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QED commutation relations for inhomogeneous Kramers-Kronig dielectrics

Stefan Scheel, Ludwig Kno¨ll, and Dirk-Gunnar Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

~Received 13 March 1998!

Recently a quantization scheme for the phenomenological Maxwell theory of the full electromagnetic field
in an inhomogeneous three-dimensional, dispersive, and absorbing dielectric medium has been developed and
applied to a system consisting of two infinite half-spaces with a common planar interface„H.T. Dung, L.
Knöll, and D.-G. Welsch, Phys. Rev. A57, 3931~1998!…. Here we show that the scheme, which is based on
the classical Green-tensor integral representation of the electromagnetic field, applies to any inhomogeneous
medium. For this purpose we prove that the fundamental equal-time commutation relations of QED are
preserved for an arbitrarily space-dependent, Kramers-Kronig consistent permittivity. Further, an extension of
the quantization scheme to linear media with bounded regions of amplification is given, and the problem of
anisotropic media is briefly addressed.@S1050-2947~98!07807-X#

PACS number~s!: 42.50.Ct, 12.20.2m, 42.50.Lc, 03.70.1k
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I. INTRODUCTION

Quantization of the phenomenological Maxwell theory
the full electromagnetic field in an inhomogeneous thr
dimensional, dispersive, and absorbing dielectric medium
given permittivity necessarily requires a concept that is c
sistent with the principle of causality and the dissipatio
fluctuation theorem, and necessarily yields the fundame
equal-time commutation relations of QED. Recently it h
been shown@1# that the classical Green-tensor integral re
resentation of the electromagnetic field in a medium w
space-dependent, complex permittivity can be quantized
agreement with the conditions mentioned, introducing ope
tor noise current and charge densities and expressing the
terms of a continuous set of bosonic fields. The quantiza
scheme generalizes previous work on dispersive and abs
ing bulk material@2# and one-dimensional slablike system
with stepwise constant, complex permittivity@2–7#.

In particular, the ordinary vacuum QED is recognized
the limit when the permittivity approaches unity, and t
frequently used approximate quantization schemes for ra
tion in dispersionless and lossless inhomogeneous m
~see, e.g.,@8–10#! and purely dispersive media~see, e.g.,
@11–13#! are recognized in the narrow-bandwidth limit. Fu
ther, the concept is in full agreement with the Huttne
Barnett approach@14# to quantization of the electromagnet
field in bulk material. In this scheme, which is based on
Hopfield model@15# of a homogeneous dielectric, the ele
tromagnetic field is coupled to a harmonic-oscillator pol
ization field that interacts with a continuous set of harmon
oscillator reservoir fields. All couplings are assumed to
bilinear, and the Hamiltonian of the total system is diagon
ized by using a Fano-type technique@16#.

The proof of the consistence with QED of the quantiz
tion scheme developed in@1# requires the calculation o
some frequency integral of the~classical! Green tensor in
order to verify the fundamental equal-time commutation
lation between the electric and magnetic fields. So far
proof for a three-dimensional inhomogeneous medium
been based on the explicit expression of the Green tenso
a system that consists of two dispersive and absorbing
PRA 581050-2947/98/58~1!/700~7!/$15.00
f
-
f
-

-
al
s
-

in
a-

in
n
rb-

ia-
ia

-

e

-
-
e
l-

-

-
e
s

for
lk

dielectrics with a common planar interface. Although it is t
simplest inhomogeneous system, the involved form of
Green tensor requires performing a rather lengthy calc
tion, and the question about the validity of the theory f
more complicated three-dimensional systems may arise
this paper we show that the fundamental equal-time com
tation relation between the electric and magnetic fields
satisfied for any inhomogeneous three-dimensional, dis
sive, and absorbing dielectric medium, without making u
of a particular form of the Green tensor. This enables us
show that the theory applies to arbitrary inhomogeneous,
ear media including media with bounded regions of ampl
cation. Finally, we briefly address the extension of the the
to anisotropic media.

The paper is organized as follows. The quantizat
scheme is outlined in Sec. II. In Sec. III from the parti
differential equation for the Green tensor an integral eq
tion is derived, and general properties of the Green tensor
studied. Section IV presents the proof of the fundamen
commutation relation between the electric and magn
fields, and in Sec. V it is shown that the scheme also app
to media with both absorption and~in bounded regions of
space! amplification. Finally, a summary and some conclu
ing remarks are given in Sec. VI.

