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Macroscopic field superpositions from collective interactions
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We study the generation of both coherent superpositions and mixtures of field states through the interaction
of an initially coherent field state with a collection of two-level atoms. The proposed scheme to build up a
given superposition is based on effective dispersive interactions which arise from both the large detuning limit
and the strong-field limit. The coherent superposition is obtained by interacting with a classical field after the
cluster leaves the cavity followed by a measurement of the atomic populpEb850-29478)01907-§

PACS numbds): 42.50—p, 03.65.Bz, 32.80-t

I. INTRODUCTION II. BINOMIAL MIXTURES OF COHERENT STATES

As a starting point it is instructive to analyze the evolution

) The study of nonclassical states of the elec_tromagnet|8f a quantum field in a cavity interacting dispersively with a
field has been a central problem in quantum optics for MaN¥eam of two-level atoms. We consider the situation when at

years. Recently, some proposals to generate a variety of NOBLy moment only one atom can be found inside the resona-

classical states have been developed, opening a field that W The mixture of field states during evolution arises due to

know as quantum state engineering. Special classes of NOfxg fact that we are not considering measurements on atoms
classical states have been studied considering superpositiogge, they leave the cavity. As is well known, the far-off-

of coherent statefCS) on the real line and on the circlé].  yoqonant limit of the evolution operator for the Jaynes-

A method_ for a quantpm engineering scheme ha:; been Pr(tummings model can be approximated as follows:
posed using an atomic beam of two-level atoms interacting

with a cavity field[2]. A special interest represents genera- U(¢):e—i¢aa1|1><1| +e ¢a*al0><o|, 2.1)
tion of macroscopic superpositions of quantum states, the
so-called Schidinger cat stateg3]. These states have been where ¢=g?7,,/A is an adimensional time is the atom-
generated using laser-cooled trapped i¢Ak Alternative  field coupling constantr,, is the interaction time and is
schemes for generating Schifoger cats in microwave cavi- the difference of frequency between the relevant atomic tran-
ties have recently been reported both theoreticiBlyand  sition and the field mode. Finallg, anda' are the usual field
experimentally{ 6] for monitoring the quantum decoherence gperators and the staté® and [0) denote respectively the
of a Schralinger cat state. upper and lower atomic levels of the atomic transition. This
In this article we focus our interest on the generation Ofapproximation holds when the conditiong/2)?(n)<1 is
superpositions of CS by considering the simultaneous intersatisfied. The effect of the interaction is a dynamical phase
action of a collection of two-level atoms with a quantum shift in the field state and the atomic population remains
field. In this context we have found a possible scheme foynchanged. In Ref[6] values of A/27=70-800 kHz,
quantum field state engineering. We basically consider twey/2=24 kHz, and(n)=10 are reported, so the previous
regimes where this goal can be achieved. The first case cogpndition is well satisfied forA/27>300 kHz, which is

responds to the dispersive interaction of two-level atomgchieved in the experiment by adjusting the cavity mirror
with a quantum field initially in a coherent state, i.e., in the geparation.

large detuning limit. A second case corresponds to the reso- | et ys consider a lossless cavity field initially prepared in
nant interaction of a collection of two-level atoms interacting5 coherent statgi=|a)(a/| (for simplicity, « is chosen to be
with a strong quantum field. _ rea). The atoms in the beam are initially prepared in the state
_ This paper has been organized as follows: In Sec. Il we,y—q,|1)+d,|0). After the interaction with the first atom,
discuss generation of the binomial mixtures of CS in thee jnitial field state evolves into a superposition of two CS.

process of one atom interaction with a quantized field in arne reduced field density matrix after the interactiarith-
dispersive cavity and describe how to engineer a diffusionst measurement on atomic variabléakes the form
like process into the cavity field. The following sections are

devoted to different proposals for generation of coherent su- pi(P)=do| a€' ¢>><aei¢| +d1|ae—i¢)<ae—i¢’|_ (2.2

perpositions of field states. In Sec. Il we consider a genera-

tion scheme in the dispersive regime and in Sec. IV we conH we look at the phase space, the corresponding quasiprob-

sider the strong field limit. A summary is drawn in Sec. V. ability Q(8)={(B|p:(¢)|B) consists of two peaks centered
on the circle of radiugr and separated by the anglé).2The
distance between peaks depends on the valug arid is of

