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Quantum conditional probability and hidden-variables models
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We discuss quantum conditional probability and its applications to deterministic hidden-variable models.
We derive empirical tests corresponding to mathematical no-go proofs, providing rigorous statistical tests
based on experimental outcomes. Evidently, it now possible to examine the statistical power of the empirical
tests, and place confidence intervals on the parameters that precisely measure the departure of hidden-variable
models from quantum experimental outcomes. Moreover, reinterpretation of well-known results in the light of
quantum conditional probability provides other experimental demonstrations and no-go proofs: outcomes for
the familiar Young double-slit experiment show that there are no deterministic hidden-variable models of the
type considered by Kochen and Specker@J. Math. Mech.17, 59 ~1967!# or Bell @Rev. Mod. Phys.38, 447
~1966!#. @S1050-2947~98!07908-6#

PACS number~s!: 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

We introduce a class of theoretical proofs and empiri
tests for quantum hidden-variables~HV! models. The family
of models considered is the familiar one studied by Koch
and Specker@1#, Bell @2#, and many others. The main tec
nical feature is the use of quantum conditional probabil
defined for arbitrary pairs of noncommuting projectors. A
other feature is that the empirical tests use as few as
projectors, and the proposed experiments are technically
ementary. Also, single particles are all that is required, rat
than measurements on correlated particle pairs as are us
connection with HV tests that depend on the Bell inequ
ties. The mathematical no-go proofs we obtain are exac
‘‘inequality free,’’ and hence may also be compared with t
multiparticle, multioperator, exact no-go proofs introduc
by Peres@3,4#, Mermin @5,6#, and Greenberger, Horne, Sh
mony, and Zeilinger@7#.

In Sec. II, we give precise specifications for the class
HV models considered here, and provide a context by o
lining the results of Fine and Teller@8# and Fine@9–11#.
These results help display the connections between class
HV models, and marginal and joint distributions for quantu
outcomes. In Sec. III we define and discuss quantum co
tional probability, a key fact being that its standard definiti
does not require the existence of a joint distribution for
observed and conditioning events; see Beltrametti and C
inelli @12#.

In Sec. IV we introduce a result from classical mathema
cal statistics linking conditional probability with the exis
tence of~classical! joint distributions; see Arnold and Pres
@13#. These results are used to derive the rigorous statis
inference procedures that couple to the empirical tests
propose.

*Electronic address: jmalley@helix.nih.gov
PRA 581050-2947/98/58~2!/812~9!/$15.00
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In Sec. V we pull these results together to derive theo
ical and experimental methods to obtain no-go results for
HV models considered here. One interesting consequen
that the classic Young double-slit experiment, for examp
provides an experimental test and a mathematical no
proof for our class of HV models. Many other equally simp
tests and proofs are also now possible.

Finally, in Sec. VI we discuss the proposed experimen
tests of Peres@3,4#.

II. THE CLASS OF HIDDEN-VARIABLES MODELS

We describe possible specifications for a hidden-varia
HV model, such as are given by@1,2# and subsequently by
many others. As a general reference for this topic one m
use@12, Chap. 25#, van Fraassen@14#, or Bub @15#.

Let Q5Q(H,D,A) denote a quantum system with Hi
bert spaceH ~possibly of dim52!, a given arbitrary density
operatorD, and a family of observablesA.

Let V5V„L,s~L!,m… denote a classical probability spac
whereL is a nonempty set,s~L! is a Booleans algebra of
subsets ofL, andm is the probability measure ons~L!.

As used in this paper, hidden-variable models for a qu
tum system in a given stateD will make some or all of the
following four assumptions.

HV ~a!: Given vPL, APA, there is a mappingf from
the pair (v,A) to real numbers; it is required that the valu
of f (v,A) be an eigenvalue ofA ~the spectrum rule!.

HV ~b!: For any two commuting operatorsA,B, the
mapping f is such thatf (v,A1B)5 f (v,A)1 f (v,B) ~the
sum rule!.

HV ~c!: The measurem correctly returns the margina
probabilities for each observableA; for S a real Borel set,m
is such that

Pr@A«S#5tr@DPA~S!#5E f „v,PA~S!…dm,
812 © 1998 The American Physical Society
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PRA 58 813QUANTUM CONDITIONAL PROBABILITY AND HIDDEN - . . .
for PA(S) the projector associated with setS in the spectral
resolution ofA ~the first-order margins rule!.

HV ~d!: For any two commuting observablesA and B,
the measurem correctly returns the joint probabilities; forS
andT real Borel sets,m is such that

Pr@A«S,B«T#5tr@DPA~S!PB~T!#

5E f „v,PA~S!PB~T!…dm

for PA(S),PB(T) the projectors associated with setsSandT
in the spectral resolutions ofA and B, respectively~the
second-order margins rule!.

In HV ~a!, L is called the hiddenphase spacefor the HV
model, andf denotes thevaluation functionfor the model. A
complete specification forf must involve the density operato
for the quantum system: f (A,v)5 f (v,A;D)PR, as we
make no assumption about howf might transform under a
change in density.

We write A(v) to mean the classical random variab
defined through the valuation assignment, whereA(•) takes
points in L to real numbers, so thatf (v,A;D)5A(•)PR.
Also, for projectorX, and Borel setS andR, let

x5X21~1!5$vPL:X~v!51%. ~2.1!

