32#, who showed that within the decoherent h
tories approach the notion of the time of arrival of a quant
particle at a pointx5X is rarely meaningful. For the very
special case in which the initial statec(x,0) is antisymmetric
about x50, they proved that the probability of the free
evolving particle crossingx5X50 is well defined but equa
to zero. Now the initial wave function~19! of the second
ic

-

nd
,

r

a

to

case study of the present paper is antisymmetric aboux
50 and hence the decoherent histories approach and
based on Bohmian mechanics are in complete agreemen
no particle in the ensemble described by Eq.~19! ever arrives
at X50 ~for XÞ0 the decoherent histories approach can
consistently assign a probability for crossingx5X!.

In the third paper, Aharonov, Oppenheim, Popes
Reznik, and Unruh@33# argue but do not prove that the tim
of arrival cannot be precisely defined and measured in qu
tum mechanics. I do not see any necessary inconsiste
between their conclusions and my own. Although the time
arrival can be precisely defined within Bohmian mechani
measurement of its intrinsic value is just as problematic a
the conventional approach.

ACKNOWLEDGMENT

The author is indebted to J. G. Muga for helpful discu
sions.
n

.

n

.

. G.
@1# N. Grot, C. Rovelli, and R. S. Tate, Phys. Rev. A54, 4676
~1996!.

@2# G. R. Allcock, Ann. Phys.~N.Y.! 53, 253 ~1969!; 53, 286
~1969!; 53, 311 ~1969!.

@3# J. Kijowski, Rep. Math. Phys.6, 361 ~1974!.
@4# B. Mielnik, Found. Phys.24, 1113~1994!.
@5# J. G. Muga, S. Brouard, and D. Macı´as, Ann. Phys.~N.Y.!

240, 351 ~1995!.
@6# J. B. Hartle, Class. Quantum Grav.13, 361 ~1996!.
@7# J. León, J. Phys. A30, 4791~1997!.
@8# D. Bohm, Phys. Rev.85, 166 ~1952!; 85, 180 ~1952!.
@9# J. S. Bell,Speakable and Unspeakable in Quantum Mechan

~Cambridge University Press, Cambridge, 1987!.
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