II. QUANTIZATION SCHEME

Following @1#, we spectrally decompose the~Schrödinger!
electric and magnetic field operators as

Ê~r !5E
0

`

dvÊ~r ,v!1H.c. ~1!

and

B̂~r !5E
0

`

dvB̂~r ,v!1H.c., ~2!

respectively, whereÊ(r ,v) and B̂(r ,v) satisfy Maxwell’s
equations
700 © 1998 The American Physical Society
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PRA 58 701QED COMMUTATION RELATIONS FOR INHOMOGENEOUS . . .
“•B̂~r ,v!50, ~3!

“•@e0e~r ,v!Ê~r ,v!#5 r̂~r ,v!, ~4!

“3Ê~r ,v!5 ivB̂~r ,v!, ~5!

“3B̂~r ,v!52 i
v

c2
e~r ,v!Ê~r ,v!1m0ĵ ~r ,v!. ~6!

Here, the complex-valued permittivity

e~r ,v!5eR~r ,v!1 i e I~r ,v! ~7!

is a function of frequency and space, with

e~r ,v!→1 if v→`. ~8!

For chosenr the real part~responsible for dispersion! and the
imaginary part~responsible for absorption! are related to
each other according to the Kramers–Kronig relations,
cause of causality. This also implies thate(r ,v) is a holo-
morphic function in the upper complex frequency plane,

]

]v*
e~r ,v!50 ~v I.0!. ~9!

The dependence onr of e(r ,v) indicates that the dielectric
properties spatially change in general.

In order to be consistent with the dissipation-fluctuati
theorem, in Eqs.~4! and ~6!, respectively, an operator nois
charge densityr̂(r ,v) and an operator noise current dens

ĵ (r ,v) have been introduced, which fulfill the equation
continuity

“• ĵ ~r ,v!5 ivr̂~r ,v!. ~10!

Eventually,ĵ (r ,v) is related to a bosonic vector fieldf̂(r ,v)
as

ĵ ~r ,v!5vA\e0

p
e I~r ,v! f̂~r ,v!, ~11!

@ f̂ i~r ,v!, f̂ j
†~r 8,v8!#5d i j d~r2r 8!d~v2v8!, ~12!

@ f̂ i~r ,v!, f̂ j~r 8,v8!#505@ f̂ i
†~r ,v!, f̂ j

†~r 8,v8!#. ~13!

The fieldsf̂(r ,v) for all v can be regarded as basic variab
of an overall system that consists of the electromagn
field, the polarization field, and the reservoir fields a
whose Hamiltonian reads

Ĥ5E d3rE
0

`

dvtwf̂†~r ,v!• f̂~r ,v!. ~14!

The quantization scheme implies that the electromagn
field operators can be expressed in terms off̂(r ,v). From
Maxwell’s equations it is seen thatÊ(r ,v) satisfies the par-
tial differential equation
-

ic

ic

“3“3Ê~r ,v!2
v2

c2
e~r ,v!Ê~r ,v!5 im0v ĵ ~r ,v!,

~15!

so that

Êi~r ,v!5 im0E d3svGik~r ,s,v! ĵ k~s,v!, ~16!

where ĵ k(s,v) is given by Eq.~11!, and Gik(r ,s,v) is the
tensor-valued Green function of the classical problem. H
and in the following we adopt the convention of summati
over repeated vector-component indices. Combining Eqs~5!

and~16!, the corresponding expression forB̂i(r ,v) is easily
derived. The integral representations ofÊi(r ) and B̂i(r ) are
then found from Eqs.~1! and ~2!, respectively, from which
the ~equal-time! commutation relations are derived to be

@Êi~r !,Êk~r 8!#5@B̂i~r !,B̂k~r 8!#50 ~17!

and

@Êi~r !,B̂k~r 8!#5
\

pe0
ekm j]m

r 8E
2`

1`

dv
v

c2
Gi j ~r ,r 8,v!

~18!

