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We discuss quantum conditional probability and its applications to deterministic hidden-variable models.
We derive empirical tests corresponding to mathematical no-go proofs, providing rigorous statistical tests
based on experimental outcomes. Evidently, it now possible to examine the statistical power of the empirical
tests, and place confidence intervals on the parameters that precisely measure the departure of hidden-variable
models from quantum experimental outcomes. Moreover, reinterpretation of well-known results in the light of
guantum conditional probability provides other experimental demonstrations and no-go proofs: outcomes for
the familiar Young double-slit experiment show that there are no deterministic hidden-variable models of the
type considered by Kochen and Specké&r Math. Mech.17, 59 (1967)] or Bell [Rev. Mod. Phys38, 447
(1966]. [S1050-29478)07908-6

PACS numbeps): 03.65.Bz, 03.65.Ca

[. INTRODUCTION In Sec. V we pull these results together to derive theoret-
ical and experimental methods to obtain no-go results for the
We introduce a class of theoretical proofs and empiricaHV models considered here. One interesting consequence is
tests for quantum hidden-variabl@d$V) models. The family that the classic Young double-slit experiment, for example,
of models considered is the familiar one studied by KocherProvides an experimental test and a mathematical no-go
and Speckef1], Bell [2], and many others. The main tech- proof for our class of HV models. Me}ny other equally simple
nical feature is the use of quantum conditional probability,t€Sts and proofs are also now possible. .
defined for arbitrary pairs of noncommuting projectors. An-  Finally, in Sec. VI we discuss the proposed experimental
other feature is that the empirical tests use as few as twifSts of Pereg3,4].
projectors, and the proposed experiments are technically el-
ementary. Also, single particles are all that is required, rather Il. THE CLASS OF HIDDEN-VARIABLES MODELS

than measurements on correlated particle pairs as are used inW q i ibl ificat f hidd iabl
connection with HV tests that depend on the Bell inequali- e describe possible specifications for a hidden-variable

ties. The mathematical no-go proofs we obtain are exact, dr v Mmodel, such as are given 1¥,2] and subsequently by
“inequality free,” and hence may also be compared with theMmany others. As a general reference for this topic one may
multiparticle, multioperator, exact no-go proofs introduceduse[lz' C_:hap. 23 van Fraassefil4], or Bub[15]. . .

by Pereqd3,4], Mermin [5,6], and Greenberger, Horne, Shi- Let Q_Q(H’D’_A) denc_Jte a quantum system with '._"l'
mony, and Zeilingef7]. bert spaceH (possibly of dim=2), a given arbitrary density

In Sec. Il, we give precise specifications for the class ofPPeratorb, and a family of observabled. .
HV models considered here, and provide a context by out- L€t {1=€(A,0(A),) denote a classical probability space,
lining the results of Fine and Telld8] and Fine[9—11.  WhereA is a nonempty seir(A) is a Booleano algebra of
These resuilts help display the connections between classesBfPSets of\, andu is the probability measure on(A).
HV models, and marginal and joint distributions for quantum As used in this paper, hldde_n-varlable models for a quan-
outcomes. In Sec. Il we define and discuss quantum condfu™ System in a given stafe will make some or all of the
tional probability, a key fact being that its standard definition'©!lOWing four assumptions. , _
does not require the existence of a joint distribution for the HY (@ GivenweA, Ae A, there is a mapping from
observed and conditioning events: see Beltrametti and Casf1€ Pair (,A) to real numbers; it is required that the value
inelli [12]. of f(w,A) be an eigenvalue oA (the spectrum rule

In Sec. IV we introduce a result from classical mathemati- HY (0): For any two commuting operators,B, the
cal statistics linking conditional probability with the exis- M@Ppingf is such thatf(w,A+B)=f(w,A)+f(w,B) (the
tence of(classical joint distributions; see Arnold and Press SUM rule. _
[13]. These results are used to derive the rigorous statistical HY (C):  The measurg. correctly returns the marginal

inference procedures that couple to the empirical tests wRrobabilities for each observablg for Sa real Borel setu
propose. is such that

*Electronic address: jmalley@helix.nih.gov Pr[ASS]:tr[DPA(S)]:f f(w,Pa(S))du,
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for PA(S) the projector associated with s&in the spectral HV (bs): For any two commuting operatois,B, the
resolution ofA (the first-order margins rule valuation is such thatAB)(w)=A(w) -B(w) (the product
HV (d): For any two commuting observablésand B, rule).
the measureu correctly returns the joint probabilities; f& HV (b,): For any Borel measurable functignand any
andT real Borel setsy is such that operatorA, the valuation is such th&g(A)](w»)=g[A(w)]
(the Borel function rulg
P{AeS,BsT]=t[DPA(S)Pg(T)] It is important to note that condition H\&) is an assign-
ment of eigenvalues for each operator that is made once for
=f f(w,PA(S)Pg(T))du all operators(commuting or nagt but the sum rule H\b)
[equivalently (k) or (b,)] applies to commuting operators
for PA(S),Pg(T) the projectors associated with s&andT M- = , _
in the spectral resolutions o and B, respectively(the Some addltllonal contex.t for the famlly of. HV models dis-
second-order margins rgle cussed here is now provided. Consider first the small but

