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QED commutation relations for inhomogeneous Kramers-Kronig dielectrics
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Recently a quantization scheme for the phenomenological Maxwell theory of the full electromagnetic field
in an inhomogeneous three-dimensional, dispersive, and absorbing dielectric medium has been developed and
applied to a system consisting of two infinite half-spaces with a common planar intéHaEe Dung, L.
Knoll, and D.-G. Welsch, Phys. Rev. 87, 3931(1998). Here we show that the scheme, which is based on
the classical Green-tensor integral representation of the electromagnetic field, applies to any inhomogeneous
medium. For this purpose we prove that the fundamental equal-time commutation relations of QED are
preserved for an arbitrarily space-dependent, Kramers-Kronig consistent permittivity. Further, an extension of
the quantization scheme to linear media with bounded regions of amplification is given, and the problem of
anisotropic media is briefly address¢81050-294{@8)07807-X

PACS numbdps): 42.50.Ct, 12.20-m, 42.50.Lc, 03.70-k

I. INTRODUCTION dielectrics with a common planar interface. Although it is the
simplest inhomogeneous system, the involved form of the

Quantization of the phenomenological Maxwell theory of Green tensor requires performing a rather lengthy calcula-
the full electromagnetic field in an inhomogeneous threetion, and the question about the validity of the theory for
dimensional, dispersive, and absorbing dielectric medium ofore complicated three-dimensional systems may arise. In
given permittivity necessarily requires a concept that is conthis paper we show that the fundamental equal-time commu-
sistent with the principle of causality and the dissipation-tation relation between the electric and magnetic fields is
fluctuation theorem, and necessarily yields the fundamentdatisfied for any inhomogeneous three-dimensional, disper-
equal-time commutation relations of QED. Recently it hasSive, and absorbing dielectric medium, without making use
been showr1] that the classical Green-tensor integral rep-Of a particular form of the Green tensor. This enables us to
resentation of the electromagnetic field in a medium withshow that the theory applies to arbitrary inhomogeneous, lin-
space-dependent, complex permittivity can be quantized, ifar media including media with bounded regions of amplifi-
agreement with the conditions mentioned, introducing operacation. Finally, we briefly address the extension of the theory
tor noise current and charge densities and expressing them i@ anisotropic media. o
terms of a continuous set of bosonic fields. The quantization The paper is organized as follows. The quantization
scheme generalizes previous work on dispersive and absorgcheme is outlined in Sec. II. In Sec. lll from the partial
ing bulk material[2] and one-dimensional slablike systems differential equation for the Green tensor an integral equa-
with stepwise constant, complex permittivitg—7. tion is derived, and general properties of the Green tensor are

In particular, the ordinary vacuum QED is recognized inStudied. Section IV presents the proof of the fundamental
the limit when the permittivity approaches unity, and thecommutation relation between the electric and magnetic
frequently used approximate quantization schemes for radidields, and in Sec. V it is shown that the scheme also applies
tion in dispersionless and lossless inhomogeneous medf@ Media with both absorption an@h bounded regions of
(see, e.g.[8-10) and purely dispersive medi&ee, e.g., _space ampl|f|cat|on. Flnally, a summary and some conclud-
[11-13) are recognized in the narrow-bandwidth limit. Fur- ing remarks are given in Sec. VI.
ther, the concept is in full agreement with the Huttner-

Barnett approachl4] to quantization of the electromagnetic Il. QUANTIZATION SCHEME

field in bulk material. In this scheme, which is based on the ) o
Hopfield model[15] of a homogeneous dielectric, the elec-  Following[1], we spectrally decompose tf@chralingey
tromagnetic field is coupled to a harmonic-oscillator polar-€lectric and magnetic field operators as

ization field that interacts with a continuous set of harmonic-
oscillator reservoir fields. All couplings are assumed to be
bilinear, and the Hamiltonian of the total system is diagonal-
ized by using a Fano-type technigLis].

