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Effective potentials for dilute Bose-Einstein condensates
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We present a theoretical formulation of trapped, dilute Bose-Einstein conde(BEE's) at zero tempera-
ture based on ordinary Schiinger quantum mechanics. By a judicious choice of coordinates and of a varia-
tional trial wave function we reduce the many-atom problem liogar Schralinger equation that is easier to
handle and interpret than the usual nonlinear Sdinger equation of BEC theory. Ordinary quantum mechan-
ics then reproduces, semiquantitatively, many of the main features of zero-temperature BEC, including the
critical number of atoms in a condensate with negative scattering length. The procedure is similar in results, but
completely different in spirit, to recent variational approaches to solving the nonlineardBujeo equation.
Moreover, the present procedure represents a step in a systematic alternative method for computing quantita-
tively accurate wave functions for trapped bosonic atoms.
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I. INTRODUCTION wavelength of its neighbors. In this case the individual atoms
are not resolved, and we expect that the gas will be de-
Many-body quantum-mechanical systems continue to rescribed, at least at some level, in terms of just a few degrees
quire new points of view to appreciate their behavior. Someof freedom. A main goal of this paper is to reduce the con-
times phenomena can be understood in terms of essentialfiensate’s description to motion insingle collective coordi-
independent-particle pictures, such as Rydberg electrons imateR, which represents roughly the extent of the conden-
atoms or elementary conduction in a simple metal, which issate. Many condensate properties are described, at least
explained fairly well with a Drude model. On the other hand,qualitatively, by motion in the single coordinafe
some physical systems exhibit very strong correlations, such The diluteness of atomic BEC also assists in understand-
as the electrons and lattice ions in high-superconductors. ing it in simple terms. Being dilute, atomic BEC differs little
A full understanding of these materials still eludes physicist§rom the gas that would be trapped if the atoms had no in-
after a decade of effoftl]. teraction at all, i.e., in an independent particle picture. The
In between these extremes lies another class of manyroperties of BEC are thus amenable to treatment by pertur-
body systems, whose motion genuinely involves coordinate®ative methods. This situation stands in stark contrast to, say,
motion among the bodies, but which can be described by guperfluid helium, which is dense enough that perturbation
few gross features. Thus in statistical mechanics the movegheory proves inadequate.
ments of 18° atoms can be accurately summarized in terms The perturbation theory of choice these days for address-
of a few thermodynamic variables. Another example is afing atomic BEC is field theory. This approach begins with
forded by the spectra of “superdeformed” nuclei; whateverthe independent-particle premise that individual atoms in
many-body physics goes into producing these states, in th@efinite single-particle orbitals of the trapping potential are
end their spectra are described simply in terms of highlyfree to interact. The appropriate set of orbitals is then deter-
elongated rotorf2]. This circumstance does not preclude themined self-consistently by accounting for the influence of
need for full many-body calculations of these spectra, but i&toms in one orbital on those in another. For atomic BEC a
does go a long way toward organizing the phenomena in ougentral theme that has emerged is the mean field theory,
minds. which produces the Gross-Pitaevsi®P) equation, or non-
Another tractable many-body system that has emerged iinear Schrainger equation|4]
recent years occurs in degenerate gases of alkali-metal at-
oms, cooled and magnetically trapped at sub-microKelvin (T 1)
temperatures. At the lowest temperatures, these gases un- i% '
dergo a phase transition and become Bose-Einstein conden-
sates(BEC's) [3]. In the limit where the temperature van- 5
ishes, these gases no longer have a thermal component, and +(N=D)U[|(F,t)|20(F,1). (1.9
emerge as essentially a single lump of quantum stuff. In the
resulting many-body system the individual bodies do notHere m stands for the atomic mash, the number of con-
matter so much, since each atom lies within a deBrogligdensate atoms, andy,, the potential due to the trapping
field. The interatomic interactions are summarized in the fi-
nal term on the right-hand side, whete= 47%%a/m anda
*Electronic address: bohn@murphy.colorado.edu is the two-bodys-wave scattering length between two atoms.
"Present address: ITAMP, Harvard University. The nonlinear term in Eq1.1) arises becauserapresenta-
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tive atom, with wave functiony, feels the presence of the Il. FORMULATION
rest of the atoms according to their density, which is propor-
tional to (N—1)|]. Thus the mean field theory replaces a

many-body wave function with a simpler function, the meang, o jcajly symmetric harmonic oscillator potential with an-

field , which has now to be extracted from the nonl|neargu|ar frequencyw. The traps currently used in experiments
Ea. (1-1)-_ ) are not spherically symmetric, but this restriction does not
Equation(1.1), though nonlinear, has been solved by aaffect our description of the qualitative features of the con-
number of group$5—12. These solutions, along with suit- densate. We will also assume throughout that the atom cloud
able generalizations, have quantitatively reproduced a nums at zero temperature. Thus our approach will be that of
ber of observed condensate properties, such as ground-staj&linary Schrdinger quantum mechanics, in that we seek
shapes and energeti¢$3], excited state spectrfd4], and  energy eigenstates of thé-boson system. The fuM-body
coherence properti¢45|. Field-theoretical methods are also Hamiltonian of this system then reads
making headway in understanding how these properties
change at nonzero temperatufés). 2 N Ny
Further, Eq(1.1) makes predictions concerning the insta- _ =2 S 2.2 __—
bility of condensates whose atoms experience a net attractive H="3 2 Vi +Z 2 Mt ﬂ; Uind T =13),
interaction, as embodied in a negatigewave scattering (2.1
lengtha. An infinite, homogeneous condensate with attrac- o o ]
tive interactions proves unstable against collapse into a mucf{hereUiy stands for the pairwise atomic interaction poten-
denser, nonsuperfluid stafé7]. However, Doddet al. [7] tial. We feel free to ignore three-body and higher-order in-

have noted that a condensate confined to a finite region aferaction potentials, again invoking the diluteness of the gas.