In HV (a), A is called the hiddephase spacéor the HY ~ important models of Bel[2] and Kochen and Speckét].
model, and denotes thevaluation functiorfor the model. A These both assume di=2, and are examples for which
complete specification fdrmust involve the density operator linearity or the factoring rulefHV (b), (by), or (k)] are not
for the quantum system:f(A,0)=f(w,A;D)eR, as we assumed to hold. See, for example, the discussiphdh pp.
make no assumption about hdwmight transform under a 268-271, where it is shown that the sum rule, condition HV
change in density. (b), is violated for these two models. Otherwise expressed,

We write A(w) to mean the classical random variable these authors provided two distinct, probability measures on
defined through the valuation assignment, whife) takes the lattice of projectorsin the spins space of dinf{=2)
points in A to real numbers, so thd(w,A;D)=A(-)eNR.  that do not extend linearly from the space of projectors to

Also, for projectorX, and Borel se6 andR, let space of all bounded operators. On the other hand, as dis-
. cussed by Bell[1], an application of Gleason’s theorem
x=X"(1)={weA:X(w)=1}. (2.1)  mathematically rules out the family of HV models of the

_ ) type we consider here, in the case dite=3.
Following [10], let us agree to call an HV model satisfy- ~ Next, given that HV(a) and HV (c) hold, Fine[9] shows
ing HV (a) and(c), aweak hidden variables modeA model  that HV (b,) is equivalent to HV(d).
satisfying conditions HV(a), (c), and (d) will be termed a Theorem(Fine[9]). Given the spectrum rule and the first-
deterministic hidden variables modéh words, for a weak o qer margins rule, the second-order margins rule is equiva-
HV model the valuation function provides a map from all lent to the function rule
operators to a space of classical random variables. It need not One of the excellen;[ features of Fine's result is that it

be pointwise linear on each operator: the valuation funCt'or}ocuses attention on experiment and observation, rather than

assignment only needs to be linear on average for singlgn apparently more esoteric features of a valuation function
observables, and it must return the correct marginal prob: PP y '

abilities for each observable. Also, given Hg), the valua- That is, experimentally determinable first- and second-order

tion assignment is such that its integration over the Wholénargins alone are ;uﬁicient to fix importar!t pointwise prop-
9 9 erties of the valuation. Moreover, from Fin&Q], p. 292:

fé);uci(rair:g |I_||r\1/e(%r),, gil;t:énthgeeir;ﬁgr;?Iesqfal?tt;?;Imaf?skigtthan‘the _idea 01_‘ o_leterminist?t_: hidden_var’i:';\bles is just the idea of
equivalent to assuming a suitable joint probability function,”on the phase space
and that correctly returns the observed marginal and joint
probabilities.
f f(w,X+Y)dM=J f(w,x)d/ﬁ.J f(w,Y)du Regarding other possible demands one may place on an
A A A HV model, we note that a deterministic HV model is not
(2.2 contextual, as it makes its valuation assignment once for alll
observablegat each point in the phase spack is also not
for A an arbitrary Borel set ins(A) and projectorsX,Y.  contextual in the sense considered by Guddé}, where the
Given HV (a) and HV (c), it follows that HV (b) is obtained  phase space probability measure is permitted to vary, de-
if and Only if the integration above holds when taken over a”pending on each set of Commuting Operators under consider-
possibleA. ation. As a deterministic HV model makes an assignment
All our results below will be obtained under the set of that factors for any Commuting paﬁt‘he product rumi it is
conditions HV(a), (c), and(d): we fix our class of interest as also alocal model; sed12], p. 274.
that of the deterministic HV models. Firj@0] has demon- We turn now to the definition and properties of quantum
strated that this is exactly the model considered, for exampleyonditional probability.
by Kochen and Speckdrl]. Moreover, we show how to
replace conditions(b) and (c) with a single equivalent

premise on conditional probability and upon this our no-go lll. CLASSICAL AND QUANTUM CONDITIONAL
proofs and tests will be based. PROBABILITY

We recall that useful equivalent model conditions are
available. Find9,10] proves that in the presence of H¥), Following[12], Chap. 26, for two projector& andB, not

condition HV (b) is equivalent to either of the following. necessarily commuting, on a quantum system in skte
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guantum conditional probabilitys defined to be One of the central questions for conditional probability and
sequential measurements is: when doeg[a|b]
=Pr1p[A|B]? To study this, we introduce a new HV model
3.1) assumption:
HV (e): For any two projectorsA,B (not necessarily
commuting,

Prp[A|B]=tr{DBAB]/tfDB] when tfDB]+0.