Following @10#, let us agree to call an HV model satisfy
ing HV ~a! and~c!, a weak hidden variables model. A model
satisfying conditions HV~a!, ~c!, and ~d! will be termed a
deterministic hidden variables model. In words, for a weak
HV model the valuation function provides a map from
operators to a space of classical random variables. It need
be pointwise linear on each operator: the valuation funct
assignment only needs to be linear on average for sin
observables, and it must return the correct marginal pr
abilities for each observable. Also, given HV~c!, the valua-
tion assignment is such that its integration over the wh
space is linear, but in general this is strictly weaker th
requiring HV ~b!, since the integral equality in HV~c! is not
equivalent to assuming

E
D

f ~v,X1Y!dm5E
D

f ~v,X!dm1E
D

f ~v,Y!dm

~2.2!

for D an arbitrary Borel set ins~L! and projectorsX,Y.
Given HV ~a! and HV ~c!, it follows that HV ~b! is obtained
if and only if the integration above holds when taken over
possibleD.

All our results below will be obtained under the set
conditions HV~a!, ~c!, and~d!: we fix our class of interest a
that of the deterministic HV models. Fine@10# has demon-
strated that this is exactly the model considered, for exam
by Kochen and Specker@1#. Moreover, we show how to
replace conditions~b! and ~c! with a single equivalent
premise on conditional probability and upon this our no-
proofs and tests will be based.

We recall that useful equivalent model conditions a
available. Fine@9,10# proves that in the presence of HV~a!,
condition HV ~b! is equivalent to either of the following.
ot
n
le
b-

e
n

ll

e,

HV (b1): For any two commuting operatorsA,B, the
valuation is such that (AB)(v)5A(v)•B(v) ~the product
rule!.

HV (b2): For any Borel measurable functiong, and any
operatorA, the valuation is such that@g(A)#(v)5g@A(v)#
~the Borel function rule!.

It is important to note that condition HV~a! is an assign-
ment of eigenvalues for each operator that is made once
all operators~commuting or not!, but the sum rule HV~b!
@equivalently (b1) or (b2)# applies to commuting operator
only.

Some additional context for the family of HV models di
cussed here is now provided. Consider first the small
important models of Bell@2# and Kochen and Specker@1#.
These both assume dimH52, and are examples for whic
linearity or the factoring rules@HV ~b!, (b1), or (b2)# are not
assumed to hold. See, for example, the discussion in@12#, pp.
268–271, where it is shown that the sum rule, condition H
~b!, is violated for these two models. Otherwise express
these authors provided two distinct, probability measures
the lattice of projectors~in the spin-12 space of dimH52!
that do not extend linearly from the space of projectors
space of all bounded operators. On the other hand, as
cussed by Bell@1#, an application of Gleason’s theorem
mathematically rules out the family of HV models of th
type we consider here, in the case dimH>3.

Next, given that HV~a! and HV ~c! hold, Fine@9# shows
that HV (b2) is equivalent to HV~d!.

Theorem~Fine @9#!. Given the spectrum rule and the firs
order margins rule, the second-order margins rule is equ
lent to the function rule.

One of the excellent features of Fine’s result is that
focuses attention on experiment and observation, rather
on apparently more esoteric features of a valuation funct
That is, experimentally determinable first- and second-or
margins alone are sufficient to fix important pointwise pro
erties of the valuation. Moreover, from Fine@10#, p. 292:
‘‘the idea of deterministic hidden variables is just the idea
a suitable joint probability function,’’on the phase space,
and that correctly returns the observed marginal and jo
probabilities.

Regarding other possible demands one may place on
HV model, we note that a deterministic HV model is n
contextual, as it makes its valuation assignment once for
observables~at each point in the phase space!. It is also not
contextual in the sense considered by Gudder@16#, where the
phase space probability measure is permitted to vary,
pending on each set of commuting operators under consi
ation. As a deterministic HV model makes an assignm
that factors for any commuting pair~the product rule!, it is
also alocal model; see@12#, p. 274.

We turn now to the definition and properties of quantu
conditional probability.

III. CLASSICAL AND QUANTUM CONDITIONAL
PROBABILITY

Following @12#, Chap. 26, for two projectorsA andB, not
necessarily commuting, on a quantum system in stateD,
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814 PRA 58JAMES D. MALLEY
quantum conditional probabilityis defined to be

PrD@AuB#5tr@DBAB#/tr@DB# when tr@DB#Þ0.
~3.1!

Note that

PrD@AuB#5PrD~B!@A#, where D~B!5BDB/tr@DB#.
~3.2!

Some remarks are in order. First, note especially that w
in classical probability the definition of conditional probab
ity for classical outcomes is made by means of a joint pr
ability ~or is itself made a basic postulate, and a joint pro
ability is defined from it!, it is the case that quantum
conditional probability does not require a joint distributio
and is defined for every projector pairA,B, commuting or
not.

Alternative approaches to evaluating conditional or u
conditional probabilities for quantum events might choose
change the range space for the probability measure. H
one change could be from a real valued, positive measur
a signed or possibly complex measure.

A recent example of this approach is from Scul
Walther, and Schleich@17#, using a probability primitive de-
fined on projectors that can take on negative values. In do
this they invoke an idea due to Feynman, and report in
pretive simplifications of the EPR problem. Their constru
tion is also used to reinterpret a Young double-slit expe
ment, in the form of a micromaster,Welcher-Wegdetector.
This may be compared with the reevaluation described
low at the end of Sec. V.

Scully et al. @17# do not use their revised notion of prob
ability to derive hidden-variable model results. The syste
atic use of conditional quantum probability, on the oth
hand, will lead to new conclusions about hidden-variab
models, as well as to fruitful reinterpretations of famili
results. Just how their results could be derived from our
briefly considered at the end of Sec. V.

