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Based on the logarithmic perturbation method proposed by Aharonov and Au@Phys. Rev. Lett.42, 1582
~1979!#, we calculate explicitly up to fourth order and arrive at different results for the energy corrections and
nodal point shifts of the first excited state.@S1050-2947~98!04707-6#
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I. INTRODUCTION

Aharonov and Au proposed an approach to the nonr
tivistic stationary-state perturbation theory@1#. In the com-
monly known logarithmic perturbation method~LPM!, they
show that in problems reducible to one dimension, the c
rections of eigenenergies, wave functions, as well as the
sitions of the nodes, to any order, can be expressed
quadrature in a hierarchy scheme. This method was l
extended to three-dimensional problems@2# and applied to
different cases@3,4#. All these studies@2–4# primarily con-
centrated on calculating the energy corrections of the gro
state in which the wave function is nodeless. In order
avoid cumbersome sums over intermediate states, altern
approaches@5,6# with a similar spirit were developed to trea
the excited states.

In this work we would like to point out that the formula
we derived are different from those in Ref.@1# regarding the
energy corrections and nodal shifts of the higher exci
states. Thus our purposes of presenting this work are firs
investigate the perturbative approach of nodal point sh
which is, after all, the LPM is designed to undertake, a
second for practical reasons, since this method is widely
plied in atomic, molecular, and condensed-matter phy
@2–4#. Recently, it has been extended further to calculate
quasinormal mode frequencies@7# of black holes and the
Dirac equation in one dimension@8#. Hence it is our belief
that the present results will be helpful to researchers in m
areas.

II. DERIVATIONS

We use the same notation as in Ref.@1#, but we set 2m
51 and\51. ~In Ref. @1#, m51.) Nevertheless, this wil
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change the results only slightly. For definiteness, we c
sider the first excited state, which can be expressed as

c~x!5~x2a!exp@2G~x!#, ~1!

wherea is the nodal position andG(x) is regular and ex-
pandable in powers of the coupling constantl and so is its
derivativeg(x), i.e., g(x)5dG(x)/dx. Thus we write

a5a01la11l2a21l2a31¯ ,

g5g01lg11l2g21l3g31¯ , ~2!

E5E01lE11l2E21l3E31¯ .

After substituting the wave function~1!, the Schro¨dinger
equation becomes

~g22g8!~x2a!22g52~E2V02lV1!~x2a!, ~3!

whereg85dg/dx. Gathering all the terms zeroth order inl
after substituting Eq.~2! into Eq.~3!, we get the unperturbed
Schrödinger equation

~g0
22g08!~x2a0!22g052~E02V0!~x2a0!, ~4!

wherea0 is the node of the unperturbed wave function. Th
we collect terms first order inl,

~2g0g12g18!~x2a0!22g12a1~g0
22g08!

52~E12V1!~x2a0!1a1~E02V0!. ~5!

Multiplying both sides of Eq.~5! by (x2a0)exp(22G0) and
using Eq.~4!, we have
713 © 1998 The American Physical Society
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2@g1~x2a0!2exp~22G0!#8

52~E12V1!~x2a0!2exp~22G0!2a1@exp~22G0!#.

~6!

Notice that the negative sign in front of the last term on
right-hand side is different from that in Eq.~34! of Ref. @1#.
This will not change the first-order correction energy co
nection but the sign of the first-order correction to the no
position of the wave function. As we integrate from2` to
`, we get the first-order energy correctionE1 ,

E15E
2`

`

V1~x2a0!2exp~22G0!dx5E
2`

`

V1C0
2~x!dx

~7!

and from2` to a0 we get the first-order correction of th
nodal point shift

a152exp@2G0~a0!#E
2`

a0
~E12V1!r0~x!dx,

where

r0~x!5~x2a0!2exp@22G0~x!#. ~8!

We notice that the sign ofa1 is different from Eq.~37! of
Ref. @1#. Accordingly,g1(x) is also different,

g1~x!5
1

r0~x!
E

2`

x

~E12V1!r0~x8!dx81
a1

~x2a0!2 .

~9!

As x approachesa0 , the limit of g1 can be obtained by usin
Eq. ~7!,

g1~a0!5a1g0~a0!2a1g08~a0!. ~10!

Thusg1 is proved to be singularity free.
In the second-order calculation, we accumulate all

terms proportional tol2. Then

~x2a0!~g1
212g0g22g28!