space can exploit the kinetic energy of its confinement tg/Ve are in principle interested in solving the Sairger

stabilize itself, at least if the number of condensed atom§qualtlon with this Hamiltonian,
remains below some critical numbBk.. A number of au-
thors have predicted this critical numidé,7,18,19, and in- Hp(Fy,Fpy oo FN)=EW(F,F, ... Fn). (2.2
deed, experiments at Rice University seem not to produce
condensates containing larger numbers of ati?d Such a  Equation(2.2) represents a second-order partial differential
condensate is regarded as metastable, however, and subjeguation in N coordinates, whose solution must moreover
to decay by a sort of macroscopic tunneling of the condensatisfy an elaborate set of boundary conditions incorporating
sate through an abstract potential barfit]. the correct two-body wave function whenever any two atoms
A second major goal of this paper is therefore to emp|oyapprogch one another. It is an equation that can be “splved
our one-coordinate reduction of the condensate as an altefully” in only a handful of experimental BEC laboratories
native way to visualize what happens near this instabilityaround the world. _
Our model identifies a single coordinale essentially the On the other hand, present-day experiments only probe
mean condensate radius, as being most relevant to the gro$t lowest several members of the spectrum of(B), and
features of the condensate. In what amounts to first-orde?® experiment probes the condensate on the level of indi-
perturbation theory, we average over all other coordinates dfidual atoms. Indeed, to zeroth order the condensate is fea-
the full many-body wave function, yielding an effective po- tureless and d_escrlbed only by_lts size. This motivates us to
tential V(R) for the condensate’s motion R. A number make a coordinate transformation, where one of the coordi-
of authors have also recently exploited the utility of an ef-nates is the root-mean-squared radius of the atoms from the
fective potential concept, with great succf848,21-23 In  trap’s center:
all these cases, the authors solve Bql) approximately by
introducing a trial wave functior(often a Gaussignand 1 12 (4 12
mapping the variational energy as a function of its width. R —2 miri2 :(NE rf) . (2.3
Our model chooses an alternatlvg many-body trial wave S m, i i
function on different grounds, which nevertheless closely i
mimics the results of the other variational approximations, in
particular by predicting the same critical number. This kind of parametrization has a distinguished history in
Our model takes a further step, however, inasmuch as thghell-model calculations of nuclg25,26. It has also played
effective potential we derive really is an approximate potena fundamental role in understanding exotic multiply excited
tial in a real physical coordinate. We can therefore solve thétates of atomg27], as well as reactive scattering in quantum
resultinglinear Schradinger equation iR, whose results are chemistry{28,29. For the purposes of the present article, we
in surprisingly good agreement with more accurate manyemploy the associated methods in a rudimentary way, with
body approaches. Moreover, we arrive at our trial wave functhe understanding that a more elaborate treatment is of
tion from a systematic procedure that can be extended be&ourse possible and ultimately desirable.
yond the simple model presented here. The present model Mathematically R denotes the hyperradius of a
can then, in principle, be extended to a larger variationa[3N—1)-dimensional hypersphere in theNa&limensional
basis set, which should ultimately yield quantitative resultsconfiguration space of thBl atoms. Alternatively one can
Our third goal is then to introduce this systematic method, ayiew R? as proportional to the trace of the moment of inertia
a basis for further work along this line. tensor of the atom cloud. The remaining3 1 atomic co-

We consider a collection dfl identical bosonic atoms of
massm confined magnetically in a trap approximated by a
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ordinates are thus given in terms of the set of hyperanglesyamely, we note that the atoms interact on scales less than
collectively denoted by}, that parametrize this hypersphere. ~10 nm, whereas the typical mean interatomic spacing is
Considerable freedom exists in choosing these angles, angleater tharn- 100 nm. Thus as two atoms, let us say 1 and 2,

several different conventions appear in the literatiB8—  approach each other, the dependence of the many-body wave

33]. We will adopt the convention of Ref31], the relevant  function y(r; 7>, . .. Fy) will be essentially independent of

aspects of which we summarize in Appendix A. coordinatesfs, . .. fyy. Moreover, its dependence on the
Having made the transformatiofiy( ... Fn)—(R.{2),  differencer, -, must reproduce the correct scattering wave

we can likewise transform the Hamiltonid@.1). Carrying  fynction of the pair of atoms. But again, nothing is resolved

out the transformation of the Laplacian, the kinetic energygn the 10-nm scale in a condensate, so all that really counts

becomeg32] is the “long-range” behavior of this two-atom wave func-
tion, i.e., the scattering phase shifts. On scales larger than the

52 1 J J 2 10 nm scattering region, we can recover the s-wave scatter-
— [ R3N-1_ | ing phase shift from a contact potential of the forga]
M| goN-1 aR( R R Rl (2.9 ap p
In this expressioM = mN is the total mass of the atoms, and
A stands for a “grand angular momentum” operator, defined ___ 4mhla
analogously to a three-dimensional angular momer{t3@h Uin(F1—F2)= O(F—=F3); (2.7
2 2 J J
A== A%, Ay :Xio—,_xj_xja_xi (2.5 we therefore adopt this form fdd,, in Eq. (2.1). The sim-

= plicity of Eq. (2.7) conceals the fact that a three-dimensional
for all Cartesian components of the 3N-dimensional vec-  delta-function potential is too singular to admit an analytical
tor (Xq, ... Xn)=(F1, ... fay). Further, the oscillator po- solution. In fact, Eq.(2.7) reproduces the scattering length
tential transforms easily into only up to terms in the gradient @f. The subtleties involved

in going beyond this approximation are treated 35—37.
Nevertheless, for weakly interacting atoms we believe this
approximation is justified. Note also the similarity of Eq.
(2.7) to the interaction term of the nonlinear Schimger
equation(1.1).

To evaluate the interatomic interaction part of the Hamil- The transformed Schdinger equation reads, after multi-
tonian, we again exploit the diluteness of the condensateplying ¢ by REN"1"2 tg eliminate first derivatives iR,

N1 o,
; SMor?=-MoR?. (2.6)

#  (3N—1)(3N—-3) A?| 1 Anhla
A A )_A + =M w?R%+ D, il
IR? 4R? R?| 2 < m

8(F—7)—EIREN" V2R O)=0. (2.9

So far the transformation has not bought us very much, sincelaborate to evaluate and work with, but fortunately we do
Eqg. (2.9 is still a partial differential equation in!8 vari-  not need many of their detailed properties. We refer the in-
ables. We proceed from here by expanding the wave funderested reader to the literature for det§84—33.

tion into eigenfunctions of thé? operator. These functions Our construction of the approximate solution to E2,.8)
have been thoroughly studied in the literati@l—-33,  starts from an expansion of the wave function into the hy-
where they go by the name of “hyperspherical harmonics.”perspherical harmonics, which form a complete set on the
Their eigenvalue equation reads surface of the hypersphere:

A?Y) ,(Q)=X(A+3N=2)Y, ,(Q), (2.9
(3N—1)/2 _ Nomo

wherex=0,1,2 ... denotes the order of the harmonic. The R ¥(R.Q) % P (RY(0). (210
second indexu stands for the set of additional quantum
numbers required to index tigenerally very largedegen-
eracy of harmonics with the same valuexof The harmonics Here the indices\gu label the linearly independent solu-
Y, are multidimensional extensions of the familiar spheri-tions to the Schrdinger equation; for notational simplicity,
cal harmonics; note that for a single partible= 1, the eigen- we will leave them out in what follows. This expansion re-
value in Eq.(2.9 reduces to the familiak (A +1) in three  duces Eq.(2.8) to a set of coupledbrdinary differential
dimensions. The hyperspherical harmonics can be quitequations
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#2| d>  (3N—1)(B3N—3)+4A(A+3N—2)
dR? 4R?