The proof of the consistence with QED of the quantiza-g,q
tion scheme developed ifil] requires the calculation of
some frequency integral of thelassical Green tensor in —
order to verify the fundamental equal-time commutation re- é(r)=f dwB(r,w)+H.c., 2
lation between the electric and magnetic fields. So far the o -
proof for a three-dimensional inhomogeneous medium has ~ .
been based on the explicit expression of the Green tensor foespectively, wherde(r,w) and B(r,w) satisfy Maxwell’'s
a system that consists of two dispersive and absorbing bul&quations B B

E(r):f:dwg(r,w)m.c. 1)
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V.B(r,)=0, &) . w? . .
- V><V><E(r,w)——ze(r,w)E(r,w)ZI,uowj(r,w),
~ ~ - C - -
V[6OE(I’,a))E(r,w)]=B(r,w), (4) (15)
V><E(r,w)=iw§(r,w), (5)  so that
VxB(rw)= i et w)E(r,0) + ugl(r0).  (6) Ei<r,w>=iuof PswGi(r.so)jse), (16
> c = 1} =i Ll
Here, the complex-valued permittivity where]k(s,w) is given by Eq.(11), and G;(r,s,w) is the
] tensor-valued Green function of the classical problem. Here
€(r,w)=er(r,0) tie(r,m) (7)  and in the following we adopt the convention of summation

over repeated vector-component indices. Combining E4js.

and(16), the corresponding expression @{(r,w) is easily
er,w)—1 if w—om. (8) derived. The integral representations&;(r) and I§i(r) are

then found from Eqgs(1) and (2), respectively, from which

For chosen the real partresponsible for dispersipmand the  the (equal-tim¢ commutation relations are derived to be

imaginary part(responsible for absorptiprare related to

each other according to the Kramers—Kronig relations, be- [Ei(r),Ex(r')]=[Bi(r),By(r’")]=0 (17)

cause of causality. This also implies thdtr,») is a holo-

morphic function in the upper complex frequency plane, gnd

is a function of frequency and space, with

Jd
——€(r,)=0 (w,>0). 9 s oa N o N ,
Ja* ( ) ( | ) ( ) [Ei(r)ka(r )]:W—eoékmj(ﬂnjx dngij(r,r ,(J))
The dependence anof e(r,w) indicates that the dielectric (18
properties spatially change in general.
In order to be consistent with the dissipation-fluctuation(€kmj, Levi-Civita tensor;dp, '=3lax;). On the other hand,
theorem, in Eqs(4) and (6), respectively, an operator noise from QED it is well known “that

charge densny;(r ) and an operator noise current density

j(r,») have been introduced, which fulfill the equation of [Ei(r),Bu(r')]=— ffikmﬁﬁnﬁ(r—f’), (19
continuity €0

V~f(r,w)=iwf)(r,w). (10) which rgveals that_the quantizati_on scheme is ir_1 full agree-
- ment with QED, if in Eq.(18) the integral ovemw yields

Eventually,(r,») is related to a bosonic vector fiei(r, )

+ e
as I Ao oGy (1 @)= e i w8 S(r—1")
€kmi%m wCZ ijlrI,w)= €xmijdml 7 0jj .

j:(r,w)=w\/?e,(r,w)f(r,w), (11) (20

It should be pointed out that this is also the condition for
[fi(r,w),f;r(r’,w’)]: §id(r=r)sw—w'), (12 obtaining the correct commutation relations for the potentials
and canonically conjugated momenta.

Apart from scalar electrodynamics for slablike systems
[2—7], Eq.(20) has been proved correct for bulk material and
Lz . . two infinite half-spaces with a common planar interf
The fieldsf(r, ) for all @ can be regarded as basic varlablesby making use ofpthe explicit form of thg Green fungﬁ(ﬂ In
Qvhat follows we show that the quantization scheme vyields
field, the polarization field, and the reservoir fields andthe correct commutation relations for arbitrary inhomoge-
whose Hamiltonian reads neous dielectrics, i.e., for any permittivig(r,w). For this

purpose, let us first consider some general properties of the

= f dr f dotwf'(r,0)-f(r,). (14)  Green function.
0

[fi(r,w),F(r",0)]=0=[f(r,0),f/(r" 0)]. (13

The quantization scheme implies that the electromagnetic IIl. GREEN FUNCTION

field operators can be expressed in terms (ofw). From From Egs.(15 and(16) it is easily seen that the tensor-
Maxwell’'s equations it is seen th&(r,w) satisfies the par- valued Green functiofimatrix elements of the fundamental
tial differential equation - solution of Eq.(15)] satisfies the equation
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2
{a{a{(— 5“(( AT+ %e(r,w)) Gii(r.Sw)=8;8(r—9).