Next, note that the density operatorD(B) is the quantum
state of the system given that the event associated with
projectorB has occurred; it is the state of the system after
projectorB has been applied to the system. The connec
between conditional probability and sequential measu
ments is discussed in many places, including Bohm@18#, pp.
67–74 and Helstrom@19#, pp. 65–69.

The connections between sequential measurements
HV models are, however, still controversial. Some details
this discussion appear in Bub~@20,21,15#, Chaps. 2 and 3!,
Freedman and Wigner@22#, Clauser@23,24#, and Wigner
@25#. To illustrate the problem, and to resolve some of
discussion, we introduce the following notation: forS, any
set ins~L!, let m@S#5*sdm, and for any projectorX, let x
5X21(1)5$vPL:X(v)51% @as in Eq.~2.1!#.

Now, for any two projectorsA,B ~not necessarily com
muting!, and given a deterministic HV model we can alwa
define

m@aub#5m@aùb#/m@b# when m@b#Þ0. ~3.3!
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One of the central questions for conditional probability a
sequential measurements is: when doesm@aub#
5PrD@AuB#? To study this, we introduce a new HV mod
assumption:

HV ~e!: For any two projectorsA,B ~not necessarily
commuting!,

m@aub#5m@aùb#/m@b#5PrD@AuB#5tr@DBAB#/tr@DB#

~ the conditional probability rule!.

Also, for any two projectorsA,B, write A<B to meanAB
5BA5A.

Lemma.Given the spectrum and the product rules, ifA,B
are two projectors such thatA<B, thenaùb5a.

Proof. By the product rule, (AB)(v)5A(v)B(v)
5A(v). Using the spectrum rule, if it is given thatA(v)
51, then necessarily B(v)51, so that $vuA(v)
51, and B(v)51%$$vuA(v)51%. Since it is always the
case that$vuA(v)51, and B(v)51%#$vuA(v)51%, the
result follows.

We now prove our main result on the relationship b
tween HV models and the conditional probability rule.

Theorem 1.Assume dimH>3. The spectrum rule and th
first- and second-order margin rules together imply that
conditional probability rule holds. Conversely, given that t
spectrum rule is valid, if the conditional probability rul
holds then the first- and second-order margin rules h
when these are restricted to the lattice of projectors.

Proof. Assume that there is a deterministic HV model,
that the first- and second-order margin rules are valid.
two events,a andb in s~L!, the classical definition for con
ditional probability applied to sets in phase space
m@aub#5m@aùb#/m@b#, and one checks that this serves
formally define a consistent probability measure on the
tice of all projectors~whereA andB need not commute!. In
particular, for projectorsA1 and A2 such thatA1A25A2A1
50, and A5A11A2 , by using the spectrum and marg
rules, one can show thatm@aub#5m@a1ub#1m@a2ub#.

Next note that A<B implies PrD@AuB#5PrD@A#/
PrD@B#, and by the Lemma above we also havem@aub#
5m@a#/m@b#. Hence using the first-order margins rule w
find m@aub#5PrD@AuB#, wheneverA<B. Using Gleason’s
theorem this implies thatm@aub#5PrD@AuB# for any two
projectors, as required. A detailed proof of this importa
fact appears in@12#, p. 288.

The proof of the converse, that the conditional probabil
rule implies the first- and second-order margin rules, wh
restricted to projectors, is straightforward and is omitted.

A proof of Theorem 1in the special case that the cond
tioning projector is one-dimensional is possible using a c
siderably weaker form of Gleason’s theorem. Thus, Gud
~@26#, p. 129, corollary 5.17! obtains the following by el-
ementary vector space methods.

MicroGleason.For dimH>3, if a probability measurem
on the lattice of projectors assigns probability 1 to any o
dimensional projectorB, then it must be such thatm(A)
5tr@BA#, for all projectorsA.

When no-go proofs or experimental tests, obtained bel
involve only pairs of one-dimensional projectors, only m
croGleason is needed. The other proofs and experime
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PRA 58 815QUANTUM CONDITIONAL PROBABILITY AND HIDDEN - . . .
tests for HV models proposed below evidently do require
uniqueness feature of the original Gleason theorem. W
this compromises the simplicity of the mathematical form
these no-go proofs, compared with other results not us
Gleason~Kochen and Specker, or Bell, for example!, it does
not effect the merit of the empirical tests we propose
deterministic HV models.

In order to arrive at some of these experimental tests
proofs of HV models, we need another fact from the calcu
for quantum conditional probability. That is,@12#, Chap. 26
shows how quantum conditioning on an orthogonal sum
commuting projectors yields interference terms, sharply d
tinguishing it from classical conditioning. For simplicity
consider a sum of two commuting, orthogonal projectors

Q5Q11Q2 for projectors Q1 ,Q2

with Q1Q25Q1Q250.

Assume the quantum system is the pure stateD5uc&^cu,
with cPH. Then

PrD@PuQ#5 K Qc

iQciUP Qc

iQci L . ~3.4!

Letting w i5Qic/iQiciÞ0, for i 51,2,

PrD@PuQ#5S iQ1ci
iQci D 2

PrD@PuQ1#1S iQ2ci
iQci D 2

PrD@PuQ2#

1
iQ1ci•iQ2ci

iQci2 Rê w1uPw2&. ~3.5!