Note that
ulalb]=u[anb]/u[b]=Prp[A|B]=tr[ DBAB]/tr{ DB]

Prp[A|B]=Pr Al], where D(B)=BDB/tr[DB].
LA =Phoe Al ® : 23.2) (the conditional probability rule

. . ) _Also, for any two projector\,B, write A<B to meanAB
Some remarks are in order. First, note especially that while- g p—

in classical probability the definition of conditional probabil-

. ! ) M LemmaGiven the spectrum and the product rulesijB
ity for classical outcomes is made by means of a joint proby .o 1o projectors such tha<B, thenanb=a.

ability (or is itself made a basic postulate, and a joint prob- Proof. B _

o) ; o . By the product rule, AB)(w)=A(w)B(w)
ability is defined from i, it is the case that quantum —A(w). Using the spectrum rule, if it is given that{)
conditional probability does not require a joint distribution, =1, then necessarily B(a))=1’ so that {w|A(w)
and is defined for every projector pak,B, commuting or :1: and B(w)=1};){w|A(a))=1},. Since it is always the

not.
. . " case thaf w|A(w)=1, and B(w)=1}C{w|A(w)=1}, the
Alternative approaches to evaluating conditional or un-Lacult foIE)a\;Js (@) (0) =1} C{w|A(w) =1}
conditional probabilities for quantum events might choose t0 ~\ya oW prove our main result on the relationship be-

change the range space for the probability measure. Herﬁ/veen HV models and the conditional probability rule.
one change could be from a real valued, positive measure to Theorem 1Assume dinf{=3. The spectrum rule and the

a signed or possibly complex measure. first- and second-order margin rules together imply that the

A recent example of this approach is from Scully, conditional o -
' ; . . probability rule holds. Conversely, given that the
Walther, and Schleicfil7], using a probability primitive de- spectrum rule is valid, if the conditional probability rule

fined on projectors that can take on negative values. In domﬂolds then the first- and second-order margin rules hold

this _they.mvc.)I.(e an idea due to Feynman, and report Intery, o these are restricted to the lattice of projectors.
pretive simplifications c.)f the EPR problem. Their CONSUUC-  proot Assume that there is a deterministic HV model, so
tion is also used to reinterpret a Young double-slit experi- '

. . hat the first- and second-order margin rules are valid. For
ment, in the form of a micromastevelcher-Wegletector. two eventsa andb in o(A), the classical definition for con-

This may be compared with the reevaluation described beditional probability applied to sets in phase space is
low at the end of Sec. V. u[alb]=u[anb]/u[b], and one checks that this serves to

.S.cully et "’?'- [17.] do not use their revised notion of prob- formally define a consistent probability measure on the lat-
ability to derive hidden-variable model results. The systeMsia of all projectorswhereA andB need not commujeIn
atic use of conditional quantum probability, on the other

. ) ! . articular, for projectord\; and A, such thatA;A,=AA;
hand, will lead to new conclusions about .hldden-vangt_)leéio’ and A=A, +A,, by using the spectrum and margin
models, as well as to fruitful reinterpretations of familiar

. , .rules, one can show that[a|b]=u[a;|b]+ u[ay|b].
results. Just how their results could be derived from ours is Next note that A<B implies Pp[A|B]=Pi[A]/

briefly considered at the end of Sec. V.
Next, note that the density operatd(B) is the quantum ﬁrD[B]’ and by the Ler_nma abc_)ve we also hga,u@a|b]
= yla]/u[b]. Hence using the first-order margins rule we

state of the system given that the event associated with t - . ,
projectorB has occurred; it is the state of the system after thﬁlr?:oxe Eﬁ' ?A; F:;'i[[)ﬁg] t,h\;\/;[e;ﬁ\ﬁe_n?f ?NE??&%E?i%‘S
— D

rojectorB has been applied to the system. The connection ~. : . S
Eet{/veen conditional Sr%bability andy sequential measureprOJeCtors' as required. A detailed proof of this important

- . . ; fact appears ih12], p. 288.
ments is discussed in many places, including B8], pp. " .
67—74 and Helstroril9], pp. 65—69. The proof of the converse, that the conditional probability

The connections between sequential measurements arrﬁfile _implies the_first- an_d sec_ond-order margif‘ rule_s;, when
HV models are, however, still controversial. Some details of estricted to projectors, IS stra|ghtfo_rward and is omitted. .
this discussion appear in Buf20,21,13, Chaps. 2 and)3 A proof .Of The_orem lin the ?pec'?' case.that th_e condi-
Freedman and Wignei22], Clauser[23,24, and Wigner tioning projector is one-dimensional is possible using a con-

[25]. To illustrate the problem, and to resolve some of theS|derably weaker form of Gleason’s theorem. Thus, Gudder

discussion, we introduce the following notation: f&rany (28], p. 129, corollary 5.1F obtains the following by el-

: _ . ementary vector space methods.
S:e)'f([”lf(fil)\l {|Zte,u /[xsg((a{)siﬂl} a[lgg fr? rEz;n(yz plga)JectoK, letx MicroGleason.For dimH=3, if a probability measuren

Now, for any two projectors,B (not necessarily com- on the lattice of projectors assigns probability 1 to any one-

i i nicti dimensional projectoB, then it must be such thah(A)
(rjneuf;c:]neg), and given a deterministic HV model we can always _ tr[ BAL, for all projectorsA.

