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Boundary-condition-determined wave function for the ground state of positronium ionēee

S. H. Patil
Department of Physics, Indian Institute of Technology, Bombay 400 076, India

~Received 9 December 1997!

We have developed a one-parameter, model wave function for the positronium ionēee, which incorporates
the correct cusp and coalescence properties when two particles are close to each other, and the asymptotic
property when one of the electrons is far away. The predicted values for the energy and other properties are
close to the exact values and generally superior to the values from a 13-parameter wave function.
@S1050-2947~98!03307-1#
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I. INTRODUCTION

Ever since the discovery of positronium, the negative p

itronium ion ēee has attracted a great deal of attention.
was originally shown by Wheeler@1#, and by Hylleraas@2#,
that the electron is bound to the positronium with a bind
energy of at least 0.19 eV. Since then many elaborate ca
lations have been carried out to obtain accurate values fo
binding energy and for other properties of the system suc
the average value of the distance between the two electr
These calculations are generally based on the variationa
proach with a large number of variational parameters. So
of these follow: by Koloset al. @3# with 50 terms, by
Schroeder@4# with six parameters, by Frostet al. @5# with 50
terms, by Cavaliereet al. @6# with six and ten parameters, b
Bhatia and Drachman@7# with 203 terms, by Ho@8# with 125
terms, and Frolov and Yeremin@9# with 700 terms. These
calculations yield for the binding energy of the last electr
a value of 0.012 005 a.u. It may be mentioned that Fro
and Yeremin@9# have obtained the energy to an accuracy
13 significant digits. However, the variational wave fun
tions do not emphasize the structural properties of the
tem. It is of considerable interest to develop wave functio
which illustrate some of the important properties such as
behavior of the wave function when two particles are close
each other or when they are far away from each other. W
functions which provide a clear illustration of these prop
ties provide a deeper understanding of the structure of
system.

Recently @10#, we have developed parameter-free wa
functions for the ground state of two-electron atoms a
ions, based on some general local properties of the e
wave functions. These wave functions, in addition to be
very simple, provide accurate values for the binding energ
and expectation values ofr 2n. The predictions are particu
larly striking for H2 where they are far better than the pr
dictions of two-parameter wave functions, and quite close
the essentially exact, variational values of the energy. H
we extend the analysis to the case of the positronium
ēee. Since the mass ofē is equal to the mass of the electro
unlike the situation in H2, the details are modified in a sig
nificant way. In particular, the center of mass not being at
positive charge brings in essential changes in the asymp
behavior. Based on the local properties, we develop a o
parameter wave function which clearly exhibits the structu
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properties of the positronium ion in different regions. It giv
a value of20.261 03 a.u. for the total energy and also re
able values for other properties such as^r i j &.

II. SOME LOCAL PROPERTIES
OF THE WAVE FUNCTIONS

Here we briefly discuss some general, local properties
the wave functions. We use atomic units.

A. The Hamiltonian

The Hamiltonian for a three-particle system is given b

H5(
i 51

3
1

2mi
pi

21(
i , j

3
qiqj

r i j
, ~1!

where rW i j 5rW i2rW j . After separating out the center of ma
term, the kinetic energy can be written as

T5
1

2mi j
pi j

2 1
1

2mi j ,k
pi j ,k

2 , ~2!

where

mi j 5
mimj

mi1mj
, ~3!

mi j ,k5
~mi1mj !mk

mi1mj1mk
. ~4!

Here,pi j is the relative momentum of the particlesi and j ,
and pi j ,k is the relative momentum of particlek and the
center of mass of particlesi and j . The kinetic energy can
also be written as

T5
1

2mi j
pi j

2 1
1

2mk j
pk j

2 1
1

mj
pW i j •pW k j . ~5!