[ 4mhla

1 2p2
+5Mo?R? [ Fy,(R)

+ 2

)\/M/

>

i< m

(Al 8(Fi=DIN" ") [Fyr o (RI=EF ,(R). (2.1

The radial functions in this system satisfy the sniall- we use its exact value in calculations, we will replace it in
boundary conditions the formal expressions below by its asymptotic value
£~1.837. Note that Eq2.14) is qualitatively in accord with
Fru— RNV, 6., @8 R—0, (212 the mean field theory: each atom sees the rest with a mean
_ ) ) ] ~ energy ~(a/m)n, with number densityn~(N—1)/R®,
reinforcing the fact that Eq2.8) is separable in hyperspheri- since each oN atoms sees the same thing, the total energy
cal coordinates at smaR. The interaction term is now em- of interaction scales as aN(N—1)/mR, as in Eq.(2.14).
bodied in the matrix elements This idea had already been articulated by Kagaal. [10],
and by ShuryaK18], who were among the first to quantify
(7\M|5(Fi—Fj)|)\'M'>EJ dﬂyf#(Q)g(r”i—FJ.)Y)\,#,(Q), thes.e notions. _ . . . )
Finally we arrive at the effective one-dimensional Sehro
(213 dinger equation in th&-harmonic approximation for the

with the integral taken over the hypersphere of ra®ughe ~ condensate wave function:
integral (_2._13) will generally depend OIR. 52 g
If sufficiently many harmonics are included, Eq&.11) o u
can be used to extract the condensate spectrum from this 2M ¢R?
linear system. Of course, a vast number of harmonics would
be required to account in detail for the motion of every atomdescribed by the effective potential
but again, the gross features ought to emerge from a much
smaller expansion. In particular, we will explore in this paper A% (3N—1)(3N-3) 1

+Vei(R) |[F(R)=EF(R), (2.153

how well we can do by truncating the sum in Eg.10 to a Ver(R)= M AR? + EM R

single term. In nuclear theory, this is known as the

** K-harmonic” approximatiorf31]. We will use this term to 1 #2a N?(N—1)

distinguish the present treatment from more complete hyper- + M T (2.15h

spherical calculations to which we will sometimes refer. The

nat_ural choice for a_smgle harmonic ¥y (i.e., )‘:0).’ We have cast Eqs(2.195 in terms of the total mas#/
which has no nodes in any of the hyperangular coordlnates:mN emphasizina that this equation approximates the
Q. It therefore represents the longest-wavelength diswr(quant’um—m%chanicgl motion of tr?e condenp&ea whole
bance in all coordinates exc and should best represent C :
the smooth blob that is the ?ﬂ’ndensate’s ground sp(EteI Unsurprisingly, forN=1, Eq.(2.19 reduces to the equation
R ) . _for the radial motion of a single atom with zero angular
those having little intuition about hyperspherical harmonlcs,mOmentum in a harmonic oscillator potential
it may be far from clear that this approximate wave function i

: ) . S X One essential feature of E(R.15H bears emphasizing.
is sensible. We hgve tested it by plotting |t_alon95|de g_roundEven when all condensate atoms are presumed to have zero
state wave functions from the GP equati@nl), and find

that the two solutions are both nodeless in the hyperradiu angular momentum about the trap’s center, there remains an

and are remarkably similar at most hyperradii. Note also th frective centrifugal barrier, represented by the term propor-

. 2 . . . _
this description becomes exact in tRe-« limit, since the lonal to 1R" in Eq. (2.150. This term summarizes con

. . . S cisely the kinetic energy cost of confining all atoms within a
L:\tﬁlr?azc;lon dies off as B, faster than the kinetic energy small region near the center of the trap, in accordance with

. . . : . the uncertainty principle. This energy is directly responsible
We evaluate the interatomic interaction matrix element in; stabilizing )gr? atorrr)ﬂc condensatgeywmo agains'?col-
Appendix B, arriving at the result

lapse.
>

T'(3N/2)

7 In this case hyperradial solutior’,, (R) of Eg. (2.195 can
I'((3N—3)/2)N

Amhla We illustrate in Fig. 1 the general features\Gf(R) ver-

2 (00| 8(r;—r/)|00) sus R (in units of the harmonic oscillator length scale

<o m Vi/mw) for various values of the scattering lengih The
\/Thza N(N—1) heavy line show¥ . for a=0, i.e., the noninteracting limit.

2m.m R® be written analytically in terms of generalized Laguerre

(2.14 polynomials withy radial node$31]. The quantum numbers

X, \, andu then completely characterize the eigenstates of

The expression in square brackets, depending on gammni noninteracting atoms in a harmonic oscillator potential,

functions, is nearly independent bf for N>10. Although  with energy eigenvalugs31]
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— K-Harmonic Model
5F  ------ Hartree-Fock Approximation
--------- Thomas-Fermi Approximation -

Effective Potential V. (arb. units)

Energy/Atom - 3hv/2 (oscillator units)

2 N 1 . 1 . 1 s 0 R 1 N ! . 1 N L . 1

0 1 2 3 ] 2000 4000 6000 8000 10000
Hyperradius R (oscillator units) Number of Condensate Atoms
FIG. 1. Schematic of the effective potentiaV.«(R), Eq. FIG. 2. Comparison of the&k-harmonic, Hartree-Fock, and

(2.15h. The heavy line represents the case where the scatteringhomas-Fermi estimates of the ground-state energy, for a conden-
lengtha=0; its levels reproduce a subset of the harmonic oscillatorsate witha=100 bohr, and trap frequenay=200 Hz. The energy
|eve|s’ as detailed in Appendix C. Far-0 ora<Qo, Veff becomes EO is plotted in the fOI'I'TEO/N_?)h V/2, to emphasize the contribu-
more repulsive or more attractive, as the upper and lower curvetion of the energy beyond that in the noninteracting case.

indicate.

