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Boundary-condition-determined wave function for the ground state of positronium ioneee
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Department of Physics, Indian Institute of Technology, Bombay 400 076, India
(Received 9 December 1997

We have developed a one-parameter, model wave function for the positroniuzeépwhich incorporates
the correct cusp and coalescence properties when two particles are close to each other, and the asymptotic
property when one of the electrons is far away. The predicted values for the energy and other properties are
close to the exact values and generally superior to the values from a 13-parameter wave function.
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PACS numbd(s): 31.10+z

I. INTRODUCTION properties of the positronium ion in different regions. It gives
a value of—0.261 03 a.u. for the total energy and also reli-
Ever since the discovery of positronium, the negative posable values for other properties such(ag).
itronium ion eee has attracted a great deal of attention. It
was originally shown by Wheeldd], and by Hylleraa$2], Il. SOME LOCAL PROPERTIES
that the electron is bound to the positronium with a binding OF THE WAVE FUNCTIONS
energy of at least 0.19 eV. Since then many elaborate calcu-
lations have been carried out to obtain accurate values for th
binding energy and for other properties of the system such a@
the average value of the distance between the two electrons.
These calculations are generally based on the variational ap- A. The Hamiltonian
proach with a large number of variational parameters. Some The Hamiltonian for a three-particle system is given by
of these follow: by Koloset al. [3] with 50 terms, by
Schroedef4] with six parameters, by Frost al.[5] with 50 S| 0;q;
terms, by Cavalieret al.[6] with six and ten parameters, by H=2, mpiz"' > T 1)
Bhatia and DrachmalY] with 203 terms, by H$8] with 125 1=t e =l
terms, and Frolov and Yerem{®] with 700 terms. These .
calculations yield for the binding energy of the last electronwherer;;=r;—r;. After separating out the center of mass
a value of 0.012 005 a.u. It may be mentioned that Froloverm, the kinetic energy can be written as
and Yeremin 9] have obtained the energy to an accuracy of
13 significant digits. However, the variational wave func- 1, 1,
tions do not emphasize the structural properties of the sys- T=5—pijt 5—Pjj« 2
tem. It is of considerable interest to develop wave functions ‘
which illustrate some of the important properties such as the
behavior of the wave function when two particles are close td"
each other or when they are far away from each other. Wave

Here we briefly discuss some general, local properties of
e wave functions. We use atomic units.

3

here

functions which provide a clear illustration of these proper- m— i 3
ties provide a deeper understanding of the structure of the . m+m;’
system.
Recently[10], we have developed parameter-free wave (m;+m;)my
functions for the ground state of two-electron atoms and UL TR S r———— (4)
] k

ions, based on some general local properties of the exact

wave functions. These wave functions, in addition to being5|ere s the relative momentum of the particlesnd i
very simple, provide accurate values for the binding energie Pij ! ; pa )
and p;; « is the relative momentum of particle and the

and expectation values of". The predictions are particu- center of mass of particlésand i The kinetic enerav can
larly striking for H™ where they are far better than the pre- . P J- 9y
0also be written as

dictions of two-parameter wave functions, and quite close t
the essentially exact, variational values of the energy. Here

we extend the analysis to the case of the positronium ion, _ i 2 L 2 i* z

by . —. T . p|]+ ,ka+ 'pI] ka- (5)
eee. Since the mass @ is equal to the mass of the electron, 2m; 2my; m;

unlike the situation in H, the details are modified in a sig-

nificant way. In particular, the center of mass not being at th'he form in Eg. (2) is convenient for analyzing the
positive charge brings in essential changes in the asymptotigsymptotic behavior of the wave function, and the form in
behavior. Based on the local properties, we develop a onézq. (5) is convenient for the calculation of the expectation
parameter wave function which clearly exhibits the structuravalues of the energy.
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B. Asymptotic behavior > 2
1 —aryg— (U2 q 1 TigTas f
The ground-state eigenfunction of the Hamiltonidnin p— r_13e t5a M1a or ryjz—*.