When no-go proofs or experimental tests, obtained below,
involve only pairs of one-dimensional projectors, only mi-
wulalb]l=ulanb]/u[b] when u[b]#0. (3.3 croGleason is needed. The other proofs and experimental
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tests for HV models proposed below evidently do require thevherep= u[ul/u[b], 9= u[v]/n[b], andp+qg=1.
uniqueness feature of the original Gleason theorem. While
this compromises the simplicity of the mathematical form of In light of Theorem 1assumption of a deterministic HV
these no-go proofs, compared with other results not usin?mdd must imply that conditioning over a disjoint sum
Gleason(Kochen and Specker, or Bell, for exampli¢ does ~ (equivalently, over an orthogonal sum of projecjamssults
not effect the merit of the empirical tests we propose forin @ classical convex mixture over separate conditionals.
deterministic HV models. That is, the quantum interference term must vanish if the
In order to arrive at some of these experimental tests anéeterministic HV model is valid. Note also that all terms in
proofs of HV models, we need another fact from the calculughe last equation correspond to observable conditional or
for quantum conditional probability. That i§12], Chap. 26 ~Marginal events, and may be evaluated from experiment.
shows how quantum conditioning on an orthogonal sum of As a useful physical example of this conditioning process,
commuting projectors yields interference terms, sharply disone that we can use later in our no-go proofs and empirical
tinguishing it from classical conditioning. For simplicity, tests, consider a spin-1 particle and two Stern-Gerlach de-

consider a sum of two commuting, orthogonal projectors: Vices that sequentially separate the possible vait®,+1
of the spin component along theand they axis, respec-

Q=Q,+Q, for projectors Q;,Q, tively. Let Q be the event where “th& component of the
spin is —1 or +1,” and let P be the event where “thg
with Q;Q,=Q;Q,=0. component of the spin is-1.”
In order to make the second measurement conditional on
Assume the quantum system is the pure sfate|4)(y], Q, rather than on jus®; or justQ,, we must assume that
with ¢ye H. Then the output of the first device is coherently recombined before
being sent to the second device. In particular, no determina-
Qu Qu tion is being made by the first device of either “tkecom-
PrD[P|Q]:<Q_,/,|| P m> (3.4 ponent of the spin is-1,” or “the x component of the spin
is +1."
Letting ¢;=Q;4/||Q; | #0, fori=1,2, On the other hand, we can obtain a conditional probability

, , that conforms more closely to a classical mixture by modi-
Q Q ing the experimental arrangement: use the first device to
PrD[P|Q]=(””QlZ||) PrD[P|Q1]+<H) Pro[ P|Q.] fmyeagsure X cF:)mponent of thegspin ig-1,” separately from
“ x component of the spin is-1.” This is done by directing
Q|- | Qv the two spin outcomes separately to the second device, that
[Qul? Re&(¢1|Peo). (3.5 is, by not coherently recombining them before presentation
to the second device. In this second setup we observe the
The last term in the conditional probability equation abovespinx components, and the quantum conditional probability
represents quantum interference. This is a nonclassical feseduces to a more classical, convex probability mixture rep-
ture of quantum conditional probability, and if the interfer- resented by the first two terms in the equation above.
ence term is nonzero it ought to be experimentally observed. The next section deals with statistical inference issues that
In other words, quantum conditioning, when conditioning issupport the empirical tests we propose.
taken over orthogonal sums, does not in general return a

classical convex mixture over the components in the sum. IV. STATISTICAL INFERENCE ISSUES
We more fully exhibit the connection of this result with _ o
properties of a deterministic HV model. Given the existence A. A result from classical statistics

of such an HV model, we can use a classical probability Suppose we are given two discrete, classical random vari-

calculus result on conditioning over sums. For arbitrary pro-ablesX andY, and we observe sets of conditional outcomes:

jectorsA, B, U, andV, let the sets, b, u, andv be defined

as in Eq.(2.1), and assume th&=U+V, with UV=VU P{X=x|Y=y] and PfY=y|X=Xx].

=0. One can check tht=uUwv. Then, using standard clas-

sical probability rules(apart from any special assumptions We ask if these two conditional distribution atempatible

for an HV mode) we have in the sense that they derive from a single, unobserved joint
distribution PFXY], such that

plalb]=ulanb]/ulb]=ulan(uuv)]/ufuvv]

PX=x,Y=y]=P{X=x|Y=y]-P{Y=
=ul(@anu)U(anu)]/u[ulv] [X=x,Y=y]=P{X=x|Y=y]-P{Y=Y]

=P{Y=y|X=x]-P{X=x]. (4.1

={ulanu]+ulanv]}/p[uUv]
_ Arnold and Pres$13] describe several classicatlonquan-
={ulul/u[uCv]}utalu] tum) data analysis problems for which stated conditional dis-
+{ulv)/ uluUv}ulalv]. tributions are, or are not, compatible. They present results
that apply to both discrete or continuous measurements, as
Hence well as for higher-dimensional cases. And while they do not
provide a statistical test for compatibility, they do give
wlalb]=p-u[ajul+qg-u[a|v], (3.6)  simple necessary and sufficient formal conditions from
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which such tests can be derived. This we do below, after p{x=x;, Y=yj]=P|[Y=yj|X=xi]~Pr[X=xi]=aijti.

describing the original results.