Ill. POSITIVE SCATTERING LENGTH CASE

EX)\:h(,()

2x+n+ 3_N) ¥=012... . (2.16 For positive values of the scattering lengththe conden-

sate energies deviate from those of the noninteracting con-

densate as the gas pushes harder against itself and against the

walls of the trap. For definiteness we consider in this section
The associated eigenfunctiofs,, (R)Y, ,({2) constitute a  a trap roughly approximating that in the JILERD experi-
complete set, over all of configuration space, into which soments, takinga=100 bohr, and a trap frequeney= 200 Hz.
lutions of the interactindN-body problem can be expanded For this case, we show in Fig. 2 the condensate’s basic fea-
[38], although we will not do so in this paper. Appendix C ture, namely, its ground-state energy. Here the enEggfior
details how the degeneracy of eigenstates with eng@gyp N atoms in the condensate is represente@@N —3hv/2,

equals the degeneracy expected from treating the problem # emphasize the deviation from the ideal gas result. The
Cartesian coordinates. solid curve shows this gquantity, versus the number of con-

For nonzero scattering lengti acquires either a repul- densate atoms, according to theharmonic model. Below
sive (@>0) or an attractive d<0) interaction contribution, thiS curve lies the result of the Hartree-FokF) approxi-

as indicated by the curves above and below the heavy curv@?at'ot.n regriseﬁmitue solut!on to.the nol_nllnear S?I"@Er
respectively. Fora<0 the condensate is only metastable,tehqz;a(;??ée' IEI.F' s(ianc;a %:)Thor;;:eei;&%tgn;?i;]cousl;ﬁoisovv?/e
living in the local minimum only until it tunnels through a ' '

otential barrier to the smaR-region, where it accelerates conclude, not surprisingly, that the HF approximation is
p . . gion, X > more accurate. Also plotted, as dotted lines, is an estimate
inward to regions of configuration space with large radial

L . , s arising from a Thomas-FermiTF) approximation, which
kmetllc_ energy. We \_N|II ret_urn to t_h|s metastability in some ¢\ eq Eq.(1.1) by ignoring kinetic energy altogethée.g.,
Qetall in S_ec_. IV. This basic physics of course also emergeRet. [5]). For a modest number of atoms, tKeharmonic
in the variational approaches £8,10,18,21-2) Our own  moqe| is comparable with the TF approximation, although
treatment is unique in assessing variationally the many-bodyg \works better for largeN, as it should. Considering the
Schralinger equation2.8) itself as opposed to the GP equa- yast number of terms that have been neglected in the expan-
tion (1.1), resulting in a physical potenti&2.15h in a real  sjon (2.10), this agreement is already quite encouraging.
coordinateR. In fact, the K-harmonic approximation actually fares

In a more complete calculation, there would be numerousilightly better than the variational approach of, say, Stoof
additional potentials lying below ., accounting for atom [21], and others like it. To see this, note that a Gaussian
clouds in which atoms have recombined into molecules andolution of the GP equatiofl.1) implies a many-body trial
clusters[43]. These curves are similar in shapeMg;, but  wave function of the form exp(rf/qz)---exp(—rﬁ,/qz), ie., a
are shifted down by energies corresponding to the moleculaBaussian function of hyperradius, exp{Re/q?). Our trial
binding energies, which are enormous on the scale of tragave functionF(R), by contrast, remains amdetermined
energies. Moreover, an accurate description of these potefiinction of hyperradius, and should thus be more flexible,
tials would entail hyperspherical harmonics with large num-arriving at a slightly better result. This turns out to be the
bers of nodes, to account for the close proximity of atoms ircase, although th&-harmonic energies are lower than the
the molecules; accordingly, we ignore these potentials heréaussian variational energies by only about 1 part ih 10
If calculated, these potentials would illustrate in more detail Furthermore, we note in passing that some regimes even
the fates of atoms lost to inelastic processes. exist where theK-harmonic approximation is slightlipwer
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81 K-Harmonic Model 18 This approach treat? as an adiabatic coordinate and solves
L ¢ Random Phase Approximation 1, Eq. (2.8 “exactly” after neglecting the hyperradial kinetic
energy #%/R?. This calculation produces a set of
ey . 16 R-dependent potential curves analogous to, but containing
sl M A s more physics than, the single-harmonic approximation repre-

sented by Eq(2.15h. Qualitatively, the spectrum of Fig. 3
e e o o e o o o o o 3¢ persists: The adiabatic hyperspherical model predicts that all
excitation frequenciescreasefrom the noninteracting fre-
quencies, while the RPA predicts that only the first excitation
a1, frequency is higher. It is unclear at present how much the
“exact” adiabatic hyperspherical results will be altered by
the addition of nonadiabatic effects, though their addition
would provide a numerically exact solution with which to
compare mean-field results. For now the lesson to be learned
Number of Condensate Atoms is that, even in thé-harmonic approximationy.«(R) ap-

FIG. 3. Comparison of th&-harmonic and random-phase ap- Parently mimics the appropriate shape of the condensate’s
proximations to the low-lying excitation frequencies of the same€ffective potential minimum reasonably well.
condensate as in Fig. 2. This figure considers only excitations of As a third test of theK-harmonic model's quantitative
spherical symmetry. The two approximations agree quite well foraccuracy, we can also calculate the peak density of the con-
the first excitation, but disagree even on the trend with increading densate. As we will see in the next section, this density will
for higher excitations. have a bearing on the nature of the condensate’s instability

whena<0. To this end we recall the form of our many-body

than the Hartree-Fock result, namely, for extremely tightwave function,
traps and small numbers of atons.g., fewer than about
seven atoms In this case, when the dimensionless parameter . . F(R)
(N—1)a/JAi/mw~0.1, theK-harmonic model slightly out- P, oo ) =Yool Q) R(GN-1)/2’ (3.3)
performs the Hartree-Fock model. This is, of course, not a

physical regime yet, and so this result rem_ains a curiou;itywhereF(R) is the solution of Eq(2.15 that vanishes aR
The K-harmonic model can also approximate the excita-— o The wave functiony is normalized to unity over the

tion frequencies of the radial breathing modes, as illustratedtire aN-dimensional configuration space. To define a num-

in Fig. 3. The solid lines represent tiieharmonic results, pq, density, we evaluate the “density operatc;s(F — ;)
while the points result from the random-phase approximation, ihe state(3.1):

(RPA), which surpasses the HF approximation by incorpo-

1k 41

Excitation Frequency (oscillator units)

0 R 1 R 1 R ) N 1 0
0 2000 4000 6000 8000 10000

rating some correlation between the HF orbitgld]. The

first excitation frequency agrees nearly perfectly between the p(F)EJ d3rq - dBryg|e(Fy, ... ,FN)|22 8(r—ry),
two models, while the higher ones show significant discrep- : 32
ancies. The behavior of thkK-harmonic model is easy to 32
understand: Higher states in the spectrum, which extend Qhich satisfies
smaller values oR, feel more strongly thépositive contri-

bution from the 1R® interaction term, thus driving them

higher relative to the ground state. In other words, for a J’ d3rp(F)=N. (3.3
breathing mode, the greater the excitation energy, the closer
together the atoms will comen massgincreasing the effects

of their interactions.