(21)

This equation and the boundary condition at infinity deter-

mine the Green function uniquely. Similarly to E4.5) [to-

gether with Eq(16)] there are no nontrivial solutions of the
homogeneous problem. Let us consider absorbing bulk ma=
terial. Since the Green function must vanish at infinity, ab
sorption obviously prevents one from constructing a solutio
of the homogeneous equation that is different from zero a
finite space points. When the dielectric material extends only.

over a finite region of space, we may assume #(@tw)

—1 for r—o. To preserve the analytical properties of
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w? 1%
&lro"rk_ Oik AT+ —ze(r,w) _kaJ’(r,S,w):O
c dw*

(0,>0), (26

because of E(9). Since there is no nontrivial solution of the
homogeneous problem, we see th&;(r,s,») satisfies the
Cauchy-Riemann equatiori24).

From the theory of partial differential equations it is

I_tanown (see, e.g.[20]) that there exists an equivalent formu-

tion of the problem in terms of an integral equation. As
hown in Appendix AG;;(r,s,w) satisfies the integral equa-

€(r, ), the limitr—o must be performed first, thus keeping Gij(r,s,w)=G§j°)(r,s,w)+f d3VK(1,Vv,) Gy(V,S,0),

a (smal) imaginary parte,(r,w) in the permittivity, which
again implies that there is only the triviterg solution of
the homogeneous equation.

(27)

where

It is well known that the Fourier transform of a response

function that describes a causal relation between two physi-

GO(r,s0)=[8;—ddq Asw)g(lr—5,0) (28

cal quantities is a holomorphic function in the upper complex

frequency half-planésee, e.9.[17-19). A typical example

is the causal relation between the averages of polarization

and electric-field strength. Obviously, D ji(r,s,o)
=iuowGij(r,s ) as a function ofv is nothing but the Fou-
rier transform of the tensor response functio(r,s, 7) that

causally relates the electric fielg (r,t) observed at space-

point r and timet to an external (pointlike) current
i) =3"(st)d(r—s) at space-points and time
t—7(7=0) [cf. Eq. (16)]:

Ei(r,t)zf:dTDij(r,s,T)Jjext(sqt—T). (22)

Hence,
iMowGij(r,S,w)=Dij(r,S,w)=J’ dre'“Djj(r,s,7)
= 0
(23)

is a holomorphic function ofv in the upper complex half-
plane, i.e.,

Lkaj(r,S,w)=O ((1)|>0), (24)

dw*
with
(25

wGyj(r,sw)—0 if |w[—x.

Note that Eq.(24) is in full agreement with the differential

and
Kik(r,v,0) =[dpIng*(v,w) [ g(|r—V],w)]

+[ A2V, 0) —a5(@)19(|r — V|, ®) S -

(29
Here, the function
eiqo(a))|r| d3k ekt
r,w)= = 30
oo~z = G
is introduced, where
2
qA(r, )= — €(r, o) (3D)
(o}
and
2 ’
Oo(w)= _260(0)), (32
c

eo(w)=¢€(r,w), being an appropriately space-averaged ref-
erence permittivity [for the integral equation with an
s-dependent reference permittivityy(s, o), see Appendix
A]. Obviously, G{(r,s,w) is the Green function for a ho-
mogeneous medium with permittivity(r,w)=eg(w). The
second term on the right-hand side in Eg7) essentially
arises from the inhomogeneities. Note that according to the
Fredholm alternative the solution of the integral equation
(27) is unique, because of the nonexistence of nontrivial so-
lutions of the homogeneous problem. From E(@))—(32)

and Eq.(8) it follows that the integral kerne{;(r,v, ), EqQ.
(29), is a holomorphic function ofv in the upper complex

equation(21) [together with the boundary condition at infin-
ity]. In this equation the frequeney is a parameter, and we
may assume tha®;;(r,s,) as a function ofw is differen-
tiable with respect taw in the upper complex half-plane.
Applying d/dw* to Eq.(21), we easily see that

half-plane, with

Kik(r,V,w)—>o if (33)

| e,

whereK;(r,v,w) decreases as doeér,w)—1.
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Let us write the integral equatiof27) in the compact ~ _ 5 R
form Ei(r,w)ZIMoJ d°sw(Gy)ik(r,sw)j(so) (44
G=G9+KG, (34
+Mof d3sw?T(r,5,0)p(S ©). (45
where =

Hence,i wow(G1)ik(r,s, ») anduqw?l(r,s ) are the Fou-
rier transforms of the response functions relating the electric-
(35  field strength to thenoise current density(s,») and the
(noise charge density E(S'“’) separately. Obviously,
?T(r,s,w) is not singular atw=0.
o Combining Eqs(37) and(41), we easily see that the term
G=G0+ 3> K"cO, (36)  on the right-hand side in Eq18) can be rewritten as, on
n=1 recalling thatekmjaﬁ,;a}'(- -)=0,

ICGE(ICG)ij(r,S,w)Zf d3VKx(r,V,0)Gyj(V,s,0).