A conceptual obstacle may be present here: we are accus-

tomed to beginning with a pair of random variabks' and
then making the standard existence statement about a joi
distribution, which classically always exists. The situation
discussed here and [ 3] is different: start with conditional
distributions of agiven explicit formand then find, if pos-
sible, a joint distribution consistent with these conditionals.
To motivate their resultf13] also gives several illustra-
tions from the classical statistical literature showing when n
joint distribution can possibly exist if it is required to cor-
rectly return the stated conditional distributions. We describ
one of these. Thus, suppose that the conditional distributio
of X, given Y=y, is a Gaussian with expectatiomy
+by? and variancef (y), while the conditional distribution
of Y, given X=X, is Gaussian with expectatiercx+dx>
and varianceg(x), for constants, b, ¢, andd. Then one can
show thatX andY have a joint distribution if and only ié

=0. The critical requirement is that any proposed joint dis-
tribution must return the correct, stated conditional distribu-

tions. VariablesX andY can have no joint distribution if the
conditionals are as given, unleds- 0.

We next take up the solution given [ith3] to this problem
of connecting given conditional distributions to a single joint
distribution.

B. A formal existence condition

For simplicity, consider only the discrete case, witiil
<l, 1=<j=<J, and let

a.”:Pr[szllY:yJ] and b”:Pr[Y:y]|X:X|]
4.2
Assume that;; >0, b;;>0, for all i andj.
[13] proves that the two conditional distributions are com-
patible if and only if there exist two vectors of constants

r=(rq,ry...,r;) and s=(s;,Sy,...,S;),

with all entries positive, such that

aij:riSjbij for all |,J (43)

Equivalently we may use the condition

aj=dr;s;b;; for all i,j, and some real constamt>0,

4.9

and let us agree to call this the AP condition.

Given the positivity conditions abov¢13] also shows
that the joint distribution is unique, if it exists, and given
the joint distribution can be formally found as follows.

First verify that defining

t=(ty,t,....,t}), wheret;=r,/Zr; all i, (4.5
yields a consistent marginal fof, such that
t=(P{X=x1],P{X=X5],...,P[X=Xx]). (4.9

Then PfXY] is found from the IJ equations:

(4.7
As an illustration, consider the following special case.
nt Lemma. If P{X=x|Y=y;]=P[Y=y;|X=x], for all
i,j, then the AP condition holds, with Pf=y;]=P{X
=x;] for all i andj, and

t=(11)(1,...,).

Proof. If the conditional probabilities are all equal, then

%he AP condition certainly holds with;=s; for all i andj,

and a joint distribution exists faK andY. Hence

e

N PIX=x,Y=y]=P{X=x]Y=y;]-PY=y))

Equality of the conditionals implies that [Ff=y;]=PiX
=x;] for all i andj. The result fort is immediate.

More generally, if the AP condition holds, some formal
solution to the compatibility problem must exist: there must
be a unique joint distribution function that returns the given
conditional distributions. We observe, though, that the AP
condition by itself may not validate the existence of a joint
distribution that returns a specific set of hypothesized first-
order marginal distributions. More precisely, we argue that a
logically complete procedure for testing the existence of a
joint distribution must ensure that marginals derived from
the vectort defined above match a given set of marginals.
This is an additional question not considered i8], but one
that we take up in the next subsection.

We have one further issue to address, also not considered
in [13]. It is that the AP condition is not itself a statistical
test, applicable to data and from which an inference can be
drawn. It is straightforward to provide a statistical procedure
to check for matching marginals, as well as for the AP con-
dition itself, and this is discussed in the next subsection.

Finally, note that a formal calculation or an empirical test,
for a pair of random variables, may reject the AP condition,
in which case a test for the marginals is not needed.

C. A statistical test for the AP condition

We use standard results for so-called log-linear models,
which apply to the statistical analysis of multiway tables of
discrete, counted data; see, for example, Agrg2#| or
Bishop, Fienberg, and Hollan@8]. Data collection is first
described, using two noncommuting projectors, and then the
statistical procedure is given.

Consider a spin-1 system, obtaining observations on a
single particle, given that the system is in stBteSuppose a
measurement on the same particle is then made using, in
turn, one and then the other of any two noncommuting one-
dimensional projectorX andY.

Outcomes ofX will occur according to the marginal prob-
ability Prp[ X]. A subsequenY¥ measurement made on the
same particle will occur according to the conditional prob-
ability Prp[Y|X]. Similarly, measurements made first ¥n
followed by one onX, will have corresponding probabilities
Pro[Y] and Pp[X]|Y], respectively.

