
PHYSICAL REVIEW A JULY 1998VOLUME 58, NUMBER 1
Theory of quantum resonance: A renormalization-group approach

Marco Frasca
Via Erasmo Gattamelata 3, 00176 Roma, Italy

~Received 8 December 1997; revised manuscript received 16 March 1998!

The standard perturbation theory for time-dependent problems in quantum mechanics is reconsidered
through renormalization-group methods. This approach justifiesa posteriori the theory of quantum resonance
given by the multiple-scale analysis of the perturbation series applied to the coupled equations of wave-
function amplitudes. The resonance equations for the leading-order amplitude probabilties are then obtained up
to second order and a general method for the algorithmic computation of higher-order terms of the perturbation
series is given. The three-level model in a monochromatic wave with two resonant states is discussed in the
light of the present results.@S1050-2947~98!04607-1#

PACS number~s!: 42.50.Ct, 31.15.Md, 64.60.Ak, 32.80.2t
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Perturbation theory is a widely used tool in physics. Ho
ever, it is a well-known matter that the solution series som
times cannot exist or the terms of the series can have s
troubles. A typical problem is given by the so-called secu
terms or secularities. Such terms restrict or even preven
applicability of the perturbative solution to a large number
interesting problems. Recently, a general approach has
devised by Chen, Oono, and Goldenfeld@1# to dispose of
secularities in a perturbation series through
renormalization-group~RG! method. Based on that work
Kunihiro was able to reformulate the RG method by t
mathematical theory of the envelopes@2#. Due to their gen-
erality, such methods also proved to be successfully ap
cable to the problem of the resummation of divergent se
obtained through the Rayleigh-Schro¨dinger perturbation
theory @3#.

In Ref. @4# we gave an applications of the RG methods
quantum mechanics discussing two interesting problem
quantum optics. In that paper we derived a general rule
the application of RG methods to the operator formulation
problems in quantum mechanics. However, as we are g
to show, general results can be obtained by applying
above rule to the coupled equations for the probability a
plitudes of the wave function.

In Ref. @5# we proposed a theory of quantum resonance
perturbatively solving the equations for the probability a
plitudes. In order to get rid of the secular terms we use
method of the multiple scales@6# that, to our knowledge, ha
never been applied before to the Schro¨dinger equation. So
although we were able to show, also numerically, the s
cessful application of the above method, it was not at
clear why it should work in the way we applied it. In an
case, it was possible to prove that the widely used rotat
wave approximation~RWA!, as generally applied in quan
tum mechanics@7#, is the leading-order approximation of th
perturbation series for probability amplitudes. Using the R
methods, we are now able to justify the results of Ref.@5#
and improve them by obtaining higher-order corrections
the RWA. In addition, we get in this way a clear understan
ing of the very good working of the RWA in quantum optic

It should be said that, in the literature, other attempts
improve the RWA have been made. The widely used
proach for that aim is the Floquet method@8#. However, one
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of our intents is to understand the role of the RWA in t
framework of the standard perturbation theory. That ques
has never been discussed before apart from our early
tempts in Ref.@5#.

We consider the problem of a quantum system, with
discrete spectrum for the sake of simplicity, under the eff
of a time-dependent perturbationV(t). The coupled equa-
tions for the probability amplitudes are given by@7#

i\
dam

dt
5e(

n
e2~ i /\!~En2Em!t^muV~ t !un&an , ~1!

with En the energy eigenvalue corresponding to the eig
stateun& of the unpertubed Hamiltonian andan the probabil-
ity amplitude to find the perturbed system in thenth eigen-
state of it, whilee is just an ordering parameter introduce
for convenience. The kind of perturbations that interest
are those having a Fourier series as

Vmn~ t !5^muV~ t !un&5(
p

vmn
p eipvt, ~2!

so that Eq.~1! can be rewritten as

i\
dam

dt
5e(

n,p
e2 iVnm

p tvmn
p an , ~3!

with Vnm
p 5(1/\)(En2Em)2pv. We now consider the am

plitude am as a function of botht and t0 , the latter being
an arbitrary initial time. Taking am(t,t0)5am

(0)(t,t0)
1eam

(1)(t,t0)1e2am
(2)(t,t0)1O(e3), the application of the

perturbation theory gives
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am
~0!~ t,t0!5am~ t0!, ~4!

am
~1!~ t,t0!52

i

\ (
n,p

Vnm
p

50

vmn
p an~ t0!~ t2t0!1

1

\ (
n,p

Vnm
p Þ0

e2 iVnm
p t2e2 iVnm

p t0

Vnm
p vmn

p an~ t0!, ~5!

am
~2!~ t,t0!52

1

2\2 ~ t2t0!2 (
n,p

Vnm
p

50

(
n1 ,p1

V
n1n

p1 50

vmn
p vnn1

p1 an1
~ t0!2

i

\2 ~ t2t0! (
n,p,n1 ,p1

Vnm
p

1V
n1n

p1 50,

Vnm
p Þ0,V

n1n

p1 Þ0

vmn
p vnn1

p1

Vn1m
p1

an1
~ t0!2

i

\2 ~ t2t0!

