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Macroscopic field superpositions from collective interactions
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We study the generation of both coherent superpositions and mixtures of field states through the interaction
of an initially coherent field state with a collection of two-level atoms. The proposed scheme to build up a
given superposition is based on effective dispersive interactions which arise from both the large detuning limit
and the strong-field limit. The coherent superposition is obtained by interacting with a classical field after the
cluster leaves the cavity followed by a measurement of the atomic population.@S1050-2947~98!01907-6#
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I. INTRODUCTION

The study of nonclassical states of the electromagn
field has been a central problem in quantum optics for m
years. Recently, some proposals to generate a variety of
classical states have been developed, opening a field tha
know as quantum state engineering. Special classes of
classical states have been studied considering superpos
of coherent states~CS! on the real line and on the circle@1#.
A method for a quantum engineering scheme has been
posed using an atomic beam of two-level atoms interac
with a cavity field@2#. A special interest represents gene
tion of macroscopic superpositions of quantum states,
so-called Schro¨dinger cat states@3#. These states have bee
generated using laser-cooled trapped ions@4#. Alternative
schemes for generating Schro¨dinger cats in microwave cavi
ties have recently been reported both theoretically@5# and
experimentally@6# for monitoring the quantum decoheren
of a Schro¨dinger cat state.

In this article we focus our interest on the generation
superpositions of CS by considering the simultaneous in
action of a collection of two-level atoms with a quantu
field. In this context we have found a possible scheme
quantum field state engineering. We basically consider
regimes where this goal can be achieved. The first case
responds to the dispersive interaction of two-level ato
with a quantum field initially in a coherent state, i.e., in t
large detuning limit. A second case corresponds to the re
nant interaction of a collection of two-level atoms interacti
with a strong quantum field.

This paper has been organized as follows: In Sec. II
discuss generation of the binomial mixtures of CS in
process of one atom interaction with a quantized field i
dispersive cavity and describe how to engineer a diffusi
like process into the cavity field. The following sections a
devoted to different proposals for generation of coherent
perpositions of field states. In Sec. III we consider a gene
tion scheme in the dispersive regime and in Sec. IV we c
sider the strong field limit. A summary is drawn in Sec. V
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II. BINOMIAL MIXTURES OF COHERENT STATES

As a starting point it is instructive to analyze the evoluti
of a quantum field in a cavity interacting dispersively with
beam of two-level atoms. We consider the situation when
any moment only one atom can be found inside the reso
tor. The mixture of field states during evolution arises due
the fact that we are not considering measurements on at
after they leave the cavity. As is well known, the far-of
resonant limit of the evolution operator for the Jayne
Cummings model can be approximated as follows:

U~f!5e2 ifaa†
u1&^1u1eifa†au0&^0u, ~2.1!

wheref5g2t int /D is an adimensional time;g is the atom-
field coupling constant;t int is the interaction time andD is
the difference of frequency between the relevant atomic tr
sition and the field mode. Finally,a anda† are the usual field
operators and the statesu1& and u0& denote respectively the
upper and lower atomic levels of the atomic transition. T
approximation holds when the condition (2g/D)2^n&!1 is
satisfied. The effect of the interaction is a dynamical ph
shift in the field state and the atomic population rema
unchanged. In Ref.@6# values of D/2p570– 800 kHz,
g/2p524 kHz, and^n&510 are reported, so the previou
condition is well satisfied forD/2p.300 kHz, which is
achieved in the experiment by adjusting the cavity mir
separation.

Let us consider a lossless cavity field initially prepared
a coherent state:r5ua&^au ~for simplicity, a is chosen to be
real!. The atoms in the beam are initially prepared in the st
uc&5d1u1&1d0u0&. After the interaction with the first atom
the initial field state evolves into a superposition of two C
The reduced field density matrix after the interaction~with-
out measurement on atomic variables! takes the form

r f~f!5d0uaeif&^aeifu1d1uae2 if&^ae2 ifu. ~2.2!