The form in Eq. ~2! is convenient for analyzing the
asymptotic behavior of the wave function, and the form
Eq. ~5! is convenient for the calculation of the expectati
values of the energy.
728 © 1998 The American Physical Society
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B. Asymptotic behavior

The ground-state eigenfunction of the HamiltonianH in
Eq. ~1! can be expanded in terms of the one-particle ene
eigenfunctions:

Hc5Ec, ~6!

c5(
n

un~rW i j ,k!fn~rW i j !, ~7!

S 2
1

2mi j
¹ i j

2 1
qiqj

r i j
Dfn5En

~1!fn . ~8!

Substituting the expression forc into Eq.~6!, and projecting
out the statefn , we get forr i j ,k→`

S 1

2mi j ,k
pi j ,k

2 1qk~qi1qj !
1

r i j ,k
Dun52enun for r i j ,k→`,

~9!

en5En
~1!

2E. ~10!

The asymptotic form ofun is given by

un→r i j ,k
[ 2qk~qi1qj !~mi j ,k/2en!1/221]e2~2mi j ,ken!1/2r i j ,k. ~11!

Clearly, the leading behavior is from the smallest value
en , i.e., corresponding ton50. Therefore we have

c→r i j ,k
b e2ari j ,kf0~r i j !, r i j ,k→` ~12!

a5~2mi j ,ke0!1/2, ~13!

b52
qk~qi1qj !mi j ,k

a
21. ~14!

rW i j ,k5rWk j2
mi

mi1mj
rW i j , ~15!

with e0 being the binding energy of particlek. Expanding
r i j ,k in inverse powers ofr k j , we get

c→r k j
b e2ark j1a[mi /~mi1mj !][ ~rWk j•rW i j !/r k j]f0~r i j !, r k j→`.

~16!

For the case of the positronium ionēee, we use the indi-
ces 1,2 to characterize the two electrons and 3 to charact
the positron. Then when electron 1 is far away, we get

c→
1

r 13
e2ar131~1/2!a~rW13•rW23!/r 13e2~1/2!r 23, r 13→` ~17!

a5~4e0/3!1/2, ~18!

wheree0 is the binding energy of the last electron. The se
ond term in the exponent would be negligibly small if theē
is replaced by a proton. This is the major modification int
duced by the positron mass being comparable to the mas
the electron. To understand clearly the implications of t
term, we note thate0'0.012, and1

2 a'0.06, so that expand
ing the second exponential, one obtains
y

f

ize

-

-
of

s

c→
1

r 13
e2ar132~1/2!r 23S 11

1

2
a

rW13•rW23

r 13
D for r 13→`.

~19!

The presence of the second term in the large parenthes
just a consequence of the fact that whenrW13 is parallel torW23,
electron 2 is closer to the center of mass of particles 1 an
than whenrW13 is antiparallel torW23.

C. Cusp and coalescence conditions

When two particlesi , j with massesmi ,mj and charges
qi ,qj approach each other,r i j→0, two terms in the Hamil-
tonian dominate. These are the Coulomb interaction betw
these particles, and the kinetic energy of the two particles
the center of mass frame of these two particles, one has

S 2
1

2mi j
¹ i j

2
1

qiqj

r i j
Dc5O~1! for r i j→0, ~20!

wheremi j is the reduced mass of the particlesi and j . Ex-
panding the wave function in terms of spherical harmoni

c5(
l ,m

g
lm

~r i j !Yl
m~u i j ,f i j !, ~21!

and projecting out anlm state, we get

d2

dri j
2 @r i j glm

~r i j !#2
l ~ l 11!

r i j
g

lm
~r i j !22mi j qiqjglm

~r i j !

5O~r i j
l 11! for r i j→0. ~22!

Substituting

g
lm

~r i j !5r i j
l ~a01a1r i j 1••• ! ~23!

into Eq. ~22!, one obtains

a15
mi j qiqj

~ l 11!
a0 . ~24!

This is essentially a realization of the Kato condition@11#.
For the case of two electrons in the singlet state, the le

ing term is thel 50 term so that

a15
1

2
a0 , ee in singlet state, ~25!

and the correspondingg
00

has the behavior

g
00
→a0~11 1

2 r i j ! for r i j→0, singlet state. ~26!