3 (
n,p

Vnm
p Þ0

(
n1 ,p1

V
n1n

p1 50

vmn
p vnn1

p1

Vnm
p an1

~ t0!e2 iVnm
p t1

i

\2 ~ t2t0! (
n,p

Vnm
p

50

(
n1 ,p1

V
n1n

p1 Þ0

vmn
p vnn1

p1

Vn1m
p1

an1
~ t0!e2 iVnm

p t01I. ~6!

By I we mean ‘‘irrelevant terms,’’ that is, terms that have no effect on the arguments that follow.
Now we proceed using the rule introduced in Ref.@4# and dress all the phases in the exponentials by setting2t0

5f(t0), f(t0) being a renormalizable parameter to be determined by our method. We have

am
~0!~ t,t0!5am~ t0!, ~7!

am
~1!~ t,t0!52

i

\ (
n,p

Vnm
p

50

vmn
p an~ t0!~ t2t0!1

1

\ (
n,p

Vnm
p Þ0

e2 iVnm
p t2eiVnm

p f~ t0!

Vnm
p vmn

p an~ t0!, ~8!

am
~2!~ t,t0!52

1

2\2 ~ t2t0!2 (
n,p

Vnm
p

50

(
n1 ,p1

V
n1n

p1 50

vmn
p vnn1

p1 an1
~ t0!2

i

\2 ~ t2t0! (
n,p,n1 ,p1

Vnm
p

1V
n1n

p1 50,

Vnm
p Þ0, V

n1n

p1 Þ0

vmn
p vnn1

p1

Vn1m
p1

an1
~ t0!2

i

\2 ~ t2t0!

3 (
n,p

Vnm
p Þ0

(
n1 ,p1

V
n1n

p1 50

vmn
p vnn1

p1

Vnm
p an1

~ t0!e2 iVnm
p t1

i

\2 ~ t2t0! (
n,p

Vnm
p

50

(
n1 ,p1

V
n1n

p1 Þ0

vmn
p vnn1

p1

Vn1m
p1

an1
~ t0!eiVnm

p f~ t0!1I. ~9!

Then we impose the renormalization-group condition

dam~ t,t0!

dt0
U

t05t

50,

using the above equations for computingam , and the following set of equations is obtained:

i\
dām

dt
5e (

n,p

Vnm
p

50

vmn
p ān~ t !1e2F (

n,p,n1 ,p1

Vnm
p

1V
n1n

p1 50,

Vnm
p Þ0, V

n1n

p1 Þ0

vmn
p vnn1

p1

\Vn1m
p1

ān1
~ t !1 (

n,p

Vnm
p Þ0

(
n1 ,p1

V
n1n

p1 50

vmn
p vnn1

p1

\Vnm
p ān1

~ t !eiVnm
p f~ t !

2 (
n,p

Vnm
p

50

(
n1 ,p1

V
n1n

p1 Þ0

vmn
p vnn1

p1

\Vn1m
p1

ān1
~ t !eiV

n1n

p1 f~ t !G1O~e3!, ~10!
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df~ t !

dt
5O~e2!, ~11!

having put the bar over the amplitudes to remember
these are the leading-order approximants to the true solut
and use has been made of the first-order equations

i\
dām

dt
5e (

n,p

Vnm
p

50

vmn
p ān~ t !1O~e2!. ~12!

So we conclude that, at arbitraryt0 , we get a dependenc
from the initial time also into the resonance equation~10!.
Then the determination of the theory att050 can be simply
realized, withf(t)5f(t0)52t0 , by takingf(t)50 at the
end of the computation. From the above equations, at a
eral initial time we can realize that when the perturbation
turned on adiabatically by a small exponentialedt0, with
d→01, multiplying the terms dependent onf in Eq. ~10!, in
the limit t0→2`, the resonance equations of Ref.@5# are
obtained.

So, finally, the resonance equation att050 up to second
order is

i\
dām

dt
5e (

n,p

Vnm
p

50

vmn
p ān~ t !

1e2F (
n,p,n1 ,p1

Vnm
p

1V
n1n

p1 50,

Vnm
p Þ0, V

n1n

p1 Þ0

vmn
p vnn1

p1

\Vn1m
p1 ān1~ t !