If we first randomly selecX (with probability 3) for the
first measurement, and alloffilter) only outcomesX=1 to
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be sent to the second spin measuring device, we findtthat simple iterative procedure exists, or one could use any of a
=1 outcomes from the second device will be registered witmumber of commercial software systems, such-asus SAS
probability G)P{Y=1|X=1]. Or STATXACT. . _

More generally, randomly selecting the first detector fil- N the case of two projector¢not necessarily one-

ter, filtering the first outcomes, and then observing spin at thdimensional we have I=i,j=2, and the test for no three-
second detector will produce counts, in a three-way con- way interaction reduces to the Breslow-Day statistic, which

tingency table, with each cell probabilitg;, as just de- is widely used in clinical trials_ and epidemiology. Using
seribed. : STATXACT the test can be run using a nonparametric version,

One standard assumption made about such data collectiGiled Zelen's exact test; sg@7], p. 66. This procedure
(in any multiway contingency tablds that the individual makes no assumptions regarding the asymptotic distribution

cell counts have a Poisson distribution, which is also the?! the test statistic. o

usual one for photon counts. Other measurement and sam- | © test for correct marginal distributions fa(or Y), we
pling schemes may be used instead for which the statistic&]S® knowledge of the quantum system to formally calculate
methods proposed here are still valid asymptotically. It is arf"® conditional probabilities, which form the values fy
important feature of these Poisson cell counts that if weAndbij. Under the null hypothesis that a suitable joint dis-

make a total ofN observations, then the cell probabilities fribution holds, the AP condition must hold as well, and we
conditional onN will have a multinomial distribution, and ¢an formally solve for the unique vectarThis formal solu-
then Nip;;.=my;, the expected value for celi§,k). In tion is in turn compared to the vector of observed marginals

. 2 . .
what follows, we assume a multinomial distribution for the for X, by using ax“ multinomial test(for example that
cell counts. compares observed counts against expected counts.

We can write a full or saturated model for all the cell This completes the description of our two-step, statistical

counts in the three-way table of counts in terms of expecte@rocedure for testing for the existence of a joint distribution,
values,my;, for the cells, where a saturated model containsompatible with the given, observed conditional and mar-
as many independent terms as there are data cellsZ Let 9in@l probabilities.

—k (k=1,2) denote the outcome of randomly choosing to Other classical statistical procedures could be used in
measureX (or V) first, to be followed by a conditional mea- place of either the first or second step of the two step proce-

surement ofY (or X). Then the model has the form dure we have just outlined. In particular, maximum entropy
estimation, classical Bayes, empirical Bayes, and others; see

IN(Miji) = U+ ul+u =+ ug+ ol Y+ uld+ ufZ -+l [28], Chap. 10.
(4.8
for parameters in the variables which all become identifi- V. MATHEMATICAL NO-GO PROOFS
able given the constraints AND EMPIRICAL TESTS

We are now finally in a position to properly interpret and
apply our results to the question of the existence of deter-
ministic HV models. We do this by joinintheorem 1with
Theorem 2

Theorem 3.SupposeX andY are two observables for a
quantum system, with associated projectpXs} and{Y}

In(a;;)=In(m;;1) —IN(1/2)—In N, (4.10  derived from their spectral decompositions. If there is a de-
terministic HV model for the quantum system, then the AP
In(by;) =In(my;)—IN(1/2)—In N, (4.1  condition applied to the projectors is valid.
Proof. Assume that a deterministic HV model for the sys-
and tem exists. Then there must exist a phase space with a clas-
sical probability measurg such that the conditional prob-
In(ay; /byj) =In(myj1 /myj2). (4.12  abiliies match: Rs[X;|Y;1=pu[x|y;], and such that the
first-order margins also match: #X;]=u[%], and
It is straightforward to verify the following. PolY;1=uly;].

Theorem 2.The AP condition is obtained if and only if Sinceu[xily;1- ulyj1= ulyj|xi1- u[x], it follows that
the three-way interaction terajjy “is identically zero, for all
i, j, andk. _

In order to experimentally test that the three-way interac- ProlXi|Y;]-ProlYj1=PoLYj[Xi]-PrpX]. (5.1
tion is zero, we can use a standard, large sangplenalysis,
or essentially equivalently, a maximum likelihood estimationBut this means that the AP condition must hold, with
of the expected cell values, followed by a likelihood ratio =Prp[ X;], andsj=PrD[Yj]‘1 as required.
test. The test we propose here is also known as the goodnessNote thatX and Y need not be commuting, and that the
of fit for a homogeneous association madsge[27], pp. 151 AP condition is applied to théamily of conditional prob-
and 152. abilities Pp[X;|Y;],Pp[Y;|X;]. The validity of the condi-

As a practical matter, the maximum likelihood estimatetional probability rule ratifies the connection between ob-
does not have a direct or closed-form solution for a modekervables and phase space, so for deterministic HV models it
with just the three-way interaction equal to zero. However, ds the case thai[a|b]=Prp[A|B].