This simple interpretation, while applicable to the o
K-harmonic approximation, is obviously wrong in real life. p(O)=Nf deF(R)|2f dO3NY oo Q)|28(FN),
Observed excitation frequencies invariably fall with increas- 0
ing N in anisotropic trap$14]. Moreover, most other calcu-
lations (e.g.,[11,39—-42) show diminishingexcitation ener-
gies with increasingN. This circumstance points to a
limitation of the K-harmonic model: while it gets something tegral in Eq.(3.4) is similar to that for the interaction term,

rlgh_t about the radial energies, it is propably deficient in tS1nd is evaluated in Appendix B. The result is
ability to model the correct shape of excited-state wave func-

tions. This deficiency will of course be ameliorated when £ (= |F(R?

more terms of the expansid2.10 are incorporated. p(0)= N_f dR—5—. (3.5
The disagreement between the hyperspherical and RPA w32J)o R

approaches is not limited to the relatively crugiénarmonic

approximation employed here. In fact, for three atoms in aNote in particular that the peak densityrist proportional to

trap, a hyperspherical calculation can be performed witlRCN"Y|F(R)|?dR at R=0, which describes instead the

guantitative accuraciy43,44). Viewed in the present context, probability thatall atoms are found together in the center of

such a treatment in effect takes all harmonics into accounthe trap.

The peak number density is then given by

(3.9

wherery is a representative atom coordinate and the sum
overi is replaced by the prefact®d. The hyperangular in-
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FIG. 4. Comparison of th&-harmonic and Hartree-Fock esti-
mates of the peak density of the condensate considered in Figs.
and 3. The densities are normalized by the number of atoms, t
emphasize the deviation from the noninteracting litgitown as the
dotted line.

FIG. 5. Schematic of the effective potentigl; for an attractive
eszective interactiona<<0. The solid curve represents a case where
the number of atoms! is just less than the critical numbbt, and
a metastable condensate can exist in the potential’s local minimum
near R=1. This minimum therefore identifies the “metastable”

) o region of R, separated by a potential barrier from the “collapse

Figure 4 plots the peak number density in a condensatggion,” where the atoms are strongly attracted to the trap’s center
versus the number of condensate atoms, in both thgy a 1R3 attractive potential. The dashed line illustrates the case
K-harmonic and HF approximations. This density is normal-whereN>N,, andV4 no longer possesses a local minimum. Com-
ized by the number of condensate atoms, to emphasize thare to Fig. 2 of Ref[22].
difference from the noninteracting limitvhich is a constant
when plotted this way, as showrThe K-harmonic model ordinate. Using such an analysis, Stoof identifies a potential
thus accounts for most of the effect of interaction, everenergy functionalEq. (21) of [21]] that enters into his field-
though its density overshoots the correct density be nearly #eoretic treatment of metastable condensates. This func-
factor of two. The difference is a further indication of the tional has essentially the same form as our effective potential
inadequacy of thansatzwave functionF (R)Y(Q) to de- (2.15h. Other authors have followed suit, arriving at similar
scribe the true wave function in detail. As we will see in the€nergy functional§22—24. In particular, Peez-Garca et al.
next section, th&-harmonic approximation fares much bet- produce a figure essentially equivalent to Fig. 5. Shuryak
ter for a<0 condensate wave functions. plots a similar quantity, namely, an energy versus the central

density of the condensaf&8]. In all these cases the tunnel-
ing of the metastable condensate is viewed as an abstract
IV. NEGATIVE SCATTERING LENGTH CASE process in a multidimensional field space of the possible con-

In this section we consider<0, and choose trap param- densate wave functions. The hyperspherical approach, by

eters that approximate the conditions in tH experiments contrast, identifies a simple physical potential along a single
at Rice [20]. Namely, we seta=—27.3 bohr[45], and adiabatic coordinate, and views the tunneling in the usual

v=(vxvyv,) = 144.6 Hz, as has been done previoydlg]. quantum-mechanical sense. .

In real life, especially close to the critical number, the con- . Once the condensate enters t'he collapse region, our
densate is expected to be very nearly sphefighlWe plot _S|mple model can no longer foII_ow it. The re_al phy_3|cs will
in Fig. 5 the general behavior &f, for N near the critical involve enormous inward Tad'?" z_icceleratlons, increased
number._ When<, (S0l 100 Vy possesses a lcal 0T COlon s, recombinaton i moecuies anc e
minimum that characterizes the “metastable region,” where . > ' ’

a metastable condensate lives, stabilized by tR2 ffec- initial tunneling event that leads to this collapse. One major
tive centrifugal repulsion. At sn,]aIIeR lies a potential bar- guestion regarding unstable condensates is, what is the na-

. ; i ise?
rier that separates the metastable region from the “collaps%ure of their dem|se_. Dodet ._al. [7] have argued that long

L T . . efore a macroscopic tunneling event swallows the conden-
region,” which is dominated by the attractiveRE/ compo-

nent of V. As N grows, so does this component, until at sate, two- and three-body losses will eject sufficiently many

N~ N, the barrier vanishes altogether, as does the metastabl"flt-%omS to restabilize the cloud. Ueda and Legg2d], fol-

. ! . owing a lead from Kagaret al. [10], have recently argued
region. FOrN>N, (dashed cunjeVey is _purely attractive, that macroscopic tunneling can indeed be the faster process,
implying that the condensate cannot exist even metastably

. S ; ; when the number of atoms is very close to the critical num-
The argument of balancing kinetic and interaction ener- y

: . . ber. In this section we will arrive at the same conclusion
gies to stabilize condensates is not nE.f_lm,l&Zj]. It has_ within the K -harmonic model.
generally been approached by assessing these energies as
they vary with the width of a variational trial function used
to represent an orbital in the full condensate wave function.
The width of this trial function, often of Gaussian form, rep-  Ouir first task is to estimate the maximum number of iden-

resents in this case a variational parameter rather than a ctieal bosons with negative scattering lengths that can be con-

A. Critical number
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densed. Within our model, we identify this critical number 1640
N, as the number of atoms for which the barrier height in
Vg coincides with the minimum in the metastable region.
(Strictly speaking, this approach will slightly overestimate -
the critical number, by ignoring the zero-point energy of the g E
metastable state. It makes nevertheless a pretty good a[
proximation) To simplify the discussion, we writé s+ as

tO
®
05
&

Energy (oscilla

— A 2 c
Ver(R) = 5+ BR+ —, 4.1

with N-dependent coefficients that are apparent in Eq.

