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Time of arrival in quantum and Bohmian mechanics
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In a recent paper Grot, Rovelli, and Ta@RT) [Phys. Rev. A54, 4676(1996] derived an expression for
the probability distributionT(T; X) of intrinsic arrival timesT(X) at positionx= X for a quantum particle with
initial wave functiony(x,t=0) freely evolving in one dimension. This was done by quantizing the classical
expression for the time of arrival of a free particleXatassuming a particular choice of operator ordering, and
then regulating the resulting time of arrival operator. For the special case of a minimum-uncertainty-product
wave packet at=0 with average wave numbeik) and varianceAk they showed that their analytical
expression forw(T;X) agreed with the probability current densiff{x=X,t=T) only to terms of order
Ak/(k). They dismissed the probability current density as a viable candidate for the exact arrival time distri-
bution on the grounds that it can sometimes be negative. This fact is not a problem within Bohmian mechanics
where the arrival time distribution for a particle, either free or in the presence of a potential, is rigorously given
by |J(X,T)| (suitably normalized[W. R. McKinnon and C. R. Leavens, Phys. Rev5A 2748(1995; C. R.
Leavens, Phys. Lett. A78 27 (1993; M. Daumeret al, in On Three Levels: The Mathematical Physics of
Micro-, Meso-, and Macro-Approaches to Physiedited by M. Fannest al. (Plenum, New York, 1994 M.
Daumer, inBohmian Mechanics and Quantum Theory: An Appraisdited by J. T. Cushingt al. (Kluwer
Academic, Dordrecht, 1996 The two theories are compared in this paper and a case presented for which the
results could not differ more: According to GRT's theory, every particle in the ensemble reaches a& point
=X, wherey(x,t) andJ(x,t) are both zero for all, while no particle ever reachésaccording to the theory
based on Bohmian mechanics. Some possible implications are disc[8%680-29478)02008-3

PACS numbd(s): 03.65.Bz, 03.65.Ca, 04.60m

I. INTRODUCTION " m1l d 1
T(O)Z_I%Wa(k_ﬂz, (3

Grot, Rovelli, and Tatd1] (GRT) recently took up the
long-standing challenge—6] of formulating within conven-  with k*2=i|k|2 for k<0. To bypass the difficulty that dif-

tional quantum mechanics the concept of the time of arrlva.}erent eigenfunctionT) of $(0) are not in general orthogo-

T.(X) at .the spatial Iocgtion= X ofa quantum particle _With nal, a problem that they traced to the singular behavior of Eq.
given initial wave function and of deriving an expression for (3) at k=0, they replaced Eq(3) by the regulated time of
the probability distributionm(T;X) of such arrival times. ..o ope’rator '

They maintained that this is a well-posed problem in simple
guantum theory and that there must be a solution. They con-

. m
centrated on the special case of a freely evolving particle, T(0)=—i 7 fE(k)”zd—ka(k)m, (4)
leaving the general problem with a nonzero potential for a
future work. with
Their approach begins by quantizing the expression for
the arrival time for the corresponding, trivially solved, prob- f(K)=k 1O(|k|—€)+ e 2kO(e—K|), (5)

lem in classical mechanics:
wheree is an arbitrary small positive number. They showed

m(X—Xy) m(x—io) that the (doubly degenerate eigenfunctions|T,=), of
— = TX)=——,

1= L 10,

Po E)o

1/2 '
wherex, andp, are the initial (=0) values of the classical (k|T,t)E=®(ik)(—) exp( i hT fk d_k,)
particle’s position and momentum arfq and E)O are the 2mmf (k) m Jee fe(k)

corresponding Heisenberg operators for the quantum par- (6)

ticle. GRT tentatively adopted the symmetric ordering in the k representation, form a complete orthonormal basis.

1 1 GRT then extended the usual definition of the arrival time
5 §(O 5 2 problem to include arrival times in the interviat-,0] by
Po Po imagining that the particle was preparedtat—o in the

R R state that, in the assumed absence of any interaction, would
for the noncommuting operatoxs andp, * and then worked ~ evolve in the Schrdinger position basis to the desired initial
in the Heisenberg momentunp€7k) basis, writing(for X state ¢o(X) = (x,t=0), with Fourier transformp(k), att
=0) =0. GRT claimed that for the extended arrival time problem,
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just as in the classical casaith py#0), a free quantum +J(X, T)O(xJI(X,T))

particle[in a state with¢(0)=0] is certain to reachk= X at 7. (T, X)= [ TR (10
some timeT(X) in the interval[ —o,+ ] so that complex ’°° '

values ofT(X), corresponding to the particle never reachlng(For the usual formulation of the problem where only arrival

