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I. INTRODUCTION change the results only slightly. For definiteness, we con-

sider the first excited state, which can be expressed as
Aharonov and Au proposed an approach to the nonrela-

tivistic stationary-state perturbation thedry]. In the com- X)=(x— a)exd — G(x 1
monly known logarithmic perturbation meth@gdPM), they Y00 =(x—ajexd ()], @

show that in problems reducible to one dimension, the €O here a is the nodal position an@(x) is regular and ex-
rections of eigenenergies, wave functions, as well as the po- @S P ) 9 o
andable in powers of the coupling constanand so is its

sitions of the nodes, to any order, can be expressed Iea o : a )
quadrature in a hierarchy scheme. This method was latéterivativeg(x), i.e., g(x)=dG(x)/dx. Thus we write

extended to three-dimensional problef23 and applied to

different case$3,4]. All these studie$2—4] primarily con- a=apgtNagtNa+\agt-,

centrated on calculating the energy corrections of the ground

state in which the wave function is nodeless. In order to g=0o+Ng;+A%g,+N3gs+-- )
avoid cumbersome sums over intermediate states, alternative

approache§5,6] with a similar spirit were developed to treat E=Eg+AE;+N2E,+ N3Eg+---

the excited states.

In this work we would like to point out that the formulas _ . .
we derived are different from those in Rgf] regarding the After _SUbSt'tUtmg the wave functioil), the Schrdinger
energy corrections and nodal shifts of the higher exciteduation becomes
states. Thus our purposes of presenting this work are first to )
investigate the perturbative approach of nodal point shifts,  (9°—9')(X—a)—29=—(E—-Vo—=AV)(X—a), )
which is, after all, the LPM is designed to undertake, and
second for practical reasons, since this method is widely apyhereg’ =dg/dx. Gathering all the terms zeroth orderin
plied in atomic, molecular, and condensed-matter physicafter substituting Eq(2) into Eq.(3), we get the unperturbed
[2—4]. Recently, it has been extended further to calculate th&chralinger equation
quasinormal mode frequenci¢g] of black holes and the
Dirac equation in one dimensidi8]. Hence it is our belief 2 V(X — ) — D= — (o _
that the present results will be helpful to researchers in many (5~ 90) (X~ @0) ~ 200 (Bo~Vo)(x—ao), (4

areas. whereq, is the node of the unperturbed wave function. Then

Il. DERIVATIONS we collect terms first order iR,
We use the same notation as in Ref], but we set 22 (29,9, —g})(X— ag) —29;— a1(g3—g¢)
=1 andA=1. (In Ref. [1], wu=1.) Nevertheless, this will

=—(E1=V)(X=ap) + a1(Eg— Vo). 5
*Electronic address: physimei@cwis.unomaha.edu Multiplying both sides of Eq(5) by (X— ag)exp(~2G,) and
TElectronic address: dschuu@cc.nctu.edu.tw using Eq.(4), we have
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—[91(x— @) ’exp(— 2G) ]’
= —(E1— V1) (X~ ag)’exp( — 2Go) — aa[exp( —2Gg) ].
(6)

Notice that the negative sign in front of the last term on the

right-hand side is different from that in E¢B4) of Ref.[1].
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free, it is not difficult to show that, is a well-behaved
function. Using the same procedures, that is, integrating from
— o to oo, we have the second-order correction to the energy

E2: fjcoch(X)dX,. (13)

This will not change the first-order correction energy con-Integrating from—« to «,, we get the correction to the
nection but the sign of the first-order correction to the nodahodal point shift

position of the wave function. As we integrate froare to
o, we get the first-order energy correctias,

E,= J:vl(x— ap)?exp(—2Go)dx= J:Vl‘l’g(x)dx
(7

= exi12Go(ag)] | [F2(6)~ Eqpolx' 110X (14)

Thusg,(x) can be obtained by integrating frome« to x,

ap

1 X
and from — o to oy We get the first-order correction of the 92(X)=— po(X) f_m[Fz(X')_Ezpo(X')]dX/”L (X—ag)?’

nodal point shift
@g
= —eXF[ZGo(ao)]f_ (E1=V1)po(x)dX,

where
po(X) = (X— ag)’exf —2Go(X)]. (8

We notice that the sign ok, is different from Eq.(37) of
Ref.[1]. Accordingly,g(x) is also different,

a;
(X_ao)z'
)

1 X
g1(x)= m JLOO(El_Vl)pO(X,)dX,_F

(15

We collect the terms proportional %° and proceed to
calculate the third-order correction

(29093+ 29192~ 95) (X— ag) — (92 + 29092~ 95) @y
— (29091 —97) @2— (95— 96) a3 — 293
=—E3(X—ap)+ a1Ex+ ap(E;— V) + a3z(Eqg— Vo).
(16)

Repeating the previous procedures, we substitute all the
lower corrections into Eq16) and multiply both sides of it
by (x— ao)exp(=2Gy),

As x approacheg,, the limit of g, can be obtained by using —[gs(x— ag)? exp(—2Gg)]’

Eq.(7),
91( @) = a190(ag) — a19p( o). (10

Thusg; is proved to be singularity free.