If we look at the phase space, the corresponding quasip
ability Q(b)5^bur f(f)ub& consists of two peaks centere
on the circle of radiusa and separated by the angle 2f. The
distance between peaks depends on the value off and is of
the orderl;2fa. If this distance is larger than the spread
the initial CS the peaks are well distinguishable, i.e.,l;2.
655 © 1998 The American Physical Society
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656 PRA 58DELGADO, KLIMOV, RETAMAL, AND SAAVEDRA
The passage of the next atom generates the splitting of
peak, giving rise to a new peak. The case of two atoms
been used to study the effect of progressive decoherenc
components of field Schro¨dinger cats@5,6#. If f5p/m and
m is an integer number, only a finite number of peaks
generated.m peaks will be created after the passage
m21 atoms and then the number of peaks is conserved
course not all the peaks will have the same size. Due to
specific process of splitting, the peaks tend to accumulat
the vicinity of the original peak, coherent state. This leads
the peculiar~diffuse! form of theQ function ~as well as the
phase distribution function! after the passage of many atom

Formally, we can write a general expression for the fi
density matrix after the passage ofN atoms:

r f
~N!5Tratom@U~f!r f

~N21!
^ ratomU†~f!#. ~2.3!

After a brief calculation the field density matrix can be re
resented as follows:

r f
~N!5 (

k50

N

Ckuak&^aku, ~2.4!

whereak5a exp@2if(k2N/2)#. The probability distribution
Ck is binomial in terms of initial atomic parameters and h
the following form:

Ck5d0
N2kd1

kS N
k D . ~2.5!

A simple consequence of this statistical mixture is that
photon number fluctuations remain the same as in the in
coherent state. In the case of equal initial atomic popula
Eq. ~2.4! corresponds to a binomial mixture of CS. In Fig.
we can observe the binomial splitting of the field f
N5300 for small anglef. This corresponds to a complete
diffused binomial state, where the anglef is too small to
observe the individual peaks related to each field compon
in Eq. ~2.4!.

If parameterf/p is not an integer~rational! number, the
peaks will densely fill the circle after the passage of appro

FIG. 1. Field Q function after N5300 atoms have passe
through the cavity, for an initial coherent state withuau2520,
f5p/50.
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matelyN;pa atoms. In both cases, iff/p is not too large,
a discrete splitting at the beginning of the process~after in-
teraction with a few atoms! turns into a diffusionlike process
after many atoms have passed. For small values of the p
f;1/a, the peak splitting isalmostindistinguishable. In this
case the atom acts on the field as a kind of diffuser since
beginning of the process. It is well known that a diffusio
process takes place only when an irreversible proces
present. For example, in the case of the laser spontan
emission plays a fundamental role in diffusion of the pha
In this case we do not have spontaneous emission, bu
lose the information about the atomic state after the ato
have crossed the cavity.

The above described effective diffusion can be better
plained in the limit of a small phasef. The passage of suc
cessive atoms with smallf introduces a slow phase sprea
ing of the field rather than a real splitting. In order
understand this point let us consider a large number of at
passed through the cavity, so that the binomial distribut
~the case of equal initial atomic populations! can be approxi-
mated by a Gaussian distribution

Ck.
1

ApN/2
expS 2

~k2N/2!2

N/2 D . ~2.6!

Introducing this distribution in the expression for the dens
matrix and carrying out the averaging we get a reduced
pression for the field density matrix given by

r f5 (
l , j 50

`

e2a2 a l 1 j

Al ! j !
ei j0~ l 2 j !2~N/2!f2~ l 2 j !2

u l &^ j u, ~2.7!

where the number of atomsN represents an adimension
time scale of field evolution. We can rewrite this scale
using N5rT, where r is the average atomic injection rat
andT is the total time since the first up toNth atom in the
atomic beam. The structure of this expression for the den
matrix is closely related to that for the evolution of the las
field after the stationary regime of photon number has b
reached. In the laser case the evolution of the nondiago
matrix elements satisfies@7#

d

dt
r

l , j
52

Dl

2
~ l 2 j !2r

l , j
, ~2.8!

whereDl is the well-known Schalow-Townes laser diffusio
coefficient, which is expressed as

Dl5
A1g

4n̄
. ~2.9!