X, do not occurT(X) is then self-adjoint and the standard jmes subsequent to the initial time=0 are considered, the
probability interpretation applies, leading in a straightfor-jq\ver jimit on the integrals should be)0The arrival time
ward way[assuming thats(k=0) is negligibly smal] to distribution of Bohmian mechanics is in general different,
L 2 2 and can be qualitatively different, from that derived by GRT.
m(T0)=[(T,+ [N+ (T~ v)] GRT'’s claim for the extended arrival time problem that ev-
=a,.(T;0)+7_(T;0), 7) ery freely evolving particle is certain to reagh- X, for ar-
bitrary X and initial statey,(x) with ¢(0)=0, is definitely
with? not the case within Bohmian mechantck. is important to
know whether their claim is a rigorous result of conventional
quantum mechanics or simply a plausible conjecture.
: Section Il contains a very brief sketch of the ingredients
(g)  of Bohmian mechanics needed for the one-dimensional ar-
rival time problem. Section Ill compares GRT's theory of
The corresponding distribution fo¢# 0 contains a factor of arrival time distributions with that based on Bohmian me-
exp(kX) in the integrand of Eq(8). The components of chanics using two simple case studies for illustrative pur-
7(T;X) associated with positive and negative valueskof poses. Emphasis is given to the key question of whether or
respectively were interpreted as the contributiensg(T; X) not every free particle in a state havigg0)=0 must arrive
to the arrival time distribution from particles arriving at  at an arbitrary poink=X at some(real) time T. Concluding
=X from the left and from the right. This decomposition remarks are made in Sec. IV.

follows, according to GRT, from the key point thﬁ; com-

kZT 2

)¢(k)

2m

h = 1/2 h
Wt(T;O)Zm o dkk™ < exp —i

mutes with the operator giving the sign lof Il. ESSENTIALS OF BOHMIAN MECHANICS
Grot, Rovelli, and Tate used their theory to calculate ar- ) ) )
rival time distributions for the special case in which the “ini- " Bohmian mechanicf8—14), tailored to the problem of

tial” (t=0) wave functiony;(x) is a minimum-uncertainty- interest here, it is postulated that an electron, say, propagat-
product Gaussian. They ignored the contribution frtkh N9 In @ poten_tlal\/(x)_ is an_actual pointlike particle thgt is
<€ on the grounds that can be taken to be arbitrarily small @lways associated with a field that probes the potential and
and in the numerical calculations used parameters such thgtides the particle’s motion accordingly so that it has a well-
the relative widthAk/(k) of |¢(k)|2 was very small. They c_ieflned posmonx(t) and velocityv (t) _a_t ea_ch |r_\stant of
compared their analytic expression far(T;X) with the t|me't.' |t.IS also postulated 'that the gwdmg field in the non-
probability current density and found by expansion that theyelativistic case is the solutiog(x,t) of the :ume-dependent
agreed only to first order ink/(k). They stressed the long Schralinger equation and that the particle’s equation of mo-
familiar fact[2] that J(X,T) cannot be identified with the ton is v(t)=dx(t)/dt=v(x,t)x=xy, where the velocity
correct arrival time distribution because it can be negdtive.field v(x,t) is given by
They suggested that whether or not their result#¢i; X)
based on the particular operator orderif@y is physically (x,t)= J(x,0)
correct might be decided experimentally. An extension of v [(x,1)]%
their theory to the relativisti¢Klein-Gordon case by Lén
[7] provided some strong support for ). with J(x,t) = (A/m)Im[¢* (x,t)d(x,t)/ax]. (This is the sim-
The purpose of the present paper is to raise the followinglest equation of motion that is Galilean and time-reversal
theoretical points. The arrival time problem is simply andinvariant[10].) It follows from these postulates generalized
unambiguously solved not only in classical mechanics buto theN-particle casé8] that|(x,t)|?dx is, as assumed and
also in Bohmian mechani¢8—14] where, for arbitrary scat- partially justified by Bohm, the probability of the particle
tering potentialV(x), one finds[15-17 for those particles  peingbetweernx andx+dx at timet [10]. These basic pos-
that actually reach x X tulates do not mention measurement, which is not regarded
as a primary concept in Bohm'’s theotiience the use of
[9X,T)| 9) “ being’ instead of “being found in the previous sentenge
[redtjax,nl’ An experiment on a quantum particle does not as a rule re-
veal the intrinsic value of the property supposedly being
with measured. An important exception is an ideal position mea-

(11)

m(T; X)=

The author has taken the liberty of correcting a sign error in the 3We are not concerned here with the guantum analog of free clas-
argument of the exponential. sical particles withp,=0 that never movéthese are eliminated as

