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Effective potentials for dilute Bose-Einstein condensates

John L. Bohn,* B. D. Esry,† and Chris H. Greene
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309

~Received 10 December 1997!

We present a theoretical formulation of trapped, dilute Bose-Einstein condensates~BEC’s! at zero tempera-
ture based on ordinary Schro¨dinger quantum mechanics. By a judicious choice of coordinates and of a varia-
tional trial wave function we reduce the many-atom problem to alinear Schrödinger equation that is easier to
handle and interpret than the usual nonlinear Schro¨dinger equation of BEC theory. Ordinary quantum mechan-
ics then reproduces, semiquantitatively, many of the main features of zero-temperature BEC, including the
critical number of atoms in a condensate with negative scattering length. The procedure is similar in results, but
completely different in spirit, to recent variational approaches to solving the nonlinear Schro¨dinger equation.
Moreover, the present procedure represents a step in a systematic alternative method for computing quantita-
tively accurate wave functions for trapped bosonic atoms.
@S1050-2947~98!08107-4#

PACS number~s!: 03.75.Fi, 31.15.Ja, 03.65.Ge
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I. INTRODUCTION

Many-body quantum-mechanical systems continue to
quire new points of view to appreciate their behavior. Som
times phenomena can be understood in terms of essen
independent-particle pictures, such as Rydberg electron
atoms or elementary conduction in a simple metal, which
explained fairly well with a Drude model. On the other han
some physical systems exhibit very strong correlations, s
as the electrons and lattice ions in high-Tc superconductors
A full understanding of these materials still eludes physic
after a decade of effort@1#.

In between these extremes lies another class of ma
body systems, whose motion genuinely involves coordina
motion among the bodies, but which can be described b
few gross features. Thus in statistical mechanics the mo
ments of 1023 atoms can be accurately summarized in ter
of a few thermodynamic variables. Another example is
forded by the spectra of ‘‘superdeformed’’ nuclei; whatev
many-body physics goes into producing these states, in
end their spectra are described simply in terms of hig
elongated rotors@2#. This circumstance does not preclude t
need for full many-body calculations of these spectra, bu
does go a long way toward organizing the phenomena in
minds.

Another tractable many-body system that has emerge
recent years occurs in degenerate gases of alkali-meta
oms, cooled and magnetically trapped at sub-microKel
temperatures. At the lowest temperatures, these gases
dergo a phase transition and become Bose-Einstein con
sates~BEC’s! @3#. In the limit where the temperature van
ishes, these gases no longer have a thermal component
emerge as essentially a single lump of quantum stuff. In
resulting many-body system the individual bodies do
matter so much, since each atom lies within a deBrog
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wavelength of its neighbors. In this case the individual ato
are not resolved, and we expect that the gas will be
scribed, at least at some level, in terms of just a few degr
of freedom. A main goal of this paper is to reduce the co
densate’s description to motion in asinglecollective coordi-
nateR, which represents roughly the extent of the conde
sate. Many condensate properties are described, at
qualitatively, by motion in the single coordinateR.

The diluteness of atomic BEC also assists in understa
ing it in simple terms. Being dilute, atomic BEC differs littl
from the gas that would be trapped if the atoms had no
teraction at all, i.e., in an independent particle picture. T
properties of BEC are thus amenable to treatment by per
bative methods. This situation stands in stark contrast to,
superfluid helium, which is dense enough that perturbat
theory proves inadequate.

The perturbation theory of choice these days for addre
ing atomic BEC is field theory. This approach begins w
the independent-particle premise that individual atoms
definite single-particle orbitals of the trapping potential a
free to interact. The appropriate set of orbitals is then de
mined self-consistently by accounting for the influence
atoms in one orbital on those in another. For atomic BEC
central theme that has emerged is the mean field the
which produces the Gross-Pitaevskii~GP! equation, or non-
linear Schro¨dinger equation,@4#

i\
]c~rW,t !

]t
52

\2

2m
¹W 2c~rW,t !1Vtrap~rW !c~rW,t !

1~N21!Ũuc~rW,t !u2c~rW,t !. ~1.1!

Here m stands for the atomic mass,N the number of con-
densate atoms, andVtrap the potential due to the trappin
field. The interatomic interactions are summarized in the
nal term on the right-hand side, whereŨ54p\2a/m anda
is the two-bodys-wave scattering length between two atom
The nonlinear term in Eq.~1.1! arises because arepresenta-
584 © 1998 The American Physical Society
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PRA 58 585EFFECTIVE POTENTIALS FOR DILUTE BOSE- . . .
tive atom, with wave functionc, feels the presence of th
rest of the atoms according to their density, which is prop
tional to (N21)ucu2. Thus the mean field theory replaces
many-body wave function with a simpler function, the me
field c, which has now to be extracted from the nonline
Eq. ~1.1!.

Equation ~1.1!, though nonlinear, has been solved by
number of groups@5–12#. These solutions, along with sui
able generalizations, have quantitatively reproduced a n
ber of observed condensate properties, such as ground-
shapes and energetics@13#, excited state spectra@14#, and
coherence properties@15#. Field-theoretical methods are als
making headway in understanding how these proper
change at nonzero temperatures@16#.

Further, Eq.~1.1! makes predictions concerning the inst
bility of condensates whose atoms experience a net attra
interaction, as embodied in a negatives-wave scattering
length a. An infinite, homogeneous condensate with attr
tive interactions proves unstable against collapse into a m
denser, nonsuperfluid state@17#. However, Doddet al. @7#
have noted that a condensate confined to a finite regio
space can exploit the kinetic energy of its confinement
stabilize itself, at least if the number of condensed ato
remains below some critical numberNc . A number of au-
thors have predicted this critical number@6,7,18,19#, and in-
deed, experiments at Rice University seem not to prod
condensates containing larger numbers of atoms@20#. Such a
condensate is regarded as metastable, however, and su
to decay by a sort of macroscopic tunneling of the cond
sate through an abstract potential barrier@21#.

A second major goal of this paper is therefore to emp
our one-coordinate reduction of the condensate as an a
native way to visualize what happens near this instabil
Our model identifies a single coordinateR, essentially the
mean condensate radius, as being most relevant to the g
features of the condensate. In what amounts to first-o
perturbation theory, we average over all other coordinate
the full many-body wave function, yielding an effective p
tential Veff(R) for the condensate’s motion inR. A number
of authors have also recently exploited the utility of an
fective potential concept, with great success@8,18,21–24#. In
all these cases, the authors solve Eq.~1.1! approximately by
introducing a trial wave function~often a Gaussian! and
mapping the variational energy as a function of its wid
Our model chooses an alternative many-body trial wa
function on different grounds, which nevertheless clos
mimics the results of the other variational approximations
particular by predicting the same critical number.