Considering the initial condition of the laser as a coher
state with an average photon numbern̄, the later evolution
can be written as

r laser5 (
l , j 50

`

e2n̄
n̄~ l 1 j !/2

Al ! j !
eiu0~ l 2 j !2~DT/2!~ l 2 j !2

u l &^ j u. ~2.10!
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PRA 58 657MACROSCOPIC FIELD SUPERPOSITIONS FROM . . .
By a direct comparison of this expression with the pres
scheme, Eq.~2.7!, we recognize the existence of a pha
diffusion coefficient for the field inside the cavity as

D5rf2. ~2.11!

As we have noted, for small values off each successive
atom introduces a weak phase spreading of the field ra
than a real splitting. We studied, for example, the evolut
of the phase distribution functionP(u)5^uur f uu&, whereuu&
is a phase state of the field. Then, we get from Eq.~2.4! the
following expression for the phase distribution function af
pass ofN atoms:

P~N!~u!5 (
k50

N

CkPcoh„u22f~k2N/2!…, ~2.12!

wherePcoh(u) is the coherent state distribution function.
the case of relatively intense coherent states the phase p
ability distribution can be well approximated by the period
Gaussian

Pcoh~u!' (
n52`

`

aA2/p exp@22a2~u22pn!2#.

~2.13!

Applying the Poisson summation formula

(
n52`

`

f n5 (
m52`

` È`

dx f~x!e2p imx

we can rewrite the expression forPcoh(u) in the following
form:

Pcoh~u!5
1

2p (
m52`

`

e2 imue2m2/8n̄. ~2.14!

In the limit of a large number of atomsN@1 in Eq.~2.4!, we
approximate the binomial distribution by its Gaussian lim
Eq. ~2.6!. For small values of the phasef!1/a we can
substitute the sum in Eq.~2.12! by the appropriate integral
Evaluating this integral with the distributionCk given by Eq.
~2.6! we obtain the following expression forP(N)(u):

P~N!~u!5
1

2p (
m52`

`

e2 imue2~m2/2!s2
. ~2.15!

with

s251/4a21Nf2.

In the representation~2.15! the explicit periodicity of the
phase distribution function is conserved and it is easy to
the mean value and variance of the sinu function as

^sin u&5E
2p

p

du~sin u!P~N!~u!50,

~2.16!

ssin Q~ t !5^sin2 u&2^sin u&25
12e22s2

2
.

t

er
n

r

ob-

,

d

Applying the Poisson summation formula to Eq.~2.15! we
get the equivalent representation forP(N)(u),

P~u!5
1

~2ps2!1/2 (
k52`

`

e2~1/2s2!~2kp2u!2
, ~2.17!

which has the form of a periodic Gaussian. The dispersion
each Gaussians2 linearly grows with the number of passin
atoms. The above expression well describes the phase d
sion process. As one can see from Eq.~2.16! the phase dis-
persion tends to one-half:ssinQ(t)→1/2 as the number o
atoms goes to infinity. This means that the phase distribu
tends to be random in the limit of a large number of atom

In the same approach an approximate expression for
Q function Q5^bur f ub& can be found:

Q~b5reic!5
e2~a2r !2

A2ras2 (
m52`

1`

expF2
~c22pm!2

2s2 G .
Here each term is a Gaussian function in phase varia
centered atc50 with an intensity dependent variances2

that describes a phase spreading of the wave packet.
We can include the effect of cavity losses by making t

replacementa→ae2gN/2r in Eq. ~2.7!, which corresponds to
assuming a zero-temperature thermal bath and that the i
action time is small enough compared with the time betwe
consecutive atoms in order to neglect the dissipation du
the gain process. Besides, we remark that this replaceme
a consequence that there are no pump atoms in this mo
thus the cavity losses establish that the average of the
energy is only decaying.

This result shows how we can engineer a diffusionli
behavior onto the phase of a quantum field by introduc
irreversibility while ignoring the state of the two-level atom
after the interaction. This is the simplest picture we c
implement by using a beam of independent two-level ato
ignoring the final state of individual atoms after the intera
tion with the cavity field.