2lt is the fact thatJ(X,T) can change sign & is varied, even if  a source of concern in GRT’s theory by their regulation proceédure
¢(k) is nonzero only fok of one sign[2,3,1§, which disqualifies  but with free Bohmian particles that can “turn around” before
both +J(X,T) and —J(X,T) as arrival time distributions. reachingx= X and never reach that point.
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surement which plays a central role in the application ofreachesx=X at least once at some tirgge T(X;x(?)) within
Bohm'’s theory to measurement in general. The theory wathe temporal range of interest. Because of the nonintersection
originally constructed so that, to the extent that any measuresroperty the desired range af® must consist of a single
ment is ultimately a position measuremeetg., that of a  continuous interval, sax{? ,x{?’]. The (unnormalized ar-
pointen, it gives precisely the same statistical prediction foryjyal time distribution is

any experimental quantity as conventional quantum mechan-

ics whenever the prediction of the latter is unambiguous. For x(©)
the usual textbook measurement made at an instant of time f<o>
selected by the experimentaligir some deviceexternalto a

the system of interepthere is no ambiguity and the statisti- Again because of the nonintersection property, there is one
cal distribution of pointer positions predicted by the two and only one value ok© in the interval[x© XE}O)] for
a

theio:lnesmatrﬁ |d)e(nt|<;izriTl1.Hr(]1W|?\/ter, Im ta ilrr]ne gifmgtr%al tri]:nea- which the trajectory(x(®)t) reachesX at a particular value

:<;I_uxe aet h_eheaDG_ e: :t'sclge ec Z[sl]e pd it n?)t eet of T within the range of interest. In addition, of course, even
(. ) at whic given particie arriv and itis y if that trajectory reacheX more than once only one of its

evident that the conventional quantum theory of measure-

o T arrival times is equal to the specified valueTof Hence
ment based on a self-adjoint operator for the intrinsic system q P

dxO]y(x,0)|28(T—T(X;x(O)). (13

X

property of interest can be made to work in this case. It is S(t—T(X:x©))
already cleaf2-6,1,7 that, if possible, it will not be an easy SX(X 1) = X)| 1= o
task. Perhaps looking at the problem from the point of view |dx(x™,t)/d] t=T

of Bohm'’s theory will provide some useful insight. S(t—T(X:x(©))
Now, given the initial wave functiony(x,t=0) and par- = =

ticle position x(©=x(t=0) of an electron, its subsequent lwx(x,0,0] |, _;

motion is uniquely determined by simultaneous integration

of the time-dependent Schtimger equation fory(x,t) and  contains only a single term and Ed.3) becomes

the(g;quation of motion fox(t) to obtain the Bohm trajectory o

x(x'*’;t). In Bohm’s deterministic theory uncertainty enters Xp 14(0) 0) ]2 0) Ty _

only through the probability distributiohy(x(®),0)|? for the |U(X’T)|fx‘a°) T OPONED =X). (19

unknown initial positionx(?) of the particle. The probability

distribution for a particle property that is defined for all The integral is just the probability density(X, T)|? and Eq.

trajectories is given by (15) reduces to

(19

o X DX T)P=[3(X,T)], (16)
P(f )= f dx | p(x?,0[28(f - (x?)), (12
e using Eq.(11). It is important to note that the modulus sign

is not added by hand but emerges naturally via the standard
wheref(x(?)) is the value of the property for a particle fol- formula for changing the argument of a Diracfunction.
lowing the trajectoryx(x(%),t). For particle properties that Normalization gives Eq(9), which has the nice property that
are not defined for some trajectories it is necessary to restrigarticles that never reack do not contribute taJ(X,t) at
the range of integration in Eq12) to exclude those trajec- any timet and are automatically excluded from the arrival
tories and to normalize the resulting distribution accordingly time distribution. The denominator of E€) is the fraction
This is, in general, the case for the arrival tifi€X). Thisis  of particles in the ensemble that reaxtif and only if each
obvious forX on the far side of a barrier. However, even for of these particles reachesjust once. Now, it follows from
electrons propagating freely from=—o to t=+o there Eq. (11) for the velocity fieldv(x,t) thatJ(X,T)>0 corre-
can be trajectories thateverreach a given poinK so that  sponds to a particle arriving &= X att=T from the left and
the associated arrival times Atare undefined. When only j(X T)<0 corresponds to a particle arriving ¥tat time T
those particles that actually reach are included in the from the right, leading immediately to the decomposition
analysis the arrival time distribution is given by E@). This  (10).
result holds even in the presence of a potential barrier. Neither Eq.(9) nor Eq. (10) necessarily follows for an