(ekm j , Levi-Civita tensor;]m
r 8[]/]xm8 ). On the other hand

from QED it is well known that

@Êi~r !,B̂k~r 8!#52
i\

e0
e ikm]m

r d~r2r 8!, ~19!

which reveals that the quantization scheme is in full agr
ment with QED, if in Eq.~18! the integral overv yields

ekm j]m
r 8E

2`

1`

dv
v

c2
Gi j ~r ,r 8,v!5ekm j]m

r 8ipd i j d~r2r 8!.

~20!

It should be pointed out that this is also the condition
obtaining the correct commutation relations for the potent
and canonically conjugated momenta.

Apart from scalar electrodynamics for slablike syste
@2–7#, Eq.~20! has been proved correct for bulk material a
two infinite half-spaces with a common planar interface@1,2#
by making use of the explicit form of the Green function.
what follows we show that the quantization scheme yie
the correct commutation relations for arbitrary inhomog
neous dielectrics, i.e., for any permittivitye(r ,v). For this
purpose, let us first consider some general properties of
Green function.

III. GREEN FUNCTION

From Eqs.~15! and ~16! it is easily seen that the tenso
valued Green function@matrix elements of the fundamenta
solution of Eq.~15!# satisfies the equation
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F ] i
r]k

r 2d ikS D r1
v2

c2
e~r ,v!D GGk j~r ,s,v!5d i j d~r2s!.

~21!

This equation and the boundary condition at infinity det
mine the Green function uniquely. Similarly to Eq.~15! @to-
gether with Eq.~16!# there are no nontrivial solutions of th
homogeneous problem. Let us consider absorbing bulk
terial. Since the Green function must vanish at infinity, a
sorption obviously prevents one from constructing a solut
of the homogeneous equation that is different from zero
finite space points. When the dielectric material extends o
over a finite region of space, we may assume thate(r ,v)
→1 for r→`. To preserve the analytical properties
e(r ,v), the limit r→` must be performed first, thus keepin
a ~small! imaginary parte I(r ,v) in the permittivity, which
again implies that there is only the trivial~zero! solution of
the homogeneous equation.

It is well known that the Fourier transform of a respon
function that describes a causal relation between two ph
cal quantities is a holomorphic function in the upper comp
frequency half-plane~see, e.g.,@17–19#!. A typical example
is the causal relation between the averages of polariza
and electric-field strength. Obviously, D i j (r ,s,v)
5 im0vGi j (r ,s,v) as a function ofv is nothing but the Fou-
rier transform of the tensor response functionDi j (r ,s,t) that
causally relates the electric fieldEi(r ,t) observed at space
point r and time t to an external ~pointlike! current
j j
ext(r ,t)5Jj

ext(s,t)d(r2s) at space-point s and time
t2t(t>0) @cf. Eq. ~16!#:

Ei~r ,t !5E
0

`

dtDi j ~r ,s,t!Jj
ext~s,t2t!. ~22!

Hence,

im0vGi j ~r ,s,v!5Di j ~r ,s,v!5E
0

`

dteivtDi j ~r ,s,t!

~23!

is a holomorphic function ofv in the upper complex half-
plane, i.e.,

]

]v*
vGk j~r ,s,v!50 ~v I.0!, ~24!

with

vGk j~r ,s,v!→0 if uvu→`. ~25!

Note that Eq.~24! is in full agreement with the differentia
equation~21! @together with the boundary condition at infin
ity#. In this equation the frequencyv is a parameter, and w
may assume thatGi j (r ,s,v) as a function ofv is differen-
tiable with respect tov in the upper complex half-plane
Applying ]/]v* to Eq. ~21!, we easily see that
-

a-
-
n
at
ly

i-
x

n

F ] i
r]k

r 2d ikS D r1
v2

c2
e~r ,v!D G ]

]v*
vGk j~r ,s,v!50

~v I.0!, ~26!

because of Eq.~9!. Since there is no nontrivial solution of th
homogeneous problem, we see thatvGk j(r ,s,v) satisfies the
Cauchy-Riemann equations~24!.