III. DICKE MODEL IN THE LARGE DETUNING LIMIT

If in the situation discussed in the previous section ato
pass through a Ramsey zone after their interaction with
field followed by a detection of atomic population, the fie
state turns into a coherent superposition of CS. This is
mechanism used in Ref.@6# and previously discussed in
number of works to study decoherence@8#. If a measurement
of atomic population is performed for all the atoms of t
beam, without the interaction with the Ramsey zone after
cavity, a cavity quantum electrodynamic~QED! version of
the quantum random walk process is obtained. In this c
the stochastic variable is the phase of the CS inside the
ity. In this section we consider the possibility of using
collection of two-level atoms to produce a coherent super
sition of CS.

A collection of two-level atoms interacting with a quan
tum field is described by the Dicke Hamiltonian@9#, which
can be conveniently written as follows (\51):

H5DSz1g~aS11a†S2!, ~3.1!
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where we have omitted the constant of motion te
vc(a

†a1Sz), which corresponds to describing the system
a rotating frame at frequency of the cavity,vc . The collec-
tive atomic operators are defined as usual:

Sj5 (
k51

A

s j
~k! , j 5z,1,2 ~3.2!

and obey the su~2! commutation relations

@S1 ,S2#52Sz , @Sz ,S6#56S6 .

The operatorssz
(k) and s1

(k) (s2
(k)) are the difference of

population and raising~lowering! operators of thekth atom,
respectively. A schematic view of the proposal is depicted
Fig. 2. In the space of symmetrical initial states the atom
operators form an (A11)-dimensional representation o
su~2! algebra. In this basis collective operators act as

Szuk&5~k2A/2!uk&,

S1uk&5A~A2k!~k11!uk11&, ~3.3!

S2uk&5Ak~A2k11!uk21&,

where uk& is the symmetric state withk excited atoms and
k50,1,...,A. We shall refer to them as bare states. In
one-atom case these states are the atomic levelsu0& and u1&.

In the limit of large detuningD@ga we can adiabatically
eliminate the transitions among different eigenstates ofSz ,
thus achieving a dispersive evolution similar to that pre
ously given in Eq.~2.1!. In this limit we obtain an effective
evolution operator from a perturbation theory and its deri
tion is included in Appendix A. The result for a collection o
A atoms is given by

U~f!5exp$ if@S22Sz
21~2a†a11!Sz#%, ~3.4!

where

S2uk&5
A

2 S A

2
11D uk&.

A similar effective Hamiltonian was derived in a recent wo
by Agarwal et al. @10# to study the generation of atomi
Schrödinger-cat states, where the parameterf5g2D/

FIG. 2. Schematic diagram for generating coherent superp
tions of CS.R1 denotes the Ramsey zone, which interacts with
collection of atoms for preparing an atomic stateupI &. The cavityC
contains the initial coherent stateua&. The second Ramsey zoneR2

allows an additional rotation of atomic states after the interac
with the field. Finally, the detection zoneD gives information of the
final number of excited atoms.
n
c

e

-

-

(k21D2); k is the cavity decay rate anda†a→n̄ ~because of
a trace over field variables!. An alternative proposal for
atomic Schro¨dinger-cat generation is studied in Ref.@11#. In
the two-atom case the evolution operator~3.4! explicitly
reads as follows:

U~f!5e2if~a†a11!u2&^2u1e2ifu1&^1u1e22ifa†au0&^0u.
~3.5!

The quality of the adiabatic approximation can be stud
by comparing the predicted evolution by Eq.~3.4! with the
corresponding exact~numerical! evolution of the model. In
Fig. 3 we plot the field entropy,S52Tr(r f ln rf), for the
case of a field initially in a coherent state and a collection
two atoms~three atoms! prepared in an eigenstate of th
atomic operatorSx :

SxupI &5lpupI &,
~3.6!

lp5p2A/2, p50,...,A.

The statesupI & correspond to the case when the collection
atoms initially prepared in their lower state interacts with
resonant classical field of zero phase. This corresponds to
excitation of the collection of atoms up to their ground sta
by a laser followed by a passage though a Ramsey z
before going into the resonator. The statesupI & form an alter-
native basis of the symmetric atomic subspace. They can
written in the bare atomic basis as follows:

upI &5 (
k50

A

Cp
kuk&, ~3.7!

where theCp
k coefficients can be expressed in terms

Wigner d functions as Cp
k5^kupI &5 i p2kdpk

A (2p/2)5C̄k
p

@12#. The exact and approximated dynamics shown in Fig
exhibit an excellent agreement even for long times. T

i-
e

n

FIG. 3. Field entropy as a function of time for~a! two-atom and
~b! three-atom cases from both the numerical evolution~solid line!
and the adiabatic approximation~dashed line!. The field was as-

sumed to be initially in a coherent state withn̄516 and the atoms in
a u0I& state. We have chosenD/g5100.
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PRA 58 659MACROSCOPIC FIELD SUPERPOSITIONS FROM . . .
small oscillations in the exact entropy are not described
the approximation because we have neglected transitions
tween eigenstates of the operatorSz .