The derivation of Eq(9) is simple when one takes into ensemble of classical particles because a positivenega-
account the well-known nonintersection property of Bohmtjve) current at ,T) can in general have contributions from
trajectoriesx(x(?),t) with different starting point(® [but  poth left-going and right-going particles. Hence, contrary to
the same initial wave functiog(x,0)]: If x(©"#x(© then  the case inpure state Bohmian mechanics, it is possible in
x(x(©),t) #x(x(®,t) for anyt. This means that only a single classical mechanics to have exactly zero particle current at
Bohm trajectory contributes to the current densi¢X,T) at (X, T) with «(T,X) nonzero, even largeThis is not a prob-
the particular space-time poink€ X,t=T). With this fact lem in classical mechanics because the particle trajectories
in mind let us consider the complete range of starting pointgan be used to decompose the curreiX atto left-going and
x(® for each of which the associated trajectorgx(®),t)

5The second case study in Sec. Ill shows that according to GRT'’s
“The microscopic interpretation of the distribution of pointer po- theory this is also possible for a pure state within conventional
sitions can, however, be very different in the two theories. guantum mechanics.
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right-going components at any instant of tirfie On the 20 y
other hand, within conventional quantum mechanics the
right-going and left-going component$, andJ_, respec- 10~
tively, of the probability current density are in general ill- ’ /
defined quantities and some would regard atterfijpds-21] 0.0 ‘V
to carry out such a decomposition as a meaningless exercis: %///
T |/
[Il. COMPARISON OF TWO ARRIVAL TIME THEORIES ) /

Grot, Rovelli, and Tate stated without explicit proof that,
for the extended definition of time of arrival, a fré¥(x)

=0] particle in one dimension always reaches an arbitrary -0

positionX so thatT(X) is never complex. If this at first sight o %

very plausible claim is true then it should follow from an " 200 ~100 0.0 10.0 200
exact theory of arrival times based on conventional quanturr t/t,

mechanics. It seems instead to be a basic premise of GRT's
theory so that the most that one can hope for is to show FIG. 1. Bohm trajectories for the Gaussian “initial” wave func-
self-consistency. The theory of Muga, Brouard, and Maci tion #(x.0) of Eq. (17 with a=~10 A, (ky=K=1A"%, and
[5], based on their perfectly absorbing complex potentia*k=(24x)"*=0.15 A"%. The “initial” positions for the set of
model for a particle detector, applies only térlocated suf- ~ trajectories shown by the continuous curves al® = 26,
ficiently far to the left or right of the initial wave packet that 2% :--+0:- .- 42,44 A. The dotted oo show t(r;? special fra-
J(X,t) does not change sign for the range0 of interest. jectories discussed in t_he text witkl9=x? and x'¥ and the
Hence this theory | Jashed curve the one witO=x(? . [to=|al|/(AK/m).]
y is not general enough to check GRT

claim. In any case, Bohmian mechanics provides an inter-
nally consistent possible scenario in which their claim is nott=—2 and end ak= + att=+%. Fora<0, the member
in general upheld. This is now shown explicitly for two of this group withx(©=x{P=a+[a?+4K2(Ax)*]Y2 just
simple choices of initial wave functiory(x), the first with ~ reachesc=X=0 where it turns around and heads back in the
¢(0) very small but nonzero and the second witt0) ex-  direction of x=+<. This special trajectory, shown as a
actly zero. dashed line in Fig. 1, divides the third group into those that

First consider the free evolution of the minimum- pass throughk=X=0 twice and those that never reagh
uncertainty-product initial wave function investigated in de-=0. For the latter, the solutiofi(X=0) of x(x(?,T)=0 is
tail by GRT complex valued.

More generally, for the initial wave functiof17) with a
andK arbitrary andAx not infinite, there is no choice of
for which T(X) is never complex. However, fakk<K, the
regime in which GRT applied their theory to E(L7), the
with centroida<0 and mean wave numbék)=K>0 for  overwhelming number of particles havé® in the range
definiteness. Integration of the time-dependent Stihger (x9 xOy, of width 4(Ax)?K=2(K/Ak)Ax>2AX cen-

2

+iKx|, (17

1 X—a
I/I(X:O) = [27T(AX)2]174eXF{ - (m

equation and the equation of motion gives tered ona, where Bohm trajectories pass precisely once
5242 12 throughx=X=0. We now consider an initial wave function
x(x© ty=a+sKt/m+(xO—a)| 1+ ﬁ) Yo(x) for which ¢(k=0)=0 and no Bohm trajectory
4m=(Ax) reachec=X whenX=0 and the probability of a particief

(18 unknownx(®) reachingx=X is less than 1/2 for any value
of X.