Eg. (1) can be expanded in terms of the one-particle energy (19
eigenfunctions:

The presence of the second term in the large parentheses is

Hy=E4, ©) just a consequence of the fact that whf@glis parallel toF23,
. R electron 2 is closer to the center of mass of particles 1 and 3
lﬂ:; Un(Tij k) @n(rij), (7)  than whenr 13 is antiparallel tor ;.
( B o qlqj> o—EW g, ® C. Cus'p aer.coaTIescence conditions
2m;; Y When two particled,j with massesn;,m; and charges

o . . o g; ,q; approach each other,;—0, two terms in the Hamil-
Substituting the expression fgrinto Eq.(6), and projecting  onjan dominate. These are the Coulomb interaction between
out the statap,, we get forr; — these particles, and the kinetic energy of the two particles. In

the center of mass frame of these two particles, one has

1 1
(Zm-- kpizj,k+qk(qi+qj)rk)un:—EnUn for rijx—c, qqu
" i
9 (__Zmijv'l $=0(1) for r;—0, (20
en=E, —E. (10 wherem;; is the reduced mass of the particieandj. Ex-

_ o panding the wave function in terms of spherical harmonics,
The asymptotic form ofi, is given by
Up,—

r[ qk(q.+q,)(m” W2en) V2= 11 o= (2myj e Vo i (11) lﬂ:% g, (rp Y6, i), (21)

Clearly, the leading behavior is from the smallest value ofand projecting out ahm state, we get
€,, i.e., corresponding ta=0. Therefore we have

d? +1)
Qbﬂrit}’keiarij'k(ﬁo(rij), Mij k—® (12 F[rijg (Ij)] g (rlj) 2mqu qjg (ri )
ij
a=(2m; xe0) ™2, (13 =0(r;;™") for r;;—0. (22)
i) m;; Substituti
b:_qk(ql aqj) |],k_1' (14) upstituting |
9, (ri))=rij(@atarj+---) (23
R N m, . . .
= — into Eqg. (22), one obtains
rjk="rk mierjr,J, (15) q.(22
. . L . . _ m;;giq;
with €, being the binding energy of particke Expanding a = 0+1) ay (29

rij x in inverse powers of,;, we get
This is essentially a realization of the Kato conditidri].

Y—rpe angtalm it m, MG TN o)), 1 yj—oe. For the case of two electrons in the singlet state, the lead-
(16)  ing term is thel=0 term so that

For the case of the positronium i@ee, we use the indi- 1 o
ces 1,2 to characterize the two electrons and 3 to characterize a;=5a, eeinsinglet state, (25)
the positron. Then when electron 1 is far away, we get
and the corresponding;00 has the behavior

1
— a—argH(l2a(rz i (1/2)r23 -
" r13e ° fe (47 9, ~a0(1+3ry) for ry—0,singlet state. (26)

a=(4¢,/3)*?, (18)  For e getting close to an electron, one has

wheree, is the binding energy of the last electron. The sec-

ond term in the exponent would be negligibly small if the
is replaced by a proton. This is the major modification intro-
duced by the positron mass being comparable to the mass of We now consider a model wave function for the ground
the electron. To understand clearly the implications of thisstate of theeee system incorporating the asymptotic condi-
term, we note thaté,~0.012, and;a~0.06, so that expand- tion in Eq.(19) and the cusp and coalescence conditions in
ing the second exponential, one obtains Eqgs.(26) and (27).

a;=—5a, g, ,—~al(l-zr;) for r;—0. (27)
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IIl. MODEL WAVE FUNCTION AND ITS IMPLICATIONS

For the description of the wave function of the negative

positronium ioneee, we treate as the point of reference and
use the notatiom, andr, to describe the positions,; and

r. »3 Of the two electrons with respect to the positron. Then the

Hamiltonian corresponding to E¢B) is given by

1 1
_+__
rh rp

H=

~Vi-Vy— V-V,

) . (28

A. Model wave function

Based on the asymptotic condition in EQ.9) and the
cusp and coalescence conditions in E@6) and (27), we
propose for the ground-state wave function,

Hy=Ey, (29

= —(Uryp—arp = —(UDrpm—ary _ —

y=Cle e 21 brzjLe e 11+br1
|1+t _fae f 30
Ea(ri+rg)l/2 (r12)1 ( )

where
4 1 1/2
a= 5(_Z_E” s (31)
1

bzz—a, (32)

and f(rq,) is a correlation function. The choice afin Eq.
(31), with positronium ground-state energy ofl/4, ensures
that the correct asymptotic behavior given in EtP) is in-
corporated. The choice db in Eq. (32) ensures that the
coalescence condition in Eq27) is satisfied forr, orr,
—0. The functionf(r 1) is the correlation function which is
introduced to incorporate the cusp condition in E2f).

B. Correlation function f(rq,)

The correlation functiorfi(r;,) has been analyzddO0] for

BRIEF REPORTS

PRA 58
Ll FZ) Vo 35
+5¢%0 N 12+r—1zl//- (35
Forr,,—0, this leads to
) 1 3
Vif——f+|=-+E|f=0(ry). (36)
rio 4
Expandingf in powers oft 45,
f:ao+ alr12+ azriz‘l‘ s (37)
and substituting in Eq36), we get
2a1_a0:0, (38)
3
6a,—a;+ Z+E ay=0, (39
which lead to
1
al an, (40)
113 E 41
a;=g|l5 7 E|a- (41)

Here, the first relation is the cusp condition in E26). Now
for the positronium ion, energig~—0.2610, so thah, is
indeed very small and we take it to be zero:

a2~0. (42)
Based on these conditions, we take for the correlation func-
tion f(rq),

fr)=1-| 173 43

2

A -\
1+ orpe Mg

which satisfies the conditions in Eq&40) and (42). The
parameten is treated as a variational parameter.