Our model takes a further step, however, inasmuch as
effective potential we derive really is an approximate pot
tial in a real physical coordinate. We can therefore solve
resultinglinear Schrödinger equation inR, whose results are
in surprisingly good agreement with more accurate ma
body approaches. Moreover, we arrive at our trial wave fu
tion from a systematic procedure that can be extended
yond the simple model presented here. The present m
can then, in principle, be extended to a larger variatio
basis set, which should ultimately yield quantitative resu
Our third goal is then to introduce this systematic method
a basis for further work along this line.
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II. FORMULATION

We consider a collection ofN identical bosonic atoms o
massm confined magnetically in a trap approximated by
spherically symmetric harmonic oscillator potential with a
gular frequencyv. The traps currently used in experimen
are not spherically symmetric, but this restriction does
affect our description of the qualitative features of the co
densate. We will also assume throughout that the atom cl
is at zero temperature. Thus our approach will be that
ordinary Schro¨dinger quantum mechanics, in that we se
energy eigenstates of theN-boson system. The fullN-body
Hamiltonian of this system then reads

H52
\2

2m (
i 51

N

¹W i
21(

i 51

N
1

2
mv2r i

21(
i , j

U int~rW i2rW j !,

~2.1!

whereU int stands for the pairwise atomic interaction pote
tial. We feel free to ignore three-body and higher-order
teraction potentials, again invoking the diluteness of the g
We are in principle interested in solving the Schro¨dinger
equation with this Hamiltonian,

Hc~rW1 ,rW2 , . . . ,rWN!5Ec~rW1 ,rW2 , . . . ,rWN!. ~2.2!

Equation~2.2! represents a second-order partial different
equation in 3N coordinates, whose solution must moreov
satisfy an elaborate set of boundary conditions incorpora
the correct two-body wave function whenever any two ato
approach one another. It is an equation that can be ‘‘sol
fully’’ in only a handful of experimental BEC laboratorie
around the world.

On the other hand, present-day experiments only pr
the lowest several members of the spectrum of Eq.~2.2!, and
no experiment probes the condensate on the level of i
vidual atoms. Indeed, to zeroth order the condensate is
tureless and described only by its size. This motivates u
make a coordinate transformation, where one of the coo
nates is the root-mean-squared radius of the atoms from
trap’s center:

R[S 1

(
i

mi

(
i

mir i
2D 1/2

5S 1

N(
i

r i
2D 1/2

. ~2.3!

This kind of parametrization has a distinguished history
shell-model calculations of nuclei@25,26#. It has also played
a fundamental role in understanding exotic multiply excit
states of atoms@27#, as well as reactive scattering in quantu
chemistry@28,29#. For the purposes of the present article, w
employ the associated methods in a rudimentary way, w
the understanding that a more elaborate treatment is
course possible and ultimately desirable.

Mathematically R denotes the hyperradius of
(3N21)-dimensional hypersphere in the 3N-dimensional
configuration space of theN atoms. Alternatively one can
view R2 as proportional to the trace of the moment of iner
tensor of the atom cloud. The remaining 3N21 atomic co-
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ordinates are thus given in terms of the set of hyperang
collectively denoted byV, that parametrize this hyperspher
Considerable freedom exists in choosing these angles,
several different conventions appear in the literature@30–
33#. We will adopt the convention of Ref.@31#, the relevant
aspects of which we summarize in Appendix A.

Having made the transformation (rW1 , . . . ,rWN)→(R,V),
we can likewise transform the Hamiltonian~2.1!. Carrying
out the transformation of the Laplacian, the kinetic ene
becomes@32#

2
\2

2MF 1

R3N21

]

]RS R3N21
]

]RD2
L2

R2G . ~2.4!

In this expressionM5mN is the total mass of the atoms, an
L stands for a ‘‘grand angular momentum’’ operator, defin
analogously to a three-dimensional angular momentum@32#,

L252(
i . j

L i j
2 , L i j 5xi

]

]xj
2xj

]

]xi
~2.5!

for all Cartesian componentsxi of the 3N-dimensional vec-
tor (x1 , . . . ,xN)[(rW1 , . . . ,rW3N). Further, the oscillator po
tential transforms easily into

(
i 51

N
1

2
mvr i

25
1

2
MvR2. ~2.6!

To evaluate the interatomic interaction part of the Ham
tonian, we again exploit the diluteness of the condens
in
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Namely, we note that the atoms interact on scales less
;10 nm, whereas the typical mean interatomic spacing
greater than;100 nm. Thus as two atoms, let us say 1 and
approach each other, the dependence of the many-body w
functionc(rW1 ,rW2 , . . . ,rWN) will be essentially independent o
coordinatesrW3 , . . . ,rWN . Moreover, its dependence on th
differencerW12rW2 must reproduce the correct scattering wa
function of the pair of atoms. But again, nothing is resolv
on the 10-nm scale in a condensate, so all that really co
is the ‘‘long-range’’ behavior of this two-atom wave func
tion, i.e., the scattering phase shifts. On scales larger than
10 nm scattering region, we can recover the s-wave sca
ing phase shift from a contact potential of the form@34#

U int~rW12rW2!5
4p\2a

m
d~rW12rW2!; ~2.7!

we therefore adopt this form forU int in Eq. ~2.1!. The sim-
plicity of Eq. ~2.7! conceals the fact that a three-dimension
delta-function potential is too singular to admit an analytic
solution. In fact, Eq.~2.7! reproduces the scattering leng
only up to terms in the gradient ofc. The subtleties involved
in going beyond this approximation are treated in@35–37#.
Nevertheless, for weakly interacting atoms we believe t
approximation is justified. Note also the similarity of E
~2.7! to the interaction term of the nonlinear Schro¨dinger
equation~1.1!.

The transformed Schro¨dinger equation reads, after mult
plying c by R(3N21)/2 to eliminate first derivatives inR,
H 2
\2

2M F ]2

]R2
2

~3N21!~3N23!

4R2
2

L2

R2G1
1

2
Mv2R21(

i . j

4p\2a

m
d~rW i2rW j !2EJ R~3N21!/2c~R,V!50. ~2.8!
do
in-

y-
the

-
,
e-
So far the transformation has not bought us very much, s
Eq. ~2.8! is still a partial differential equation in 3N vari-
ables. We proceed from here by expanding the wave fu
tion into eigenfunctions of theL2 operator. These function
have been thoroughly studied in the literature@31–33#,
where they go by the name of ‘‘hyperspherical harmonic
Their eigenvalue equation reads

L2Ylm~V!5l~l13N22!Ylm~V!, ~2.9!

wherel50,1,2, . . . denotes the order of the harmonic. Th
second indexm stands for the set of additional quantu
numbers required to index the~generally very large! degen-
eracy of harmonics with the same value ofl. The harmonics
Ylm are multidimensional extensions of the familiar sphe
cal harmonics; note that for a single particleN51, the eigen-
value in Eq.~2.9! reduces to the familiarl(l11) in three
dimensions. The hyperspherical harmonics can be q
ce

c-

’’

-

te

elaborate to evaluate and work with, but fortunately we
not need many of their detailed properties. We refer the
terested reader to the literature for details@31–33#.

