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Local description of quantum inseparability

Anna Sanpera,Rolf Tarrach? and GuifreVidal®
1Commissariat d'Energie Atomique, Service des Photons, Atomes et Molecules, Centre d’Etudes de Saclay,
91191 Gif-Sur-Yvette, France
2Departament d’Estructura i Constituents de la Mée Universitat de Barcelona, 08028 Barcelona, Spain
(Received 31 December 1997

We show how to decompose any density matrix of the simplest binary composite systems, whether separable
or not, in terms of only product vectors. We determine for all cases the minimal number of product vectors
needed for such a decomposition. Separable states correspond to mixing from one to four pure product states.
Inseparable states can be describegsmudomixturesf four or five pure product states, and can be made
separable by mixing them with one or two pure product states.
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Entanglement, inseparability, and nonlocality are some of.e., as a mixture of product states. Their characterization is
the most genuine quantum concepts. While for pure states itotoriously difficult. Thus, given a density matrix which is
has long been well established that the nonlocal character &hown to describe a separable state, algorithms for decom-
the composite system is revealed in different but equivalenposing it according to Eq.3) have only very recently been
ways, the situation is drastically different for mixed states.found[4,5]; in addition, the decomposition is not unique. In
For example, for pure states the violation of some kind offact, only recently the authors of Ref§] and[7] obtained a
Bell inequalities[1], or the demonstration that no local hid- mathematical characterization of these states, at least when
den variable models can account for the correlations betweeahe dimension of the composite Hilbert space g2 or
the observables in each subsystem, are equivalent definitio2s< 3. For these cases the necessary and sufficient condition
of nonlocality[2]. But for mixed states, described by density for separability is that the matrix obtained by partially trans-
matrices, such equivalences fade away. Consider a compogesing the density matrig is still a density matrix, i.e., with
ite quantum system described by a density magrix the  only non-negative eigenvalues
Hilbert spaceH,®Hy,. In the frame set by the concepts of
our opening sentence, product or factorizable states are the
simplest possible states. They are of the fgrg¥ p,® py; pv=(pla)* =0 p=ps. (4
i.e. for them, and only for them, a description of the two
isolated subsystems is equivalent to a description of the com-
posite system. Recalling that subsystems are described by tiFer composite systems described by Hilbert spaces of higher
reduced density matrices obtained via partial tracipg, dimensions, the positivity condition @f’® is only necessary
=Trpp (pp=Trap), a density matrix corresponds to a prod- for separability[ 7]. Following the hierarchy of correlations,

uct or factorizable state if and only if we find states that are no longer separable,p#.p;. These
states are called “EPR’(Einstein, Podolsky, Roseri8],
p=Trp@Trap=p=py. (1) “inseparable,” “nonlocal,” and sometimes “entangled” or

N o ] . simply “quantum correlated” to emphasize that their corre-
In addition, their index of correlatiofior mutual informa- |ations are no longer strictly classical, though often these
tion), defined in terms of von Neumann entropies of the systapels do not refer to exactly the same states. This confusion

tem and subsystems, reflects the need for a further subclassification of the insepa-
rable states according to whether they admit local hidden
lc=Trp In p=Trpy In pa—Trpy In py, (20 variables, whether they violate some kind of Bell inequality
. . ) [9,10], etc.
vanishes, and this happens only for th¢gj. Their sub- The issue we want to address here is whether any state,

systems are uncorrelated. Any state which is not a producyen if nonlocal, allows for some kind of local description.
state presents some kind of corrt_'-zlanon. They are called COfyve will see that this leads to interesting physical perspec-
related states. Quantum mechanics has taught us that thergjiges about nonlocality. Thus the aim of this paper is to de-
a h|er:_;1rchy of correlatlc_)ns, and the physics in the dlfferen%mpose any separable or inseparable density matrix of a
ranks is different. The simplest correlated states are the clagmary composite system of dimensiox 2 in terms of only
sically correlated ones. Separable states are either uncorigroduct vectors, and to give for all cases the minimal number
lated or classically correlated. Their density matrices can alyy product vectors needed. In other words, we give the mini-
ways be written in the form mal local description of any state, be it separable or not.
(Here and in what follows, “local” refers to the sub-
_ . ®@pri. 1=p>0, =1, 3 systems More _speC|f|c_aIIy, we will start proving that any
Ps EI Pipai® Poi Pi Z Pi ® separable density matrix can always be written as
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n n Proof: With the help of S(2)@SU(2) transformations,
ps=> pi(leXe|o|f)f]), 1=p>0, > pi=1, lvi) and|v,) can always be expressed so that
i=1 i=1
) » 1 o 1)+,3 cosA)@(cosB 10
= . . ,
with 1<n<4, and we will determine the minimai as a tHo) 7o) T PHisinA) T sinB

function of ps. This introductory result completes the result ) .