A. Coherent superpositions

In what follows we want to build up a coherent superp
sition of CS. This depends on what we do to the collection
atoms when it leaves the cavity. We assume the collectio
atoms initially prepared in an arbitrary superposition in t
bare basis, which contains more than one element of
basis$uk&%. In this case, the atoms-field state after the int
action is

uC~f!&5U~f!ua& ^ ucatoms&, ~3.8!

where ucatoms&5(k
Ackuk&. Using Eq.~3.4! we can write ex-

plicitly the previous expression as

uC~f!&5 (
k50

A

cke
2 ifnkuak& ^ uk&, ~3.9!

where nk5k(A112k) and ak5aeif(2k2A). Now, the
atoms go through Ramsey zoneR2 . Each uk& state goes
to a new superposition. The effect of the Ramsey zo
on the atomic states isuk&→( l 50

A ck
l (Vt)u l &, with

ck
l (Vt)5(q50

A C̄k
qCq

l exp(iVtlq), whereV is the Rabi fre-
quency of the classical field andt is the interaction time with
this field. The next step is to test the number of exci
~unexcited! atoms, which will project the field to a specifi
superposition. Assuming that the measurement process
cates thatl atoms were in their excited states, the field st
is given by the expression

uC l
~A!~ t !&field5

1

AN (
k50

A

ck
l ~Vt!cke

2 ifnkuak&, ~3.10!

whereN denotes a normalization constant. We obtain in t
way a coherent superposition ofA CS on the circle of radius
a. In the above calculation we have neglected contributi
to the phase of terms of the orderAg2a3/D2!1, which cor-
respond to the next order contribution term in Eq.~A4!. We
have considered times of the ordert* ;D/(g2a) for which a
substantial splitting of CS can be observed. In Fig. 4 we p
the Q function of the stateuC l

(A)(t)&field for the case of two
atoms initially prepared in theup50& state and measuring
final stateu l 50&, i.e., uC0,0I

(2)(t)&field state. We observe that th
field was split into a superposition of three well-resolved C

If we consider interaction times of the order oft* the field
CS uak& can be considered as a macroscopic basis of
(A11)-dimensional Hilbert space. In the next subsection
exploit this property to establish nonlocal correlations b
tween two cavities.

B. Nonlocal correlation between cavities

A direct extension of the atom-field interaction in th
large detuning limit is the generation of strongly entang
states between distant cavities. The coherent statesuak& ob-
tained in the previous subsection form an orthogonal fi
macroscopic basis. This is equivalent to saying t
y
e-

-
f
of

e
-

e

d

di-
e

s

s

t

.

n
e
-

d

d
t

^akuak8&.dk,k8 . This is achieved when the interaction p
rameter f holds the conditionf;1/2a. In this sense
CS uak& give origin to (A11)-dimensional space. Establish
ing strong entanglement between cavities can be useful f
teleportation@13# proposal of a state lying in a space of d
mensionA11.2. In a cavity QED proposal this can b
achieved by injecting a collection ofA two-level atoms si-
multaneously into the cavity, which interacts with one mo
of the electromagnetic field. Atoms going through three ca
ties have been proposed to generate maximally entan
field states in the context of cavity QED@14,15#.