i ithc=x(© = i
for the Bohm trajectory withk=x'"" att=0. A selection of Consider the initial wave function

such trajectories is shown in Fig. 1. The positienof a
particle following the trajectory with xO=xO=4
—2(Ax)?K increases monotonically fromx=—x at t
=—o0 to X=a att=+o, while that of a particle following
the trajectory witik(®=x®=a+2(Ax)?K increases mono- 5
tonically fromx=a att=—o to X=+® att=+oo. These —ex;{ _ (x+a) —iKx
two special trajectories are shown as dotted lines in the fig-

ure. They act as bifurcation lines, together separating the
trajectories into three distinct groups. Those wit?<x© | here
start atx=—o att=—o0 and end ak= — att=+o. For

a<0, the case under consideration, it follows from the non- 2 _1
intersection property of Bohm trajectories that a particle fol- N=[23’2771’2Ax 1—ex;{ —2(AX)2K2— a ) J _
lowing a trajectory withx(®@<x(®) never reacheg=X=0. 2(Ax)*
Trajectories withx(<x@<x(© start atx=—o att=—o (20
and end ak= +o0 att=+o0 passing througkk=X=0 once

and only once. Trajectories with?)>x") start atx=+o at  Its Fourier transform is

Y(x,00=N

(x—a)®
GX%—W‘FIKX
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d(k)=N272Ax{exd — (k—K)?(Ax)?>—i(k—K)a]
—exd — (k+K)2(Ax)?+i(k+K)a]} (22)

and has the important properties th#t0)=0 and ¢ (£ x)
=0. Solution of the time-dependent Sctimger equation
[with V(x)=0] gives

$(x,1)=2NAX[ (Ax)2—iAat/2m]Y?5Y? exd — K?(Ax)?
+iKalexd Bo+ BX2+i(yo+ ¥2x?)]
X[exp(ox+iex)—exp — ox—iex)] (22
and
J(x,t)=(A/m)2N?(Ax)?7*? exd — 2K?(Ax)?]
X exfd 2(Bo+ Box?) {4 y,x[ cosh{26x) — cog 2ex) |
+2¢€ sinh(26x) — 268 sin(2ex)}, (23
where
p=[4(AX)*+ (At/m)?] "%, (24)
Bo=n[4(AX)®K?— (Ax)%a%—2Ka(Ax)?at/m], (25

Ba=—n(AX)?,

yo=— n{4Ka(Ax)*+[4K2(Ax)*—a?]at/i2m}, (27)

(26)

vo= nht/2m, (29
5=2n(Ax)?(a+K#at/m), (29
e=27y[2K(Ax)*—ant/2m]. (30

The probability density y(x,t)|? is zero atx=0 for all t.
Within (nonrelativisti9 Bohmian mechanics a particle can
reach a poink=X at a timet=T when|¢(X,T)|2=0 only
if v(X,T)=xo [22]. From Eqgs.(22) and(23), respectively,
it follows that asx—0, for anyt, |#(x,t)|>—0 asx? and
J(x,t)—0 asx® so thatv(x,t)—0 asx. [The coefficient
multiplying x depends ort allowing v(x,t) to vanish at
points (x,t) with x#0 so that particle trajectories can turn
around before reaching=0.] Hence, according to Bohm's
theory, a particle with the wave functiof22) for all time
never reaches the poirt= X=0, i.e.,T(0) is complex for all
possible starting pointg(®). Furthermore, if such a particle
hasx(©’<0 then it never reaches a poirt=X>0. On the
other hand, some of the particles wit’>0 reachx=X
>0 twice, once from the right and once from the left. This
behavior is completely different from the prediction of
GRT'’s theory that every free particle in a state witlf0)
=0 is certain to arrive at any poiix at some(real) time T.
Since, according to Bohmian mechanics, no particle
reachX=0 for the initial wave functior(19) the arrival time

distribution is undefined for this special case. Accordingly,

Fig. 2 compares thec components of the arrival time distri-
butions 7(T; X) of the two theories for the small but finite
value X=2a/100<0. According to the calculation based on
Bohm'’s theory, for this particular value of only about 1
out of every 88 particles in the ensemble reacKesfirst
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FIG. 2. Arrival time distribution components..(T;X) for those
free particles that actually reach the position X=a/100 at some
time(s) T in the rangel —,+] calculated for the initial wave
function (19) with K=1A"% Ak=(2Ax)"'=0.01 A%, anda
=—150 A. The* components of GRT’s distribution are shown by
the long-dashed and short-dashed curves, respectively; those of the
distribution based on Bohmian mechanics are shown by the solid
and dash-dotted curves, respectively.

from the left and then, after turning around, from the right.
According to GRT's theory, all of the particles in the en-
semble reaclk= X, half from the right and half from the left,
with those from the left arriving slightly earlier on average
becauseX/|a| is small and negative.