n<5 of Ref.[4], and reproduces the resuit<4 of Ref.[5] ywth 0=<A, B=#/2; AandB are not simultaneously vams.h-

in a completely independent way. Calling statistical mixturesnd, andas,8; € C. All vectors in’P; are product vectors if

of pure product statege)®|f;), |e)eH,, and|f;)eH, and only if sinAsin BfO. If'smAsm B+#0, then the only
local mixtures and calling the smallest its cardinality, Eq. ~ Product vectors contained i, are the generators of the
(5) shows that any separable density matrix is a local mixtur@lanelvy) and|vy). _ _

of cardinality smaller than 5. We then come to our main  Corollary. If p has rank 2 and is separable, it can always
results. First, any pure inseparable stagg = pg) can be be expressed as a statistical mixture of two pure product

written as states and thug™ is also of rank 2.
It suffices to see that for any separahlef rank 2, its
pg=(1+0q;+ Q2)p<s+) rangeR(p) is a plane of typeP,. If it only contains two

) product vectors, then necessarilyp=plv,){vq|+(1
S heh 0 5 —p)|vo){v,| for some B<p<1. In the case that all vectors
-2 dillgi{gil@lhihil),  0<gi<e, (6)  inR(p) are product vectors, then its spectral decomposition
gives us immediately the desired decomposition. Since in
with p{") separable of cardinality 3. The subscripmeans any case
inseparable or quantum correlated. Second, any nonpure in-
separable statepf>p?) can be written as p=plesfy)(erfs+(1-p)lexfa)(exfa, (12)

—(1+q)pl T — ®|hy(h|), 0<qg<w, (7) itimmediately follows thap™ is also of rank 2.
pa=(1+aps—allg)(gl[mh a Theorem 2. Any plané, in C2® (2 contains at least one

with p{") separable of cardinality 3 or 4. We finally deter- Product vector. Some planes contain only one.

mine the cardinality 0f0(s+) as a function ofp,. As a con- Proof: Consider the plar®, generated by two orthogonal
sequence of our results, any inseparable density matrix caffctors. Again, with the help of SP)®SU(2) transforma-
be written as what we call pseudomixture tions, it can be expressed as
pq=(1+a)p—apl ), 0<g<e, ® /3 CcB
_ Y
of cardinalityn=n{")+n("), n(*) andn(™) being cardinali- Po=az| o | B2 5 |- (12)
ties of p{™) andp{ . In a nutshell, then, our main result is B —CA

to determine for any state its representation in the form of a

local (pseudomixture of minimaln(™) and then minimal with A,B,CeR and v,6,a5,B,eC. Assume that none of
n{™). Local pseudomixtures have an interesting physical inthe generating vectors is a product vector, thafB 0 and
terpretation. Equatiori7), for instance, shows that any in- C2AB+ y8+0. Then a vector irP, is a product vector if
separable mixed state can be made separable by mixing aind only if

with some pure product state, or that its quantum correlations

can be completely washed out with only one single local a3AB+ apB,C(B?— A?) — B5(C°AB+y8)=0. (13
mixing preparation.

Before proving all this, let us mention that local pseudo-\yith the above restrictions oA, B, C, v, and 8, there is
mixtures lead immediately to an unambiguous measure Oilways at least one nonvanishing soluti®., a,,3, such
entanglement, that a@,B,#0) of Eq. (13). There is sometimes only one

. nonvanishing solutiorisee also Refl14]).