EUiZEUJZEUKZEU” :EUiKZEUJKZEU”k:O.
4.9

Using the sampling scheme described above, vty
=m;j, it follows that
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Though we do not need it here, it is possible to prove aNow, an exact measure of the divergence of a deterministic
kind of converse toTheorem 3 This is accomplished by HV model from quantum theory are the sizes of thieerms
showing that the AP condition for a pair of observables genin the log-linear model that correspond to the three-way in-
erates a classical measure space and a corresponding redutemction. Using the natural constraints on the log-linear
deterministic HV model, one that is restricted to that pair ofmodel, one shows there is only one absolute vatué,say,

observables. for theseu terms(see[28], p. 34, and that
Most importantly, we note that the statistical procedures
just described allow for exact and empirical evaluations of d=(1/8)In[N(X;Y)/IN(Y;X)]. (5.3

the power of the statistical tests. This requires evaluation of

the probability that we reject the null hypothesis of a deter-, . . . . . . :
o . L This single expression contains all information about the di-
ministic HV model, when in fact it is correct to do so. In the

context of the AP condition, by specifying a set of nonzero’© 9ENCE between the two models. After simplifying we get

interaction terms, we can, for a given sample size, calculate .
(or estimatg the probability that we will correctly reject the d=1n 1-Prp[X[(1-Y)]
null model. For this same range of alternative models, and 8 1-ProY|(1—=X)]7 1)
for a stated statistical power, we can also evaluate the sample

size needed to correctly reject the null model. Using the fact that maximum likelihood estimates of the
On the other hand, such an analysis of the statistical Profarmg have large-sample Gaussian distributions, we can gen-
erties of an empirical test does not appear to have been digzate 4 confidence interval fak therefore finding real con-
cussed for no-go tests of the form considered by Aspeat.  iants/” and., such that the intervdl”,.] contains the true
[29] and many others: if we suppose that quantum mechanicgy|ye ofd with, say, 95% probability. Making this straight-
(the alternative modgholds rather than a deterministic one oyarq s the fact that most statistical software systems au-
(the null mode), then those procedures evidently do noty,matically report the large-sample standard deviation for the
clearly provide a conventional sample space and probabilityctimates of tha terms. On the other hand, for any given
measure by which probabilitie_s fatl outcomegthose under quantum systentone for whichd is presumably not zejo
the null or under the alternatiy@an be calculated. In par- \ye can explicitly calculate, and thus evaluate the power of
ticular, the acceptance probability under the alternativgyg test to distinguish between the two models; [@83, pp.
model (quantum theory could be rather small, thereby di- 494500 for complete details. This power could in principle
minishing the value of this procedure that draws inference$e maximized by suitable selection of the projectors, given
from the experimental outcomes. A closely related problemy 4t the null model is rejected with a stated type | error.
is that a given empirical test can be too frequently rejecting @ \ye turn next to alternative proofs and empirical tests for

deterministic HV model in favor of quantum theory. A dis- geterministic HV models, where we use a different feature of
cussion of these issues and the so-called type | and type Huantum conditional probability.

errors in statistical inference appears, for example, in Devore s 4 joint phase space distribution exists frQ and the
([0l PD. 100-10K . two components o), then the conditional probability over
_ We illustrate our results for a spin-1 system. Let two one+ne sym must be, as shown earlier, a classical convex mix-
dimensional projectors be defined By and Y, for which e of conditional probabilities. As discussed above, one
tr[D(XYX)]ﬂr_[D(_YXY)]. ) ) o consequence of this is that the quantum interference term
If a deterministic HV model is valid, then using just st yanish. However, the existence of the interference term
microGleason[see the discussion followingheorem 1 iy the quantum conditional probability for the projectd?s

the conditional probability rule must hold. Therefore andQ given earlier is a strong suggestion that no determin-
mIX|y]- plyl=ulxnyl=ply[x]- ulx], where u[Xly] jstic HvV model can apply to these operators.

=Pro[X|Y], and u[y|x]=Prp[Y|X]. Simplifying, it must All that is required to obtain a rigorous mathematical
bg the case that[tDY XY]=tr[DXY X], which is a contra- no-go proof is a set of projecto® and Q, with Q=Q;
diction. _ . +Q, andQ;Q,=Q,Q;=0, such that none of the factors in
_ We have, therefore, mathematically ruled out a determing,e ‘interference term is exactly zero. The spin-1 case out-
istic HV model for the spin-1 system, using microGleasonjineq ahove at the end of Sec. Ill is one such example, so it
and just two projectors. Also, the proof uses only single parfymishes an alternative no-go proof for a deterministic HV
ticles and is inequality-free. AcardB1] gives a proof Very el in the case diri(=3. It uses only three projectors.
similar to this, but effectivelyassumeshat the conditional Parallel to these mathematical proofs, experimental tests
probability rule holds. In Sec. IV C we described the data.an pe arranged. We evaluate the interference term by per-
collection process for an empirical test corresponding to th'?orming the two experiments described above, the first where
mathematical result. _ _ the output beams from the first device are coherently recom-
Consider next a structural feature of this test. Define bined, and the second experiment where they are not recom-
bined. The numerical difference in the outputs from these

(5.9

_ Pro[X|YIPR[(1-X)[(1-Y)] two setups is precisely the quantum interference term. The
MXY) = PolX[(1=Y)IPB[(1-X)[Y] empirical test is, therefore, the determination that this ob-
served difference effectively vanishes, that is, is below esti-
mated noise levels.
A(Y:X) = Pro[ Y| X]Pip[(1—Y)[(1—-X)] (5.2 Beltrametti and Cassinell{12], Chap. 26 also describe

Prol(L=Y)|X]IPr[Y[(1—=X)]" the consequences for quantum conditioning in the case of the
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familiar Young double-slit experiment, though they do notthe subsets of commuting projectors would have to be done
do so in the context of hidden-variables models. They corwith the phase space variabdein the same, fixed but un-
rectly include the free-evolution operator for the particle inknown setting. Allowing different values fo® across the
transit and derive the density for particle detection at théncompatible experiments nullifies the conditions of the
collection screen in the separate cases of one or the other siitathematical proof, while in an experimental setting it is not
closed, and the case of both slits open. The open-closed stelear if activity in the hidden phase space can be controlled
tus of the slits acts as the probability conditioning events. as required.