Our construction of the approximate solution to Eq.~2.8!
starts from an expansion of the wave function into the h
perspherical harmonics, which form a complete set on
surface of the hypersphere:

R~3N21!/2c~R,V!5(
lm

Flm
l0m0~R!Ylm~V!. ~2.10!

Here the indicesl0m0 label the linearly independent solu
tions to the Schro¨dinger equation; for notational simplicity
we will leave them out in what follows. This expansion r
duces Eq.~2.8! to a set of coupledordinary differential
equations
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H 2
\2

2M F d2

dR2
2

~3N21!~3N23!14l~l13N22!

4R2 G1
1

2
Mv2R2J Flm~R!

1 (
l8m8

F(
i , j

4p\2a

m
^lmud~rW i2rW j !ul8m8&GFl8m8~R!5EFlm~R!. ~2.11!
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The radial functions in this system satisfy the smallR
boundary conditions

Flm→Rl01~3N21!/2dll0
dmm0

as R→0, ~2.12!

reinforcing the fact that Eq.~2.8! is separable in hyperspher
cal coordinates at smallR. The interaction term is now em
bodied in the matrix elements

^lmud~rW i2rW j !ul8m8&[E dVYlm* ~V!d~rW i2rW j !Yl8m8~V!,

~2.13!

with the integral taken over the hypersphere of radiusR. The
integral ~2.13! will generally depend onR.

If sufficiently many harmonics are included, Eqs.~2.11!
can be used to extract the condensate spectrum from
linear system. Of course, a vast number of harmonics wo
be required to account in detail for the motion of every ato
but again, the gross features ought to emerge from a m
smaller expansion. In particular, we will explore in this pap
how well we can do by truncating the sum in Eq.~2.10! to a
single term. In nuclear theory, this is known as th
‘‘ K-harmonic’’ approximation@31#. We will use this term to
distinguish the present treatment from more complete hy
spherical calculations to which we will sometimes refer. T
natural choice for a single harmonic isY00 ~i.e., l50),
which has no nodes in any of the hyperangular coordina
V. It therefore represents the longest-wavelength dis
bance in all coordinates exceptR, and should best represe
the smooth blob that is the condensate’s ground state.~For
those having little intuition about hyperspherical harmoni
it may be far from clear that this approximate wave functi
is sensible. We have tested it by plotting it alongside grou
state wave functions from the GP equation~1.1!, and find
that the two solutions are both nodeless in the hyperrad
and are remarkably similar at most hyperradii. Note also t
this description becomes exact in theR→` limit, since the
interaction dies off as 1/R3, faster than the kinetic energ
}1/R2.)

We evaluate the interatomic interaction matrix elemen
Appendix B, arriving at the result

(
i , j

4p\2a

m
^00ud~rW i2rW j !u00&

5A 1

2p

\2a

m F G~3N/2!

G„~3N23!/2…N3/2GN~N21!

R3
.

~2.14!

The expression in square brackets, depending on gam
functions, is nearly independent ofN for N.10. Although
is
ld
,
ch
r

r-
e

es
r-

,

-

s,
at

n

a

we use its exact value in calculations, we will replace it
the formal expressions below by its asymptotic val
j;1.837. Note that Eq.~2.14! is qualitatively in accord with
the mean field theory: each atom sees the rest with a m
energy ;(a/m)n, with number densityn;(N21)/R3.
Since each ofN atoms sees the same thing, the total ene
of interaction scales as;aN(N21)/mR3, as in Eq.~2.14!.
This idea had already been articulated by Kaganet al. @10#,
and by Shuryak@18#, who were among the first to quantif
these notions.

Finally we arrive at the effective one-dimensional Sch¨-
dinger equation in theK-harmonic approximation for the
condensate wave function:

F2
\2

2M

d2

dR2
1Veff~R!GF~R!5EF~R!, ~2.15a!

described by the effective potential

Veff~R!5
\2

2M

~3N21!~3N23!

4R2
1

1

2
Mv2R2

1jA 1

2p

\2a

M

N2~N21!

R3
. ~2.15b!

We have cast Eqs.~2.15! in terms of the total massM
5mN, emphasizing that this equation approximates
quantum-mechanical motion of the condensateas a whole.
Unsurprisingly, forN51, Eq.~2.15! reduces to the equatio
for the radial motion of a single atom with zero angul
momentum in a harmonic oscillator potential.

One essential feature of Eq.~2.15b! bears emphasizing
Even when all condensate atoms are presumed to have
angular momentum about the trap’s center, there remain
effective centrifugal barrier, represented by the term prop
tional to 1/R2 in Eq. ~2.15b!. This term summarizes con
cisely the kinetic energy cost of confining all atoms within
small region near the center of the trap, in accordance w
the uncertainty principle. This energy is directly responsi
for stabilizing an atomic condensate witha,0 against col-
lapse.

We illustrate in Fig. 1 the general features ofVeff(R) ver-
sus R ~in units of the harmonic oscillator length sca
A\/mv) for various values of the scattering lengtha. The
heavy line showsVeff for a50, i.e., the noninteracting limit.
In this case hyperradial solutionsRxl(R) of Eq. ~2.15! can
be written analytically in terms of generalized Laguer
polynomials withx radial nodes@31#. The quantum numbers
x, l, andm then completely characterize the eigenstates
N noninteracting atoms in a harmonic oscillator potenti
with energy eigenvalues@31#
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Exl5\vS 2x1l1
3N

2 D , x50,1,2, . . . . ~2.16!

The associated eigenfunctionsRxl(R)Ylm(V) constitute a
complete set, over all of configuration space, into which
lutions of the interactingN-body problem can be expande
@38#, although we will not do so in this paper. Appendix
details how the degeneracy of eigenstates with energy~2.16!
equals the degeneracy expected from treating the proble
Cartesian coordinates.

For nonzero scattering length,Veff acquires either a repul
sive (a.0) or an attractive (a,0) interaction contribution,
as indicated by the curves above and below the heavy cu
respectively. Fora,0 the condensate is only metastab
living in the local minimum only until it tunnels through
potential barrier to the small-R region, where it accelerate
inward to regions of configuration space with large rad
kinetic energy. We will return to this metastability in som
detail in Sec. IV. This basic physics of course also emer
in the variational approaches of@8,10,18,21–24#. Our own
treatment is unique in assessing variationally the many-b
Schrödinger equation~2.8! itself as opposed to the GP equ
tion ~1.1!, resulting in a physical potential~2.15b! in a real
coordinateR.