(2.15h. The local maximum and local minimum of E@t.1) e w0 w0 w0 1o
coincide when the positive roots diV.;/dR coincide. Mul- Number of Condensate Atoms

tiplying by R%, we thus need to evaluate the positive roots of

the fifth degree polynomial 1640 -

dv,
4 eff
R dR

=2BR°—2AR-3C. (4.2 1638

Analytic expressions for the roots of a fifth degree poly- 5 "%

nomial are cumbersome, if indeed they can be determined &z
all [46]. However, we need only the condition guaranteeing & 1ga4
that the positive roots coincide, for which we can exploit a &
result of algebra known as Sturm’s theorp#], which pro-
vides an algorithm for counting polynomial roots. Sturm’s
theorem implies our condition is met when the coefficients of

Ener

1632

Eq. (4.2) satisfy 1630 s L s ' . L : '
1440 1450 1460 1470 1480
4 5 Number of Condensate Atoms
5 3*X5 4
= on C"B. 4.3 FIG. 6. A portion of the spectrum of energy levelsNswithin

the K-harmonic approximation, for a condensate witk —27.3

o . bohr and trap frequency=144.6 Hz. In(a) the dashed line corre-
Resubstituting the expressions far B, andC and as-  gponds to the value of ¢ at the top of its potential barrier. Below
sumingN>1, we arrive at an expression for the critical nUM- this jine, the levels denoted “I” correspond to wave functions lo-

ber: calized in the metastable region & depicted in Fig. 5. Their
energies rise slowly abl grows. The levels denoted “II” corre-

3\/_ spond to wave functions localized in the collapse region of Fig. 5.
<~ 5(5,4)5 |a| ~0.671 | | (4.4 Their energies drop steeply sincreases and the attractiveRE/

part of Vo« deepens. The dashed line thus represents the transition
] ] ] between these types of localization. Above the dashed line are lev-
where{ has been defined following E(R.14). This expres-  e|s denoted “III” that lie above the barrier, and so sample both the
sion has the usual dependence on the parametets, and  metastable and collapsing regions. (I, the lowest three meta-
a, and does reasonably well on the numerical prefactor. Thistable energy levels are extractgtle lowest, labeledE,, is also
value is 17% higher than the well-known value 0.573 ob-indicated by the heavy line ifia)]. Each excited level drops in
tained from numerical solutions of E@L.1) (e.g.,[7]). For  energy below the ground state as it tops the barrier and falls into the
the “Li trap parameters, th&-harmonic model predicthl, collapse region.
=1466, in excellent agreement with variational estimates
such as in[21,23. This is not surprising, since these ap- As N— N, and the local maximum and local minimum of
proaches and ours balance roughly the same kinetic and in/ coincide, we note that the second derivativevgf; will
teraction energies. vanish at the point of coincidence. This means, in turn, that
Notice also that introducing additional hyperspherical har+/ 4 has no curvature and hence no oscillation frequency to
monics, as in the expansid@.10, will influence primarily Iowest order. Here then is a classical explanation for the
the 1R3 part of the interaction, where off-diagonal matrix well-known “softening” of the condensate’s modes for
elements will appear in Eq2.11). In such a case our effec- 3<0.
tive potential will be obtained by treating as an adiabatic
coordinate, and diagonalizing Eqg2.11) after setting
d?F/dR?=0 in Eq. (2.11). This diagonalization will have
the effect of further deepening the collapse region relative to We now address some additional details of the
the metastable region, thus diminishiNg toward its correct K-harmonic model. Figure (6) shows some of the energy
value. levels in the potentiaM¢; versusN, which is taken as a

B. Adiabatic energy level spectrum
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continuous parameter. Because of thie*Igingularity ofV 002 L

at smallR, we are obliged to impose artificial boundary con- N= 1450

ditions to avoid the infinitely many nodes of a wave function oot

in this potential. We choose here and below to set the wave 0.00 F

function F(R) equal to zero at an inner cutoff poif s 002 = ' . ' . L . !

=0.6 oscillator units. This limit lies well within the collapse ' ' ' '

region for the states of interest. The form of the wave func- Z oo}

tion within the collapse region is of course unphysical, ow- §

ing to the complications of smaR-behavior neglected in the £ 000F

K-harmonic approximation. g 002 % ' 08 ' 10 ' 1o
Figure 6a) shows three distinct types of behavior in the 5 [

spectrum. In the lower left are leve{fabeled “I") whose E 001 [ N = 1460

energies rise with increasinly; these represent the meta- g 0.00 |

stable levels, whose energies grow slightly sublinearljn 3 I

owing to the net atomic attraction. In the lower half of the oo 06 08 10 19

figure (below the dashed lineare a set of levelglabeled 0.02 -

“II” ) whose energies decline with increasiNgthese stand [ N= 1470

for the unphysical bound states trapped within the collapse 000

region, and they get progressively deeper as this pavtpf 002 . . '

deepens. The dashed line in Figarepresents the height of ' 06 08 10 19

the barrier inVe; as N varies. This curve marks roughly Hyperradius (oscillator units)

where each metastable level becomes unstable against spill-

ing over the barrier. Above the dashed line lie levibeled FIG. 7. Metastable condensate wave functions for the conden-

“IlI" ) that therefore live only long enough to collapse. sate labeled by enerdy, in Fig. 6. As the numbeN of condensate

The lowest-lying of the “type 1” metastable levels is in- atoms grows, the condensate’s wave function is increasingly likely
dicated by a heavy line in Fig.(#, where it is labeled,. to tunnel through the barrier into the collapse region, until ulti-
This level stands for the metastable condensate’s “groundately the entire condensate wave function is dominatel s
state.” This curve is reproduced in Fig(ts, along with the  attractive 1R® potential.
energiesE, and E, of the “first two excited” metastable
states. When the number of atoms reaches the effective cri
cal number 1460, the ground-state enekyy exceeds the
barrier height, signaling the transition of this state from
“type I metastable to “type 1I” collapsing behaviorg,
then turns down sharply. Note that the excited-state energi
E, andE, make this transition for smaller numbers of atoms,
since they are higher in energy to begin with.

Figure 7 further illustrates this transition by plotting the  We can also extract the peak densities for metastable con-
condensate’s ground-state wave functie(R) for various densates from Eq3.4). This quantity is plotted in Fig. 9 and
numbers of atoms. FdI=1450 atoms, the barrier remains is compared to the Hartree-Fock result; both results are again
large, and the wave function is confined entirely to the metascaled by their respective critical numbers. The adequacy of
stable region. As the number of atoms rises, a portion of théhe K-harmonic model is much superior here to that in the
wave function tunnels through the barrier, increasing thea>0 case(cf. Fig. 4). This suggests that the hyperspherical
probability of a macroscopic tunneling event. Ro=1460  harmonicY, captures much more accurately the shape of
atoms, the metastable state’s energy is already at the top @fe true many-body wave function for the attractive case.
the barrier[see Fig. 6a)], and the wave function leaks The reason for this may be seen in the harmonic expansion
readily into the collapse region. For even higher numbers(2,11): when larger values ok are incorporated, they in-
N=1470, the formerly metastable state lies entirely withinclude a larger effective centrifugal barrier\?/R?. These
the collapse region, and no condensate exists. In these figurearmonics therefore have less to contribute to wave func-
the rapidly oscillating part of the wave function in the col- tions that occupy a smaller volume, i.e., which exist at
lapse region should be viewed as schematic, representing tRenaller hyperradiu®, which is the case for attractive con-
rapid infall of the atom cloud. densates. We therefore anticipate that a full-blown hyper-

We can extract from the spectrum the low-lying excitationspherical treatment will have an easier time handtrg0
frequencies of the metastable condensate, as plotted in Figondensates thaam>0 condensates.