The collection ofA atoms is sent through the cavitiesC1
and C2 ~in the schematic diagram depicted in Fig. 2 cav
C2 is placed betweenC and the Ramsey zoneR2!. The field
inside the cavitiesC1 and C2 is prepared in CS with zero
phaseua&1 andub&2 , respectively. The atom-field interactio
is dispersive in each cavity, so the evolution is directly giv
by operator~3.4!. After atoms leave the second cavity the
go through Ramsey zoneR2 , which creates entanglemen
between the CS lying in both cavities. The final step of t
entanglement process is the measurement of the numb
excited atoms in the detection zoneD. The final entangled
state of both cavities is

uC&5 (
k50

A

hkuak&1ubk&2 , ~3.11!

where the parameter of CS islk5leif(2k2A), with
l5a,b. We have assumed the same interaction param
in both cavities. The coefficientshk depend on the specific
initial atomic state; the interaction with classical field in th
Ramsey zone and the result of the population measurem
This is explicitly given by

hk5cke
2 i2fnk(

q50

A

C̄k
qCq

l exp~ iVtlq!,

FIG. 4. FieldQ function of the stateuC l
(A)(t)&field for the case of

two atoms initially prepared in theup50& state and measuring
final u l 50& atomic state, i.e.,uC0

(2)(t)&field state. The interaction
time was gt550, which is the minimum required to observe
whole splitting. The effective interaction time in the Ramsey zo
wasVt5p/4. The other parameters are as in Fig 3.
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wherel denotes the number of excited atoms detected. T
simple scheme allows us a full entanglement of the mac
scopic basis elements in both cavities.

IV. MACROSCOPIC SUPERPOSITIONS IN THE STRONG
FIELD LIMIT

In the above discussion we have shown that a variety
superpositions can be generated in the dispersive regim
the Dicke model. An alternative scheme for generating
herent superpositions arises in the resonant case of Eq.~3.1!
for the strong field limit, defined byn̄5a2@A, wherea is
the amplitude of the initial field as before.

In recent works it has been shown that for an initial stro
quantum field the evolution of a collection of atoms can
studied perturbatively. In fact, let us consider evolution of
initial atomic coherent superposition in a strong coher
field ~as before, we take zero initial field phase!. It was
shown in Ref.@16# that in this case the total wave function
the system approximately factorizes into field and atom
parts. However, we shall include a brief derivation of t
wave-function factorization, along the lines of Ref.@16#, in
order to make this work self-consistent. The starting poin
Hamiltonian~3.1! in the resonant case,D50, which can be
approximately diagonalized in the field space with the f
lowing transformation:

HI 5e2 i f̂~Ŝz1A/2!Hei f̂~Ŝz1A/2!

52gAn̂2A/211/2Ŝx1O~A/An̄!,

wheree6 i f̂ are field phase operators@17#. When we are con-
sidering the strong field limit the field does not reach t
vacuum state during the interaction, so the applied trans
mation is unitary. It has been shown that even the zero
order approximation~just the first term in the above expan
sion! well describes all of the essential quantum phenome
Thus the system wave function takes on the form

uC~ t !&.ei f̂~Ŝz1A/2!e2 i2gtAn̂11/22A/2Ŝx

e2 i f̂~Ŝz1A/2!ua& f ^ upI &, ~4.1!

where we have assumed that the field was prepared
coherent stateua& f and the atoms in a stateupI &. After a few
lines, applying the operators on Eq.~4.1! to initial field and

atomic states and neglecting contributions of orderO(A/An̄)
we obtain

uC~ t !&.uAp~ t !& ^ uFp~ t !&,

uAp~ t !&5expF2 i
gtlp~Sz1A/2!

2An̄2A/211/2
G upI &, ~4.2!

uFp~ t !&5exp@2 igtlpAn̂2A/211/2#ua&.

Thus, we note that the field and atomic dynamics are
proximately factorized for the assumed initial conditions. W
remark that even when they factorize, the effective dynam
of the collection of atoms is depending on the initial numb
is
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of photons, and the field dynamics is determined by the
tial atomic preparation through the parameterlp5p2A/2.
Thus, in this limit the dynamics of one system~field! is de-
termined by the initial condition of the other one~atoms!.
This together with the fact thatupI & states form an alternative
basis of the symmetric atomic subspace allow us to cre
coherent field superpositions.

We assume the same initial conditions as in Sec.
However, for convenience we write the initial atomic state
upI & basis. This is

uc&atoms5 (
p50

A

dpupI &,

wheredp5(k
AckC̄k

p . Thus, with this initial condition and Eq
~4.2! the evolution of the system up to a timet can be written
as follows:

uc~ t !&5 (
p50

A

dpuAp~ t !& ^ uFp~ t !&. ~4.3!