C. Calculation of the energy

The wave functiony in Eq. (30) is used to calculate the
energy ofeee as

the two-electron atoms and ions, in an essentially perturba-

tive approach. We extend this analysis to the case of the E= (#lH[¥)

positronium ion.
Consider a wave function of the form

= po(r1,r2)f(r), (33

Bolry.rp)=e V2142,

(34)

This has the correct behavior fog or r,—0. Substituting
the functiony in the Schrdinger equation in Eq(29), we

get

1 1fryr, )
Ey=—5¢- Z( )l/f— b0V 1of

rirs

=gy 49

with the correlation functionf(rq,) in Eq. (43), and the
Hamiltonian in Eq.(28). It should be noted that the param-
etera in Eq. (31) depends orE and is therefore determined
iteratively so as to yield a self-consistdait The parametex
is determined by minimizing the energy.

The calculation of the energlg in Eq. (44) is greatly
simplified by the use of the identity

| (@ Tpsnar [ 1177, %0

— pA(Vf)-(V;H)]d7, (45
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TABLE I. The values of the variational parameternormaliza-  asymptotic exponerda of the wave function in Eq(30) de-

tion constantC in Eq. (30), and the predicted values of the total pends onE and our binding energy is slightly smaller, the

energyE and average values of different functions of eeandee  exact results fo(r‘l‘p> and(r‘1‘2> are expected to be smaller

separations ,, andr,. than our predictions by about 5%. In a general way, the

asymptotic properties and cusp and coalescence properties

Ourresults  13-parameter results  Exact results are of great importance in developing simple model wave
(one parameter (Ref. [8]) (Refs.[7,8)) functions for the positronium ion, which not only provide
N 0.262 p_hysical insight into the physic_al structure in different_ re-
. gions, but also allow us to obtain accurate values for differ-
¢ 0.014 921 ent properties of the system.
E —0.261 03 —0.26101 —0.262 00
(rip) 5.452 5.114 5.489 APPENDIX
(rip 48.31 38.83 48.39
(rip 0.3369 0.3429 0.3398 Some of the terms required for the evaluation of the av-
(ri 8.513 7.842 8.548 erage energy are as follows:
(r2y 94.31 74.81 93.13 11
(re) 0.1591 0.1639 0.1556 Vze(“z“:(——— e (12r (A1)
(8(F 1p)) 0.019 39 0.019 43 0.020 73 4T
(r1.) 1.076x10*
(riy 2.326x 10* R :(az_ 2a, 20*  2b
1+br r (1+br)2 r(l+br)
which follows from integration by parts. This identity is a 2ab P
generalization of the identity for the special casei efj, T 1vor /€ (1+ brl’ (A2)
which was obtained by Siebble=t al. [12]. Some of the
details of the calculation are given in the Appendix.
(61' v’z)e—(ll2)rl—ar2
D. Results 1+bry
The results of the calculation are given in Table I, along _ 1( rl'fz)(a+ b o (U2ry-ar,

with the results from 13-parameter calculatigB$ and es- 2\ rqrs 1+br, 1+br,)’
sentially exact result§7,8] using 125 and 203 terms. Our (A3)

results with a one-parameter wave function incorporating
some local properties are close to the exact results and are
generally superior to the results using 13 parameters. This
emphasizes the importance of the local properties of the
wave function, when two particles are close to each other or
when they are far away from each other. In particular, we

note that if the term in Eq(30) proportional tor;-r, is not
included, the energy changes from the present value of

v, 141 SNE
_a—
! 2 (r24r3)12

)f(rlz)

)Vlf(rlz)

11,
“l1+za—" 2
( 2 (r24+r3)12

—0.2610 to about-0.2562 which is a poor resul. al T, (ri-Ta)r

We also note that since our wave function incorporates ts5 (2412 (121 2)% f(riz), (A4
the correct asymptotic behavior, its predictions for the aver- 1772 1772
age values of higher powers of separatigy between an -

electron and the positron amg, between the two electrons, (A5)

are expected to be quite reliable. However, since the

Vaf(r z)zL(lﬂL)\r z)r—lze*M12
P27 2(1+0) 2, '
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