For ē getting close to an electron, one has

a152
1

2
a0 , g

00
→a0~12 1

2 r i j ! for r i j→0. ~27!

We now consider a model wave function for the grou
state of theēee system incorporating the asymptotic cond
tion in Eq. ~19! and the cusp and coalescence conditions
Eqs.~26! and ~27!.
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III. MODEL WAVE FUNCTION AND ITS IMPLICATIONS

For the description of the wave function of the negat
positronium ionēee, we treatē as the point of reference an
use the notationrW1 and rW2 to describe the positionsrW13 and
rW23 of the two electrons with respect to the positron. Then
Hamiltonian corresponding to Eq.~5! is given by

H52¹1
2
2¹2

2
2¹W 1•¹W 22S 1

r 1
1

1

r 2
2

1

urW12rW2u
D . ~28!

A. Model wave function

Based on the asymptotic condition in Eq.~19! and the
cusp and coalescence conditions in Eqs.~26! and ~27!, we
propose for the ground-state wave function,

Hc5Ec, ~29!

c5CS e2~1/2!r 1e2ar2
1

11br2
1e2~1/2!r 2e2ar1

1

11br1
D

3S 11
1

2
a

rW1•rW2

~r 1
21r 2

2!1/2D f ~r 12!, ~30!

where

a5F4

3S 2
1

4
2ED G1/2

, ~31!

b5
1

2
2a, ~32!

and f (r 12) is a correlation function. The choice ofa in Eq.
~31!, with positronium ground-state energy of21/4, ensures
that the correct asymptotic behavior given in Eq.~19! is in-
corporated. The choice ofb in Eq. ~32! ensures that the
coalescence condition in Eq.~27! is satisfied forr 1 or r 2
→0. The functionf (r 12) is the correlation function which is
introduced to incorporate the cusp condition in Eq.~26!.

B. Correlation function f „r 12…

The correlation functionf (r 12) has been analyzed@10# for
the two-electron atoms and ions, in an essentially pertu
tive approach. We extend this analysis to the case of
positronium ion.

Consider a wave function of the form

c5f0~r 1 ,r 2! f ~r 12!, ~33!

f0~r 1 ,r 2!5e2~1/2!~r 11r 2!. ~34!

This has the correct behavior forr 1 or r 2→0. Substituting
the functionc in the Schro¨dinger equation in Eq.~29!, we
get

Ec52
1

2
c2

1

4
S rW1•rW2

r 1r 2
Dc2f0¹12

2
f

e

a-
e

1
1

2
f0S rW1

r 1
2

rW2

r 2
D •¹W 12f 1

1

r 12
c. ~35!

For r 12→0, this leads to

¹12
2 f 2

1

r 12
f 1S 3

4
1ED f 5O~r 12!. ~36!

Expandingf in powers ofr 12,

f 5a01a1r 121a2r 12
2 1••• ~37!

and substituting in Eq.~36!, we get

2a12a050, ~38!

6a22a11S 3

4
1EDa050, ~39!

which lead to

a15
1

2
a0 , ~40!

a25
1

6S 1

2
2

3

4
2EDa0 . ~41!

Here, the first relation is the cusp condition in Eq.~26!. Now
for the positronium ion, energyE'20.2610, so thata2 is
indeed very small and we take it to be zero:

a2'0. ~42!

Based on these conditions, we take for the correlation fu
tion f (r 12),

f ~r 12!512S 1

11l D S 11
l

2
r 12De2lr 12, ~43!

which satisfies the conditions in Eqs.~40! and ~42!. The
parameterl is treated as a variational parameter.

C. Calculation of the energy

The wave functionc in Eq. ~30! is used to calculate the
energy ofēee as

E5
^cuHuc&

^cuc&
, ~44!

with the correlation functionf (r 12) in Eq. ~43!, and the
Hamiltonian in Eq.~28!. It should be noted that the param
etera in Eq. ~31! depends onE and is therefore determine
iteratively so as to yield a self-consistentE. The parameterl
is determined by minimizing the energy.