E(pg)=min g, ©) We can now outline our procedure for finding the decom-
position of a separable state into four pure product states. We
will first prove that five pure product states always do the
represents the minimal local mixing needed to wash out alpecomposnmn, ar)d then present the slightly more cumber-

some proof of going from five to four pure product states.

entanglement. Minimizingg is, however, different from . . . .
e ) ) S The algorithm consists of subtracting a projector onto a prod-
minimizing n'~’ and thenn'™’, which is what we do here, T, . T
uct vector frompg or p_° in such a way that(ps) +r(p,")

and we postpone its study and comparison with other en="-" "~ : X

tanglement measurds,11—13 for the time being. In order diminishes at least in one unifperer (p) means the rank of

to prove Eq.(5), we need the following theorems. p]. We then repeat the procedure till the desired decomposi-
Theorem 1. For any plan®; in (2@ (2 defined by two tion is obtained. Consider the most general case, a separable

product vectorsv,) and |v,), either all the states in this State€ps such that both |tseIfTand its partially transposed ma-

plane are product vectors, or there is no other product vectdfix are of rank 4r (ps) =r(p,") =4. As we shall see, all the

in it. other cases are subcases of this one. Now define

whereq is defined in Eq(8). This is unambiguous because
in Eq. (8) only product states appear, and tHgp,) just
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ps=P1P1+P2(1—p1)Po+p3(1—py)(1—p1)Ps

P(p)Erp(l)s_plel7fl><elvfl|)v 0<p<1 (14
+P4(1=p3)(1—=p2)(1—p1)P4
and +(1=p4s)(1=p3)(1—p2)(1—p1)Ps, (21
1 where P;=|g;,f;)(e;,f;| are projectors onto pure product
p(p)To= ——(plo—ple,,f¥ ) e, f5]), 0<p<i, vectors. This proves Eq5) with n<5. Notice that ifr (ps)
l1-ps vfien +r(pzb)<8, thenn<5.

15
(15 Let us now show that even Wh&'rﬁps)+r(p;—b)=8 one

can always find a decomposition into four pure product states
instead of five. To do this, we shall prove that there always
exists at least one projectét=|e,f)(e,f| and its partially

where |e;)e H, and |f,)eH, are completely arbitrary
states. For small enoughboth p andp ', are positive, and
therefore, due to Eq4), separable. Let us denote py the T % "
smallest value for which a zero eigenvalue appears(j) transp%(ssedP b_l.e’f )(g,f | that can be subtra'c'Fe'd frpp@

or p(p)™. Let us assume that fqr, one eigenvalue gb(p) and p_°, respectively, in such a way that positivity is pre-
is equal to zero, i.ex(p(py))=3 andr(p(p;)™)=4 (the Served and the rank of both matrices diminishes simulta-

same argument holds for the opposite ¢a@nsider now a neously by one unit. Let us proceed by defining as in Eq.

new product vector belonging to the range p{p,), (14), but for each of the five product projectors of EQD),
le,,f2) e R(p(p1)), and define a new density matrix the following five matrices:
1
— 1 i(p)=——=(ps—ple;,.fi)e . fil),
p(P)= 1= (p(P)—Plez fo)(ez fal),  0<p<1. PPI= g —plpsmplen e i
(16) 0<p<1, i=1,...,5. (22)

As before, for small enougp, both p(p) and p(p)™ are  We will fix two sets of five values op by the ten conditions

non-negative and thus §eparable; Let us_de?otepjojhe f(pi(p=5)=0)=3,

smallest value op for which eitherp(p) or p(p) 't develop (23

a new vanishing eigeﬂvalue. It cannot F(ap) unless, be- r(pr(ng)Bo)zg_

cause of the corollaryp(p) "® simultaneously develops two !

vanishing eigenvalues. Therefore, it is in genepép)™  These conditions determine the maximal weights; con-

which will develop a new vanishing eigenvalue, so that  sistent with positivity, with which the projectord;
=|e;,fi)(e,f;| and Pin=|ei ,f5)(e;,f¥| can be subtracted

r(p(p,))=r(p(p,) ™)=3. (17  from ps and plb, respectively. We now show that it is im-

possible thas;<s; Vi or thats;>s; Vi. From Ref[13] one

As;(pz) has a decomposition of the type of £§) with at ~ knows the expressions faf andgi as defined above:

least three terms, ans(p,) ™ has the corresponding partially

transposed one, there always exists a product state satisfying s, :+,
les.f5) < R(p(P2)) and|es. %) < R(p(pz) ™) [15,16. Now (e filps e fi) (24)
define 1

Si= .
- 1 — " (e fF](pl?) ey fF)
p(p)= E(P(pz)— ples,fs)(es,fa]), O0<p<Ll.
(18) If we call the probabiliti(§ for whicllP; appears ipg [cf. Eq.
(5)] pi, then if, say,s;<s; Vi, it immediately follows that
It is clear from the corollary that p; exists such that 5 5
B B 21 pisi_1>21 pisi (29
r(p(p2)=0)=r(p(ps) "*=0)=2, (19 - -

which from Eq.(24) reads

and then it immediately follows that .