*Present address: Institut rfiTheoretische Physik, Universita the ordel ~2¢a. If this distance is larger than the spread of
Innsbruck, Technikerstrasse 25/2, A-6020 Innsbruck, Austria. the initial CS the peaks are well distinguishable, ile-.2.
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matelyN~ 7a atoms. In both cases, i/ is not too large,
a discrete splitting at the beginning of the procéafter in-
teraction with a few atomgurns into a diffusionlike process
after many atoms have passed. For small values of the phase
¢~ 1la, the peak splitting islmostindistinguishable. In this
case the atom acts on the field as a kind of diffuser since the
beginning of the process. It is well known that a diffusion
process takes place only when an irreversible process is
present. For example, in the case of the laser spontaneous
emission plays a fundamental role in diffusion of the phase.
In this case we do not have spontaneous emission, but we
lose the information about the atomic state after the atoms
have crossed the cavity.
The above described effective diffusion can be better ex-
m(p) -0 10 plaingd in the Iimit of a small phasé. The passage of suc-
Re(B) cessive atoms with smadh introduces a slow phase spread-
FIG. 1. Field Q function after N=300 atoms have passed ing of the figld rgther than a 'reaI splitting. In order to
through the cavity, for an initial coherent state wita|2=20, understand this point Iet_us consider a Iarge nu_mbe_r o_f atoms
b= m/50. passed through the cavity, so that the binomial distribution
(the case of equal initial atomic populatigrtsin be approxi-

The passage of the next atom generates the splitting of eachated by a Gaussian distribution

peak, giving rise to a new peak. The case of two atoms has

been used to study the effect of progressive decoherence of 1 (k—N/2)?
components of field Schdinger catg5,6]. If ¢=/m and Cy= N2 exp{ N )
m is an integer number, only a finite number of peaks are .

generatedm peaks will be created after the passage of ) T . .
m—1 atoms and then the number of peaks is conserved. dptroducing this distribution in the expression for the density

course not all the peaks will have the same size. Due to thB1atrix and carrying out the averaging we get a reduced ex-

specific process of splitting, the peaks tend to accumulate iRression for the field density matrix given by

the vicinity of the original peak, coherent state. This leads to

the peculiar(diffuse) form of the Q function (as well as the - _2

phase distribution functigrafter the passage of many atoms. Pf:”zto €
Formally, we can write a general expression for the field ’

density matrix after the passage fatoms:
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where the number of atomN represents an adimensional
PN =Tr o U()pN V& parord ()] (2.3  time scale of field evolution. We can rewrite this scale by
usingN=rT, wherer is the average atomic injection rate
After a brief calculation the field density matrix can be rep-andT is the total time since the first up tdth atom in the
resented as follows: atomic beam. The structure of this expression for the density
matrix is closely related to that for the evolution of the laser
N field after the stationary regime of photon number has been
p(fN): 2 Cil ) eud (2.9 reached. In the laser case the evolution of the nondiagonal
k=0 matrix elements satisfidg]

wherea,= a exgd 2i¢(k—N/2)]. The probability distribution q D
Cy is binomial in terms of initial atomic parameters and has —p =— _|(| —i)2p 2.8
the following form: dt™i 2 L’ '

Nk N whereD; is the well-known Schalow-Townes laser diffusion
Cy=dgy “di| , | (2.5 o T
k coefficient, which is expressed as
A simple consequence of this statistical mixture is that the A+y
photon number fluctuations remain the same as in the initial D=—=. 2.9
coherent state. In the case of equal initial atomic population 4n

Eq. (2.4) corresponds to a binomial mixture of CS. In Fig. 1

we can observe the binomial splitting of the field for Considering the initial condition of the laser as a coherent
N=300 for small anglep. This corresponds to a completely state with an average photon numiserthe later evolution
diffused binomial state, where the angfeis too small to  can be written as

observe the individual peaks related to each field component

in Eq. (2.9. o e
If parameterg/ 7 is not an integefrationa) number, the Praser= > €1 g ﬂo(lfj)f(DTIZ)(lfj)ZH><j|_ (2.10
peaks will densely fill the circle after the passage of approxi- 1j=0 [j!
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By a direct comparison of this expression with the presenApplying the Poisson summation formula to .15 we
scheme, Eq(2.7), we recognize the existence of a phaseget the equivalent representation V) (6),

diffusion coefficient for the field inside the cavity as

D=r¢>. (211

As we have noted, for small values @feach successive

o0

E e—(l/Z(rz)(an-— 0)2

1
P(Q):ﬁzwaz)lzk (.17

atom introduces a weak phase spreading of the field rathgvhich has the form of a periodic Gaussian. The dispersion of
than a real splitting. We studied, for example, the evolutioneach Gaussian linearly grows with the number of passing

of the phase distribution functioR(6) = (6| p¢| 6), where|6)
is a phase state of the field. Then, we get from @¢) the

atoms. The above expression well describes the phase diffu-
sion process. As one can see from E2j16 the phase dis-

following expression for the phase distribution function afterpersion tends to one-halfrg,(t)—1/2 as the number of

pass ofN atoms:

N
PN)(g)= kZO CiPeo(6—2p(k—N/2)),  (2.12

whereP ., 6) is the coherent state distribution function. In i
the case of relatively intense coherent states the phase prob- Q(p=re™)= rad?
ability distribution can be well approximated by the periodic

Gaussian

o0

P 0)~ > av2imexd —2a%(0—2mn)2].
n=—o
(2.13
Applying the Poisson summation formula

S of= S| dxfgezmmx

n=—oo m=—o ©

we can rewrite the expression f&(6) in the following
form:

[

1 ) _
Pcoh(e)zz_ E eflmaefm2/8n.

T m=—o

(2.14

In the limit of a large number of atoni$>1 in Eq.(2.4), we

approximate the binomial distribution by its Gaussian limit,

Eqg. (2.6). For small values of the phas¢<1l/a we can

substitute the sum in Eq2.12 by the appropriate integral.

Evaluating this integral with the distributidd, given by Eq.
(2.6) we obtain the following expression f&N)(6):

z e—imee—(mZ/Z)azl

m=—ow

PMN(9)= % (2.15

with
o?=1/4a*+ N 2.

In the representatioli2.15 the explicit periodicity of the

atoms goes to infinity. This means that the phase distribution
tends to be random in the limit of a large number of atoms.

In the same approach an approximate expression for the
Q function Q=(B|p¢| B) can be found:

g (a-n? ¥ (y—2mwm)?
> ex —

ag” m=-o

Here each term is a Gaussian function in phase variable,
centered aty=0 with an intensity dependent varianoé
that describes a phase spreading of the wave packet.

We can include the effect of cavity losses by making the
replacementr— ae~ "™N2" in Eq. (2.7), which corresponds to
assuming a zero-temperature thermal bath and that the inter-
action time is small enough compared with the time between
consecutive atoms in order to neglect the dissipation during
the gain process. Besides, we remark that this replacement is
a consequence that there are no pump atoms in this model,
thus the cavity losses establish that the average of the field
energy is only decaying.

This result shows how we can engineer a diffusionlike
behavior onto the phase of a quantum field by introducing
irreversibility while ignoring the state of the two-level atoms
after the interaction. This is the simplest picture we can
implement by using a beam of independent two-level atoms,
ignoring the final state of individual atoms after the interac-
tion with the cavity field.

Ill. DICKE MODEL IN THE LARGE DETUNING LIMIT

If in the situation discussed in the previous section atoms
pass through a Ramsey zone after their interaction with the
field followed by a detection of atomic population, the field
state turns into a coherent superposition of CS. This is the
mechanism used in Ref6] and previously discussed in a
number of works to study decohereri&. If a measurement
of atomic population is performed for all the atoms of the
beam, without the interaction with the Ramsey zone after the
cavity, a cavity quantum electrodynami@QED) version of
the quantum random walk process is obtained. In this case

phase distribution function is conserved and it is easy to find"€ Stochastic variable is the phase of the CS inside the cav-

the mean value and variance of the gifunction as

(sin 8)= J:w dé(sin 9)PN(6)=0,
" (2.16
_ —202

Tsine(t)=(sir? )—(sin 0)2le

ity. In this section we consider the possibility of using a
collection of two-level atoms to produce a coherent superpo-
sition of CS.

A collection of two-level atoms interacting with a quan-
tum field is described by the Dicke Hamiltoni§@], which
can be conveniently written as follow# € 1):

H=AS,+g(aS, +a's.), 3.9
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FIG. 2. Schematic diagram for generating coherent superposi-m
tions of CS.R; denotes the Ramsey zone, which interacts with the
collection of atoms for preparing an atomic stht¢. The cavityC 0.5
contains the initial coherent stali€). The second Ramsey zofe
allows an additional rotation of atomic states after the interaction
with the field. Finally, the detection zor® gives information of the
final number of excited atoms.