Assuming thaiG can be found by iteration, we may write

From Eq.(28) it is seen thaGi(jO)(r,s,w) has a cubic singu- .

. -3 ’ *® (O]
larity |r—s|_ for r—s, and Eq.(29) reveals that the kernel ekmja:nj do = Gy(r,1",)
Kik(r,v,w) is only weakly singulafthe singularity is weaker -= C
than the spatial dimensipnHence, at least after the third
iteration step the result is perfectly regularrats. p e, o ,

p perfectly reg . Lc do5(Gy(rr" ) (46)

IV. COMMUTATION RELATION

Thus, only the noise-current response function

The results given in Sec. Il now enable us to prove Eq. , )
(20) for arbitrary inhomogeneous dielectrics. For this pur—N“’(Gl)ii(.r’r '“.’) CONtHBUISSHO e cor’nmutatoj]t'S). Wwe
now substitute in Eq(46) for (G,);j(r,r',w) the integral

ose we first decompose the Green function into two parts, > .
P P P equation(38) (u=1) to obtain

Gij(rasaw):(Gl)ij(rasaw)+(62)ij(raslw)l (37)

+ oo w . ,
where G1)ij(r,s,») and (G,);j(r,s ) satisfy the integral j,w dwﬁ(Gl)”(r’r @) =imi;o(r=r7)

equations
+ o0 3 w
G,=GY+KG, (n=12), (38) +Lo dwf d V§Kik(r,v,w)
with [cf. Eq. (28)] X(Gy)i(Vor' @), 47)
(G){Y(r.s0)=8;9(Ir -5, ) (39  where the(bulk-materia) relation[2]
and

f+wdw%(Gl)§jO)(r,r’,w)=i775”5(r—r’) (48)
(G)(r.s0)==3dq X (sw)d(r—5,0). (40 - C

has been used. Hence it remains to prove that the second
term on the right-hand side in E47) vanisheg compare
Egs.(46) and (47) with Eqg. (20)].

Since K (r,v,0) and o(G)j(v,s,») are holomorphic
functions ofw in the upper complex half-plane, the inte-
gral can be calculated by contour integration along a large

It is easily seen thatG,);;(r,s,») can be given by
(Go)ij(r,8,w)=dT'i(r,5,w), (41

wherel is the solution of the integral equation

F=T©+xT (42) half-circle (with |w|=R, R—®). To calculate this inte-
' gral, we recall that for|w|—o both K;(r,v,0) and
with o(Gy)gj(v,s,0) approach zero at least a® !, and
oK (r,v,0)(G1)j(v,s,w) approaches zero at least@s?.
I'or,sw0)=—-dq 2sw)g(r—s,). (43)  Hence, forR— the contour integral vanishes at least as

R™1, and the second term on the right-hand side in @)
Both w(G,);j(r,s,0) and w(Gy);;(r,sw) are holomorphic indeed equals zero, i.e.,
functions of w in the upper complex half-plane, with
w(G,)ij(r,sw)—0 if |w|—o%. Note thatw(Gy);;(r,s )
may be singular atv=0. Nevertheless, when substituting
Gjj(r,s,0) from Eq.(37) [together with Eq(41)] back into
Eq. (16), we can integrate by parts and use the equation o#vhich [together with Eq(46)] shows, that Eq(20) is valid
continuity (10) to obtain for arbitrary space-dependent permittivity. In other words,

fmdw%(Gl)ij(r,r',w):iW‘Sij‘s(r_r,)' (49)
% ¢
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the application of the quantization scheme to arbitrary inhoamplification is realized. From the derivation given in Sec.
mogeneous dielectrics yields the correct QED commutationV it is clearly seen that the fundamental QED commutation

relation (19). relation(19) is satisfied independently of the sign&f{r, ).
For an absorbing medium the poles @(G,);j(r,s,w) as a
V. EXTENSIONS OF THE QUANTIZATION SCHEME function of w are in the lower complex half-plane. When the

o gain owing to amplificatione.g., in a resonatorlike equip-

The developed concept of quantization of the electromagmeny tends to compensate for the losses, then the poles may
netic field in a dispersive and absorbing background mediun&pproach the real axis and sharply peaked resonances may be
that is described in terms of a spatially varying, complexgpserved. Obviously, if there are poles on thea) axis, the
permittivity essentially rests on the following assumptions, integral must be performed along the axisrie, &
and principles (i) The permittivity e(r,w) of the dielectric o Note that in such a case the model of linear amplifica-
medium and the Green tens@;;(r,s,w) of the classical  tjon may fail, because of nonlinear saturation.
Maxwell equations are holomorphic functions efin the  Another possible extension of the quantization scheme is
upper complex frequency half-plane, because of causalitfne inclusion in the theory of anisotropic media, for which