From the theory of partial differential equations it
known ~see, e.g.,@20#! that there exists an equivalent formu
lation of the problem in terms of an integral equation. A
shown in Appendix A,Gi j (r ,s,v) satisfies the integral equa
tion

Gi j ~r ,s,v!5Gi j
~0!~r ,s,v!1E d3vKik~r ,v,v!Gk j~v,s,v!,

~27!

where

Gi j
~0!~r ,s,v!5@d i j 2] i

r] j
sq22~s,v!#g~ ur2su,v! ~28!

and

Kik~r ,v,v!5@]k
vlnq2~v,v!#@] i

rg~ ur2vu,v!#

1@q2~v,v!2q0
2~v!#g~ ur2vu,v!d ik .

~29!

Here, the function

g~ ur u,v!5
eiq0~v!ur u

4pur u
5E d3k

~2p!3

eik•r

k22q0
2~v!

~30!

is introduced, where

q2~r ,v!5
v2

c2
e~r ,v! ~31!

and

q0
2~v!5

v2

c2
e0~v!, ~32!

e0(v)[e(r ,v) r being an appropriately space-averaged r
erence permittivity @for the integral equation with an
s-dependent reference permittivitye0(s,v), see Appendix
A#. Obviously,Gi j

(0)(r ,s,v) is the Green function for a ho
mogeneous medium with permittivitye(r ,v)[e0(v). The
second term on the right-hand side in Eq.~27! essentially
arises from the inhomogeneities. Note that according to
Fredholm alternative the solution of the integral equat
~27! is unique, because of the nonexistence of nontrivial
lutions of the homogeneous problem. From Eqs.~30!–~32!
and Eq.~8! it follows that the integral kernelKik(r ,v,v), Eq.
~29!, is a holomorphic function ofv in the upper complex
half-plane, with

Kik~r ,v,v!→0 if uvu→`, ~33!

whereKik(r ,v,v) decreases as doese(r ,v)21.
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Let us write the integral equation~27! in the compact
form

G5G~0!1KG, ~34!

where

KG[~KG! i j ~r ,s,v!5E d3vKik~r ,v,v!Gk j~v,s,v!.

~35!

Assuming thatG can be found by iteration, we may write

G5G~0!1 (
n51

`

K nG~0!. ~36!

From Eq.~28! it is seen thatGi j
(0)(r ,s,v) has a cubic singu-

larity ur2su23 for r→s, and Eq.~29! reveals that the kerne
Kik(r ,v,v) is only weakly singular~the singularity is weaker
than the spatial dimension!. Hence, at least after the thir
iteration step the result is perfectly regular atr5s.

IV. COMMUTATION RELATION

The results given in Sec. III now enable us to prove E
~20! for arbitrary inhomogeneous dielectrics. For this pu
pose we first decompose the Green function into two pa

Gi j ~r ,s,v!5~G1! i j ~r ,s,v!1~G2! i j ~r ,s,v!, ~37!

where (G1) i j (r ,s,v) and (G2) i j (r ,s,v) satisfy the integral
equations

Gm5Gm
~0!1KGm ~m51,2!, ~38!

with @cf. Eq. ~28!#

~G1! i j
~0!~r ,s,v!5d i j g~ ur2su,v! ~39!

and

~G2! i j
~0!~r ,s,v!52] j

s] i
rq22~s,v!g~ ur2su,v!. ~40!

It is easily seen that (G2) i j (r ,s,v) can be given by

~G2! i j ~r ,s,v!5] j
sG i~r ,s,v!, ~41!

whereG is the solution of the integral equation

G5G~0!1KG, ~42!

with

G i
~0!~r ,s,v!52] i

rq22~s,v!g~ ur2su,v!. ~43!

Both v(G1) i j (r ,s,v) and v(G2) i j (r ,s,v) are holomorphic
functions of v in the upper complex half-plane, wit
v(Gm) i j (r ,s,v)→0 if uvu→`. Note that v(G2) i j (r ,s,v)
may be singular atv50. Nevertheless, when substitutin
Gi j (r ,s,v) from Eq. ~37! @together with Eq.~41!# back into
Eq. ~16!, we can integrate by parts and use the equation
continuity ~10! to obtain
.
-
,

of

Êi~r ,v!5 im0E d3sv~G1! ik~r ,s,v! ĵ k~s,v! ~44!

1m0E d3sv2G i~r ,s,v!r̂~s,v!. ~45!

