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Persistent currents in a toroidal trap
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Using elementary microscopic methods, we theoretically study persistent flow of an alkali-metal vapor
Bose-Einstein condensate around a tight toroidal trap. The angular velocity of a persistent current must be
smaller than the angular frequency of the lowest condensate excitation. A supercurrent may be excited by
rotating a perturbing potential that is strong enough to cut the toroidal condensate.@S1050-2947~98!07907-4#

PACS number~s!: 03.75.Fi, 05.30.2d, 32.80.Pj
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Experimental studies of Bose-Einstein condensates~BEC!
in alkali-metal vapors are now well under way@1#. While
experimental data are not yet available, the potential of
perfluidity and persistent currents in these systems has
recognized from the outset. Theoretical effort@2# has focused
on vortex states of a weakly interacting Bose gas bound
harmonic trap, states in which the entire condensate rot
in accordance with a quantized value of angular moment
Studies of excitations of such vortices@3,4# have led to ar-
guments that a vortex cannot be stable@4# in a trap with the
minimum of the confining potential at the center.

Unimpeded by the no-go rule@4#, a persistent current ma
be stable in other types of traps that can pin the vortex.
consider a rather extreme case, a trap that confines a con
sate to a torus. With the additional assumption that tra
verse confinement is tight, the motion of the condens
along the torus is amenable to a simple microscopic tr
ment. We point out that superfluid flow may be stable
long as the angular velocity at which the condensate cir
lates around the torus is lower than the angular frequen
of the elementary excitations of the condensate. Creatin
persistent current also proves to be a nontrivial task.
develop an approach whereby the condensate is stirred u
a rotating potential strong enough to cut the torus.

Specifically, we take the radius of the condensate toruR
to be much larger than the transverse dimensions of a
across the condensate. Two simplifications ensue from s
an assumption. First, the frequencies of the excitations
volving the transverse coordinates, call themy andz, tend to
be much higher than the excitation frequencies of the mo
in the direction along the ring coordinatex. In what follows
we assume that the transverse motion is frozen to a w
function c(y,z). Second, as has been anticipated in our
tation already, in our mathematics we straighten the to
and treat the motion along the ring as linear translation. A
vestige of the original topology we impose periodic boun
ary conditions over the circumference of the torus 2pR.

For atom-atom interactions we adopt the conventionad
function pair potential characterized by thes wave scattering
length a. As it comes to the interactions, the only releva
parameter of the transverse motion is the length scalel de-
fined by l 225*dydzuc(y,z)u4. We embody atom-atom in
teractions into the dimensionless parameterj52aR/ l 2. It
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will frequently prove convenient to discuss the fluid in
rotating coordinate system in which a stationary condens
would rotate like a wheel at the angular velocity2v. We
employ the dimensionless parametern5mR2v/\ for the an-
gular velocity. Without restricting the generality, in the fo
lowing we assume thatn>0. Finally, we useR as the unit of
length, the atomic massm as the unit of mass, and\2/(mR2)
as the unit of energy.

All told, the atoms move in the intervalxP@2p,p# with
periodic boundary conditions. In the basis of the plane wa
uk(x)51/A2p eikx with k50,61, . . . , the second-
quantized many-body Hamiltonian in the rotating fram
reads

H5(
k

S k2

2
2nkDbk

†bk1(
p,q

Ṽ~p2q!bp
†bq

1
1

2
j (

k,p,q
bk1q

† bp2q
† bpbk . ~1!

We allow for a potentialV(x) in the direction of the torus,
and Ṽ(k)5(1/2p)*2p

p dxe2 ikxV(x) are the Fourier coeffi-
cients of the potential. The corresponding Gross-Pitaev
equation@5,6# ~GPE! for a system ofN atoms is

S 2
1

2

]2

]x2 1 in
]

]x
1V12pNjucu2Dc5ec. ~2!