1 (
n,p

Vnm
p Þ0

(
n1 ,p1

V
n1n

p1 50

vmn
p vnn1

p1

\Vnm
p ān1~ t !

2 (
n,p

Vnm
p

50

(
n1 ,p1

V
n1n

p1 Þ0

vmn
p vnn1

p1

\Vn1m
p1

ān1
~ t !G1O~e3!.

~13!

Equations~10!, ~11!, and ~13! are the main result of the
paper as, the most general form of the resonance equa
up to second order is obtained. These equations shoul
supplemented with the perturbation series, obtained thro
the computation ofam(t,t0)u t05t , that, for the sake of sim
plicity, we write up to first order

am~ t !5ām~ t !1e (
n,p

Vnm
p Þ0

e2 iVnm
p t21

\Vnm
p vmn

p ān~ t !1O~e2!.

~14!
at
ns

n-
s

ns
be
gh

From Eq.~13! it easily realized that second order correctio
to the probability amplitudes at the leading order give rise
detunings.

In order to see how the above results are applied in p
tice, let us consider the following three-level model in
monochromatic wave of frequencyv, so that we have two
resonant levelsv315v32v15v, with vn5En /\ and En
the energy of thenth unperturbed level. The exact equatio
of the model are

i\
da1

dt
5a2V12~e2 i ~v212v!t1e2 i ~v211v!t!

1a3V13~11e22ivt!, ~15!

i\
da2

dt
5a1V21~e2 i ~v122v!t1e2 i ~v121v!t!

1a3V23~e2 i ~v322v!t1e2 i ~v321v!t!, ~16!

i\
da3

dt
5a2V32~e2 i ~v232v!t1e2 i ~v231v!t!

1a1V31~11e2ivt!. ~17!

A RWA solution of the above equations was given in R
@9#. Instead, the corrected resonance equations up to se
order, using Eq.~13!, are

i\
dā1

dt
5V13ā31D1ā1 ,

i\
dā2

dt
52~D11D2!ā2 , ~18!

i\
dā3

dt
5V31ā11D2ā3 ,

with

D15
uV13u2

2\v
2

uV12u2

\

2v21

v21
2 2v2 , ~19!

D252
uV13u2

2\v
1

uV32u2

\

2v32

v32
2 2v2 , ~20!

the detunings originating from the perturbation. It should
said that, with respect to the solution of Ref.@5#, we have
here the right improvement of the RWA solution of Ref.@9#.
In addition, the above resonance equations should be sup
mented with the perturbation series that here we give up
first order,

a1~ t !5ā1~ t !1
1

\
V12Fe2 i ~v212v!t21

v212v

1
e2 i ~v211v!t21

v211v G ā2~ t !

1V13

e22ivt21

2\v
ā3~ t !1¯ ,
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a2~ t !5ā2~ t !1
1

\
V21Fe2 i ~v122v!t21

v122v

1
e2 i ~v121v!t21

v121v G ā1~ t !1
1

\
V23Fe2 i ~v322v!t21

v322v

1
e2 i ~v321v!t21

v321v G ā3~ t !1¯ ,

a3~ t !5ā3~ t !1
1

\
V32Fe2 i ~v232v!t21

v232v

1
e2 i ~v231v!t21

v231v G ā2~ t !2V31

e2ivt21

2\v
ā1~ t !1¯ .

~21!

We see that couplings between leading-order amplitudes
happen only by corrections to higher orders in the compu
tion of the approximate solutions of the probability amp
tudes. Again, this gives an insight of the fine working of t
RWA.

It is realized without difficulty that Eqs.~18! and ~21!
give the resonance equations for the two-level model,
settingV125V2350, as computed in Ref.@5#. However, the
-

an
-

y

equations for the two-level model for the leading-order a
plitudes are structurally exact as odd higher-order correcti
add terms to the Rabi frequency and even higher-order
rections add terms to the Bloch-Siegert shift. So we have
general form valid at any order for the leading-order amp
tudes

i
dā1

dt
5Rā31Dā1 , i

dā3

dt
5R* ā12Dā3 , ~22!

with R the complex Rabi frequency andD the Bloch-Siegert
shift to the resonance frequency. We conjecture that the s
is true also for the three-level model discussed above, tha
Eqs.~18! should retain the same form at any order.

From the above discussion the ease of determining
physical meaning of the resonance equations appears t
clearly due to the choice to use the standard perturba
theory. The renormalization-group methods prove again
be a powerful method to improve a perturbation series. D
to the simplicity of the method it has been possible to bu
a general theory of the standard perturbation series in qu
tum mechanics, in which all the known phenomena of qu
tum resonance together give a very simple and unified
ture.
s
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