This equation is analogous to Eq.~3.9!. After the atoms leave
the cavity they are directly sent to the detection arrangem
to measure the number of excited~unexcited! atoms. We
remark that in this case an additional Ramsey zone be
the atomic measurement is not necessary. In order to kno
which state the field is projected after the measuremen
atoms it is convenient to span the stateuAp(t)& in the number
of atomic excitations. Thus Eq.~4.3! takes the form

uc~ t !&5 (
k50

A S (
p50

A

dpCp
ke2 ikQpuFp~ t !& D uk&, ~4.4!

where Qp5gtlp/2An̄2A/211/2. This means that the de
tection ofl excitations in the atomic system reduces the fi
wave function to the superposition ofA11 statesuFp(t)&:

uC l
~A!~ t !&5

1

AN (
p50

A

dpCp
l e2 i l QpuFp~ t !&, ~4.5!

whereuFp(t)& is the reduced field wave function. As follow
from Eq.~4.2! the evolution of the field part of the factorize
wave functionuFp(t)& is governed by the following effec
tive Hamiltonian:

Heff5glpAn̂2A/211/2, ~4.6!

which can be approximated~even for very long times,
gt&n̄3/2! as follows:

Heff'glpFAn̄A1
~ n̂2n̄!

2An̄A

2
~ n̂2n̄!2

8n̄A
3/2 G , ~4.7!

where n̄A5n̄2A/211/2. The field dynamics arising from
each term in the above equation has a transparent phy
sense: The first term multiplies the wave function by a ph
factor. The second rotates the state along the circle of ra
a. The third is an intensity phase shift, which is responsi
for a phase spreading. The interesting effect coming fr
this term is to rotate the hump around itself, producing
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addition a stretching of the hump. For interaction times clo
to the first revival, it gives rise to noise reduction in the fie
quadrature. Going back to Eq.~4.5! we note that the reduce
field wave function is a superposition of rotated a
stretched CS.

Let us consider explicitly the two-atom case. For init
nonexcited atoms the detection of the same state~unexcited
atoms! leads to the field wave function in a superposition
three states~three-component cat!, which coincides at the
revival moment:

uC0
~2!~ t !&5

1

AN
e2 i ŵnuaeigt/An̄21/2&

1
1

AN
~&ua&1ei ŵnuae2 igt/An̄21/2&),

~4.8!

where ŵn5@An̄2(n̂2n̄)2/(8n̄A
3/2)#gt. The detection of the

atoms in the excited state in the output leads to almost
same superposition for the field, but with a minus sign bef
the second exponent. Nevertheless, if we register one a
excited, the field wave function is represented as a supe
sition of just two states:

uC0,1
~2!~ t !&5

1

AN
~ uae2 iQ0t&2e4igtAn̄uaeiQ0t&). ~4.9!

Here we have neglected the contribution of nonlinear ter
The coherent superposition of field states is only a con

quence that the initial condition contain more than one e
ment on the expansion on the basis$upI &%, so the result is
directly generalized to any other initial condition differe
from u l &.

An interesting application of the proposed scheme is
generation of a quasi-Gaussian superposition of field
along the circular arc of radiusa. To achieve this goal, we
consider a strong initial coherent field satisfying the con
tion 1!A!a. If the collection is initially prepared in the
stateu l 50&, after the interaction we must measure the sa
atomic state. This projects the field onto the state

uCG~ t !&5
1

AN (
q50

A

uC0
qu2e2 igtlq

An̄uae2 iQq&. ~4.10!

Here, the interaction time is very short, so the contribution
nonlinear terms has been neglected. TheC0

q coefficients tend
to a Gaussian distribution for few numbers of atoms, ty
cally A;16. The condition for obtaining a quasicontinuo
superposition isuQp2Qp21ua!1, i.e.,gt!1. This class of
states was originally discussed in Ref.@1#.