In the second-order calculation, we accumulate all the

terms proportional ta.2. Then
(X— o) (91+ 29092~ g3)
— @1(29o01 — 1) — @2(95— 9o) — 29>
= —Ea(X—ag) + a1(E1— V1) + ax(Eg— Vo). (11

We multiply both sides of Eq11) by exp(2G,) and mak-
ing use of the zeroth- and first-order corrections we get

—[ga(x—ap)? exp—2Gg)]’
=—ay[exp(—2Gg) ] —Ezpot Fy,
where

a0
Ot Xl—aoo} —gi(x— ao)z] exp(—2Gy).

. (12

F2(X)={2a1

We can easily show thd,(x) is the same as Eq40) of
Ref.[1]; however,a; has to be the one described in E§).
Based on the fact thag; and go/(Xx—ag) are singularity

=— aglexp(—2Gy)]’ —Egzpo+Fa, 17
where
Fa()=(x— ao){a1[ (g3 + 29092~ g3) + E;]
+as[(29091—91) +(E1— V1) 1}
—2010,(X— ag)Dexp —2Gy). (18)
Together with
<g%—ga)+<Eo—vo>:(X2_%, (19

we can see that the above expresdib® is quite different
from Eq. (40) of Ref.[1]. Again, we carry out the previous
procedures, i.e., when we integrate frenre to o, we obtain
the third-order energy correction

E3: f_ogocF3(X)dX (20)

After that, integrating from—o to «y, we have the third-
order nodal point shift

a3=eXFIZGo(ao)]f_a:[Fs(X’)— Eapo(x)]dx". (21)
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Finally, we integrate front+-o to x and obtain The second term ifr;(x) contributes whem= 3. After care-
ful examination, it is not difficult to notice that our ER7)
1 J’X £ N Ea(xVdX + as is different from Eqgs.(37), (38), and (40) in Ref.[1]. The
" po(X) _w[ 3Po(x’) = F5(x’) Jdx (X—ag)? disagreements occur not only at the negative sign in front of
(22 «a;, but also in the expression &f(x), we notice that in the
second term there is an additional teEy in the second set
Based on the behaviors of tlg(x)'s (i=1,2), it is not of large square brackets and an extra prefaetar, in front
difficult to deduce thags(x) is also singularity free, except of it. Equation(27) can be integrated to yield the corrections
it does not agree with the one derived from Réf. of the eigenenergies, the wave functions, and the positions of
Before reaching the general formula, we work out thethe nodal points.
fourth-order correction, which is calculated by collecting all We now illustrate the corrected formulas by calculating

gs(x)

the terms proportional ta*, explicitly the energy corrections and nodal point shifts
) ) caused by cubic and quartic perturbations to the simple har-
[(X—@0)* (29094~ 94) — 2g4(X— @) ] monic oscillator up to fourth order.

, Case |.The cubic perturbation potential
—ay(X— ap)[(29093+ 29192~ 03) + E3]

, V' (x)=Bx3. (29
— ap(x— ag)[ (20092 + 95— 95) + E5]
_ _ o Using the above-derived formulas, we calculate the three
a3(X = @0)[ (29081~ 1)+ (E1 V)] lowest-order corrections in energy and nodal point position.
— ay(x— ag)[ (93— g0) + (Eg— Vo) ] Here the zeroth-order first excited state of the harmonic-
oscillator wave function is
=~ Eq(X— a0)®~ (20193+ 93) (X~ ao)”. (23 )
a“X
Multiplying both sides by expf2G,), we get W)=\ (2al ) ax exp - 2 ) (29)
—[9a(x—ap)® exp(—2Go) ]’ where a=\w/2 andw is the frequencyrecall that 2.=1
= — ayfexp(— 2Gg)]’ — E4po+Fa, (24) andha=1). Itis very easy to see thgt the zeroth_nozdal point
aq for ¥41(x) [Eqg. (29)] is at the origin and)y(X) = a“X.
where In first order, we have
F4() = ((x— ag){a1[ (2goGs+ 2919, — g4) + Es] B B (1
4 oha1l(£9093+ 29192703 3 E;=0, a;=— 5, G1(X)=-7|= a®®+1].
. ' a®’ a®\2
+ 5[ (290921t 91— 92) + E2] (30)
+a3[(29091—91) +(E1— V1) T} The vanishing first-order correction in energy is expected

_ 20 N2 _ because of the asymmetry & (x) and the same reason
(20:03+95) (X~ @) )exp —2Go).  (25) explains why the wave function is shifted to the left.