2a1~2g0g12g18!2a2~g0
22g08!22g2

52E2~x2a0!1a1~E12V1!1a2~E02V0!. ~11!

We multiply both sides of Eq.~11! by exp(22G0) and mak-
ing use of the zeroth- and first-order corrections we get

2@g2~x2a0!2 exp~22G0!#8

52a2@exp~22G0!#82E2r01F2 ,

where

F2~x!5H 2a1Fg11
a1g0

x2a0
G2g1

2~x2a0!2J exp~22G0!.

~12!

We can easily show thatF2(x) is the same as Eq.~40! of
Ref. @1#; however,a1 has to be the one described in Eq.~8!.
Based on the fact thatg1 and g0 /(x2a0) are singularity
e

-
l

e

free, it is not difficult to show thatF2 is a well-behaved
function. Using the same procedures, that is, integrating fr
2` to `, we have the second-order correction to the ene

E25E
2`

`

F2~x!dx8. ~13!

Integrating from2` to a0 , we get the correction to the
nodal point shift

a25exp@2G0~a0!#E
2`

a0
@F2~x8!2E2r0~x8!#dx8. ~14!

Thusg2(x) can be obtained by integrating from2` to x,

g2~x!52
1

r0~x!
E

2`

x

@F2~x8!2E2r0~x8!#dx81
a2

~x2a0!2 .

~15!

We collect the terms proportional tol3 and proceed to
calculate the third-order correction

~2g0g312g1g22g38!~x2a0!2~g1
212g0g22g28!a1

2~2g0g12g18!a22~g0
22g08!a322g3

52E3~x2a0!1a1E21a2~E12V1!1a3~E02V0!.

~16!

Repeating the previous procedures, we substitute all
lower corrections into Eq.~16! and multiply both sides of it
by (x2a0)exp(22G0),

2@g3~x2a0!2 exp~22G0!#8

52a3@exp~22G0!#82E3r01F3 , ~17!

where

F3~x!5„~x2a0!$a1@~g1
212g0g22g28!1E2#

1a2@~2g0g12g18!1~E12V1!#%

22g1g2~x2a0!2
…exp~22G0!. ~18!

Together with

~g0
22g08!1~E02V0!5

2g0

~x2a0!
, ~19!

we can see that the above expression~18! is quite different
from Eq. ~40! of Ref. @1#. Again, we carry out the previou
procedures, i.e., when we integrate from2` to `, we obtain
the third-order energy correction

E35E
2`

`

F3~x!dx. ~20!

After that, integrating from2` to a0 , we have the third-
order nodal point shift

a35exp@2G0~a0!#E
2`

a0
@F3~x8!2E3r0~x8!#dx8. ~21!
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Finally, we integrate from2` to x and obtain

g3~x!5
1

r0~x!
E

2`

x

@E3r0~x8!2F3~x8!#dx81
a3

~x2a0!2 .

~22!

Based on the behaviors of thegi(x)’s ( i 51,2), it is not
difficult to deduce thatg3(x) is also singularity free, excep
it does not agree with the one derived from Ref.@1#.

Before reaching the general formula, we work out t
fourth-order correction, which is calculated by collecting
the terms proportional tol4,

@~x2a0!2~2g0g42g48!22g4~x2a0!#

2a1~x2a0!@~2g0g312g1g22g3
8 !1E3#

2a2~x2a0!@~2g0g21g1
22g28!1E2#

2a3~x2a0!@~2g0g12g18!1~E11V1!#

2a4~x2a0!@~g0
22g08!1~E02V0!#

52E4~x2a0!22~2g1g31g2
2!~x2a0!2. ~23!

Multiplying both sides by exp(22G0), we get

2@g4~x2a0!2 exp~22G0!#8

52a4@exp~22G0!#82E4r01F4 , ~24!

where

F4~x!5„~x2a0!$a1@~2g0g312g1g22g38!1E3#

1a2@~2g0g21g1
22g28!1E2#

1a3@~2g0g12g18!1~E12V1!#%

2~2g1g31g2
2!~x2a0!2

…exp~22G0!. ~25!

We obtain the fourth-order correction in energyE4 , nodal
point shift a4 , andg4(x) by repeating the previous proce
dures. We also show thatF4(x) is singularity free by making
use of thegi(x)’s ( i 51, 2, and 3!. Nevertheless,F4(x) is
different from that shown in Ref.@1#.

