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Theory of quantum resonance: A renormalization-group approach
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The standard perturbation theory for time-dependent problems in quantum mechanics is reconsidered
through renormalization-group methods. This approach justfipesteriorithe theory of quantum resonance
given by the multiple-scale analysis of the perturbation series applied to the coupled equations of wave-
function amplitudes. The resonance equations for the leading-order amplitude probabilties are then obtained up
to second order and a general method for the algorithmic computation of higher-order terms of the perturbation
series is given. The three-level model in a monochromatic wave with two resonant states is discussed in the
light of the present result§S1050-2947®8)04607-1

PACS numbgs): 42.50.Ct, 31.15.Md, 64.60.Ak, 32.86t

Perturbation theory is a widely used tool in physics. How-of our intents is to understand the role of the RWA in the
ever, it is a well-known matter that the solution series someframework of the standard perturbation theory. That question
times cannot exist or the terms of the series can have sonfes never been discussed before apart from our early at-
troubles. A typical problem is given by the so-called seculatempts in Ref[5].
terms or secularities. Such terms restrict or even prevent the We consider the problem of a quantum system, with a
applicability of the perturbative solution to a large number ofdiscrete spectrum for the sake of simplicity, under the effect
interesting problems. Recently, a general approach has beef a time-dependent perturbation(t). The coupled equa-
devised by Chen, Oono, and Goldenf¢ld to dispose of tions for the probability amplitudes are given Bgj
secularities in a perturbation series through a
renormalization-groudRG) method. Based on that work,

Kunihiro was able to reformulate the RG method by the

mathematical theory of the enveloped. Due to their gen- d L B

erality, such methods also proved to be successfully appli- 'ﬁdiltmzfg e” (ME=Entm|V(t)|n)ay, 1)
cable to the problem of the resummation of divergent series

obtained through the Rayleigh-ScHimger perturbation

theory[3]. with E, the energy eigenvalue corresponding to the eigen-

In Ref.[4] we gave an applications of the RG methods in S .
: ! : : : tate|n) of the unpertubed Hamiltonian arg the probabil-
guantum mechanics discussing two interesting problems osfy amplitude to find the perturbed system in théh eigen-

guantum optics. In that paper we derived a general rule fol . o . !
the application of RG methods to the operator formulation ofState of it, whilee is just an ordering parameter introduced

problems in quantum mechanics. However, as we are goingr convenien_ce. The ki_nd of perturbations that interest us
to show, general results can be obtained by applying th re those having a Fourier series as
above rule to the coupled equations for the probability am-
plitudes of the wave function.

In Ref.[5] we proposed a theory of quantum resonance by
perturbatively solving the equations for the probability am- _ _ P ipot
plitudes. In order to get rid of the secular terms we used a Vine(H)=(M[V(O]m) zp: Umn® @
method of the multiple scald$§] that, to our knowledge, has
never been applied before to the Saimnger equation. So,
although we were able to show, also numerically, the sucso that Eq(1) can be rewritten as
cessful application of the above method, it was not at all
clear why it should work in the way we applied it. In any
case, it was possible to prove that the widely used rotating-
wave approximatiofRWA), as generally applied in quan- da, o
tum mechanic$§7], is the leading-order approximation of the ih——=e2 e '“n'yP a,, (©)
perturbation series for probability amplitudes. Using the RG :
methods, we are now able to justify the results of RB.
and improve them by obtaining higher-order corrections to . _
the RWA. In addition, we get in this way a clear understand-With Q5= (1) (E,— Ep) — pw. We now consider the am-
ing of the very good working of the RWA in quantum optics. plitude a,, as a function of both andt,, the latter being