The last term in the conditional probability equation abo
represents quantum interference. This is a nonclassical
ture of quantum conditional probability, and if the interfe
ence term is nonzero it ought to be experimentally observ
In other words, quantum conditioning, when conditioning
taken over orthogonal sums, does not in general retur
classical convex mixture over the components in the sum

We more fully exhibit the connection of this result wit
properties of a deterministic HV model. Given the existen
of such an HV model, we can use a classical probabi
calculus result on conditioning over sums. For arbitrary p
jectorsA, B, U, andV, let the setsa, b, u, andv be defined
as in Eq.~2.1!, and assume thatB5U1V, with UV5VU
50. One can check thatb5uøv. Then, using standard clas
sical probability rules~apart from any special assumption
for an HV model! we have

m@aub#5m@aùb#/m@b#5m@aù~uøv !#/m@uøv#

5m@~aùu!ø~aùv !#/m@uøv#

5$m@aùu#1m@aùv#%/m@uøv#

5$m@u#/m@uøv#%m@auu#

1$m@v#/m@uøv#%m@auv#.

Hence

m@aub#5p•m@auu#1q•m@auv#, ~3.6!
e
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wherep5m@u#/m@b#, q5m@v#/m@b#, andp1q51.

In light of Theorem 1, assumption of a deterministic HV
model must imply that conditioning over a disjoint su
~equivalently, over an orthogonal sum of projectors! results
in a classical convex mixture over separate condition
That is, the quantum interference term must vanish if
deterministic HV model is valid. Note also that all terms
the last equation correspond to observable conditiona
marginal events, and may be evaluated from experiment

As a useful physical example of this conditioning proce
one that we can use later in our no-go proofs and empir
tests, consider a spin-1 particle and two Stern-Gerlach
vices that sequentially separate the possible values21,0,11
of the spin component along thex and they axis, respec-
tively. Let Q be the event where ‘‘thex component of the
spin is 21 or 11,’’ and let P be the event where ‘‘they
component of the spin is11.’’

In order to make the second measurement conditiona
Q, rather than on justQ1 or just Q2 , we must assume tha
the output of the first device is coherently recombined bef
being sent to the second device. In particular, no determ
tion is being made by the first device of either ‘‘thex com-
ponent of the spin is21,’’ or ‘‘the x component of the spin
is 11.’’

On the other hand, we can obtain a conditional probabi
that conforms more closely to a classical mixture by mo
fying the experimental arrangement: use the first device
measure ‘‘x component of the spin is11,’’ separately from
‘‘ x component of the spin is21.’’ This is done by directing
the two spin outcomes separately to the second device,
is, by not coherently recombining them before presentat
to the second device. In this second setup we observe
spin x components, and the quantum conditional probabi
reduces to a more classical, convex probability mixture r
resented by the first two terms in the equation above.

The next section deals with statistical inference issues
support the empirical tests we propose.

IV. STATISTICAL INFERENCE ISSUES

A. A result from classical statistics

Suppose we are given two discrete, classical random v
ablesX andY, and we observe sets of conditional outcom

Pr@X5xuY5y# and Pr@Y5yuX5x#.

We ask if these two conditional distribution arecompatible,
in the sense that they derive from a single, unobserved j
distribution Pr@XY#, such that

Pr@X5x,Y5y#5Pr@X5xuY5y#•Pr@Y5y#

5Pr@Y5yuX5x#•Pr@X5x#. ~4.1!

Arnold and Press@13# describe several classical~nonquan-
tum! data analysis problems for which stated conditional d
tributions are, or are not, compatible. They present res
that apply to both discrete or continuous measurements
well as for higher-dimensional cases. And while they do n
provide a statistical test for compatibility, they do giv
simple necessary and sufficient formal conditions fro
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816 PRA 58JAMES D. MALLEY
which such tests can be derived. This we do below, a
describing the original results.

A conceptual obstacle may be present here: we are ac
tomed to beginning with a pair of random variablesX,Y and
then making the standard existence statement about a
distribution, which classically always exists. The situati
discussed here and in@13# is different: start with conditiona
distributions of agiven, explicit form and then find, if pos-
sible, a joint distribution consistent with these conditiona

To motivate their result,@13# also gives several illustra
tions from the classical statistical literature showing when
joint distribution can possibly exist if it is required to co
rectly return the stated conditional distributions. We descr
one of these. Thus, suppose that the conditional distribu
of X, given Y5y, is a Gaussian with expectation5ay
1by2 and variancef (y), while the conditional distribution
of Y, given X5x, is Gaussian with expectation5cx1dx3

and varianceg(x), for constantsa, b, c, andd. Then one can
show thatX andY have a joint distribution if and only ifd
50. The critical requirement is that any proposed joint d
tribution must return the correct, stated conditional distrib
tions. VariablesX andY can have no joint distribution if the
conditionals are as given, unlessd50.

We next take up the solution given in@13# to this problem
of connecting given conditional distributions to a single jo
distribution.

B. A formal existence condition

For simplicity, consider only the discrete case, with 1< i
<I , 1< j <J, and let

ai j 5Pr@X5xi uY5yj # and bi j 5Pr@Y5yj uX5xi #.

~4.2!

Assume thatai j .0, bi j .0, for all i and j.
@13# proves that the two conditional distributions are co

patible if and only if there exist two vectors of constants

r5~r 1 ,r 2 ...,r I ! and s5~s1 ,s2 ,...,sJ!,

with all entries positive, such that

ai j 5r isjbi j for all i , j . ~4.3!

Equivalently we may use the condition

ai j 5drisjbi j for all i , j , and some real constantd.0,

~4.4!

and let us agree to call this the AP condition.
Given the positivity conditions above,@13# also shows

that the joint distribution is unique, if it exists, and givens,
the joint distribution can be formally found as follows.