The calculation of the energyE in Eq. ~44! is greatly
simplified by the use of the identity

E ~f f !~¹W i•¹W j !~f f !dt5E @ f 2f¹W i•¹W jf

2f2~¹W i f !•~¹W j f !#dt, ~45!
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which follows from integration by parts. This identity is
generalization of the identity for the special case ofi 5 j ,
which was obtained by Siebbleset al. @12#. Some of the
details of the calculation are given in the Appendix.

D. Results

The results of the calculation are given in Table I, alo
with the results from 13-parameter calculations@8#, and es-
sentially exact results@7,8# using 125 and 203 terms. Ou
results with a one-parameter wave function incorporat
some local properties are close to the exact results and
generally superior to the results using 13 parameters. T
emphasizes the importance of the local properties of
wave function, when two particles are close to each othe
when they are far away from each other. In particular,
note that if the term in Eq.~30! proportional torW1•rW2 is not
included, the energy changes from the present value
20.2610 to about20.2562 which is a poor result.

We also note that since our wave function incorpora
the correct asymptotic behavior, its predictions for the av
age values of higher powers of separationr 1p between an
electron and the positron andr 12 between the two electrons
are expected to be quite reliable. However, since

TABLE I. The values of the variational parameterl, normaliza-
tion constantC in Eq. ~30!, and the predicted values of the tot

energyE and average values of different functions of theēe andee

separationsrW1p and rW12.

Our results 13-parameter results Exact resu
~one parameter! ~Ref. @8#! ~Refs.@7,8#!

l 0.262
C 0.014 921
E 20.261 03 20.261 01 20.262 00
^r 1p& 5.452 5.114 5.489

^r 1p
2 & 48.31 38.83 48.39

^r 1p
21& 0.3369 0.3429 0.3398

^r 12& 8.513 7.842 8.548

^r 12
2 & 94.31 74.81 93.13

^r 12
21& 0.1591 0.1639 0.1556

^d(rW1p)& 0.019 39 0.019 43 0.020 73

^r 1p
4 & 1.0763104

^r 12
4 & 2.3263104
ys

,
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asymptotic exponenta of the wave function in Eq.~30! de-
pends onE and our binding energy is slightly smaller, th
exact results for̂ r 1p

4 & and ^r 12
4 & are expected to be smalle

than our predictions by about 5%. In a general way,
asymptotic properties and cusp and coalescence prope
are of great importance in developing simple model wa
functions for the positronium ion, which not only provid
physical insight into the physical structure in different r
gions, but also allow us to obtain accurate values for diff
ent properties of the system.

APPENDIX

Some of the terms required for the evaluation of the
erage energy are as follows:

¹2e2~1/2! r5S 1

4
2

1

r De2~1/2!r , ~A1!

¹2e2arS 1

11br D5S a22
2a

r
1

2b2

~11br !2
2

2b

r ~11br !

1
2ab

11br D e2arS 1

11br D , ~A2!

~¹W 1•¹W 2!e2~1/2!r 12ar2S 1

11br2
D

5
1

2
S rW1•rW2

r 1r 2
D S a1

b

11br2
De2~1/2!r 12ar2S 1

11br2
D ,

~A3!

¹W 1S 11
1

2
a

rW1•rW2

~r 1
21r 2

2!1/2D f ~r 12!

5S 11
1

2
a

rW1•rW2

~r 1
21r 2

2!1/2D ¹W 1f ~r 12!

1
a

2S rW2

~r 1
21r 2

2!1/2
2

~rW1•rW2!rW1

~r 1
21r 2

2!3/2D f ~r 12!, ~A4!

¹W 1f ~r 12!5
l

2~11l!
~11lr 12!

rW12

r 12
e2lr 12. ~A5!
es,
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