V. SUMMARY

To conclude, we have considered the high detuning li
of the atom-field interaction in a microwave cavity. A spl
ting of an initial coherent state arises, generating an inco
ent binomial superposition of the coherent states on
circle. In the case of a weak splitting, the initial state spre
e
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quasicontinuously in phase, giving rise to the effective ph
diffusion when the final state of the atom remains unknow

We also have proposed two different schemes for gen
ating coherent superpositions of CS inside a microwave c
ity. The schemes are based on effective dispersive inte
tions that arise both in the large detuning limit and in t
strong field limit of a quantum field interacting with a
atomic collection of two-level atoms. Experimental realiz
tions of both proposals are closely related to the microw
regime of cavity QED. The present experimental setups
mainly focused in the field of small amplitude,uau2;10
@18#. Thus, at the present state of the art of experiments o
the dispersive regime arising from the large detuning lim
appears to be well suited for an experimental realization
this case some difficulties appear on the initial atomic pre
ration, which in principle can be overcome for few atom
@19#. The others parameters are in good agreement with
ported experimental setups@6#. The current interest in smal
field amplitude has as its main goal to emphasize some q
tum features of atom-field interactions. However, in princip
there are not inseparable experimental difficulties in achi
ing the dispersive regime in the strong field limit. Also, i
teraction of many two-level atoms with a quantum field in
driven microwave cavity has been recently reported@20#.

The proposed method for generating a coherent supe
sition of quantum states can be directly mapped onto exp
ments in laser-cooled trapped ions, in the corresponding
persive interaction limit. In this case the superpositi
corresponds to the vibrational mode of a single ion and
measurement must be performed at the ionic level@21#. The
interaction of a collection of two-level atoms with a quantu

field in the weak field limit (An̄!A) provides an interesting
mechanism for measuring the field density matrix eleme
This corresponds to the inverse problem of this paper. I
presently being studied and will be published elsewhere.
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APPENDIX

In this Appendix we include a brief derivation of the e
fective evolution operator given in Eq.~3.4!. The starting
point is the Dicke Hamiltonian@9#, in the standard dipole and
rotating wave approximations, which reads as follows~dis-
regarding a constant term!:

H5DSz1g~aS11a†S2!,

where the collective atomic operators are defined in
~3.2!, and a and a† are usual field operators. This Hami
tonian can be rewritten as

H5DSz1g0~qSx2pSy!, ~A1!

with g05&g and
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Sx5
1

2
~S11S2!, Sy52

i

2
~S12S2!,

~A2!

q5
1

&
~a1a†!, p5

i

&
~a†2a!.

Now, we apply the following unitary transformation:

U15exp~ ifSx!.

Under this transformation and assuming thatf is a small
parameter Hamiltonian~3.1! goes to

H15U1HU1
†

5~DSz1g0U1qU1
†Sx2g0U1pU1

†Sy!

1~DSy1g0U1pU1
†Sz!f, ~A3!

where we have performed a series expansion up to first o
in f. We choose the parameter asf5(g0 /D)p, with this
choiceH1 explicitly reads as

H15DSz1g0qSx1
g0

2

D S Sx
21

1

4
@p2Sz1Szp

2# D .

The effect ofU1 transformation is a partial elimination o
atomic population transfer due to the interaction with t
field, i.e., the contribution of the term proportional topSy is
ve
.
,

t.

,

e,

et

S.
er

canceled out. By following the same procedure we perform
next transformation toH1 , which is given by

U25expS i
g0

D
qSyD .

Applying this new transformation the Hamiltonian reads a

H25U2H1U2
†

5DSz12
g2

D
nSz1

g2

D
~S22Sz

21Sz!

1
g2

2D
~S1

2 1S2
2 !1OS 1

D2D . ~A4!

The last term in the above equation does not affect es
tially the system dynamics and can be removed usin
rotation-wave-like approximation. If we consider this term
a perturbation to the first two, one can note that the fir
order correction to the eigenvalues vanishes and the sec
order correction is of order (g/D)3. Finally, the system
Hamiltonian takes the form~3.4!. One can easily see tha
dynamics of any observable will not be affected by the tra
formationsU1 and U2 , because these transformations a
time independent and would only introduce small correctio
to coefficients. The time range where the HamiltonianH2
well describes the system dynamics is defined by negle

terms and one can show that it is of orderAt(An̄g0)3/
D2!1.
d
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