Hence,im0v(G1) ik(r ,s,v) andm0v2G i(r ,s,v) are the Fou-
rier transforms of the response functions relating the elect
field strength to the~noise! current densityĵ k(s,v) and the
~noise! charge density r̂(s,v) separately. Obviously
v2G i(r ,s,v) is not singular atv50.

Combining Eqs.~37! and~41!, we easily see that the term
on the right-hand side in Eq.~18! can be rewritten as, on

recalling thatekm j]m
r 8] j

r 8(•••)50,

ekm j]m
r 8E

2`

1`

dv
v

c2
Gi j ~r ,r 8,v!

5ekm j]m
r 8E

2`

1`

dv
v

c2
~G1! i j ~r ,r 8,v!. ~46!

Thus, only the noise-current response functi
;v(G1) i j (r ,r 8,v) contributes to the commutator~18!. We
now substitute in Eq.~46! for (G1) i j (r ,r 8,v) the integral
equation~38! (m51) to obtain

E
2`

1`

dv
v

c2
~G1! i j ~r ,r 8,v!5 ipd i j d~r2r 8!

1E
2`

1`

dvE d3v
v

c2
Kik~r ,v,v!

3~G1!k j~v,r 8,v!, ~47!

where the~bulk-material! relation @2#

E
2`

1`

dv
v

c2
~G1! i j

~0!~r ,r 8,v!5 ipd i j d~r2r 8! ~48!

has been used. Hence it remains to prove that the sec
term on the right-hand side in Eq.~47! vanishes@compare
Eqs.~46! and ~47! with Eq. ~20!#.

Since Kik(r ,v,v) and v(G1)k j(v,s,v) are holomorphic
functions ofv in the upper complex half-plane, thev inte-
gral can be calculated by contour integration along a la
half-circle ~with uvu5R, R→`). To calculate this inte-
gral, we recall that for uvu→` both Kik(r ,v,v) and
v(G1)k j(v,s,v) approach zero at least asv21, and
vKik(r ,v,v)(G1)k j(v,s,v) approaches zero at least asv22.
Hence, forR→` the contour integral vanishes at least
R21, and the second term on the right-hand side in Eq.~47!
indeed equals zero, i.e.,

E
2`

1`

dv
v

c2
~G1! i j ~r ,r 8,v!5 ipd i j d~r2r 8!, ~49!

which @together with Eq.~46!# shows, that Eq.~20! is valid
for arbitrary space-dependent permittivity. In other word
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the application of the quantization scheme to arbitrary in
mogeneous dielectrics yields the correct QED commuta
relation ~19!.

V. EXTENSIONS OF THE QUANTIZATION SCHEME

The developed concept of quantization of the electrom
netic field in a dispersive and absorbing background med
that is described in terms of a spatially varying, comp
permittivity essentially rests on the following assumptio
and principles.~i! The permittivity e(r ,v) of the dielectric
medium and the Green tensorGi j (r ,s,v) of the classical
Maxwell equations are holomorphic functions ofv in the
upper complex frequency half-plane, because of causa
~ii ! There is no nontrivial solution of the homogeneous Ma
well equations that satisfies the boundary condition at in
ity, i.e., the electric and magnetic fields are uniquely de
mined by their integral representations.~iii ! To be consistent
with the dissipation-fluctuation theorem, noise current a
noise charge densities must be introduced even if there
no additional sources embedded in the dielectric medi
~iv! Quantization then requires the integral representation
be regarded as relations between operator-valued fie
where the operator noise current density satisfies the com
tation relation

@ ĵ i~r ,v!, ĵ j
†~r 8,v8!#5v2

\e0

p
e I~r ,v!d i j d~r2r 8!

3d~v2v8!. ~50!

So far we have assumed thate I(r ,v).0 (v.0), as is
the case for absorbing media. Obviously, the statements~i!–
~iv! remain valid, if~in agreement with the Kramers-Kroni
relations! e I(r ,v),0 (v.0) in a bounded region of space
which corresponds to the presence of an amplifying med
in that region. Obviously, the commutation relation~50! is
obtained if~in that region! the operator noise current densi
ĵ (r ,v) is related to the bosonic fieldf̂(r ,v) as

ĵ ~r ,v!5vA2
\e0

p
e I~r ,v! f̂†~r ,v!, ~51!

which reflects the well-known fact that amplification requir
the roles of the noise creation and destruction operators t
exchanged~see, e.g.,@21,22#!. From inspection of Eqs.~11!
and ~51!, we see that the two equations can be combined
express the operator noise current density associated
damping and amplification in terms of the bosonic field a

ĵ ~r ,v!5vA\e0

p
ue I~r ,v!u@Q~e I ! f̂~r ,v!