In the absence of the potentialV, the plane wavesuk are still
the eigenstates of the GPE, though the energy~chemical po-
tential! depends on both rotation and atom-atom interactio

ek~n!5k2/22nk1Nj. ~3!

It is a peculiarity of the transformation to the rotating fram
that atoms in the rotating-frame eigenstateuk still have the
velocity v5k with respect to thestationaryframe.

Let us momentarily ignore both atom-atom interactio
and the potentialV(x), and work in the nonrotating labora
tory frame withn50. A state with all theN atoms in any
one-particle stateuk is evidently an eigenstate of the Hami
tonian~1!. By the translational symmetry, such a state sho
be a good first approximation to an eigenstate of the Ham
tonian ~1! even in the presence of atom-atom interactio
580 © 1998 The American Physical Society
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PRA 58 581PERSISTENT CURRENTS IN A TOROIDAL TRAP
Here we are merely restating the observation that pl
waves are the solutions to the GPE~2!, the Hartree-Fock
equation for the Boson system. ForkÞ0 we have a putative
persistent current. In accordance with standard argum
about quantization of circulation@5#, the flow velocity of
persistent current is quantized in units ofDv5Dk51. To
eliminate inessential complications in the notation we ta
k>0, unless the context implies otherwise.

We next address the stability of the circulating current,
far keepingV(x)50. While in the usual textbook analyse
@5# of Bogoliubov theoryk50 is assumed, the calculation
can equally easily be carried out for a nonzero flow veloc
of the condensate; cf.@7#. The frequency of an excitation o
the condensate with wave numberk1q turns out to be

vk1q5kq1uquAc21q2/4. ~4!

Herec5ANj is the speed of zero sound in the condensa
The sign ambiguity in Bogoliubov theory,6uquA . . . , has
been resolved by requiring that in the limit of a stationa
noninteracting gas,k→0 and c→0, excitation energies
should be positive. Forv5k.c, Eq. ~4! gives a soft mode
and negative excitation frequencies. We take these as s
of instability. For instance, slightest nonidealities of the to
or even quantum fluctuations pump the soft mode, and
circulating condensate is destroyed.

Equation~4! makes an explicit verification of the well
known argument@5# about the excitation spectrum of a mo
ing fluid based on Galilean transformations. The square
term corresponds to the excitation energy of a stationary c
densate, and thekq term is akin to a Doppler shift. We als
have the familiar@5,8# condition that a rotating condensa
may be stable only if the speed of the fluid is slower than
speed of zero sound. As there have recently been score
discussions of elementary excitations of a condensate@9–
12#, another viewpoint may be illuminating. By our assum
tions excitations across the torus are frozen out, leaving
citations along the ring. The lowest mode clearly is a sou
wave that completes one wavelength around the torus, gi
the angular frequencyc. The stability conditionv,c is the
same as requiring that in stable circulation the angular ve
ity must be smaller than the angular frequency of the lowe
energy condensate excitation. This observation underl
the difference between persistent currents and elementar
citations.

Another implication of the conditionv,c follows be-
cause on one hand the lowest possible persistent cu
speed isv51, and on the other hand the speed of sou
satisfiesc5ANj. Superfluidity requires a minimum streng
from atom-atom interactions, namelyNj.1. A similar con-
dition was found in Ref.@4#.

Of course, for a perfect torus conservation of angular m
mentum alone guarantees a persistent current. The crux
is that our argument may apply even if a perturbationV(x)
breaks circular symmetry. Then the plane wavesuk are no
longer exact eigenstates of the one-body Hamiltonian,
neither is the excitation spectrum of a flowing condens
given exactly by Eq.~4!. Nonetheless, ifV(x) is ‘‘small
enough,’’ Eq. ~4! should be a useful approximation, an
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shows that a persistent current still is a local energy m
mum for theN-atom system. In microscopic terms, this is t
essence of superfluidity@8#.