First verify that defining

t5~ t1 ,t2 ...,t I !, where t15r 1 /Sr i all i , ~4.5!

yields a consistent marginal forX, such that

t5~Pr@X5x1#,Pr@X5x2#,...,Pr@X5xI # !. ~4.6!

Then Pr@XY# is found from the IJ equations:
r

s-

int

o

e
n

-
-

t

-

Pr@X5xi , Y5yj #5Pr@Y5yj uX5xi #•Pr@X5xi #5ai j t i .

~4.7!

As an illustration, consider the following special case.
Lemma. If Pr@X5xi uY5yj #5Pr@Y5yj uX5xi #, for all

i , j , then the AP condition holds, with Pr@Y5yj #5Pr@X
5xi # for all i and j, and

t5~1/I !~1,...,1!.

Proof. If the conditional probabilities are all equal, the
the AP condition certainly holds withr i5sj for all i and j,
and a joint distribution exists forX andY. Hence

Pr@X5xi ,Y5yj #5Pr@X5xi uY5yj #•Pr~Y5yj !

5Pr@Y5yj uX5xi #•Pr@X5xi #.

Equality of the conditionals implies that Pr@Y5yj #5Pr@X
5xi # for all i and j. The result fort is immediate.

More generally, if the AP condition holds, some form
solution to the compatibility problem must exist: there mu
be a unique joint distribution function that returns the giv
conditional distributions. We observe, though, that the
condition by itself may not validate the existence of a jo
distribution that returns a specific set of hypothesized fi
order marginal distributions. More precisely, we argue tha
logically complete procedure for testing the existence o
joint distribution must ensure that marginals derived fro
the vectort defined above match a given set of margina
This is an additional question not considered in@13#, but one
that we take up in the next subsection.

We have one further issue to address, also not consid
in @13#. It is that the AP condition is not itself a statistica
test, applicable to data and from which an inference can
drawn. It is straightforward to provide a statistical procedu
to check for matching marginals, as well as for the AP co
dition itself, and this is discussed in the next subsection.

Finally, note that a formal calculation or an empirical te
for a pair of random variables, may reject the AP conditio
in which case a test for the marginals is not needed.

C. A statistical test for the AP condition

We use standard results for so-called log-linear mod
which apply to the statistical analysis of multiway tables
discrete, counted data; see, for example, Agresti@27# or
Bishop, Fienberg, and Holland@28#. Data collection is first
described, using two noncommuting projectors, and then
statistical procedure is given.

Consider a spin-1 system, obtaining observations o
single particle, given that the system is in stateD. Suppose a
measurement on the same particle is then made using
turn, one and then the other of any two noncommuting o
dimensional projectorsX andY.

Outcomes ofX will occur according to the marginal prob
ability PrD@X#. A subsequentY measurement made on th
same particle will occur according to the conditional pro
ability PrD@YuX#. Similarly, measurements made first onY,
followed by one onX, will have corresponding probabilitie
PrD@Y# and PrD@XuY#, respectively.

If we first randomly selectX ~with probability 1
2! for the

first measurement, and allow~filter! only outcomesX51 to
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be sent to the second spin measuring device, we find thY
51 outcomes from the second device will be registered w

probability (1
2 )Pr@Y51uX51#.

More generally, randomly selecting the first detector
ter, filtering the first outcomes, and then observing spin at
second detector will produce countsni jk in a three-way con-
tingency table, with each cell probability,pi jk , as just de-
scribed.

One standard assumption made about such data colle
~in any multiway contingency table! is that the individual
cell counts have a Poisson distribution, which is also
usual one for photon counts. Other measurement and s
pling schemes may be used instead for which the statis
methods proposed here are still valid asymptotically. It is
important feature of these Poisson cell counts that if
make a total ofN observations, then the cell probabilitie
conditional onN will have a multinomial distribution, and
then Npi jk5mi jk , the expected value for cell (i , j ,k). In
what follows, we assume a multinomial distribution for th
cell counts.

We can write a full or saturated model for all the ce
counts in the three-way table of counts in terms of expec
values,mi jk , for the cells, where a saturated model conta
as many independent terms as there are data cells. LZ
5k (k51,2) denote the outcome of randomly choosing
measureX ~or Y! first, to be followed by a conditional mea
surement ofY ~or X!. Then the model has the form

ln~mi jk !5u1ui
X1uj

Y1uk
Z1ui j

XY1uik
XZ1ujk

YZ1ui jk
XYZ

~4.8!

for parameters in the variablesu, which all become identifi-
able given the constraints

Sui5Suj5Suk5Sui j 5Suik5Sujk5Sui jk50.
~4.9!

Using the sampling scheme described above, withNpi jk
5mi jk , it follows that

ln~ai j !5 ln~mi j 1!2 ln~1/2!2 ln N, ~4.10!

ln~bi j !5 ln~mi j 2!2 ln~1/2!2 ln N, ~4.11!

and

ln~ai j /bi j !5 ln~mi j 1 /mi j 2!. ~4.12!

It is straightforward to verify the following.
Theorem 2.The AP condition is obtained if and only i

the three-way interaction termui jk
XYZ is identically zero, for all

i, j, andk.
In order to experimentally test that the three-way inter

tion is zero, we can use a standard, large samplex2 analysis,
or essentially equivalently, a maximum likelihood estimati
of the expected cell values, followed by a likelihood ra
test. The test we propose here is also known as the good
of fit for a homogeneous association model; see@27#, pp. 151
and 152.