Now consider an entirely different situation in which half
of the particles in the ensemble have an initial wave function
that is just the first component of E(.9) [i.e., Eq.(17)] and
half have an initial wave function that is the second compo-
nent, both suitably renormalized. Fg¢Ax|>1 the fraction
of the particles that, according to Bohmian mechanics, turn
around before reaching=0 (or X=a/100) is negligible and
the results for the distributions.. (T;X) for the entire mixed
ensemble will be very close to the corresponding results of
GRT'’s theory. These in turn will be virtually indistinguish-
able from GRT's results for the ensemble described by the
pure statd19) because the first term of EQL9) is dominated
by Fourier components witk~K>0 and contributes almost
exclusively torr (T;X) while the second contributes almost
exclusively tow_(T;X). For the theory based on Bohmian
mechanics, interference between the two time-evolved com-
ponents of the pure statd9) has a dramatic effect on the
distribution of arrival times aK for |X/a|<1, while it has
virtually no effect according to GRT’s theory, which de-
couples thek>0 andk<0 contributions tom(T;X). This
decoupling follows from the “key point” that the regulated

operatorT, commutes with the operator sghat gives the
sign of k. | find it a cause for concern that this important

é'ngredient of the theory apparently emerges as a consequence

of regulation. Now

[T..500F(k)=—i(2m/A)e 2kF(k)8(k),  (31)
while
[T,5g0F (k)= —i(2m/7k)F (k) 8(K), (32
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so that regulation has considerably enlarged the class afensity for the region — o0, X] is monotonically increasing,
functionsF (k) for which the above-mentioned commutator must be regarded as counterintuitive. It is certainly contrary
is zero for allk, includingk=0. In the absence of regulation to the simple self-consistent picture provided by Bohm's
F (k) must approach zero faster therask— 0 while regu-  theory of particles arriving aX from the right whenever
lation allowsF (k) to diverge provided that it does so more J(X;t) is negative.
slowly thank ™.

It should be mentioned at this point that in a recent paper V. DISCUSSION AND CONCLUDING REMARKS

.[23] IDeIgadp hand Muga, usgg gve(jr¥fQ|fflgrent approafh_that Suppose that one were to base a calculation of the distri-
Involves neither operator ordering difficulties nor regulation,, yinn of arrival times on a Hamiltonian describing an oth-

obtained an arrival time distribution that can be shown to beerwise freely propagating electron that is couplesatX to
identical to that derived by Grot, Rovelli, and Tate. HOW- \he gquantum analog of a classical stopwatch that indicates
ever, the stated region of applicability of Delgado andine timeT(X) at which a classical particle arrivesat X.”
Muga’s theory is narrower. In particulag(k) must be non-  also suppose that a single microscopic stopwatch “pointer”
zero only fork of one sign so that either, or 7 is zero.  yariable§(X) when amplified to the macroscopic level with
Hence their theory is not applicable to either of the casegegligible loss in resolution gives the experimental value
considered in this section. _ o  Texp(X) for an individual run. Since the calculated distribu-
The prediction of Bohm|an mechanics that it is possiblejign of 9(X) values for an ensemble of coupled electron-
for some freely propagating electrons to come to rest MOgtopwatch systems is common to both conventional quantum
mentarily and then change their direction of motion is cer-yechanics and Bohmian mechanics the two theories will
tainly counterintuitive from the point of view of classical give precisely the same predictions for the distribution of
mechanics and, if one allows onese_lf to think of su_ch thlngSTexpl(x) values. The possibility of disagreement sets in when
perhaps also of quantum mechanics. However, in Bohm'g is assumed that it is possible, in principle at least, to design
theory a particle Wlth{(X_)zQ is not really free because itis 3 quantum stopwatckto say nothing of the amplification
always under the guiding influence of the wave function.gpnaratusthat reveals the intrinsic value 3(X) so that one
Now consider a particle prepared in the initial st with  can predict the measured distribution of arrival times by cal-
|a|>Ax and incident on the infinite potential st&¥(x)  cylating the distribution of arrival times in the absence of the
=VoO(x), with Vo= In this case the prediction of Bo- mjcroscopic stopwatches. The theoretical expression for the
hmian mechanics that the particle will turn around withoutgistribution of such intrinsic arrival times derived within
ever reaching the regior>0 is no surprise. However, for conventional quantum mechanics by Grot, Rovelli, and Tate
x=<0 and for allt the wave functionj(x,t) of this particle is  ysing the particular operator orderifg) is not the same as
identical, aside from an unimportant normalization factor, tothe expression derived within Bohmian mechanics. A ques-
Eq. (22 and the corresponding trajectorie§x®,t) for  tion that immediately arises is whether or not a different
x(®<0 are also identical. With this in mind, the turning choice of operator ordering in GRT’s theory could remove
around of the freely propagating particles described by Eqgthe discrepancy between the two theories. Another is
(22) does not seem so strange. whether or not the two theories are timing the same quantum
When V(x)=0 the wave-number distributiofp(k;t)|?  entities. A short digression at this point on a related problem
for the ensemble of particles is, of course, independent of will hopefully clarify the subsequent discussion.
Now, if one assumesthat each particle in the ensemble  The mean dwell timey(X;,X,) is defined as the average
moves with a time-independent velocity=#Ak/m, with v time spent in the regior; <x<x, subsequent to=0 by an
varying only from particle to particle[consistent with ensemble of electrons prepared in the initial sta¢&,0) in
|#(K)|?], then it follows that every particle with+#0 must  the presence of an arbitrary potentd{x). Jaworsky and
reach an arbitrary positioX once and only once at some Wardlaw[24] postulated the following widely, but not uni-
time T between—« and +. However, there is, in my versally, accepted expression for this quantity:
opinion, no justification for this assumption within standard