0 L L L L L L L L

where we have omitted the constant of motion term  ° ® vooon® gt Boow w008
w.(a’a+$S,), which corresponds to describing the system in

a rotating frame at frequency of the cavity,. The collec- FIG. 3. Field entropy as a function of time f@a) two-atom and

tive atomic operators are defined as usual: (b) three-atom cases from both the numerical evolutswiid line)
A and the adiabatic approximatiddashed ling The field was as-
_ ® i B sumed to be initially in a coherent state with- 16 and the atoms in

Sj _k§=:1 o, 12, B2 4 |0) state. We have choseXx/g=100.

and obey the 9@) commutation relations (¥+A?); kis the cavity decay rate arafa—n (because of
a trace over field variables An alternative proposal for

[S:+,S-1=2S;,, [S;,S:]==S.. atomic Schrdinger-cat generation is studied in REE1]. In

(k) ) ] the two-atom case the evolution operai@.4) explicitly
The operatorso;,” and o3’ (o) are the difference of |eads as follows:

population and raisinglowering) operators of théth atom,

respectively. A schematic view of the proposal is depicted in () —g2isa’a+ DI2)(2|+e¢|1)(1] +e72i¢aTa|0><o|_
Fig. 2. In the space of symmetrical initial states the atomic

operators form an A+ 1)-dimensional representation of

su2) algebra. In this basis collective operators act as The quality of the adiabatic approximation can be studied
by comparing the predicted evolution by E§.4) with the
S |k)=(k—A/2)[k), corresponding exadgnumerical evolution of the model. In
Fig. 3 we plot the field entropy$= —Tr(p; In p;), for the
S, k)= V(A—=k)(k+1)|k+1), (3.3 case of a field initially in a coherent state and a collection of
two atoms(three atomp prepared in an eigenstate of the
S_|k)= Vk(A—k+1)|k—1), atomic operatosS, :
where|k) is the symmetric state witk excited atoms and Sdp)=Nplp).
k=0,1,..,A. We shall refer to them as bare states. In the ) ) (3.6
one-atom case these states are the atomic l¢@etd|1). Ap=p—A/2, p=0,.. A

In the limit of large detunind\>ga« we can adiabatically

eliminate the transitions among different eigenstateS,of  The stategp) correspond to the case when the collection of

thus achieving a dispersive evolution similar to that previ-atoms initially prepared in their lower state interacts with a

ously given in Eq(2.1). In this limit we obtain an effective resonant classical field of zero phase. This corresponds to the

evolution operator from a perturbation theory and its deriva-excitation of the collection of atoms up to their ground state

tion is included in Appendix A. The result for a collection of by a laser followed by a passage though a Ramsey zone

A atoms is given by before going into the resonator. The stdtgsform an alter-
native basis of the symmetric atomic subspace. They can be

U(¢)=exgli¢[S*~Si+(2a'a+1)S,]}, (34  written in the bare atomic basis as follows:

where A
lpy=2, Cjlk), (37

5 A A

where theC,'g coefficients can be expressed in terms of

A similar effective Hamiltonian was derived in a recent work Wigner d functions as Ck=(k|p)=iP"*d4,(— m/2)=C}
by Agarwal et al. [10] to study the generation of atomic [12]. The exact and approximated dynamics shown in Fig. 3
Schralinger-cat states, where the parametgr=g2A/ exhibit an excellent agreement even for long times. The
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small oscillations in the exact entropy are not described by
the approximation because we have neglected transitions be I
tween eigenstates of the operagr. R

06

A. Coherent superpositions PO

In what follows we want to build up a coherent superpo- —oes{.-~"":
sition of CS. This depends on what we do to the collection of Fos{.. " o
atoms when it leaves the cavity. We assume the collection of 4, ...
atoms initially prepared in an arbitrary superposition in the
bare basis, which contains more than one element of the _
basis{|k)}. In this case, the atoms-field state after the inter- 1"
action is

01

[V(¢))=U(d)|@)®|Patomg> (3.8 o~
Im(B) i
where| aome = Zkcy/k). Using Eq.(3.4) we can write ex- b Re (B)
plicitly the previous expression as FIG. 4. FieldQ function of the staté® (V)(t))seq for the case of