Now we deduce the hierarchy equation that is of the sa
form as Eq.~39! of Ref. @1# @the expression forFi(x) appears
to be different from Eq.~40! of Ref. @1##

2@gi~x2a0!2 exp~22G0!#8

52a i@exp~22G0!#822Eir01Fi , ~26!

where

Fi~x!5H 2a i 21Fg11
g0a1

x2a0
G

1 (
m52

i 21

a i 2mF (
j 50

m

gjgm2 j2gm8 1EmG ~x2a0!

2(
j 51

i 21

gjgi 2 j~x2a0!2J exp~22G0!. ~27!
l

e

The second term inFi(x) contributes wheni>3. After care-
ful examination, it is not difficult to notice that our Eq.~27!
is different from Eqs.~37!, ~38!, and ~40! in Ref. @1#. The
disagreements occur not only at the negative sign in fron
a i , but also in the expression ofFi(x), we notice that in the
second term there is an additional termEm in the second se
of large square brackets and an extra prefactora i 2m in front
of it. Equation~27! can be integrated to yield the correction
of the eigenenergies, the wave functions, and the position
the nodal points.

We now illustrate the corrected formulas by calculati
explicitly the energy corrections and nodal point shi
caused by cubic and quartic perturbations to the simple
monic oscillator up to fourth order.

Case I.The cubic perturbation potential

V8~x!5bx3. ~28!

Using the above-derived formulas, we calculate the th
lowest-order corrections in energy and nodal point positi
Here the zeroth-order first excited state of the harmon
oscillator wave function is

C1~x!5A~2a/Ap! ax expS 2
a2x2

2 D , ~29!

wherea5Av/2 andv is the frequency~recall that 2m51
and\51). It is very easy to see that the zeroth nodal po
a0 for C1(x) @Eq. ~29!# is at the origin andg0(x)5a2x.

In first order, we have

E150, a152
b

a6 , g1~x!5
b

a4 S 1

2
a2x211D .

~30!

The vanishing first-order correction in energy is expec
because of the asymmetry ofV8(x) and the same reaso
explains why the wave function is shifted to the left.

Now in second order we have

E252
71

16

b2

a8 , a250,

g2~x!52
b2

a9 S 1

8
a3x31

13

16
axD .

~31!

The correction in energy agrees with that of the conventio
method, but the nodal point is not shifted in this order.

Then the third-order corrections are

E350,

a352
59

16

b3

a16, ~32!

g3~x!5
b3

a14 S 1

32
a4x41

23

64
a2x21

11

16D .

Again, we see similar behavior to that of first order. T
energy correction vanishes and the wave function shifts
the left.
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Finally, in fourth order we have

E452
13 905

512

b4

a18, a450. ~33!

This result is the same as the second-order results. We
tribute all these to the odd parity ofV8(x). Thus, in the next
example, we adopt a perturbation potential of even parit

Case II. The quartic oscillator

V8~x!5gx4. ~34!

Similarly, we carry out the same procedures. The results
the perturbation calculation are, in first order,

E15
15

4

g

a4 , a150, g1~x!5
g

a5 S 1

2
a3x31

5

4
axD

~35!

and, in second order,

E252
165

16

g2

a10,

a250, ~36!

g2~x!5
g

a11 S 1

8
a5x51

17

16
a3x31

55

16
axD .

In third order we haveE35 3915
64 (g3/a16), a350, and

g3~x!5
g3

a17 S 1

16
a7x71

31

32
a5x51

103

16
a3x31

1305

64
axD .

~37!
et

g,
at-

of

Finally, the fourth-order corrections are

E452
520 485

1024

g4

a22, a450. ~38!

All the above energy corrections are checked with
conventional method and clearly all thegi(x)’s ( i 51,2,3)
are singularity free. Even though the examples we show
are very standard, there is one interesting phenomenon th
not revealed by other methods, that is, the first excited-s
wave function is either, up to the four lower orders, on
pushed to the left~case I! or not shifted at all~case II!. We
attribute these behaviors to the odd or even parity of
perturbation potentials.

III. CONCLUSION

In this work, after rederiving the hierarchy equations, w
presented general formulas for the energy corrections
nodal point shifts of the first excited state based on the lo
rithmic perturbation expansion proposed by Aharonov a
Au @1#. In order to demonstrate them explicitly, we calc
lated the energy corrections and nodal shifts of the fi
excited-state wave function up to fourth order and appl
them to two specific examples.
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