In a more complete calculation, there would be numer
additional potentials lying belowVeff , accounting for atom
clouds in which atoms have recombined into molecules
clusters@43#. These curves are similar in shape toVeff , but
are shifted down by energies corresponding to the molec
binding energies, which are enormous on the scale of
energies. Moreover, an accurate description of these po
tials would entail hyperspherical harmonics with large nu
bers of nodes, to account for the close proximity of atoms
the molecules; accordingly, we ignore these potentials h
If calculated, these potentials would illustrate in more de
the fates of atoms lost to inelastic processes.

FIG. 1. Schematic of the effective potential,Veff(R), Eq.
~2.15b!. The heavy line represents the case where the scatte
lengtha50; its levels reproduce a subset of the harmonic oscilla
levels, as detailed in Appendix C. Fora.0 or a,0, Veff becomes
more repulsive or more attractive, as the upper and lower cu
indicate.
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III. POSITIVE SCATTERING LENGTH CASE

For positive values of the scattering lengtha, the conden-
sate energies deviate from those of the noninteracting c
densate as the gas pushes harder against itself and again
walls of the trap. For definiteness we consider in this sect
a trap roughly approximating that in the JILA87Rb experi-
ments, takinga5100 bohr, and a trap frequencyn5200 Hz.
For this case, we show in Fig. 2 the condensate’s basic
ture, namely, its ground-state energy. Here the energyE0 for
N atoms in the condensate is represented asE0 /N23hn/2,
to emphasize the deviation from the ideal gas result. T
solid curve shows this quantity, versus the number of c
densate atoms, according to theK-harmonic model. Below
this curve lies the result of the Hartree-Fock~HF! approxi-
mation representing the solution to the nonlinear Schro¨dinger
equation~1.1!. The K-harmonic estimate lies mostly abov
that of the HF; since both are variational calculations,
conclude, not surprisingly, that the HF approximation
more accurate. Also plotted, as dotted lines, is an estim
arising from a Thomas-Fermi~TF! approximation, which
solves Eq.~1.1! by ignoring kinetic energy altogether~e.g.,
Ref. @5#!. For a modest number of atoms, theK-harmonic
model is comparable with the TF approximation, althou
TF works better for largeN, as it should. Considering th
vast number of terms that have been neglected in the ex
sion ~2.10!, this agreement is already quite encouraging.

In fact, the K-harmonic approximation actually fare
slightly better than the variational approach of, say, St
@21#, and others like it. To see this, note that a Gauss
solution of the GP equation~1.1! implies a many-body trial
wave function of the form exp(2r1

2/q2)¯exp(2rN
2/q2), i.e., a

Gaussian function of hyperradius, exp(2NR2/q2). Our trial
wave functionF(R), by contrast, remains anundetermined
function of hyperradius, and should thus be more flexib
arriving at a slightly better result. This turns out to be t
case, although theK-harmonic energies are lower than th
Gaussian variational energies by only about 1 part in 104.

Furthermore, we note in passing that some regimes e
exist where theK-harmonic approximation is slightlylower

ng
r

es

FIG. 2. Comparison of theK-harmonic, Hartree-Fock, and
Thomas-Fermi estimates of the ground-state energy, for a con
sate witha5100 bohr, and trap frequencyn5200 Hz. The energy
E0 is plotted in the formE0 /N23hn/2, to emphasize the contribu
tion of the energy beyond that in the noninteracting case.
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than the Hartree-Fock result, namely, for extremely tig
traps and small numbers of atoms~e.g., fewer than abou
seven atoms!. In this case, when the dimensionless parame
(N21)a/A\/mv'0.1, theK-harmonic model slightly out-
performs the Hartree-Fock model. This is, of course, no
physical regime yet, and so this result remains a curious

The K-harmonic model can also approximate the exc
tion frequencies of the radial breathing modes, as illustra
in Fig. 3. The solid lines represent theK-harmonic results,
while the points result from the random-phase approxima
~RPA!, which surpasses the HF approximation by incorp
rating some correlation between the HF orbitals@11#. The
first excitation frequency agrees nearly perfectly between
two models, while the higher ones show significant discr
ancies. The behavior of theK-harmonic model is easy to
understand: Higher states in the spectrum, which exten
smaller values ofR, feel more strongly the~positive! contri-
bution from the 1/R3 interaction term, thus driving them
higher relative to the ground state. In other words, fo
breathing mode, the greater the excitation energy, the cl
together the atoms will comeen masse, increasing the effects
of their interactions.

This simple interpretation, while applicable to th
K-harmonic approximation, is obviously wrong in real lif
Observed excitation frequencies invariably fall with increa
ing N in anisotropic traps@14#. Moreover, most other calcu
lations ~e.g., @11,39–42#! show diminishingexcitation ener-
gies with increasingN. This circumstance points to
limitation of theK-harmonic model: while it gets somethin
right about the radial energies, it is probably deficient in
ability to model the correct shape of excited-state wave fu
tions. This deficiency will of course be ameliorated wh
more terms of the expansion~2.10! are incorporated.

The disagreement between the hyperspherical and R
approaches is not limited to the relatively crudeK-harmonic
approximation employed here. In fact, for three atoms i
trap, a hyperspherical calculation can be performed w
quantitative accuracy@43,44#. Viewed in the present contex
such a treatment in effect takes all harmonics into acco

FIG. 3. Comparison of theK-harmonic and random-phase a
proximations to the low-lying excitation frequencies of the sa
condensate as in Fig. 2. This figure considers only excitation
spherical symmetry. The two approximations agree quite well
the first excitation, but disagree even on the trend with increasinN
for higher excitations.
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This approach treatsR as an adiabatic coordinate and solv
Eq. ~2.8! ‘‘exactly’’ after neglecting the hyperradial kinetic
energy ]2/]R2. This calculation produces a set o
R-dependent potential curves analogous to, but contain
more physics than, the single-harmonic approximation rep
sented by Eq.~2.15b!. Qualitatively, the spectrum of Fig. 3
persists: The adiabatic hyperspherical model predicts tha
excitation frequenciesincreasefrom the noninteracting fre-
quencies, while the RPA predicts that only the first excitat
frequency is higher. It is unclear at present how much
‘‘exact’’ adiabatic hyperspherical results will be altered b
the addition of nonadiabatic effects, though their additi
would provide a numerically exact solution with which
compare mean-field results. For now the lesson to be lea
is that, even in theK-harmonic approximation,Veff(R) ap-
parently mimics the appropriate shape of the condensa
effective potential minimum reasonably well.

As a third test of theK-harmonic model’s quantitative
accuracy, we can also calculate the peak density of the c
densate. As we will see in the next section, this density w
have a bearing on the nature of the condensate’s instab
whena,0. To this end we recall the form of our many-bod
wave function,

c~rW1 , . . . ,rWN!5Y00~V!
F~R!

R~3N21!/2
, ~3.1!

whereF(R) is the solution of Eq.~2.15! that vanishes atR
50. The wave functionc is normalized to unity over the
entire 3N-dimensional configuration space. To define a nu
ber density, we evaluate the ‘‘density operator’’( id(rW2rW i)
in the state~3.1!:

r~rW ![E d3r 1¯d3r Nuc~rW1 , . . . ,rWN!u2(
i

d~rW2rW i !,

~3.2!

which satisfies

E d3rr~rW !5N. ~3.3!