One might rotate the entire apparatus while the atoms
cooled through the BEC phase transition, which is likely
leave behind a rotating condensate. However, we wish
consider less drastic measures to stir up superfluid flow.
question of creating a persistent current is nontrivial; the s
tionary condensate is a persistentzero current, and resists
change in its own right. We shall investigate the effects o
rotating potentialV(x2nt) in the co-rotating frame using
Eqs.~1! and ~2!.

We begin with a perturbative treatment of the potent
V(x), first ignoring atom-atom interactions. In this case w
essentially adapt the argument of Ref.@13# as follows. The
unperturbed states are the plane wavesuk with energies
ek(n)5k2/22kn. The statesk andk11 become degenerat
at the angular velocity of rotationn5k11/2, when the ve-
locity of the moving potential is halfway between the atom

velocities of the two states. If the matrix elementṼ[

Ṽ(k51) is nonzero, the perturbation lifts the degeneracy
first order inṼ. The crossing of the statesk andk11 then
turns into an avoided crossing. When the angular velocitn
is ramped up slowly enough, the avoided crossings are
versed adiabatically ask50→1→2→•••. This establishes
a persistent current.

In the next step we incorporate atom-atom interactio
but continue to assume that only two plane-wave statei
[k and f [k11 participate in the crossing. The releva
Hamiltonian is

H5nbi
†bi1Ṽ~bf

†bi1bi
†bf !1jbf

†bfbi
†bi . ~5!

We have made a few inconsequential simplifications, in p
ticular we have ignored a polynomial of the conserved to
particle numberbi

†bi1bf
†bf . The exchange energy}j is

what remains of atom-atom interactions. This time we takeṼ
to be a perturbation in comparison with the exchange in
action.

The zeroth-order eigenstates are the number statesuninf&
with ni1nf5N, and the corresponding energies areE(ni)
5nin1jni(N2ni). The statesni and ni11 cross atn
5j(2ni112N). Since the perturbation}Ṽ has a matrix
element between the statesni and ni11, the avoided-
crossing scenario emerges once more, but with a twist.
ordinary condensates the scattering length and hence the
rameterj are positive, and the type of chainni5N→N21
→••• that transfers the atoms from the initial statek to the
final statek11 ensues when the rotation frequency is sw
downward, ṅ,0. The somewhat bizarre prescriptio
emerges that one first sweeps up the angular velocity of
perturbationV(x) through the transitionk→k11 diabati-
cally, then backtracks adiabatically to effect the desired tr
sition k→k11, and finally sweeps back through the tran
tion diabatically to continue to the nextk.

Unfortunately, there is a common uncertainty in the
perturbative schemes. Consider the crossing of statesk and
k11. In the absence of atom-atom interactions the nea
many-body state with all atoms in a single one-particle st
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would be the one with the atoms in the statek21. This is
separated from the state with all atoms in the statek by the
energyN. When atom-atom interactions are taken into a
count in the system of statesk andk11 using Eq.~5!, ex-
change interactions are seen to move the ensuing many-
states around by as much asN2j/4. If N2j/4*N, it may no
longer be permissible to treat the crossingk→k11 without
including the statek21. Perturbative arguments are pro
ably valid only for Nj&1, when there isno superfluidity.
The qualitative results are not necessarily incorrect in
presence of superfluidity, but without an elaborate furt
analysis one cannot tell which are reliable and which are
That is why we defer details of the perturbative argument
a future publication@14#.

Instead, we turn to a nonperturbative method to excit
persistent current. We begin by noting that iff(x) is a so-
lution with energye to the GPE~2! for the nonrotating po-
tential V(x), then the momentum-translated stateeinxf(x)
with the energye2 1

2 n2 is a formal solution in the co-
rotating frame for the same potential rotated at angular
locity n. We say ‘‘formal’’ because, unlessn is an integer, in
generaleinxf(x) does not satisfy the correct periodic boun
ary conditions. A bound state is a notable exception. Ass
ing that the minimum of the potentialV(x) is at x50, for a
bound statef(x) nearly vanishes asx→6p @15#, and so
doeseinxf(x). Thereforeeinxf(x) may be a good approxi
mation to the true eigenstate in the rotating frame. When
angular velocity is increased, bound states should drop
unison in energy, as2 1