1Q~2e I ! f̂
†~r ,v!#, ~52!

with Q(x) being the unit step function@Q(x)51 for x.0,
andQ(x)50 elsewhere#. Note that the operator noise charg
density r̂(r ,v) is given by Eq.~10!, with ĵ (r ,v) from Eq.
~52!.

The quantization scheme based on Eq.~52! can be re-
garded as the extension of the concept for amplifying, o
dimensional slablike systems@23,24# to arbitrary inhomoge-
neous media that contain bounded regions in wh
-
n

-
m
x

y.
-
-

r-

d
re
.

to
s,
u-

m

be

to
ith

-

h

amplification is realized. From the derivation given in Se
IV it is clearly seen that the fundamental QED commutati
relation~19! is satisfied independently of the sign ofe I(r ,v).
For an absorbing medium the poles ofv(G1) i j (r ,s,v) as a
function ofv are in the lower complex half-plane. When th
gain owing to amplification~e.g., in a resonatorlike equip
ment! tends to compensate for the losses, then the poles
approach the real axis and sharply peaked resonances m
observed. Obviously, if there are poles on the~real! axis, the
v integral must be performed along the axisv1 i«, «
→0. Note that in such a case the model of linear amplifi
tion may fail, because of nonlinear saturation.

Another possible extension of the quantization schem
the inclusion in the theory of anisotropic media, for whic
the permittivity is a symmetric, complex tensor function
v,

e i j ~r ,v!5e j i ~r ,v!, ~53!

which also varies with space in general. As we plan to sh
in a forthcoming article, the quantization scheme also app
to the electromagnetic field in anisotropic Kramers-Kron
dielectrics. The calculation relies on a symmetry relation s
isfied by the Green function according to the Lorentz re
procity theorem@25–27#, and the same integral relation~18!
for the fundamental commutator between the electric a
magnetic field operators can be derived.

VI. CONCLUSIONS

We have studied quantization of the full electromagne
field in linear, isotropic, inhomogeneous Kramers-Kronig
electrics, using the formalism of Green-tensor integral rep
sentation of the electromagnetic field, in which the elect
magnetic field operators are related to bosonic basic fie
via the Green tensor of the classical problem. The formal
can be regarded as a natural extension of the mode con
which only applies—apart from vacuum QED—to narrow
bandwidth fields. Basing on very general properties of
~classical! Green tensor, we have shown that the formali
yields exactly the QED equal-time commutation relations
tween the fundamental electromagnetic fields for any line
isotropic dielectric medium.

For this purpose we have derived an integral equation
the Green tensor, the kernel function of which describes
effect of spatially varying permittivity. From the holomor
phic properties of the Green tensor and the integral kerne
functions of frequency it then follows that the QED equa
time commutation relation~19! between the electric and
magnetic fields is preserved, independently of the dep
dence on space of the permittivity. Since the holomorp
properties are observed for absorbing media as well as
plifying media, the quantization scheme applies to any l
ear, isotropic, causal medium. The only condition is that a
plification, which gives rise to a negative imaginary part
the permittivity, extends over bounded regions of space
condition that is physically always fulfilled. It is worth not
ing that the scheme can also be extended to anisotropic
dia, as will be shown in a forthcoming paper in detail.