The peak number density is then given by

r~0!5NE
0

`

dRuF~R!u2E dV3NuY00~V!u2d~rWN!,

~3.4!

where rWN is a representative atom coordinate and the s
over i is replaced by the prefactorN. The hyperangular in-
tegral in Eq.~3.4! is similar to that for the interaction term
and is evaluated in Appendix B. The result is

r~0!5N
j

p3/2E0

`

dR
uF~R!u2

R3 . ~3.5!

Note in particular that the peak density isnot proportional to
R(3N21)uF(R)u2dR at R50, which describes instead th
probability thatall atoms are found together in the center
the trap.
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Figure 4 plots the peak number density in a condens
versus the number of condensate atoms, in both
K-harmonic and HF approximations. This density is norm
ized by the number of condensate atoms, to emphasize
difference from the noninteracting limit~which is a constant
when plotted this way, as shown!. The K-harmonic model
thus accounts for most of the effect of interaction, ev
though its density overshoots the correct density be near
factor of two. The difference is a further indication of th
inadequacy of theansatzwave functionF(R)Y00(V) to de-
scribe the true wave function in detail. As we will see in t
next section, theK-harmonic approximation fares much be
ter for a,0 condensate wave functions.

IV. NEGATIVE SCATTERING LENGTH CASE

In this section we considera,0, and choose trap param
eters that approximate the conditions in the7Li experiments
at Rice @20#. Namely, we seta5227.3 bohr @45#, and
n5(nxnynz)

1/35144.6 Hz, as has been done previously@19#.
In real life, especially close to the critical number, the co
densate is expected to be very nearly spherical@7#. We plot
in Fig. 5 the general behavior ofVeff for N near the critical
numberNc . WhenN,Nc ~solid line! Veff possesses a loca
minimum that characterizes the ‘‘metastable region,’’ whe
a metastable condensate lives, stabilized by the 1/R2 effec-
tive centrifugal repulsion. At smallerR lies a potential bar-
rier that separates the metastable region from the ‘‘colla
region,’’ which is dominated by the attractive 1/R3 compo-
nent of Veff . As N grows, so does this component, until
N;Nc the barrier vanishes altogether, as does the metas
region. ForN.Nc ~dashed curve! Veff is purely attractive,
implying that the condensate cannot exist even metastab

The argument of balancing kinetic and interaction en
gies to stabilize condensates is not new@10,18,21#. It has
generally been approached by assessing these energi
they vary with the width of a variational trial function use
to represent an orbital in the full condensate wave functi
The width of this trial function, often of Gaussian form, re
resents in this case a variational parameter rather than a

FIG. 4. Comparison of theK-harmonic and Hartree-Fock est
mates of the peak density of the condensate considered in Fi
and 3. The densities are normalized by the number of atoms
emphasize the deviation from the noninteracting limit~shown as the
dotted line!.
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ordinate. Using such an analysis, Stoof identifies a poten
energy functional@Eq. ~21! of @21## that enters into his field-
theoretic treatment of metastable condensates. This fu
tional has essentially the same form as our effective poten
~2.15b!. Other authors have followed suit, arriving at simil
energy functionals@22–24#. In particular, Pe´rez-Garcı´a et al.
produce a figure essentially equivalent to Fig. 5. Shury
plots a similar quantity, namely, an energy versus the cen
density of the condensate@18#. In all these cases the tunne
ing of the metastable condensate is viewed as an abs
process in a multidimensional field space of the possible c
densate wave functions. The hyperspherical approach
contrast, identifies a simple physical potential along a sin
adiabatic coordinate, and views the tunneling in the us
quantum-mechanical sense.

Once the condensate enters the collapse region,
simple model can no longer follow it. The real physics w
involve enormous inward radial accelerations, increa
atom collision rates, recombination into molecules and cl
ters, etc. Nevertheless, we can in our model describe
initial tunneling event that leads to this collapse. One ma
question regarding unstable condensates is, what is the
ture of their demise? Doddet al. @7# have argued that long
before a macroscopic tunneling event swallows the cond
sate, two- and three-body losses will eject sufficiently ma
atoms to restabilize the cloud. Ueda and Leggett@24#, fol-
lowing a lead from Kaganet al. @10#, have recently argued
that macroscopic tunneling can indeed be the faster proc
when the number of atoms is very close to the critical nu
ber. In this section we will arrive at the same conclusi
within the K-harmonic model.

A. Critical number

Our first task is to estimate the maximum number of ide
tical bosons with negative scattering lengths that can be c

. 2
to

FIG. 5. Schematic of the effective potentialVeff for an attractive
effective interaction,a,0. The solid curve represents a case whe
the number of atomsN is just less than the critical numberNc and
a metastable condensate can exist in the potential’s local minim
near R51. This minimum therefore identifies the ‘‘metastable
region of R, separated by a potential barrier from the ‘‘collap
region,’’ where the atoms are strongly attracted to the trap’s ce
by a 1/R3 attractive potential. The dashed line illustrates the c
whereN.Nc , andVeff no longer possesses a local minimum. Co
pare to Fig. 2 of Ref.@22#.
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densed. Within our model, we identify this critical numb
Nc as the number of atoms for which the barrier height
Veff coincides with the minimum in the metastable regio
~Strictly speaking, this approach will slightly overestima
the critical number, by ignoring the zero-point energy of t
metastable state. It makes nevertheless a pretty good
proximation.! To simplify the discussion, we writeVeff as

Veff~R!5
A

R2
1BR21

C

R3
, ~4.1!

with N-dependent coefficients that are apparent in
~2.15b!. The local maximum and local minimum of Eq.~4.1!
coincide when the positive roots ofdVeff /dR coincide. Mul-
tiplying by R4, we thus need to evaluate the positive roots
the fifth degree polynomial

R4
dVeff

dR
52BR522AR23C. ~4.2!

Analytic expressions for the roots of a fifth degree po
nomial are cumbersome, if indeed they can be determine
all @46#. However, we need only the condition guarantee
that the positive roots coincide, for which we can exploi
result of algebra known as Sturm’s theorem@47#, which pro-
vides an algorithm for counting polynomial roots. Sturm
theorem implies our condition is met when the coefficients
Eq. ~4.2! satisfy

A55
34355

212
C4B. ~4.3!

Resubstituting the expressions forA, B, and C and as-
sumingN@1, we arrive at an expression for the critical num
ber:

Nc;
3A3p

5~5/4!j
A \

mv

1

uau
;0.671A \

mv

1

uau
, ~4.4!

wherej has been defined following Eq.~2.14!. This expres-
sion has the usual dependence on the parametersm, v, and
a, and does reasonably well on the numerical prefactor. T
value is 17% higher than the well-known value 0.573 o
tained from numerical solutions of Eq.~1.1! ~e.g., @7#!. For
the 7Li trap parameters, theK-harmonic model predictsNc
51466, in excellent agreement with variational estima
such as in@21,23#. This is not surprising, since these a
proaches and ours balance roughly the same kinetic an
teraction energies.