5
Z’l piei filps e ,fi>>241 pi(e; 7fi*|(P1b)7l|ei A5,
(26)

p(P3)=pales.fs)(e,, 1]
+(1-ps)les.fs)(es,fs|, 0<p,<1, (20)
or, equivalently,

completing thus the decomposition of any separable state. _ _
Therefore, Tr(psps H)>Tr(pl(p1?) 7Y, (27)
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which cannot be. Thus at least for ohesayj, s;=s;. If ~ ={coS'A sir? A cosAsinA,—cosAsinA(=—N)}. So, in
they are equal, then subtracting thés, f;)(e; ,f;| from pgin  this case, the minimaj satisfiesr (p(g) )= 3. This implies
Eq. (14) allows us to reach that the rank ofpg_) cannot be 1. Indeed, if it were 1, as
r(pg) =1, it would implyr(p(qg))=2. But the two conditions
— T _ q
r(p(s))=0)=r(p(s;) *=0)=3 (28 r(p(g)™)=3 andr(p(q))=2 cannot be simultaneously sat-

. s>5  then b ity of th ; isfied for a separable density matiigf. Corollary). On the

In one step. Ifs;>s;, t er.l y connectivity o t € Space o niher hand ao(s_) with r(pg_))=2 which does the job can
product vectors and continuity sfands as defined by_Eq. always be found. It leads to(p(q)™)=r(p(q))=3. It can
(24) as functions of the states of this space, there exists onge jmplemented by choosing the two product vectors which
le,f)(e,f| which hass=s, and for which Eq.(28) holds. statistically mixed represent!™) to be the vectorgg; ,h;)
Thus a decomposition with four terms always exists, and Edgiven by the Schmidt decomposition of[N),|N)

(5) has been proven with =c¢4|g1,h¥)+¢,)g,,h3). This proves Eq.(6) with p{")

B T =p(Q), g=9;+Qq,, and where the result of ER9) shows
n=maxr(ps).(ps") =<4 @9 that the cardilnality op{") is 3.

Let us now obtain our main results, which refer to insepa- (2) Assumer(pq)=2. Taking |e,f) € R(pg), which by
rable states. From Eg4) we know that theorem 2 always exists, we writg, in the form[13]

inf o(p™)<0ep=pq, (30

p ([WX¥|+ple.f)(ef]), p>0, (36

9T 1+p
where a(p) means the spectrum @f Let us prove thap ™
has only one negative eigenvalue. If there were two ongyhere W) is an entangled vector which belongs Ry(p).

could always find, according to theorem 2, a product Vectoy ot s now prove that(pr)=4 In order to do so, writél)
q : ’

|e.f) in the plane defined by the corresponding two ®19€M its canonical form|e). Consider the partial transpose of

vectors, and for which obviously Eq. (36). Recall(from the previous cagahat (€)(e|) ™ has

(e,f|pr|e,f><0. (31) three _positi\_/e eigenvalues and one negative eigenvalue. The
a negative eigenvalue cannot vanish by adding the non-
But the above expression is equivalent to negative operatde,f*)(e,f*|, because thep;bz 0, which
. . from Eq. (4) is inconsistent witlp, being inseparable. Thus,
(e,f*[pgle,f*)<0, (32 recalling that positive eigenvalues certainly cannot be made
. Toy _ . .
which is impossible, sincp,=0. We will call the eigenvec- to vanlsTh, prov.es(pq )=4. This, in fact, fallways holds, so
tor of negative eigenvalugN), i.e., that r(qu)=4 independently ofr(pg). It is now not too
. difficult to show that for anye, f) there always exists at least
p,’IN)=—=NIN), N>0. (33 onep!{)=|g,h)(g,h|, which allows us to satisfy E¢(35)