(ii) There is no nontrivial solution of the homogeneous Max-the permittivity is a symmetric, complex tensor function of
well equations that satisfies the boundary condition at infin-,

ity, i.e., the electric and magnetic fields are uniquely deter- _
mined by their integral representatioffii.) To be consistent €ij(ro)=€;i(r,), (53

with the dissipation-fluctuation theorem, noise current andvhich also varies with space in general. As we plan to show
noise charge densities must be introduced even if there afé @ forthcoming article, the quantization scheme also applies
no additional sources embedded in the dielectric mediumtO the electromagnetic field in anisotropic Kramers-Kronig

(iv) Quantization then requires the integral representations téielectrics. The calculation relies on a symmetry relation sat-
be regarded as relations between operator-valued fieldisfied by the Green function according to the Lorentz reci-

where the operator noise current density satisfies the commérocity theoren{25-27, and the same integral relatioh)
tation relation for the fundamental commutator between the electric and

Fe magnetic field operators can be derived.
2 2 , ’ 0 P
[i(re),j(r e )]=w27fu(r,w)5ij5(r—r )
VI. CONCLUSIONS

X(w—w'). (50 We have studied quantization of the full electromagnetic

So far we have assumed tha(r,w)>0 (0>0), as is field in linear, isotropic, inhomogeneous Kramers-Kronig di-
the case for absorbing media. Obviously, the statem@nts electrl_cs, using the formalism of Green-tensor integral repre-
(iv) remain valid, if(in agreement with the Kramers-Kronig Séntation qf the electromagnetic field, in Wh|cr_1 the e_zlec_tro-
relations €,(r,w)<0 (w>0) in a bounded region of space, Magnetic field operators are related to bosonic basic fields
which corresponds to the presence of an amplifying mediunY'2 the Green tensor of the classical problem. The formalism
in that region. Obviously, the commutation relatis0) is a0 be regarded as a natural extension of the mode concept,

obtained if(in that region the operator noise current density Which only applies—apart from vacuum QED—to narrow-
N . A bandwidth fields. Basing on very general properties of the
j(r, o) is related to the bosonic fielidr,») as

(classical Green tensor, we have shown that the formalism

- B fieg 2t yields exactly the QED equal-time commutation relations be-
j(no)=wy\/ - 7€|(r"")f (r,o), (5D iween the fundamental electromagnetic fields for any linear,
: e . __isotropic dielectric medium.

which reflects the well-known fact that amplification requires For this purpose we have derived an integral equation for

the roles of the noise creation and c_iestruc_tion operators to b[ﬁe Green tensor, the kernel function of which describes the
2nd(31) we see hat the o equations can be combined ect Of Spatially varying permitiiy. From the holomor:

’ . q : . .phic properties of the Green tensor and the integral kernel as
EXpress the operator noise current density asslouated WiKlinctions of frequency it then follows that the QED equal-
damping and amplification in terms of the bosonic field as time commutation relatior(19) between the electric and

7 magnetic fields is preserved, independently of the depen-
~ €p ~ e s . .
j(rw)=w\ /—|E|(r,w)|[(el)f(r,w) dence on space of the permittivity. Since the holomorphic
- ™ properties are observed for absorbing media as well as am-
R plifying media, the quantization scheme applies to any lin-
+0(—ef'(r,o)], (52)  ear, isotropic, causal medium. The only condition is that am-
. ) ) ) plification, which gives rise to a negative imaginary part of
with ©(x) being the unit step functiop®(x)=1 for x>0,  the permittivity, extends over bounded regions of space—a
and®(x) =0 elsewherg Note that the operator noise charge condition that is physically always fulfilled. It is worth not-
density p(r,w) is given by Eq.(10), with j(r,w) from Eg. ing that the scheme can also be extended to anisotropic me-
(52. - dia, as will be shown in a forthcoming paper in detail.