Notice also that introducing additional hyperspherical h
monics, as in the expansion~2.10!, will influence primarily
the 1/R3 part of the interaction, where off-diagonal matr
elements will appear in Eq.~2.11!. In such a case our effec
tive potential will be obtained by treatingR as an adiabatic
coordinate, and diagonalizing Eq.~2.11! after setting
d2F/dR250 in Eq. ~2.11!. This diagonalization will have
the effect of further deepening the collapse region relative
the metastable region, thus diminishingNc toward its correct
value.
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As N→Nc and the local maximum and local minimum o
Veff coincide, we note that the second derivative ofVeff will
vanish at the point of coincidence. This means, in turn, t
Veff has no curvature and hence no oscillation frequency
lowest order. Here then is a classical explanation for
well-known ‘‘softening’’ of the condensate’s modes fo
a,0.

B. Adiabatic energy level spectrum

We now address some additional details of t
K-harmonic model. Figure 6~a! shows some of the energ
levels in the potentialVeff versusN, which is taken as a

FIG. 6. A portion of the spectrum of energy levels vsN, within
the K-harmonic approximation, for a condensate witha5227.3
bohr and trap frequencyn5144.6 Hz. In~a! the dashed line corre
sponds to the value ofVeff at the top of its potential barrier. Below
this line, the levels denoted ‘‘I’’ correspond to wave functions l
calized in the metastable region ofR depicted in Fig. 5. Their
energies rise slowly asN grows. The levels denoted ‘‘II’’ corre-
spond to wave functions localized in the collapse region of Fig
Their energies drop steeply asN increases and the attractive 1/R3

part of Veff deepens. The dashed line thus represents the trans
between these types of localization. Above the dashed line are
els denoted ‘‘III’’ that lie above the barrier, and so sample both
metastable and collapsing regions. In~b!, the lowest three meta
stable energy levels are extracted@the lowest, labeledE0 , is also
indicated by the heavy line in~a!#. Each excited level drops in
energy below the ground state as it tops the barrier and falls into
collapse region.
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continuous parameter. Because of the 1/R3 singularity ofVeff

at smallR, we are obliged to impose artificial boundary co
ditions to avoid the infinitely many nodes of a wave functi
in this potential. We choose here and below to set the w
function F(R) equal to zero at an inner cutoff pointRcutoff

50.6 oscillator units. This limit lies well within the collaps
region for the states of interest. The form of the wave fu
tion within the collapse region is of course unphysical, o
ing to the complications of small-R behavior neglected in the
K-harmonic approximation.

Figure 6~a! shows three distinct types of behavior in th
spectrum. In the lower left are levels~labeled ‘‘I’’ ! whose
energies rise with increasingN; these represent the met
stable levels, whose energies grow slightly sublinearly inN,
owing to the net atomic attraction. In the lower half of th
figure ~below the dashed line! are a set of levels~labeled
‘‘II’’ ! whose energies decline with increasingN; these stand
for the unphysical bound states trapped within the colla
region, and they get progressively deeper as this part ofVeff

deepens. The dashed line in Fig. 6~a! represents the height o
the barrier inVeff as N varies. This curve marks roughl
where each metastable level becomes unstable against
ing over the barrier. Above the dashed line lie levels~labeled
‘‘III’’ ! that therefore live only long enough to collapse.

The lowest-lying of the ‘‘type I’’ metastable levels is in
dicated by a heavy line in Fig. 6~a!, where it is labeledE0 .
This level stands for the metastable condensate’s ‘‘gro
state.’’ This curve is reproduced in Fig. 6~b!, along with the
energiesE1 and E2 of the ‘‘first two excited’’ metastable
states. When the number of atoms reaches the effective
cal number 1460, the ground-state energyE0 exceeds the
barrier height, signaling the transition of this state fro
‘‘type I’’ metastable to ‘‘type II’’ collapsing behavior;E0
then turns down sharply. Note that the excited-state ener
E1 andE2 make this transition for smaller numbers of atom
since they are higher in energy to begin with.

Figure 7 further illustrates this transition by plotting th
condensate’s ground-state wave functionF(R) for various
numbers of atoms. ForN51450 atoms, the barrier remain
large, and the wave function is confined entirely to the me
stable region. As the number of atoms rises, a portion of
wave function tunnels through the barrier, increasing
probability of a macroscopic tunneling event. ForN51460
atoms, the metastable state’s energy is already at the to
the barrier @see Fig. 6~a!#, and the wave function leak
readily into the collapse region. For even higher numbe
N51470, the formerly metastable state lies entirely with
the collapse region, and no condensate exists. In these fig
the rapidly oscillating part of the wave function in the co
lapse region should be viewed as schematic, representin
rapid infall of the atom cloud.

We can extract from the spectrum the low-lying excitati
frequencies of the metastable condensate, as plotted in
8~a!. We again compare theK-harmonic results to those o
the random-phase approximation. Both methods show
first excitation frequencies plummeting to zero~or below! as
the number of atoms approaches the appropriate cri
number. This reduction in excitation frequency represe
the quantum-mechanical demonstration of mode soften
for this system. Figure 8~b! replots the first excitation fre
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quency versus thescalednumber of atomsN/Nc . With this
proviso, the agreement betweenK-harmonic and RPA mod-
els is again encouraging, as was the case fora.0. For the
second excitation frequency, the agreement breaks do
just as before.

C. Decay rates

We can also extract the peak densities for metastable
densates from Eq.~3.4!. This quantity is plotted in Fig. 9 and
is compared to the Hartree-Fock result; both results are a
scaled by their respective critical numbers. The adequac
the K-harmonic model is much superior here to that in t
a.0 case~cf. Fig. 4!. This suggests that the hyperspheric
harmonicY00 captures much more accurately the shape
the true many-body wave function for the attractive ca
The reason for this may be seen in the harmonic expan
~2.11!: when larger values ofl are incorporated, they in
clude a larger effective centrifugal barrier,}l2/R2. These
harmonics therefore have less to contribute to wave fu
tions that occupy a smaller volume, i.e., which exist
smaller hyperradiusR, which is the case for attractive con
densates. We therefore anticipate that a full-blown hyp
spherical treatment will have an easier time handlinga,0
condensates thana.0 condensates.

From peak densities we can, in turn, estimate losses f
the condensate due to two- and three-body processes.
lowing Dodd et al., we identify a loss rate for anN-atom
condensate@7#

GN5aN2E d3r @r~rW !#21LN3E d3r @r~rW !#3. ~4.5!