8(a). We again compare thké-harmonic results to those of  From peak densities we can, in turn, estimate losses from
the random-phase approximation. Both methods show thghe condensate due to two- and three-body processes. Fol-
first excitation frequencies plummeting to zéoy below as  lowing Dodd et al, we identify a loss rate for ai-atom

the number of atoms approaches the appropriate criticalondensaté7]

number. This reduction in excitation frequency represents

the quantum-mechanical demonstration of mode softenin . .

for tﬂis system. Figure (8) replots the first excitation fre- ° FN:aNZJ d3r[p(r)]2+LN3f drlp(N. (4.5

{fluency versus thecalednumber of atom$N/N,. With this
proviso, the agreement betweknharmonic and RPA mod-
els is again encouraging, as was the caseafof. For the
second excitation frequency, the agreement breaks down,
é’gst as before.

C. Decay rates
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FIG. 9. Comparison oK-harmonic and Hartree-Fock approxi-
mation estimates of the peak condensate density for the condensate
considered in Fig. 6. As in Fig.(B), N has been scaled by the
appropriate critical numbeX,. Both models show a sharp rise in
density as the appropriate critical number is approached.

Rout 2M
, —— K-Harmonic Model o= f dR ? [Ver(R) —E]. 4.7
L . R

Random Phase Approximation in

This integral is taken between the inneR;{) and outer
(Royu turning points of the barrieE stands for the energy of
the metastable condensate. Stoof has also cast condensate
0 — ' metastability in terms of a WKB-like integrdR1], but he
00 02 04 06 08 1o argues the point in a very formal way, in terms of an energy
Fraction of Critical Number, N/N, functional for condensates of Gaussian shape. Stoof's analy-
FIG. 8. Comparison of th&-harmonic and random-phase ap- sis has the advantage, however, that it can also estimate tun-
proximations to the first several excitation frequencies ofake) neling rates fof cpndensates at nonzero tgmperaturt_as. Ueda
condensate considered in Fig. 6.(& the first excitation frequency @nd Leggett similarly introduce a WKB integral without
in each model plummets to zero as the critical number of eaciflualification, as if their variational width were a physical
model is approached. To remove the effect of different critical num-coordinate. In any event, the spirit is similar in all three
bers in the two modelgp) plots the first excitation frequency vs the @pproaches. To turn the probabilitd.7) into a tunneling

Excitation Energy (oscillator units)

scaled number of atomal/N.. rate, we multiply by the frequency of the condensate’s mo-
tion in the metastable part of the well, approximated by

For ’Li atoms trapped in theifF =2,M =2) states, the two- 1 1 d2v

body loss rate, primarily due to dipolar relaxation, ds = — /__eff(R i) (4.8

=1.2x10 ** cm¥sec[7] and the three-body recombination 2m N M grz = ™

rate is estimated to be=2.6x 1022 cm®/sec[48]. We fur-

ther approximate the total rate, in terms of the peak numbewhere R, denotes the position o¥4's local minimum.

densities, by Further, the macroscopic tunneling of the condensate takes
all of the atoms with it. To obtain a tunneling rate in atoms/
sec one then identifies a rate

4
In~{aN’[p(0)]%+ LNg[P(O)]3}§7T|3, (4.6) TUMel_ Ny exg —20). (4.9

Figure 10 plots the loss rates for the few-body and
whose last factor represents the condensate volume in M-body processes faX nearN.. The tunneling rate has a
sphere of radius one oscillator unitz VA/mw. This ap-  strong exponential dependence Wn whereby its influence
proximation gives loss rates of several hundred atoms peadrops to insignificance iN is even five atoms below the
second near criticality, in rough agreement with the results o€ritical number. Even accounting for order-of-magnitude un-
Dodd et al., but necessarily overestimatidg, in the crude certainties in the rates does not alter this basic conclusion.
approximation(4.6). The tunneling rate is plotted only up td=1460 atoms,

As our final point, we use thK-harmonic model to esti- beyond which even the metastable condensate’s ground state
mate the rate of macroscopic tunneling, for comparison witHies higher in energy than the barrier. This circumstance
the two- and three-body rates. To do this, we extract thédentifies N.=1460 atoms as the “true” critical number
WKB tunneling probability exp{20) with within our model.
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10'p V. SUMMARY AND PROSPECTS
1055' , We have demonstrated an alternative approach to the
] physics of the ground state of a trapped many-boson system,
~ ’ . from the point of view of ordinary Schdinger quantum
2 OF mechanics. We have selected a particularly useful variational
E trial wave function for the linear Schdinger equation(2.9)
< or that yields results similar to variational approaches to the
I nonlinear Schrdinger equatior{1.1) in common use in BEC
E . —— Two- and Three-body Losses . K . ..
g or / : ’ theory. This approximation produces surprisingly good quan-
=4 3 LR Macroscopic Tunneling - . .
= or titative results from a very simple model potential.
10% The present results are limited by our truncation to only a
r single term in the expansiof2.10. We anticipate that the
L L Ly A ——— results will improve as more of the expansion is included. If

10
1440 1445 1450 1455 1460 1485 1470 1475

we appeal again to the basic simplicity in the shape of the
Number of Condensate Atoms

condensate, we expect that the expansion need not contain
FIG. 10. The loss rate of atoms from the condensate due to twot00 many terms before accurately representing a number of
and three-body processésolid curvé and due to a macroscopic condensate properties. This approach also has the ability to
tunneling eventdashed lingfor the condensate considered in Fig. describe condensates in nonspherical traps, provided that
6. In this example the critical number = 1460. Until the num-  sufficiently many harmonics are included to represent the
ber of atoms reaches 1455 or so, the two- and three-body ratemnisotropy of the condensate. These extensions of the
completely dominate the loss. K-harmonic model are presently being consideizsl.
Finally, we remark that hyperspherical models are also
A linear fit of In(C™®) versusN vyields the dependence suitable for describing mixtures of condensed atoms of dif-
ferent species. In this case each spetissaccorded its own
tunnel_ _ hyperradiusR; , and the overall hyperradius can be given as
PN™~(2.7x10)exd LON=N,)] atoms/sec(,4 10 (M;+M,)R?=3;M,R?, with M; andM, the total masses
' of the two components. We expect this approach to shed

. B . , light on the stability of double condensatg®4,55, which
assumingN.= 1460. The exponent 1.6 is about three t'mespossess three independent scattering lengths.

larger than Shuryak’s estimate of 0.57, which was deter-
mined by projecting a Gaussian metastable wave function

onto a variety of trial wave functions for the collapsed state ACKNOWLEDGMENTS
[18]. Similarly, the WKB-like estimate of Stoof can be
evaluated to yield an exponent0.65. If we artificially ad- The work of one of ugJ.L.B) was supported in part by

just the interaction term o4 to yield the correct critical the National Science Foundation and in part by the National
number, we find that the exponent in tkeharmonic model Research Council. Two of uB.E. and C.H.G. acknowl-
drops to~0.82, more in line with the other values. This is edge support from the Office of Basic Energy Sciences, U.S.
consistent with the fact that a more complete hypersphericdPepartment of Energy.
calculation will of course converge to the correct result. The
more detailed analysis of Ueda and Leggett shows that the
tunneling rate is actually not strictly exponential iy but APPENDIX A: HYPERSPHERICAL COORDINATES
this distinction need not concern our qualitative discussion
here.