quantum mechanidslf this is in fact the case, then there is [~ X2 2

a corresponding lack of justification for regarding the pos- To(X1,Xp) = 0 dt ‘4 dx|y(x,D)*. (33)
sible turning around of free particles in Bohm’s theory as

unphysical. This is identical to the expression for the intrinsic dwell time

Suppose thad (k) is nonzero only fok>0. Then GRT's  derived[25,16 using Bohmian mechanics. The stationary-
theory predicts that free particles arrivexat X only from  state-scattering limit of Eq33) is identical to the expression
the left, i.e., 7 (T,X)=0. However, it is well known for the mean dwell timerp(xy,X,;K) derived[26] by very
[2,3,18 that ¢(k) being nonzero only for positivie does not  weakly coupling the scattering particle while “in” the re-
guarantee thai(x,t) be non-negative for ak andt. Now, if  gion[x,,x,] to a calibrated version of the quantum ‘“stop-
J(X,T) is negative folT; <T<T, then the prediction that no watch” of Salecker and Wigng27]. In this case the thought
particles will be found to arrive aX from the right during  experiment accurately reveals the average value of the intrin-
this time interval, during which the integrated probability

"We are now considering the usual arrival time problem in which
5There is no implication here that GRT made this assumption. It ithe particle is timed fromt=0 so that we do not have to worry
intended only as a scenario that would support their claim. about initializing the stopwatch at= — .
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sic time of interest. Unfortunately, this agreement betweenlifferent integrals ovek [obtained by Fourier transforming
the intrinsic quantity calculated within Bohmian mechanics#* (x,t) and(x,t) in the expression fod(x,t)]. In general,
and the corresponding result of the thought experimenthese will not give equivalent results far(T;X). Again, a
breaks down when one attempts to derive mean transmissidindamental difference between the two approaches for cal-
and reflections timest and 7z by analyzing the Salecker- culating intrinsic arrival times is that they clock fundamen-
Wigner (SW) clock readings separately for the two Suben_ta”y different entities. On the other hand, if one introduces a
sembles distinguished by whether the scattered particle igarticle detector “at’x=X and measures the time at which
found to be transmitted or reflected M(x), respectively. it fires then conventional quantum mechanics and Bohmian
Brouard, Sala, and Mug28] assumedhe correctness of mechanics are presumably concerned with the same pointlike

Eq. (33) within conventional quantum mechanics and, writ- Particleat the instant of detectioand they should agree in
ing it in the equivalent form their predictions for the distribution of firing times for the

detector, provideda model of the detector is included in the
Hamiltonian. GRT have based their approach on the expec-
I ” * A tation that their expressiafr another one based on a differ-
(X1, Xp) = fo dtﬁxdxdl (X OD (X1, X2) (X, 1), (34) ent operator orderingfor the distribution of intrinsic arrival
times will give the distribution of firing times for an ideal
. A : , detector. Hopefully, this issue will be resolved experimen-
where the projector D(x;,xz) is defined by )y in the not too distant future. In Bohmian mechanics, on
D(x1,X2) (X, 1) =0 (x—X;) O (x,—X) (x,t), investigated the other hand, there is no general expectation that the intrin-
the decomposition of, into parts associated with transmis- sic particle property of interest will be revealed in a
sion and reflection. Their approach was based on the projecijuantum-mechanical measurement. For the case of arrival
tors T and R defined by Ty (x,t) = y(x,t) and Ry(x,t)  times, before making such a claim it would, of course, be
= ya(x,t), wherey; and ¥ are the(to be transmitted and  N€cessary to show that the presence of the detector has neg-

: PP ligible effect on the calculated trajectories at least until the
reflected components ofy respectively. UsingT+R=1, actual instant of detection.