FIG. 7. Metastable condensate wave functions for the cond
sate labeled by energyE0 in Fig. 6. As the numberN of condensate
atoms grows, the condensate’s wave function is increasingly lik
to tunnel through the barrier into the collapse region, until u
mately the entire condensate wave function is dominated byVeff’s
attractive 1/R3 potential.
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For 7Li atoms trapped in theiruF52,M52& states, the two-
body loss rate, primarily due to dipolar relaxation, isa
51.2310214 cm3/sec@7# and the three-body recombinatio
rate is estimated to beL52.6310228 cm6/sec@48#. We fur-
ther approximate the total rate, in terms of the peak num
densities, by

GN;$aN2@r~0!#21LN3@r~0!#3%
4

3
p l 3, ~4.6!

whose last factor represents the condensate volume
sphere of radius one oscillator unit,l 5A\/mv. This ap-
proximation gives loss rates of several hundred atoms
second near criticality, in rough agreement with the result
Dodd et al., but necessarily overestimatingGN in the crude
approximation~4.6!.

As our final point, we use theK-harmonic model to esti-
mate the rate of macroscopic tunneling, for comparison w
the two- and three-body rates. To do this, we extract
WKB tunneling probability exp(22s) with

FIG. 8. Comparison of theK-harmonic and random-phase a
proximations to the first several excitation frequencies of thea,0
condensate considered in Fig. 6. In~a! the first excitation frequency
in each model plummets to zero as the critical number of e
model is approached. To remove the effect of different critical nu
bers in the two models,~b! plots the first excitation frequency vs th
scaled number of atoms,N/Nc .
er

a

er
f

h
e

s5E
Rin

Rout
dRA2M

\2
@Veff~R!2E#. ~4.7!

This integral is taken between the inner (Rin) and outer
(Rout) turning points of the barrier.E stands for the energy o
the metastable condensate. Stoof has also cast conde
metastability in terms of a WKB-like integral@21#, but he
argues the point in a very formal way, in terms of an ene
functional for condensates of Gaussian shape. Stoof’s an
sis has the advantage, however, that it can also estimate
neling rates for condensates at nonzero temperatures. U
and Leggett similarly introduce a WKB integral withou
qualification, as if their variational width were a physic
coordinate. In any event, the spirit is similar in all thre
approaches. To turn the probability~4.7! into a tunneling
rate, we multiply by the frequency of the condensate’s m
tion in the metastable part of the well, approximated by

n5
1

2p
A 1

M

d2Veff

dR2
~Rmin!, ~4.8!

where Rmin denotes the position ofVeff’s local minimum.
Further, the macroscopic tunneling of the condensate ta
all of the atoms with it. To obtain a tunneling rate in atom
sec one then identifies a rate

GN
tunnel;Nn exp~22s!. ~4.9!

Figure 10 plots the loss rates for the few-body a
N-body processes forN nearNc . The tunneling rate has a
strong exponential dependence onN, whereby its influence
drops to insignificance ifN is even five atoms below the
critical number. Even accounting for order-of-magnitude u
certainties in the rates does not alter this basic conclus
The tunneling rate is plotted only up toN51460 atoms,
beyond which even the metastable condensate’s ground
lies higher in energy than the barrier. This circumstan
identifies Nc51460 atoms as the ‘‘true’’ critical numbe
within our model.

FIG. 9. Comparison ofK-harmonic and Hartree-Fock approx
mation estimates of the peak condensate density for the conde
considered in Fig. 6. As in Fig. 8~b!, N has been scaled by th
appropriate critical numberNc . Both models show a sharp rise i
density as the appropriate critical number is approached.
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A linear fit of ln(GN
tunnel) versusN yields the dependence

GN
tunnel;~2.73105!exp@1.6~N2Nc!# atoms/sec,

~4.10!

assumingNc51460. The exponent 1.6 is about three tim
larger than Shuryak’s estimate of 0.57, which was de
mined by projecting a Gaussian metastable wave func
onto a variety of trial wave functions for the collapsed st
@18#. Similarly, the WKB-like estimate of Stoof can b
evaluated to yield an exponent;0.65. If we artificially ad-
just the interaction term ofVeff to yield the correct critical
number, we find that the exponent in theK-harmonic model
drops to;0.82, more in line with the other values. This
consistent with the fact that a more complete hyperspher
calculation will of course converge to the correct result. T
more detailed analysis of Ueda and Leggett shows that
tunneling rate is actually not strictly exponential inN, but
this distinction need not concern our qualitative discuss
here.

Our main conclusion is then: if the condensate conta
fewer than'(Nc25) atoms, it is likely to dribble away by
two- and three-body losses rather than collapsing all at o
in a macroscopic tunneling event. Even at high densities
will be easier to bring pairs of atoms together than to br
the whole assembly of atoms together. The observation
macroscopic tunneling might just be possible, if the con
tion N;Nc can be attained. This situation will probably b
difficult to achieve by evaporative cooling, and will pers
for a fraction of a second, making its observation a tric
challenge indeed. One possible solution would be to crea
condensate very close to the critical number, then to tune
interaction strength so thatNc coincides withN. Such a tun-
ing of scattering lengths may be possible using magnetic@49#
or laser@50,51# fields. In addition, a technique was demo
strated recently for lowering to a temperature just above
transition temperature, then suddenly crossing the trans
at will @52#.

FIG. 10. The loss rate of atoms from the condensate due to
and three-body processes~solid curve! and due to a macroscopi
tunneling event~dashed line! for the condensate considered in Fi
6. In this example the critical number isNc51460. Until the num-
ber of atoms reaches 1455 or so, the two- and three-body r
completely dominate the loss.
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V. SUMMARY AND PROSPECTS

We have demonstrated an alternative approach to
physics of the ground state of a trapped many-boson sys
from the point of view of ordinary Schro¨dinger quantum
mechanics. We have selected a particularly useful variatio
trial wave function for the linear Schro¨dinger equation~2.8!
that yields results similar to variational approaches to
nonlinear Schro¨dinger equation~1.1! in common use in BEC
theory. This approximation produces surprisingly good qu
titative results from a very simple model potential.

The present results are limited by our truncation to onl
single term in the expansion~2.10!. We anticipate that the
results will improve as more of the expansion is included
we appeal again to the basic simplicity in the shape of
condensate, we expect that the expansion need not co
too many terms before accurately representing a numbe
condensate properties. This approach also has the abili
describe condensates in nonspherical traps, provided
sufficiently many harmonics are included to represent
anisotropy of the condensate. These extensions of
K-harmonic model are presently being considered@53#.