As a practical matter, the maximum likelihood estima
does not have a direct or closed-form solution for a mo
with just the three-way interaction equal to zero. Howeve
h

-
e

ion

e
m-
al
n
e

d
s

-

ess

l
a

simple iterative procedure exists, or one could use any o
number of commercial software systems, such asS-PLUS, SAS

or STATXACT.
In the case of two projectors~not necessarily one

dimensional! we have 1< i , j <2, and the test for no three
way interaction reduces to the Breslow-Day statistic, wh
is widely used in clinical trials and epidemiology. Usin
STATXACT the test can be run using a nonparametric versi
called Zelen’s exact test; see@27#, p. 66. This procedure
makes no assumptions regarding the asymptotic distribu
of the test statistic.

To test for correct marginal distributions forX ~or Y!, we
use knowledge of the quantum system to formally calcul
the conditional probabilities, which form the values forai j
andbi j . Under the null hypothesis that a suitable joint d
tribution holds, the AP condition must hold as well, and w
can formally solve for the unique vectort. This formal solu-
tion is in turn compared to the vector of observed margin
for X, by using ax2 multinomial test ~for example! that
compares observed counts against expected counts.

This completes the description of our two-step, statisti
procedure for testing for the existence of a joint distributio
compatible with the given, observed conditional and m
ginal probabilities.

Other classical statistical procedures could be used
place of either the first or second step of the two step pro
dure we have just outlined. In particular, maximum entro
estimation, classical Bayes, empirical Bayes, and others;
@28#, Chap. 10.

V. MATHEMATICAL NO-GO PROOFS
AND EMPIRICAL TESTS

We are now finally in a position to properly interpret an
apply our results to the question of the existence of de
ministic HV models. We do this by joiningTheorem 1with
Theorem 2.

Theorem 3.SupposeX and Y are two observables for a
quantum system, with associated projectors$Xi% and $Yj%
derived from their spectral decompositions. If there is a
terministic HV model for the quantum system, then the A
condition applied to the projectors is valid.

Proof. Assume that a deterministic HV model for the sy
tem exists. Then there must exist a phase space with a
sical probability measurem such that the conditional prob
abilities match: PrD@Xi uYj #5m@xi uyj #, and such that the
first-order margins also match: PrD@Xi #5m@xi #, and
PrD@Yj #5m@yj #.

Sincem@xi uyj #•m@yj #5m@yj uxi #•m@xi #, it follows that

PrD@Xi uYj #•PrD@Yj #5PrD@Yj uXi #•PrD@Xi #. ~5.1!

But this means that the AP condition must hold, withr i
5PrD@Xi #, andsj5PrD@Yj #

21 as required.
Note thatX and Y need not be commuting, and that th

AP condition is applied to thefamily of conditional prob-
abilities PrD@Xi uYj #,PrD@Yj uXi #. The validity of the condi-
tional probability rule ratifies the connection between o
servables and phase space, so for deterministic HV mode
is the case thatm@aub#5PrD@AuB#.
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Though we do not need it here, it is possible to prov
kind of converse toTheorem 3. This is accomplished by
showing that the AP condition for a pair of observables g
erates a classical measure space and a corresponding re
deterministic HV model, one that is restricted to that pair
observables.

Most importantly, we note that the statistical procedu
just described allow for exact and empirical evaluations
the power of the statistical tests. This requires evaluation
the probability that we reject the null hypothesis of a det
ministic HV model, when in fact it is correct to do so. In th
context of the AP condition, by specifying a set of nonze
interaction terms, we can, for a given sample size, calcu
~or estimate! the probability that we will correctly reject th
null model. For this same range of alternative models,
for a stated statistical power, we can also evaluate the sam
size needed to correctly reject the null model.

On the other hand, such an analysis of the statistical p
erties of an empirical test does not appear to have been
cussed for no-go tests of the form considered by Aspectet al.
@29# and many others: if we suppose that quantum mecha
~the alternative model! holds rather than a deterministic on
~the null model!, then those procedures evidently do n
clearly provide a conventional sample space and probab
measure by which probabilities forall outcomes~those under
the null or under the alternative! can be calculated. In par
ticular, the acceptance probability under the alternat
model ~quantum theory! could be rather small, thereby d
minishing the value of this procedure that draws inferen
from the experimental outcomes. A closely related probl
is that a given empirical test can be too frequently rejectin
deterministic HV model in favor of quantum theory. A di
cussion of these issues and the so-called type I and typ
errors in statistical inference appears, for example, in Dev
~@30#, pp. 100–106!.

We illustrate our results for a spin-1 system. Let two on
dimensional projectors be defined byX and Y, for which
tr@D(XYX)#Þtr@D(YXY)#.

If a deterministic HV model is valid, then using jus
microGleason@see the discussion followingTheorem 1#
the conditional probability rule must hold. Therefo
m@xuy#•m@y#5m@xùy#5m@yux#•m@x#, where m@xuy#
5PrD@XuY#, and m@yux#5PrD@YuX#. Simplifying, it must
be the case that tr@DYXY#5tr@DXYX#, which is a contra-
diction.

We have, therefore, mathematically ruled out a determ
istic HV model for the spin-1 system, using microGleas
and just two projectors. Also, the proof uses only single p
ticles and is inequality-free. Acardi@31# gives a proof very
similar to this, but effectivelyassumesthat the conditional
probability rule holds. In Sec. IV C we described the da
collection process for an empirical test corresponding to
mathematical result.