D"=D (n=1,2,...), and thambiguity in operator ordering In conclusion, Grot, Rovelli, and Tate’s theory for the
resulting from the fact thad does not commute witfi and  distribution of intrinsic arrival times for freely propagating

R, they showed thab in Eq. (34) could be replaced by an quantum par'uclgs can in some circumstances lead to results
o . A A a that are very different from those based on Bohmian me-
infinite number of equivalent operators, e.gl+ RD) or  chanjcs: both theories contain counterintuitive features:
(DT+DR), leading to an infinity of differenT-R decom-  GRT's theory contains some basic assumptitreyond their
positions ofrp . The simplest of these corresponded to well-particular choice of operator ordering and regulatitimat
known expressions for; and 7 already existing in the lit- need to be justified, in particular the assumption that
erature and derived by a variety of methods. However, it wa§<<)0 corresponds to arrival from the léfight). The impor-
shown[21] that no choice of operator ordering could lead totant question is whether it is possible to perform sufficiently
intrinsic mean transmission and reflection times in agreemeritoninvasive experiments to meaningfully test the predictions
with the (unique results of Bohmian mechanics. It was con- of these theories. Unfortunately, the case study that exhibited
cluded that the basic difference between the two approachés dramatic difference between the predictions of the two
is simply that they clock fundamentally different entities: theories depended on the coherent mterference bety\(een the
Schralinger waves in the projector approach afmbstu- WO components of the wave function at the positi&n
lated pointlike particles in the approach based on BohmiarfVhere one would have to insert the particle detector to per-
mechanics. The predicted mean transmission and reflectigg™ the experiment. It could turn out that the two theories
times “measured” by the SW quantum clock are identical toWI|| agree within experimental error whenever it is possible

. - . - rform a meaningful m rement of th rrival tim
the intrinsic mean transmission and reflection times obtameéc; perform a meaningful measurement of the arrival time

) : . ... _distribution reasonably unperturbed by the presence of the
in the projector approach from the particular decompos't'or}jetectoﬁ This would at least reconcile the present status of

D=(12)[TD+DT]+(1/2)RD+DR]. This might lead the arrival time problem with statements such as the follow-
one to reject the intrinsic times based on Bohmian mecharing [29]: “As an intellectual apparatus that allows us to fig-
ics. However, it has been shoW26] that there are situations yre out what will happen in all conceivable kinds of situa-
in which the SW quantum clock results fof, or 7z are  tions, quantum mechanics works just fine and tells us
clearly unphysicale.g., 7r<<0), casting doubt on the inter- whatever answers we need to know.” Clearly, further work
pretation of theT- and R-subensemble averaged clock read-is needed to determine whether or not this optimistic assess-
ings in terms of particle times in the general case. ment of conventional quantum mechanics is justified within
Returning to the intrinsic arrival time problem, there is nothe context of arrival times.
obvious reason why a different ordering of the operaf(ars

and [351 within GRT’s approach should lead to the arrival )
time distribution(9) of Bohmian mechanics. In fact, this ap-  Recently | came across three relevant works prior to pub-
pears most unlikely as long as the decouplingkef0 and lication, two of which have since been published.

k>0 contributions tow(T;X) is maintained in GRT's

theory. Moreover, regardless of which ordering is chosen

GRT'’s arrival time distribution will involve the squared ®The restrictions placed by Delgado and Muga on the initial state
modulus of an integral oveq, while that based on Bohmian for the applicability of Eq.(8) within their theory is a step in this
mechanics will involve the modulus of a product of two direction.

Notes added
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In the first[30], Delgado reformulates the arrival time case study of the present paper is antisymmetric alout
theory of Delgado and Mug&3] in terms of an operator for =0 and hence the decoherent histories approach and that
the modulus of the current. Changing Delgado’s notation fobased on Bohmian mechanics are in complete agreement that
this operator fromJ*(X) to |j(x)|, one can contrast the ho particle in the ensemble described by B®) ever arrives
result for the arrival time distribution obtained using Bohm-atX=0 (for X+0 the decoherent histories approach cannot
ian mechanics with that obtained by Delgado and Mugsconsistently assign a probability for crossing X).

(within the restricted range of applicability of their thepry ~ In the third paper, Aharonov, Oppenheim, Popescu,
very succintly:|<3>| versus(|3|>, respectively. Reznik, and Unruli33] argue but Fio not prove that thg time

In the second article, Halliwell and Zafii81] apply the of arrival can_not be precisely defined and meaSL_Jred in quan-
decoherent histories generalization of quantum mechanics M Mechanics. | do not see any necessary inconsistency
the arrival time problem. Of particular relevance to theP€tween their conclusions and my own. Although the time of
present paper is their brief review of the work of Yamada@'ival can be precisely defined within Bohmian mechanics,
and Takag[32], who showed that within the decoherent his- measuremelnt of its intrinsic value is just as problematic as in
tories approach the notion of the time of arrival of a quanturf€ conventional approach.
particle at a pointx=X is rarely meaningful. For the very
special case in which the initial stagdx,0) is antisymmetric
aboutx=0, they proved that the probability of the freely
evolving particle crossing=X=0 is well defined but equal The author is indebted to J. G. Muga for helpful discus-
to zero. Now the initial wave functioi19) of the second sions.
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