It should be said that, in the literature, other attempts tcn arbitrary initial time. Taking am(t,to)=a%(t,to)
improve the RWA have been made. The widely used ap< eafﬁ)(t,to)Jrezafnz)(t,to)+0(63), the application of the
proach for that aim is the Floquet meth@]. However, one perturbation theory gives
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By 7 we mean “irrelevant terms,” that is, terms that have no effect on the arguments that follow.
Now we proceed using the rule introduced in Rgf] and dress all the phases in the exponentials by settihg
=¢(tg), #(ty) being a renormalizable parameter to be determined by our method. We have
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Then we impose the renormalization-group condition

dam(t,to) _

dto to=t '

using the above equations for computiag, and the following set of equations is obtained:
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(11)

having put the bar over the amplitudes to remember thaﬁ
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From Eq.(13) it easily realized that second order corrections

to the probability amplitudes at the leading order give rise to

detunings.
In order to see how the above results are applied in prac-
ice, let us consider the following three-level model in a

these are the leading-order approximants to the true SOIUtioqﬁonochromatic wave of frequenay, so that we have two

and use has been made of the first-order equations

da, _
in——=e > vl ant)+0(e).
n,p

at (12

P _
Qpn=0

So we conclude that, at arbitraty, we get a dependence

from the initial time also into the resonance equat{@f).
Then the determination of the theorytg&=0 can be simply
realized, withg(t) = ¢(tg) = —tg, by taking ¢(t)=0 at the

resonant levelsvs;= w3— w1=w, with w,=E,/f# and E,
the energy of theath unperturbed level. The exact equations
of the model are

da

end of the computation. From the above equations, at a gen-

eral initial time we can realize that when the perturbation is

turned on adiabatically by a small exponentéfo, with
6— 07, multiplying the terms dependent @hin Eq. (10), in
the limit ty— —oo, the resonance equations of RE3] are
obtained.

So, finally, the resonance equationtgt0 up to second
order is
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A RWA solution of the above equations was given in Ref.
[9]. Instead, the corrected resonance equations up to second
order, using Eq(13), are

_day — —
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dt
. day —
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the detunings originating from the perturbation. It should be
said that, with respect to the solution of RE#)], we have
here the right improvement of the RWA solution of R].

In addition, the above resonance equations should be supple-
H%ented with the perturbation series that here we give up to
itst order,

Equations(10), (11), and (13) are the main result of the

paper as, the most general form of the resonance equatio
up to second order is obtained. These equations should 5
supplemented with the perturbation series, obtained through

X , g (@2 @lt_q
the computation oam(t,t0)|t0:t, that, for the sake of sim-

— 1
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plicity, we write up to first order @21~ @
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g i(wp-o)t_q equations for the two-level model for the leading-order am-

— 1
ay(t) =ap(t) + -V plitudes are structurally exact as odd higher-order corrections

@127 @ add terms to the Rabi frequency and even higher-order cor-
g Hopte)t_q]__ 1 g (wzgmo)t_q rections add terms to the Bloch-Siegert shift. So we have the
Wit © ay(t)+ gvza[wsz—_w general form valid at any order for the leading-order ampli-
tudes
e—i(w32+w)t_ 11—
ag(t)+ 2 2
w3zt @ i%=na3+Aa1, i%=R*al—Aa3, (22)
- 1 e*i(w23f w)t _ 1
As(t)=ag(t)+ h Vaz W33~ W with R the complex Rabi frequency aridthe Bloch-Siegert
o i(wastot_q Ziot_ q _shift to the resonance frequency. We cpnjecture that the same
(1) —Va———— ay () +--- . is true also for the three-level model discussed above, that is,
w3t w 2 2hw Egs.(18) should retain the same form at any order.
(21) From the above discussion the ease of determining the

physical meaning of the resonance equations appears to be
We see that couplings between leading-order amplitudes carlearly due to the choice to use the standard perturbation
happen only by corrections to higher orders in the computatheory. The renormalization-group methods prove again to
tion of the approximate solutions of the probability ampli- be a powerful method to improve a perturbation series. Due
tudes. Again, this gives an insight of the fine working of theto the simplicity of the method it has been possible to build
RWA. a general theory of the standard perturbation series in quan-
It is realized without difficulty that Eqs(18) and (21)  tum mechanics, in which all the known phenomena of quan-
give the resonance equations for the two-level model, byum resonance together give a very simple and unified pic-
settingV,,=V,3=0, as computed in Ref5]. However, the ture.
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