Consider next a structural feature of this test. Define

l~X;Y!5
PrD@XuY#PrD@~12X!u~12Y!#

PrD@Xu~12Y!#PrD@~12X!uY#
,

l~Y;X!5
PrD@YuX#PrD@~12Y!u~12X!#

PrD@~12Y!uX#PrD@Yu~12X!#
. ~5.2!
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Now, an exact measure of the divergence of a determini
HV model from quantum theory are the sizes of theu terms
in the log-linear model that correspond to the three-way
teraction. Using the natural constraints on the log-line
model, one shows there is only one absolute value,5d say,
for theseu terms~see@28#, p. 34!, and that

d5~1/8!ln@l~X;Y!/l~Y;X!#. ~5.3!

This single expression contains all information about the
vergence between the two models. After simplifying we g

d5 1
8 lnF12PrD@Xu~12Y!#21

12PrD@Yu~12X!#21G . ~5.4!

Using the fact that maximum likelihood estimates of theu
terms have large-sample Gaussian distributions, we can
erate a confidence interval ford, therefore finding real con-
stantsl andu such that the interval@l ,u# contains the true
value ofd with, say, 95% probability. Making this straight
forward is the fact that most statistical software systems
tomatically report the large-sample standard deviation for
estimates of theu terms. On the other hand, for any give
quantum system~one for whichd is presumably not zero!,
we can explicitly calculated, and thus evaluate the power o
the test to distinguish between the two models; see@28#, pp.
494–500 for complete details. This power could in princip
be maximized by suitable selection of the projectors, giv
that the null model is rejected with a stated type I error.

We turn next to alternative proofs and empirical tests
deterministic HV models, where we use a different feature
quantum conditional probability.

If a joint phase space distribution exists forP,Q and the
two components ofQ, then the conditional probability ove
the sum must be, as shown earlier, a classical convex m
ture of conditional probabilities. As discussed above, o
consequence of this is that the quantum interference t
must vanish. However, the existence of the interference t
in the quantum conditional probability for the projectorsP
andQ given earlier is a strong suggestion that no determ
istic HV model can apply to these operators.

All that is required to obtain a rigorous mathematic
no-go proof is a set of projectorsP and Q, with Q5Q1
1Q2 andQ1Q25Q2Q150, such that none of the factors i
the interference term is exactly zero. The spin-1 case o
lined above at the end of Sec. III is one such example, s
furnishes an alternative no-go proof for a deterministic H
model in the case dimH53. It uses only three projectors.

Parallel to these mathematical proofs, experimental te
can be arranged. We evaluate the interference term by
forming the two experiments described above, the first wh
the output beams from the first device are coherently rec
bined, and the second experiment where they are not rec
bined. The numerical difference in the outputs from the
two setups is precisely the quantum interference term.
empirical test is, therefore, the determination that this
served difference effectively vanishes, that is, is below e
mated noise levels.

Beltrametti and Cassinelli~@12#, Chap. 26! also describe
the consequences for quantum conditioning in the case o
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familiar Young double-slit experiment, though they do n
do so in the context of hidden-variables models. They c
rectly include the free-evolution operator for the particle
transit and derive the density for particle detection at
collection screen in the separate cases of one or the othe
closed, and the case of both slits open. The open-closed
tus of the slits acts as the probability conditioning events

The occurrence of the quantum superposition term, in
case of both slits open, exactly corresponds to the noncla
cal probability interference term we considered earlier in
spin-1 system. Once again, this quantum conditioning ef
generates a mathematical, no-go proof as well as an em
cal test.

Because of quantum conditional probability, andTheorem
3, the double-slit experiment is therefore a classroom-le
demonstration of no hidden-variables models. And the
merical difference between the wave and particle models
the particle is therefore reexpressible as the difference
tween classical and quantum conditional probability.

Finally, we consider how a suggestion of Feynman
negative ‘‘probability’’ may be derivable from quantum co
ditional probability. First recall that Scullyet al. @17# review
and advance the notion of probability for quantum eve
that can assume negative values.

We speculate that this approach may be derivable fr
our own. That is, for any two eventsa andb, in a classical
probability space, it is always the case that

m@a#5m@aub#•m@b#1m@aunot b#•m@not b#. ~5.5!

Consider replacing the classical conditionals above by
correct quantum conditionals, those of the form PrD@AuB#,
and assume the rule applies to quantum events. If the q
tum conditionals now have their quantum interference te
deleted, thenm@a# may assume negative values. In this w
it might also be possible to embed Feynman’s original id
in a context that is rigorous and consistent. We pursue
approach elsewhere.

VI. DISCUSSION

Alternative empirical tests for no-hidden-variables mod
have been suggested by Peres@3,4#. While not being stated
in terms that directly relate to the definitions given above,
will assume that the models considered by Peres invok
least some of the same assumptions considered here. In
ticular, that there is a valuation function assignment for
projectors satisfying the rules for a deterministic HV mod
the spectrum rule and the Borel function rule hold.

First, in Peres@3#, an inequality-free no-go proof is ob
tained using a square array of nine operators, in the pres
of condition HV (b1), the product rule above. This leads to
valid mathematical no-go proof for a deterministic H
model: see also the review and discussion paper Mermin@6#.
Peres also points out that each set of commuting projec
in the array could in principle be separately measured us
generalized Stern-Gerlach devices. This author does
know if such an experiment has been carried out.

There seems to be, however, a deeper issue to res
about the interpretation of such an experiment. That is, fo
empirical test to directly correspond to the theoretical sit
tion of the mathematical proof, each distinct measuremen
t
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the subsets of commuting projectors would have to be d
with the phase space variablev in the same, fixed but un
known setting. Allowing different values forv across the
incompatible experiments nullifies the conditions of t
mathematical proof, while in an experimental setting it is n
clear if activity in the hidden phase space can be contro
as required.