A two atoms initially prepared in thgp=0) state and measuring a
. final ||=0) atomic state, i.e.|¥{?(t))seq State. The interaction
— i ’ 0 field
|‘I’(¢)>_k20 Cke Vk|ak>®|k>' (3.9 time wasgt=50, which is the minimum required to observe a
whole splitting. The effective interaction time in the Ramsey zone
where v .=k(A+1—k) and a,= ae ?-A)  Now, the wasQr=m/4. The other parameters are as in Fig 3.

atoms go through Ramsey zof. Each|k) state goes

to a new superposition. The effect of the Ramsey zonday|ay)=4y . This is achieved when the interaction pa-
on the atomic states i5|k>_,2|A:0CL(QT)||>, with rameter qb hoI(_js_ the conditipn ¢~_1/2a. In this sense
CL(QT)=EqA=OEEC'q exp(Qr\), whereQ is the Rabi fre- _CS|ak> give origin to A+ 1)-d|men5|o_n_al space. Establish-
guency of the classical field ands the interaction time with Ing strong entanglement between cavmes can be useful fqr a
this field. The next step is to test the number of excited/€POMation(13] proposal of a state lying in a space of di-

(unexcited atoms, which will project the field to a specific me;]r.l5|or(le;l.>_2.tlln a ca\|/||tthEE()ﬁptropc|>sal lth'ts can _be
superposition. Assuming that the measurement process in \chieved by injecting a coflection wo-level aloms Si-

cates that atoms were in their excited states, the field Statemultaneously into the cgwty, which mFeracts with one modg
is given by the expression of the electromagnetic field. Atoms going through three cavi-

ties have been proposed to generate maximally entangled

1 A field states in the context of cavity QE4,15.
[T A ()= —= >, Cl(Q7)ce " ay), (3.10 The collection ofA atoms is sent through the caviti€g
JN =0 andC, (in the schematic diagram depicted in Fig. 2 cavity

C, is placed betweef and the Ramsey zori®,). The field
where N denotes a normalization constant. We obtain in thisnside the cavitie<C; and C, is prepared in CS with zero
way a coherent superposition AfCS on the circle of radius  phasda), and|8),, respectively. The atom-field interaction
«. In the above calculation we have neglected Contributi0n$5 dispersive in each Cavity, so the evolution is direcﬂy given
to the phase of terms of the ordeg®«®/A?<1, which cor- by operator(3.4). After atoms leave the second cavity they
reSpond to the next order contribution term in m4) We go through Ramsey ZO”Ez, which creates entang]ement
have considered times of the ordérA/(g®«) for whicha  petween the CS lying in both cavities. The final step of the
substantial splitting of CS can be observed. In Fig. 4 we plogntanglement process is the measurement of the number of
the Q function of the statd¥ (*)(t) el for the case of two  excited atoms in the detection zoBe The final entangled
atoms initially prepared in thgp=0) state and measuring a state of both cavities is
final state]l =0), i.e.,| ¥ 3(t) e State. We observe that the A
field was split into a superposition of three well-resolved CS.

If we consider interaction times of the ordertéfthe field ¥)= kZO 7l @1l Bz, 319
CS |ay) can be considered as a macroscopic basis of an
(A+1)-dimensional Hilbert space. In the next subsection we o\ ib(2k-A) )
exploit this property to establish nonlocal correlations beWhere the parameter of CS g, =\e Y, with
tween two cavities. _)\=a,,8. W(_a.have assume_d_ the same interaction para_njeter
in both cavities. The coefficients, depend on the specific
initial atomic state; the interaction with classical field in the
Ramsey zone and the result of the population measurement.
A direct extension of the atom-field interaction in the This is explicitly given by
large detuning limit is the generation of strongly entangled
states between distant cavities. The coherent staigsob- A
tained in the previous sgbsgctlon f_orm an orthogqnal field ﬂk:Ckefiz‘/’”kZ CECA expliQ ),
macroscopic basis. This is equivalent to saying that q=0

B. Nonlocal correlation between cavities
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wherel denotes the number of excited atoms detected. Thisf photons, and the field dynamics is determined by the ini-
simple scheme allows us a full entanglement of the macrotial atomic preparation through the parameltgr=p—A/2.
scopic basis elements in both cavities. Thus, in this limit the dynamics of one systdiield) is de-
termined by the initial condition of the other oriatoms.
IV. MACROSCOPIC SUPERPOSITIONS IN THE STRONG This together with the fact thap) states form an alternative
FIELD LIMIT basis of the symmetric atomic subspace allow us to create

. . _ coherent field superpositions.
In the above discussion we have shown that a variety of \ye assume the same initial conditions as in Sec. IIl.