The quantization scheme based on EsR) can be re- In order to show that the quantization scheme is consis-
garded as the extension of the concept for amplifying, onetent with QED, we have restricted our attention to the equal-
dimensional slablike systenj23,24] to arbitrary inhomoge- time commutation relations. Clearly, the results can also be
neous media that contain bounded regions in whiclused for determining the commutation relations of the
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(Heisenbery electromagnetic field operators at different The Green functiong(|r|,s,w) enables us to convert Eq.
times. Recalling thak(r,w,t)=f(r,w)e ', it can easily be (A2) into the integral equation
derived that inclusion of coa(t—t')] in the integral on the

right-hand side of Eq.(18) yields the commutator Gij(f,S,w):—f d3vg(|r—v|,s o)

[Ei(r,t),B.(r',t')]. Decomposing the Green tensor as

shown in Eq.(37) [together with Eq(41)], we find that X{[q(z)(s,a))—qz(v,w)]Gij(v,s,w)

[Ei(r,t),B(r',t")] + 37 Gyj(V,S0) = §jj6(v—9)}.  (AB)
h Next we applyd; on Eqg.(21) to obtain

A w
:77_—60€kmj(?:nfOO dwg(Gl)ij(r,r vw)COS{w(t—t )],

54 d92(r,®)Gjj(r,s,0)=—d;8(r—s), (A7)

where G,);;(r.,r’,w) satisfies the integral equatiof88), from which we find that
with (G1){(r.r",w) from Eq. (39). This result can be re- r 5 .
garded as a natural generalization of the well-known result of diGij(r,sw)=—-q “(r,0)d;8(r—s)

vacuum QED(see, e.g.[28]). —[(?{Inqz(r,w)]Gij(r,s,w). (A8)

ACKNOWLEDGMENTS Substituting in Eq(A6) for &/ 9;Gy;(V,s,») the result of Eq.

We thank T. Gruner. G. SéFer. and E. Schmidt for valu- (A8), integrating by parts, and performing the integrals with
able discussions. ' ' S functions, we derive

APPENDIX: DERIVATION OF THE INTEGRAL Gij(l‘,S,w)ZGi(jo)(r,S,w)-l-f dBVKik(1,V,5,0)Gy(V,s,0).

EQUATION (A9)

In order to derive an integral equation equivalent to the|_|ere
differential equation(21), we formally write in Eq.(21) '
(r0)=e(r0)+eo(sw)—e(sw), (Al G'(r.80)=[8;=d7q *(s.0)g(Ir—9.5.0)
€(lw)=€(lw)+e€p(SSw)—€y(Sw), _
+(9ir[(7]_sq Z(V,m)g(|r—v|,s,w)]|\,:s,
where €y(s,w) is an appropriately chosen reference permit- (A10)
tivity, which also satisfies the Kramers-Kronig relations.

Hence we may rewrite Eq21) as and the integral kernel reads

o , , Ki(r.v.8,0) =[Ing*(v,) [[a{g(|r V.5 )]
[A +q0(siw)]Gij(r!S!w):[qO(Slw)_q (r!w)]Gij(r!S’w)
+[G(V,0) —43(5,©)1g(|r = V],5,0) Sy
+(9{(9Lij(r,S,w)_5ij6(r_3),
(A1)
(A2)

It should be pointed out that the reference permittivity
where the abbreviations €o(s,w) can be chosen freely in principle, since the exact
solution of the integral equatiofA9) does not depend on
eo(S,w). In practice, however, it may be advantageous to
chooseey(s,w) such thatG{(r,s ) gives a sufficiently
good zeroth-order approximation @;;(r,s,») for an ap-
have been used. Now we introduce the Green function proximate solution of Eq(A9).

In the simplest casey(s,w) may be chosen to be inde-
gldo(s®)|r] pendent ofs, e.g., by averaging(r,») over space,
g(|f|,3.w)=T|r| (A4)

2 (U2 2 (U2
q (r,w)=§e(r,w), qO(S!w):?GO(Siw) (A‘?’)

€o(S w)— €o(w) = €(r, ) . (A12)

[go(s,w) = (w/c)Veo(s,w)], which is easily proved to sat- Obviously, in this case the Green funcigA4) and the

isfy the differential equation integral kernel(All) become independent of and Egs.

5 (A9)—(A11) reduce to Eqs(27)—(29 [g(r|,s,0)—g(|r|,0),
[A"+qg(s,@)]g([r],s,w)=—&(r). (A5)  Kiy(r,v,s,0)—Ki(r,v,0)] together with Eqs(30)—(32).
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