Our main conclusion is then: if the condensate contain

The choice of a set of hyperspherical coordinates rests on
first indentifying an appropriate set of Cartesian coordinates

fewer than~ (N—5) atoms. it is likely to dribble away by Yor the atoms, which can of course be done in many ways

o and three-body osses rather han colapsingall ot onc o e P PaEUIry imole and conyertent st of
in & macroscopic tunneling event. Even at high densities, i 1,F2, ... Fn, With respect to the center of the trap. Then an
will be easier to bring pairs of atoms together than to prmg bvious choice for Bl of the hyperangles is just the set of
the whole assembly of atoms together. The observation og :

; d ) . . : . polar coordinates of the atoms,
macroscopic tunneling might just be possible, if the condi-
tion N~ N, can be attained. This situation will probably be
difficult to achieve by evaporative cooling, and will persist 01,91,05,0s, ....0n, DN - (A1)
for a fraction of a second, making its observation a tricky
challenge indeed. One possible solution would be to create a
condensate very close to the critical number, then to tune th€his leavesN—1 hyperangles to be chosen, which are con-
interaction strength so that, coincides withN. Such a tun-  veniently defined as arctangents of ratios of radial distances.
ing of scattering lengths may be possible using maghéfit ~ We will follow the convention of Ref[31], defining these
or laser[50,5] fields. In addition, a technique was demon- angles as follows:
strated recently for lowering to a temperature just above the
transition temperature, then suddenly crossing the transition
at will [52]. rn=VNR cosay_1,
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IN—1= UNR COS ap_oSiN ay_1,

| dasdicos oy [ agnaccos mwaign— o)

A2
(A2) X 8(cos §;—cos 0,) = (4m)N L. (B3)
r2=VNR cos a;sin a,--sin ay_1, We next recast the radial part of the Dirac delta in terms of
the a angles, using the definitions in EGA2) and exploiting
r1=+NR sin a;sin a,---sin ay_;. the fact thatR is held constant:

1
NSIZRSSinzalsin3a2' : 'Sinsa{N_l

In these expressions each anglgis restricted to run be- 1
tween 0 andm/2, to maintain positive definiteness of each —0(r—rp)=
ri. This parametrization clearly satisfies our definition of 1
hyperradius in Eq(2.3). We remark in passing that these

coordinates have also been used to parametrize the electronic

coordinates in complex atonj56].

X 8(sina; —Ccosy). (B4)

The integral over the volume element specified in &B)

Reference[31] also %LVGS an explicit expression for the 5 the delta function now factorizes into separate integrals
surface area elemed{)°" of the hypersphere in dimen- ¢, cacha. Forj= N—1, the integrals are
] L | ’

sions, which is conveniently parametrized in the present case

as jw/z S codunda L L I'((3j—3)/2T(3)

" N1 | . Si a@;j cos a;da; = =3 T(3i2) ,

dN=]] dpd(cos ) [I sin®~a;cod a;da;. (B5)
=1 j=1

(A3)

whereas thg =1 integral is

With this parametrization it is straightforward to evaluate the
surface area of the hypersphere in terms of the gamma funcf sirfa;cofa;da;

S(sina;—cosay)=——=

tion, 0 sirfa; 22
(B6)
3N/2
J dQsN_F(gle) (Ad) Multiplying the relevant factors together, and inserting the

value (A5) for the hyperspherical harmonic, we arrive at the

This integral implies in turn the normalization of the hyper- matrix element

spherical harmoni&y,, which is a constant:
1 I'(3N/2) 1

00 8(",— )| 00) = _
T (3N/2) (00fo(ry=r2)]00) 2 /2.3 T(3N=13)/2) N32R3
Yol 7N 4 )
Inserting this expression into E¢B1) finally produces the
APPENDIX B: EVALUATION OF INTEGRALS result(2.14.

We encounter a similar integral in E¢3.4). The only
We wish to derive Eq(2.14). To do this, we first note that difference is in the factos(r,) instead ofs(r;—r,). The
by symmetry we need only evaluate the matrix element orentire derivation goes through as above, except thainthe
the left for a single pair of atoms, whereby the left-hand sideintegration now reads
of EqQ. (2.14 becomes

2 J’ / S.nzll §(I d(:Y 5(6{ ) 1 (B8)
4 | CcoO =4,

by

i<j

N(N—1) 47#%a leading to the resulf3.5).
-— (00 8(71—1)[00). (B1)
APPENDIX C: DEGENERACY OF OSCILLATOR STATES
We first rewrite the Dirac delta function in spherical coordi-  |n this Appendix we work out the degeneracyNfnon-
nates, interacting atoms confined in a spherically symmetric har-
monic oscillator potential. In the familiar Cartesian coordi-
L 1 nates, if each degree of freedantoldsn; quanta, then the
o(f—rp)= r—25(r1— r2) 8(p1— ) 5(COS 61— COS 05). total energy is
1
o E,=# 3}? + ho|n+ 3N >
. . . . ) = ni+s|= n+—,, n=2,n;
Using Eg. (A3), the integration over the spatial angles is " wizl 2 © 2 T

trivial: (C1
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The degeneracy of levels with energ9l) equals the num- To find the complete degeneracy, we must sum this expres-
ber of ways in whicm quanta can be distributed amonly 3 sion for all allowed values oh, consistent with 2+
degrees of freedom, which is given by the binomial coeffi-=n. Note that\ is restricted to values with the same parity

cient asn, but the form of Eq(C4) guarantees that all values »f
even and odd, will appear in the sum. The total degeneracy is
n+(BN-1)} (n+(3N—-1))! cpy thus
n ~ nl(3N-1)! (€2
n — —
In hyperspherical language, the energy eigenvalues are E A+ (3N 2)): n+(3N 1)) (C5)
given by Eq.(2.16: x=0 N n '
3N . .
En=fio| 2x+\+—|. (C3 in agreement with EqC2). We have evaluated the sui@5)
2 using the following formal properties of binomial coeffi-

For a given energy, we thus make the identificatign+2 cients[57]:

=n. Avery gives an expression for the number of hyper-

spherical harmonics with a given value ©f([32], p. 35: -n ‘ n+k—1
P Al S K (Co)
(B3N+2N—2)(3N+A\—3)!
A (3N=2)! and
~ )\+(3N—2)) (()\—1)+(3N—2))
B A (A—1) m ~ k(n)__ m(n—l)
4 2 (D =m0 ()
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