In particular, replication of any single experiment do
not require fixingv, under any HV model assumption so fa
made or considered. Some additional connection betw
phase space, valuation function, observation, and predic
would seem to be required.

Second, in Peres@4#, a different approach is taken. Thu
let u,v be a pair of orthonormal state vectors, and letx,y be
another orthonormal pair, withu,x andv,y noncommuting.
Assume that these state vectors are arranged such tha
corresponding projectors satisfy the equation

Pu1Pv5Px1Py . ~6.1!

Taking expectations for the quantum system prepared
given state, standard quantum theory predicts that the s
real number should result for both sides of this equati
Peres argues that this equality is in fact an assumption,
in principle a testable hypothesis. Using spin-1 systems
generalized Stern-Gerlach devices, an experimental sch
is displayed to evaluate this presumed equality. We are
aware if the scheme has been undertaken.

At this point, it is not clear to this reader if the determi
istic HV model assumptions we have used are in fact th
being tested by the experiment suggested by Peres@4#. If we
assume that these assumptions are exactly those for a d
ministic HV model, then under the sum rule@condition HV
~b!#, a valuation function would assign the same number
these operator sums, so that expectations takenover the
phase spaceshould return the same values for the left a
right sides of this projector equation.

In turn, these should match the probabilities for both sid
predicted by quantum theory, that is, expectations taken w
respect to the system density operator. It seems, though,
the quantum theory prediction is being tested by the Pe
experiment, and not any consequence of the determin
HV rules. We are also not aware if such an experiment
been performed.

More generally, one could imagine experimentally ch
lenging the sum rule, at the level of the valuation assignm
itself, rather than at an expectation level as suggested
Peres. This was considered earlier by Glymour@32#, in an
extensive discussion of the sum rule in the context of gen
HV models. Glymour also proposed testing the assump
by reevaluating certain Compton scattering experimen
outcomes, to test the rule, but we do not repeat his argum
here. We are not aware if the suggested experiment has
done.

In any event, the Young double-slit scheme is a clas
experiment. The reevaluation we described in Sec. V offe
clear, empirical no-go demonstration for the determinis
HV models. The simple spin-1 experiments described ab
have also been repeatedly performed: those outcomes
need to be reinterpreted in terms of quantum conditio
probabilities to derive empirical no-go tests.



.

tu

-

-

,

s

e

820 PRA 58JAMES D. MALLEY
@1# S. Kochen and E. Specker, J. Math. Mech.17, 59 ~1967!.
@2# J. Bell, Rev. Mod. Phys.38, 447 ~1966!.
@3# A. Peres, J. Phys. A24, L175 ~1991!.
@4# A. Peres, Phys. Lett. A163, 243 ~1992!.
@5# N. D. Mermin, Phys. Rev. Lett.65, 3373~1990!.
@6# N. D. Mermin, Rev. Mod. Phys.65, 803 ~1993!.
@7# D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Am

J. Phys.58, 1131~1989!.
@8# A. Fine and P. Teller, Found. Phys.8, 629 ~1978!.
@9# A. Fine, Phys. Rev. Lett.48, 291 ~1982!.

@10# A. Fine, J. Math. Phys.23, 1306~1982!.
@11# A. Fine, The Shaky Game: Einstein Realism and the Quan

Theory, 2nd ed.~University of Chicago Press, Chicago, 1996!.
@12# E. Beltrametti and G. Cassinelli,The Logic of Quantum Me

chanics~Addison-Wesley, Reading, MA, 1981!.
@13# B. Arnold and S. Press, J. Am. Stat. Assoc.84, 152 ~1989!.
@14# B. van Fraassen,Quantum Mechanics: An Empiricist View

point ~Wiley, New York, 1991!.
@15# J. Bub, Interpreting the Quantum World~Cambridge Univer-

sity Press, Cambridge, UK, 1997!.
@16# S. Gudder, Quantum Probability ~Academic, San Diego

1988!.
@17# M. Scully, H. Walther, and W. Schleich, Phys. Rev. A49,

1562 ~1994!.
m

@18# A. Bohm,Quantum Mechanics. Foundations and Application,
3rd ed.~Springer-Verlag, New York, 1993!.

@19# C. Helstrom,Quantum Detection and Estimation Theory~Aca-
demic, New York, 1976!.

@20# J. Bub, Found. Phys.3, 29 ~1973!.
@21# J. Bub, Found. Phys.6, 511 ~1976!.
@22# S. Freedman and E. Wigner, Found. Phys.3, 457 ~1973!.
@23# J. Clauser, Am. J. Phys.39, 1095~1971!.
@24# J. Clauser, Am. J. Phys.39, 1098~1971!.
@25# E. Wigner, Am. J. Phys.39, 1097~1971!.
@26# S. Gudder,Stochastic Methods in Quantum Mechanics~North-

Holland, New York, 1979!.
@27# A. Agresti, Introduction to Categorical Data Analysis~Wiley,

New York, 1996!.
@28# Y. Bishop, S. Fienberg, and P. Holland,Discrete Multivariate

Analysis: Theory and Practice~MIT Press, Cambridge, MA,
1975!.

@29# A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett.49,
1804 ~1982!.

@30# J. Devore,Probability and Statistics for Engineering and th
Sciences~Brooks/Cole, Monterey, CA, 1982!.

@31# L. Acardi, Phys. Rep.77, 169 ~1981!.
@32# C. Glymour, Philos. Sci.44, 86 ~1977!.