We obtain the fourth-order correction in eneigy, nodal Now in second order we have

point shift «,, andg,(x) by repeating the previous proce- 71 B2
dures. We also show th&t(x) is singularity free by making E,=— 168 @2 0,
use of theg;(x)’s (i=1, 2, and 3. NeverthelessF,(x) is @
different from that shown in Refl]. 5 3D
Now we deduce the hierarchy equation that is of the same __ = 3.3 1_3 )
: g2(X) —3 | 5 &°X°+ — ax|.
form as Eq(39) of Ref.[1] [the expression foF;(x) appears a” \8 16

to be different from Eq(40) of Ref.[1]] o _ .
The correction in energy agrees with that of the conventional

—[gi(x— ag)? exp(—2Gg) ]’ method, but the nodal point is not shifted in this order.
Then the third-order corrections are

= —aj[exp(—2Go)]' —2Ejpo+F;, (26)
E;=0,
where
59 B3 @)
Qo1 Q3= — — s,
i\)= i 16
Fi(X) [26!,_1 9t e
3
i—1 m 1 23 11
' (X)= 13 | == a*x*+ — a®x®+ —|.
+mE:2 @i-m ]ZO 9i9m—j— 9mt Em|(X—ao) 93 att |32 64 16

Again, we see similar behavior to that of first order. The
}exp(—ZGo). (27) ?hnee:g%{ correction vanishes and the wave function shifts to

i—-1

_;1 0;9i—j(Xx—ag)?
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Finally, in fourth order we have

13905 g4

18

(33

E4— W a4=0.
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Finally, the fourth-order corrections are

520 485 v*

22

Ba=~ 1024 @ (38)

a4=0.

This result is the same as the second-order results. We at- a|| the above energy corrections are checked with the

tribute all these to the odd parity & (x). Thus, in the next
example, we adopt a perturbation potential of even parity.
Case Il. The quartic oscillator

V' (x)=yx*. (34

conventional method and clearly all thig(x)'s (i=1,2,3)

are singularity free. Even though the examples we showed
are very standard, there is one interesting phenomenon that is
not revealed by other methods, that is, the first excited-state
wave function is either, up to the four lower orders, only

Similarly, we carry out the same procedures. The results oPushed to the leficase ) or not shifted at al(case I). We

the perturbation calculation are, in first order,

15 y vy (1 5
122 ?, a1=0, gl(X):?(E a3X3+ZaX)
(39
and, in second order,
165 y?
=277 16 oI
a2—0, (36)
1 17 55
_ 7| 5,5, =" 3,3,
0,(Xx) 1 8ax+16ax+16ax).

In third order we haveéE;=322(y% %), a3=0, and

3
1 31 103 1305
;/_17 (— a'x'+ — o+ ——= >3+ — ax).

95(x)= 16 32 16 64
(37

attribute these behaviors to the odd or even parity of the
perturbation potentials.

[II. CONCLUSION

In this work, after rederiving the hierarchy equations, we
presented general formulas for the energy corrections and
nodal point shifts of the first excited state based on the loga-
rithmic perturbation expansion proposed by Aharonov and
Au [1]. In order to demonstrate them explicitly, we calcu-
lated the energy corrections and nodal shifts of the first
excited-state wave function up to fourth order and applied
them to two specific examples.

ACKNOWLEDGMENTS

This work was supported partially by the National Sci-
ence Council under Grant No. NSC87-2112-M009-009.
W.N.M. wishes to thank his colleagues at the Department of
Electrophysics, of the National Chiao-Tung University, for
their hospitality extended to him during his visit.

[1] Y. Aharonov and C. K. Au, Phys. Rev. Le#t2, 1582(1979.
[2] C. K. Au and Y. Aharonov, Phys. Rev. 20, 2245(1979.
[3] T. Imbo and U. P. Sukhatme, Am. J. Ph#®, 140(1984).

[4] W. Y. Keung, E. Kovacs, and U. Sukhatme, Phys. Rev. Lett.

60, 41 (1988.

[5] C. K. Au, K. L. Chan, C. K. Chow, C. S. Chu, and K. Young,

J. Phys. A24, 3837(1991).

[6] I. W. Kim and U. P. Sukhatme, J. Phys. 25, L647 (1992.

[7]P. T. Leung, Y. T. Liu, W. M. Suen, C. Y. Tam, and K.
Young, Phys. Rev. LetZ8, 2894(1997.

[8] F. A. B. Coutinho, Y. Nogami, and F. M. Toyoma, Am. J.
Phys.65, 788(1997.