) ~withr(p(q))=r(p(q) "*)=3. This is done by demanding that
We will now see thap, can be made separable by mixing it the determinant ofp(q)™ as given by Eq.(35), with Pq

statistically with an adequate separable density maifX,,  given by Eq.(36), vanishes. The resulting equation, at most
e, linear inq, is most easily solved using f¢¥) its canonical
1 form. A value forq>0 and a pure produdg,h) for which
— +qpl)), 34 the determinant vanishes can then always be found. The up-
A= 1qPataps ) B9 hot of this is that Eq(7) holds with p{=p(q) of cardi-
) nality 3.
where 0<q< is such that It should be mentioned here that when a pure entangled
1 state[pq with r(pq)=1] is obtained as the limit of a mixed
p(q)To= _(pr+q ;*)Tb)zo_ (35) entangled statp, with r(p,) = 2, the value ofy correspond-
1+qa ing to the mixed state diverges. This is what makes it neces-

We want to do this in a doubly minimal way. We want to sary to addwo pure product states to a pure entanglgd state
if one wants to wash out all entanglement, keeping the

choosep ™) to have a minimal rank, and we then choose theweights finite
minimal g, i.(e., suTc? thap(q) ™ just develops a vanishing (3) Assumer(pg)=3. As the previous case always al-
eigenvaludr (p(q) '°)<4]. Notice that due to the Hellmann- ' (=) i (-\\— L o
Feynman theorerf.7] the only eigenvalue g which can lowed us to find s " with f (ps *)=1, this isa fortiori true

. _ q . now too. This proves Eq(7), but it is now not obvious
become zero by adding a non-negative operator is its Neggghether it can always be done wittp§” of cardinality 3. In
tive eigenvalue. We will show how this is done as a functiong, ¢ it cannot, as the analysis of the following counterexam-

of the rank ofp,. ple shows:
(1) Assumer(pq)=1. Herep, represents an entangled

pure state, which can always be written with the help of the
SU(2)®@SU(2) transformations in its canonical forfof. EQ. Pq
(12)] (€|=(cosA,0,0,sinA) with cosA sin A>0. It turns out

that (N|=(1/2)(0,1,-1,0), and that (p;") =4, aso(p,") x(ep.f5]), pi>0, (37

=— (| WV |+pqle;,fi)(e,f1|+psle,,f
1+p1+p2(| W[ +piler.fr)(e,f1]+poley,fs)
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with |W)=|¢), (e,|=(fi|=(1,0), and(e,|=(0,1). Indeed, state, except if it is pure, in which case it needs to be mixed
none of the|g,h) vectors belonging t&(p,), which either ~ with two pure product states. Therefore, when a state has
have|g)=|e,) or |h)=|f;), does the job, and thugp(q))  ©only quantum correlations, these can be made classical by
=4. On the other hand it is easy to find examp|e$9ﬂ:or mixing It Wlth two pure prOdUCt States, Wh|!e_, When .|t has
which r(p(q))=r(p(q)™)=3. Thus Eq.(7) is proven but both classical and quantum correlations, mixing it with one
pg+) does not have always cardinality 3. This parallels thesmgle pure product state suffices to wash out all quantum

ambiguity ofn for separable states of rank 3, for which also correlations.

sometimes1=3 and sometimea=4. . We are especially grateful to M. Lewenstein for helping
(4) Finally, assume (p,) =4. In this case, obviously Eq. us to prove the decomposition of a separable state into just
(7) holds forpg’) of cardinality 4. four product vectorg§Egs. (24)—(28)]. A.S. also thanks P.

To summarize, we have proven that any separable state iHorodecki and A. Peres for useful discussions and acknowl-
(2®(? is a local mixture of at most cardinality 4, that any edges financial support from EC. R.T. enjoyed financial sup-
inseparable state ii?® (? is a local pseudomixture of car- port from CICYT (Spain Grant No. AEN95-0590, and
dinality 4 or 5 and that any inseparable state can be mad€IRIT (Catalonia Grant No. 1996SGR-00066. G.V. ac-
separable by mixing it with only one single pure productknowledges CIRIT Grant No. 1997FI-00068 PG.
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