Finally, we remark that hyperspherical models are a
suitable for describing mixtures of condensed atoms of
ferent species. In this case each speciesi is accorded its own
hyperradiusRi , and the overall hyperradius can be given
(M11M2)R25( iM iRi

2 , with M1 and M2 the total masses
of the two components. We expect this approach to s
light on the stability of double condensates@54,55#, which
possess three independent scattering lengths.
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APPENDIX A: HYPERSPHERICAL COORDINATES

The choice of a set of hyperspherical coordinates rests
first indentifying an appropriate set of Cartesian coordina
for the atoms, which can of course be done in many w
@31#. We will pick a particularly simple and convenient set
coordinates, namely, the radial vectors of each ato
rW1 ,rW2 , . . . ,rWN , with respect to the center of the trap. Then
obvious choice for 2N of the hyperangles is just the set o
polar coordinates of the atoms,

u1 ,f1 ,u2 ,f2 , . . . ,uN ,fN . ~A1!

This leavesN21 hyperangles to be chosen, which are co
veniently defined as arctangents of ratios of radial distan
We will follow the convention of Ref.@31#, defining these
angles as follows:

r N5ANR cosaN21 ,

o-

es
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r N215ANR cosaN22sin aN21 ,

. . . ~A2!

r 25ANR cosa1sin a2•••sin aN21 ,

r 15ANR sin a1sin a2•••sin aN21 .

In these expressions each anglea j is restricted to run be-
tween 0 andp/2, to maintain positive definiteness of ea
r i . This parametrization clearly satisfies our definition
hyperradius in Eq.~2.3!. We remark in passing that thes
coordinates have also been used to parametrize the elect
coordinates in complex atoms@56#.

Reference@31# also gives an explicit expression for th
surface area elementdV3N of the hypersphere in 3N dimen-
sions, which is conveniently parametrized in the present c
as

dV3N5)
i 51

N

df id~cosu i ! )
j 51

N21

sin3 j 21a jcos2 a jda j .

~A3!

With this parametrization it is straightforward to evaluate t
surface area of the hypersphere in terms of the gamma f
tion,

E dV3N5
2p3N/2

G~3N/2!
. ~A4!

This integral implies in turn the normalization of the hype
spherical harmonicY00, which is a constant:

Y00~V!5AG~3N/2!

2p3N/2
. ~A5!

APPENDIX B: EVALUATION OF INTEGRALS

We wish to derive Eq.~2.14!. To do this, we first note tha
by symmetry we need only evaluate the matrix element
the left for a single pair of atoms, whereby the left-hand s
of Eq. ~2.14! becomes

(
i , j

4p\2a

m
^00ud~rW i2rW j !u00&

5
N~N21!

2

4p\2a

m
^00ud~rW12rW2!u00&. ~B1!

We first rewrite the Dirac delta function in spherical coord
nates,

d~rW12rW2!5
1

r 1
2
d~r 12r 2!d~f12f2!d~cosu12cosu2!.

~B2!

Using Eq. ~A3!, the integration over the spatial angles
trivial:
f

nic

se

c-

n
e

E df1d~cosu1!¯E dfNd~cosuN!d~f12f2!

3d~cosu12cosu2!5~4p!N21. ~B3!

We next recast the radial part of the Dirac delta in terms
thea angles, using the definitions in Eq.~A2! and exploiting
the fact thatR is held constant:

1

r 1
2
d~r 12r 2!5

1

N3/2R3sin2a1sin3a2¯sin3aN21

3d~sina12cosa1!. ~B4!

The integral over the volume element specified in Eq.~A3!
and the delta function now factorizes into separate integ
for eacha j . For j 52, . . . ,N21, the integrals are

E
0

p/2

sin3 j 21a j cos2a jda j

1

sin3a j

5
1

2

G„~3 j 23!/2…G~ 3
2 !

G~3 j /2!
,

~B5!

whereas thej 51 integral is

E
0

p/2

sin2a1cos2a1da1

1

sin2a1

d~sin a12cosa1!5
1

2A2
.

~B6!

Multiplying the relevant factors together, and inserting t
value~A5! for the hyperspherical harmonic, we arrive at t
matrix element

^00ud~rW12rW2!u00&5
1

2A2p3

G~3N/2!

G„~3N23!/2…

1

N3/2R3
.

~B7!

Inserting this expression into Eq.~B1! finally produces the
result ~2.14!.

We encounter a similar integral in Eq.~3.4!. The only
difference is in the factord(rW1) instead ofd(rW12rW2). The
entire derivation goes through as above, except that thea1
integration now reads

E
0

p/2

sin2a1cos2a1da1

1

sin2a1

d~a1!51, ~B8!

leading to the result~3.5!.

APPENDIX C: DEGENERACY OF OSCILLATOR STATES

In this Appendix we work out the degeneracy ofN non-
interacting atoms confined in a spherically symmetric h
monic oscillator potential. In the familiar Cartesian coord
nates, if each degree of freedomi holdsni quanta, then the
total energy is

En5\v(
i 51

3N S ni1
1

2D5\vS n1
3N

2 D , n5(
i

ni .

~C1!
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The degeneracy of levels with energy~C1! equals the num-
ber of ways in whichn quanta can be distributed among 3N
degrees of freedom, which is given by the binomial coe
cient

S n1~3N21!

n D 5
„n1~3N21!…!

n! ~3N21!!
. ~C2!

In hyperspherical language, the energy eigenvalues
given by Eq.~2.16!:

Exl5\vS 2x1l1
3N

2 D . ~C3!

For a given energy, we thus make the identification 2x1l
5n. Avery gives an expression for the number of hyp
spherical harmonics with a given value ofl ~@32#, p. 35!:

~3N12l22!~3N1l23!!

l! ~3N22!!

5S l1~3N22!

l
D 1S ~l21!1~3N22!

~l21!
D .

~C4!
.

an

s,

J.

s

ett

E

-

re

-

To find the complete degeneracy, we must sum this exp
sion for all allowed values ofl, consistent with 2x1l
5n. Note thatl is restricted to values with the same pari
asn, but the form of Eq.~C4! guarantees that all values ofl,
even and odd, will appear in the sum. The total degenerac
thus

(
l50

n S l1~3N22!

l
D 5S n1~3N21!

n D , ~C5!

in agreement with Eq.~C2!. We have evaluated the sum~C5!
using the following formal properties of binomial coeffi
cients@57#:

S 2n

k D 5~21!kS n1k21

k D ~C6!

and

(
k50

m

~21!kS n

kD 5~21!mS n21

m D . ~C7!
ett.

E.

,

tt.
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Naraschewski, A. Schenzle, and H. Wallis, Phys. Rev. L
78, 4143~1997!.

@16# D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and
A. Cornell, Phys. Rev. Lett.78, 764 ~1997!; R. J. Doddet al.
~unpublished!.

@17# P. Nozières and D. Pines,The Theory of Quantum Liquids
Vol. II ~Addison-Wesley, Redwood City, CA 1990!.

@18# E. V. Shuryak, Phys. Rev. A54, 3151~1996!.
@19# M. Houbiers and H. T. C. Stoof, Phys. Rev. A54, 5055

~1996!.
@20# C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Le

78, 985 ~1997!.
@21# H. T. C. Stoof, J. Stat. Phys.87, 1353~1997!.
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