The occurrence of the quantum superposition term, in the In particular, replication of any single experiment does
case of both slits open, exactly corresponds to the nonclassiot require fixingw, under any HV model assumption so far
cal probability interference term we considered earlier in thenade or considered. Some additional connection between
spin-1 system. Once again, this quantum conditioning effegbhase space, valuation function, observation, and prediction
generates a mathematical, no-go proof as well as an empirwould seem to be required.
cal test. Second, in Perelgt], a different approach is taken. Thus,

Because of quantum conditional probability, aftteorem  let u,v be a pair of orthonormal state vectors, andxigt be
3, the double-slit experiment is therefore a classroom-leveanother orthonormal pair, with,x andv,y noncommuting.
demonstration of no hidden-variables models. And the nuAssume that these state vectors are arranged such that the
merical difference between the wave and particle models focorresponding projectors satisfy the equation
the particle is therefore reexpressible as the difference be-
tween classical and quantum conditional probability. Pu+P,=P,+P,. (6.2

Finally, we consider how a suggestion of Feynman on

negative “probability” may be derivable from quantum con- 14450y expectations for the quantum system prepared in a
ditional probability. First recall that Scullgt al. [17] review 0 state, standard quantum theory predicts that the same
and advance the notion of probability for quantum eventgea| hymber should result for both sides of this equation.

that can assume negative values. Peres argues that this equality is in fact an assumption, and
Mh principle a testable hypothesis. Using spin-1 systems and
generalized Stern-Gerlach devices, an experimental scheme
is displayed to evaluate this presumed equality. We are not

= bl ulbl+ t bl t bl (5. aware if the scheme has been undertaken.
ula]=ulalb]- u[b]+ ulalnot b u[not b]. (5.9 At this point, it is not clear to this reader if the determin-

Consider replacing the classical conditionals above by théstic HV model assumptions we have used are in fact those
correct quantum conditionals, those of the form[R{B],  being tested by the experiment suggested by Heietf we

and assume the rule applies to quantum events. If the qua@ssume that these assumptions are exactly those for a deter-
tum conditionals now have their quantum interference termgninistic HV model, then under the sum ruleondition HV
deleted, thenu[a] may assume negative values. In this way (P)], a valuation function would assign the same number to

it might also be possible to embed Feynman’s original ideghese operator sums, so that expectations takesr the

in a context that is rigorous and consistent. We pursue thighase spacshould return the same values for the left and

our own. That is, for any two eventsandb, in a classical
probability space, it is always the case that

approach elsewhere. right sides of this projector equation.
In turn, these should match the probabilities for both sides
V1. DISCUSSION predicted by quantum theory, that is, expectations taken with

respect to the system density operator. It seems, though, that

Alternative empirical tests for no-hidden-variables modelsthe quantum theory prediction is being tested by the Peres
have been suggested by Pefggl]. While not being stated experiment, and not any consequence of the deterministic
in terms that directly relate to the definitions given above, weHV rules. We are also not aware if such an experiment has
will assume that the models considered by Peres invoke dieen performed.
least some of the same assumptions considered here. In par-More generally, one could imagine experimentally chal-
ticular, that there is a valuation function assignment for alllenging the sum rule, at the level of the valuation assignment
projectors satisfying the rules for a deterministic HV model:itself, rather than at an expectation level as suggested by
the spectrum rule and the Borel function rule hold. Peres. This was considered earlier by Glym{&@], in an

First, in Pereq3], an inequality-free no-go proof is ob- extensive discussion of the sum rule in the context of general
tained using a square array of nine operators, in the presen¢®/ models. Glymour also proposed testing the assumption
of condition HV (b)), the product rule above. This leads to a by reevaluating certain Compton scattering experimental
valid mathematical no-go proof for a deterministic HV outcomes, to test the rule, but we do not repeat his argument
model: see also the review and discussion paper Mef@jin  here. We are not aware if the suggested experiment has been
Peres also points out that each set of commuting projectordone.
in the array could in principle be separately measured using In any event, the Young double-slit scheme is a classic
generalized Stern-Gerlach devices. This author does ne@xperiment. The reevaluation we described in Sec. V offers a
know if such an experiment has been carried out. clear, empirical no-go demonstration for the deterministic

There seems to be, however, a deeper issue to resolV models. The simple spin-1 experiments described above
about the interpretation of such an experiment. That is, for alhave also been repeatedly performed: those outcomes only
empirical test to directly correspond to the theoretical situaneed to be reinterpreted in terms of quantum conditional
tion of the mathematical proof, each distinct measurement oprobabilities to derive empirical no-go tests.
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