superpositions can be generated in the dispersive regime @fo\yever, for convenience we write the initial atomic state in
the Dicke model. An alternative scheme for generating COtp) basis. This is
herent superpositions arises in the resonant case of3EL). -

for the strong field limit, defined bp=a?>A, wherea is A

the amplitude of the initial field as before. | #)atome 2 Al ),
In recent works it has been shown that for an initial strong P=0

Shidied pertirbatvely. I fack let us consider evoluton of ar"ereds = £,CE . Thus, with this nial conditon and Eq

initial ath)Jmic cohergﬁt su AR l(4.2) the evolution of the system up to a tirhean be written

perposition in a strong coherenas follows:

field (as before, we take zero initial field phasét was '

shown in Ref[16] that in this case the total wave function of A

the system apprommately.factonzes mto flelq a_nd atomic | (1)) = Z dp|Ap(t)>®|<I>p(t)>. 4.3

parts. However, we shall include a brief derivation of the p=0

wave-function factorization, along the lines of REL6], in

order to make this work self-consistent. The starting point i

Hamiltonian(3.1) in the resonant cas& =0, which can be

approximately diagonalized in the field space with the fol-

lowing transformation:

This equation is analogous to E8.9). After the atoms leave
S[he cavity they are directly sent to the detection arrangement
to measure the number of excitédnexcited atoms. We
remark that in this case an additional Ramsey zone before
the atomic measurement is not necessary. In order to know in

H= o 165+ A2) ol d(5,+A2) which state the field is projected after the measurement on
- atoms it is convenient to span the stgg(t)) in the number
~2g = AJ2+ 1/2ASX+O(A/\/ﬁ) of atomic excitations. Thus E¢4.3) takes the form
. A A
wheree™'? are field phase operatdis7]. When we are con- lp(t)=>, | X dpc';e*ik®p|c1>p(t)> k), (4.9
sidering the strong field limit the field does not reach the k=0 \ p=0

vacuum state during the interaction, so the applied transfor- _

mation is unitary. It has been shown that even the zerothwhere ®,=gt\,/2yn—A/2+1/2. This means that the de-
order approximatiorjust the first term in the above expan- tection ofl excitations in the atomic system reduces the field
sion) well describes all of the essential quantum phenomenayave function to the superposition 8f+ 1 stateg®(t)):

Thus the system wave function takes on the form A

1 .
— | o-ile
|\P(t)>:ei:j;(éz+A/2)e—iZQt\/n+l/2—A/2§x [P A (1)) = \/—szo d,Cpe %% Dy(1)), (4.5
e—i3>(§z+A/2)|a>f®|p>, (4.1  Where|®(t)) is the reduced field wave function. As follows

from Eq.(4.2) the evolution of the field part of the factorized
where we have assumed that the field was prepared in \Wave function|®(t)) is governed by the following effec-
coherent statgx); and the atoms in a statp). After a few tive Hamiltonian:
lines, applying the operators on E@.1) to initial field and

atomic states and neglecting contributions of omeA/\/ﬁ) Herr=ghp\Vn=A2+1/2, (4.6
we obtain which can be approximatedeven for very long times,
3 .
W (0)=| A1) D(1), gt=n®?) as follows:
(h—n) (n-n)?
th (S, + A2 Her=g\o| Vat —m— — —|, 4.
Aty =exf —i SR SAR g R PN T @0
2\Nn—A2+1/2| ~ o
where na=n—A/2+1/2. The field dynamics arising from
|<I>p(t)>=exr[—igt)\p\/ﬁ—A/2+ 1/2]|@). each term in the above equation has a transparent physical