In order to show that the quantization scheme is con
tent with QED, we have restricted our attention to the equ
time commutation relations. Clearly, the results can also
used for determining the commutation relations of t
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~Heisenberg! electromagnetic field operators at differe
times. Recalling thatf̂(r ,v,t)5 f̂(r ,v)e2 ivt, it can easily be
derived that inclusion of cos@v(t2t8)# in the integral on the
right-hand side of Eq. ~18! yields the commutator

@Êi(r ,t),B̂k(r 8,t8)#. Decomposing the Green tensor
shown in Eq.~37! @together with Eq.~41!#, we find that

@Êi~r ,t !,B̂k~r 8,t8!#

5
\

pe0
ekm j]m

r 8E
2`

1`

dv
v

c2
~G1! i j ~r ,r 8,v!cos@v~ t2t8!#,

~54!

where (G1) i j (r ,r 8,v) satisfies the integral equation~38!,
with (G1) i j

(0)(r ,r 8,v) from Eq. ~39!. This result can be re
garded as a natural generalization of the well-known resu
vacuum QED~see, e.g.,@28#!.
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APPENDIX: DERIVATION OF THE INTEGRAL
EQUATION

In order to derive an integral equation equivalent to
differential equation~21!, we formally write in Eq.~21!

e~r ,v!5e~r ,v!1e0~s,v!2e0~s,v!, ~A1!

wheree0(s,v) is an appropriately chosen reference perm
tivity, which also satisfies the Kramers-Kronig relation
Hence we may rewrite Eq.~21! as

@D r1q0
2~s,v!#Gi j ~r ,s,v!5@q0

2~s,v!2q2~r ,v!#Gi j ~r ,s,v!

1] i
r]k

r Gk j~r ,s,v!2d i j d~r2s!,

~A2!

where the abbreviations

q2~r ,v!5
v2

c2
e~r ,v!, q0

2~s,v!5
v2

c2
e0~s,v! ~A3!

have been used. Now we introduce the Green function

g~ ur u,s,v!5
eiq0~s,v!ur u

4pur u
~A4!

@q0(s,v)5(v/c)Ae0(s,v)#, which is easily proved to sat
isfy the differential equation

@D r1q0
2~s,v!#g~ ur u,s,v!52d~r !. ~A5!
of

e

-
.

The Green functiong(ur u,s,v) enables us to convert Eq
~A2! into the integral equation

Gi j ~r ,s,v!52E d3vg~ ur2vu,s,v!

3$@q0
2~s,v!2q2~v,v!#Gi j ~v,s,v!

1] i
v]k

vGk j~v,s,v!2d i j d~v2s!%. ~A6!

Next we apply] i
r on Eq.~21! to obtain

] i
rq2~r ,v!Gi j ~r ,s,v!52] j

rd~r2s!, ~A7!

from which we find that

] i
rGi j ~r ,s,v!52q22~r ,v!] j

rd~r2s!

2@] i
r lnq2~r ,v!#Gi j ~r ,s,v!. ~A8!

Substituting in Eq.~A6! for ] i
v]k

vGk j(v,s,v) the result of Eq.
~A8!, integrating by parts, and performing the integrals w
d functions, we derive

Gi j ~r ,s,v!5Gi j
~0!~r ,s,v!1E d3vKik~r ,v,s,v!Gk j~v,s,v!.

~A9!

Here,

Gi j
~0!~r ,s,v!5@d i j 2] i

r] j
sq22~s,v!#g~ ur2su,s,v!

1] i
r@] j

sq22~v,v!g~ ur2vu,s,v!#uv5s,

~A10!

and the integral kernel reads

Kik~r ,v,s,v!5@]k
vlnq2~v,v!#@] i

rg~ ur2vu,s,v!#

1@q2~v,v!2q0
2~s,v!#g~ ur2vu,s,v!d ik .

~A11!

It should be pointed out that the reference permittiv
e0(s,v) can be chosen freely in principle, since the exa
solution of the integral equation~A9! does not depend on
e0(s,v). In practice, however, it may be advantageous
choosee0(s,v) such thatGi j

(0)(r ,s,v) gives a sufficiently
good zeroth-order approximation ofGi j (r ,s,v) for an ap-
proximate solution of Eq.~A9!.

In the simplest casee0(s,v) may be chosen to be inde
pendent ofs, e.g., by averaginge(r ,v) over space,

e0~s,v!→e0~v!5e~r ,v!̄ r. ~A12!

Obviously, in this case the Green funcion~A4! and the
integral kernel~A11! become independent ofs and Eqs.
~A9!–~A11! reduce to Eqs.~27!–~29! @g~ur u,s,v!→g~ur u,v!,
Kik(r ,v,s,v)→Kik(r ,v,v)] together with Eqs.~30!–~32!.
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