sense: The first term multiplies the wave function by a phase
Thus, we note that the field and atomic dynamics are apfactor. The second rotates the state along the circle of radius
proximately factorized for the assumed initial conditions. Wea. The third is an intensity phase shift, which is responsible
remark that even when they factorize, the effective dynamic$or a phase spreading. The interesting effect coming from
of the collection of atoms is depending on the initial numberthis term is to rotate the hump around itself, producing in
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addition a stretching of the hump. For interaction times closejuasicontinuously in phase, giving rise to the effective phase
to the first revival, it gives rise to noise reduction in the field diffusion when the final state of the atom remains unknown.
guadrature. Going back to E@.5 we note that the reduced We also have proposed two different schemes for gener-
field wave function is a superposition of rotated andating coherent superpositions of CS inside a microwave cav-
stretched CS. ity. The schemes are based on effective dispersive interac-
Let us consider explicitly the two-atom case. For initial tions that arise both in the large detuning limit and in the
nonexcited atoms the detection of the same diatexcited strong field limit of a quantum field interacting with an
atoms leads to the field wave function in a superposition ofatomic collection of two-level atoms. Experimental realiza-
three stategthree-component catwhich coincides at the tions of both proposals are closely related to the microwave
revival moment: regime of cavity QED. The present experimental setups are
mainly focused in the field of small amplitudég|?~ 10
Do 1 .- gt/ T2 [18]. '_I'hus, at the present state of the art of experim_ents _only
[Wo (1) = \/_/T/e n| ve'd ) the dispersive regime arising from the large detuning limit
appears to be well suited for an experimental realization. In
. Jp— this case some difficulties appear on the initial atomic prepa-
+ —(\/2|a>+e'¢n|ae—'9t”“—1/§), ration, which in principle can be overcome for few atoms
\/— [19]. The others parameters are in good agreement with re-
(4.9 ported experimental setupg]. The current interest in small
field amplitude has as its main goal to emphasize some quan-

where &= Vn—(A—m2/(8n? t The detection of the tum features qf atom-field intera(_:tions. Ho_vv_eve_r, in_principle
n [\/: ( )N Az)]g Ehere are not inseparable experimental difficulties in achiev-

same superposition for the field, but with a minus sign beford"9 th_e dispersive regime in the strong field limit. Allso,.m-
the second exponent. Nevertheless, if we register one atogqractlon.of many two-.level atoms with a quantum field in a
excited, the field wave function is represented as a superp Iriven microwave cavity has been re.cently repoifiza).
sition of just two states: _ _The proposed method for generating a coherent superpo-
sition of quantum states can be directly mapped onto experi-
1 ments in laser-cooled trapped ions, in the corresponding dis-
W& (t))= _(|ae*i%t)_e4igt\5aei®ot>)_ (4.9 persive interaction limit. In this case the superposition
VN corresponds to the vibrational mode of a single ion and the
measurement must be performed at the ionic I1€2&]. The
Here we have neglected the contribution of nonlinear termsinteraction of a collection of two-level atoms with a quantum

The coherent superposition of field states Is only a consege|q i the weak field limit (\/ﬁ<A) provides an interesting
quence that the '”'“‘%' cendition contain more than one eIe'mechanism for measuring the field density matrix elements.
ment on the expansion on the baip)}, so the result is 15 corresponds to the inverse problem of this paper. It is
d|rect|lly> generalized to any other initial condition different presently being studied and will be published elsewhere.
from |1).
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[We(t)=—= 2 [CjPe '™ "ae %%, (4.10
Wit APPENDIX

Here, the interaction time is very short, so the contribution of |n this Appendix we include a brief derivation of the ef-
nonlinear terms has been neglected. Tecoefficients tend  fective evolution operator given in Eq3.4). The starting
to a Gaussian distribution for few numbers of atoms, typi-point is the Dicke Hamiltoniaf9], in the standard dipole and
cally A~16. The condition for obtaining a quasicontinuous rotating wave approximations, which reads as folld\ais-
superposition i$0,— 0,_,|a<1, i.e.,, gt<1. This class of regarding a constant teym

states was originally discussed in REf]. H=AS,+g(aS. +a's.)
= g(aS, +a's.),

V. SUMMARY where the collective atomic operators are defined in Eq.

+ ! ) .
To conclude, we have considered the high detuning Iimit(3‘2_)' and aband a aré usual field operators. This Hamil-

of the atom-field interaction in a microwave cavity. A split- ©onian can be rewritten as

ting of an mltlal coherer?tl state arises, generating an incoher- H=AS,+go(aS—PpS)), (A1)

ent binomial superposition of the coherent states on the

circle. In the case of a weak splitting, the initial state spreadsvith g,=v2g and
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1 i canceled out. By following the same procedure we perform a
S=5(S++5.), §=—35(S:=S), next transformation té4,, which is given by

(A2)
.90
1 i U2=ex;{|KqSy).
q=—(at+a"), p=—(a'-a).
V2 V2 Applying this new transformation the Hamiltonian reads as
Now, we apply the following unitary transformation: H,= U2H1U£
U,=expi ¢Sy). 2 g2

=Asz+2ansz+ K(SZ—S§+SZ)
Under this transformation and assuming tlfais a small

parameter Hamiltoniaf3.1) goes to 92 ;L 1
+ (S5 +S9)+0 —) (A4)
Hy=U;HU] 20771 A
—(AS.+ e _ T . The last term in the ab_ove equation does not affect essen-
(AS;+9oU10U1S=9oU1pUsS)) tially the system dynamics and can be removed using a
+(AS,+ goUlpUISZ)tf), (A3) rotation-wave-like approximation. If we consider this term as

a perturbation to the first two, one can note that the first-
where we have performed a series expansion up to first ord@rder correction to the eigenvalueg vanishes and the second-
in ¢. We choose the parameter gs=(g,/A)p, with this ~ order correction is of orderg{A)”. Finally, the system

choiceH explicitly reads as Hamiltqnian takes the fornﬁ3.4_1). One can easily see that
dynamics of any observable will not be affected by the trans-
g3 , 1, 5 formationsU,; and U,, because these transformations are
Hi=AS,+00aS+ 1 | Sct z[P™S+Sp7] . time independent and would only introduce small corrections

to coefficients. The time range where the Hamiltontdp
The effect ofU, transformation is a partial elimination of Well describes the system dynamics is defined by neglected

atomic population transfer due to the interaction with theterms and one can show that it is of ord&t( \/ﬁgo)3/
field, i.e., the contribution of the term proportional g, is A%<1.

[1] J. Jansky and V. Vinogradov, Phys. Rev. Left, 2771 Haroche, Phys. Rev. A0, R895(1994).
(1990; P. Adam, J. Jansky, and V. Vinograddbid. 68, 3816 [9] R. Dicke, Phys. Rew3, 99 (1954.
(1992; M. Orszag, R. Ramirez, J. C. Retamal, and C. Saave{10] G. S. Agarwal, R. R. Puri, and R. P. Singh, Phys. Re\b6A

dra, ibid. 68, 3815(1992; G. S. Agarwal and R. Simon, Opt. 2249(1997).
Commun.92, 105(1992; I. Foldesi, P. Adam, and J. Jansky, [11] Christopher C. Gerry and Rainer Grove, Phys. Rev5@
Phys. Lett. A173 97 (1993; V. Buzek, A. Vidiella Barranco, 2390(1997).
and P. L. Knight, Phys. Rev. A5, 6570(1992; P. Adam, I.  [12] N. Vilenkin and A. Klimyk, Representation of Lie Groups and
Foldesi, and J. Janskyhid. 49, 1281(1994); P. Domokos, P. Special FunctiongKluwer Academic, Dordrecht, 1991Vols.
Adam, and J. Janskybid. 50, 4293(1994). 1-3.

[2] K. Vogel, V. M. Akulin, and W. P. Schleich, Phys. Rev. Lett. [13] C. H. Bennet, G. Brassard, C. Cpmau, R. Jozsa, A. Peres,
71, 1816(1993. and W. K. Wooters, Phys. Rev. Left0, 1895(1993.

[3] E. Schralinger, Naturwissenschaftet8, 807 (1935; 23, 823 [14] Christopher C. Gerry, Phys. Rev. 34, R2529(1996.
(1939; 23, 8844(1935. English translation by J. D. Trimmer, [15] Janos A. Bergou and Mark Hillery, Phys. Rev. 85, 4585

Bull. Am. Phys. Soc124, 3225(1980. (1997).

[4] C. Monroe, D. M. Meekhof, and D. T. Wineland, Scier&t&, [16] A. B. Klimov and S. M. Chumakov, Phys. Lett. 202 145
1131(1996. (1995.

[5] L. Davidovich, M. Brune, J. M. Raimond, and S. Haroche, [17] R. Loudon,The Quantum Theory of LighClarendon Press,
Phys. Rev. A53, 1295(1996. Oxford, UK, 1973, p. 141.

[6] M. Brune, E. Hagley, J. Dreyer, X. M@e, A. Maali, C. [18] For instance, in Ref[6] an average photon number varying
Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. from O to 10 is reported.

77, 4887(1996. [19] J. M. Raimond(private communication
[7] M. Sargent IIl, M. O. Scully, and W. E. Lamb, Jilaser [20] W. Lange, Ph.D. thesis, Max-Planck-Instittit fQuantenoptik,
Physics(Addison-Wesley, Reading, MA, 1977 Munchen, 1994unpublisheg

[8] L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S. [21] J. C. Retamal and N. Zagury, Phys. Rev58, 2387(1997).