2 n2.
Many concepts we have brought up are demonstrate

Fig. 1. We choose a potentialV(x)522 cos2(x/2) such that
at n50 there are three negative-energy eigenstates. The
tential is peculiar in that it only has nonzero Fourier comp
nents atk50,61, so that statek is directly coupled only to
statesk61. We setj50, and solve the GPE by integratin
the corresponding time-dependent GPE in imaginary t
using the split-operator method@11#. Figure 1 shows the en
ergies of eleven lowest-lying eigenstates as a function of
angular velocity of rotationn.

FIG. 1. Energies of the 11 lowest-energy eigenstates of
Gross-Pitaevskii equation~2! as a function of the angular velocit
of rotation n of the potentialV(x) in the corotating frame. The
figure is for the noninteracting condensate withj50, and the po-
tential isV(x)522 cos2(x/2).
-

dy

e
r
t.
o

a

-

-

e
in

in

o-
-

e

e

Were there no potentialV(x), at n50 the energies would
simply be k2/2 with k50,61,62, . . . , all states exceptk
50 being doubly degenerate. The potentialV(x) has
coupled strongly the statesk50 andk561. The resulting
three states are pulled to negative energies, i.e., below
top of the potential, and are bound to a varying degree. O
states are affected little atn50. With the rotation, the rela-
tively unaffected state doublets split according tok2/2
6ukun. Where states withDk51 meet we see anticrossing
but otherwise most of the states practically cross whenn is
varied. The bound states are a notable exception. In par
lar, the energy of the ground state varies withn very accu-
rately as2 1

2 n2.
One may solve the GPE in the same way for nonvanish

interatomic interactions,jÞ0. Deep potentials,Vmax2Vmin

@1, strong atom-atom interactions,Nj@1, and level cross-
ings are the makings of numerical problems, but we ha
been able to verify the same qualitative behavior as in Fig
well into the domain of superfluidity.

A strategy to produce a persistent current is now obvio
First one either condenses the atoms with the potentialV(x)
in place, or first condenses and then turns onV(x) adiabati-
cally. Next one accelerates the potential adiabatically. A
the desired rate of rotation is achieved, the strength of
rotating potentialV(x) is slowly turned to zero. One ma
want to choose the final angular velocityn close to an integer
to avoid the mixing of states that happens at half-inte
values ofn. The ground state in the rotating frame in th
presence of the potentialV(x) then evolves into the ground
state for the potentialV(x)50, a persistent current withk
equal to the integer nearest ton. ‘‘Slowly’’ or ‘‘adiabati-
cally’’ mean slowly on the time scales of the elementa
excitations of the condensate.

Our thesis is that robust driving of a persistent curren
possible using a potentialV(x) that confines the condensat
i.e., cuts the torus. Repulsive atom-atom interactions lea
an expansion of the condensate and make the confinem
more difficult, but the argument applies just the same.

A toroidal trap could be prepared by making a radia
symmetric trap and then punching the center out with a bl
detuned laser beam@16#. Extrapolating from current experi
ments@1#, the dimensions could beR;0.05 mm andl;0.01
mm. Together with the scattering lengtha;1028 m, these
give the estimatej;1022. At present atom numbers reac
up to about 106 and we estimateNj;104, deep in the regime
of superfluidity. Using the mass of a Na atom, we have
frequency scale for superfluid rotation\/(mR2);2p
30.1 Hz. The frequency of the lowest elementary excitat
is ANj times that, the familiar order of magnitude 2p
310 Hz. In the Thomas-Fermi limit, large atom numbe
one may think of condensate excitations as acoustic re
nances of zero sound@17#. The frequencies of excitation
involving transverse directions should thus be of the or
2pR/ l higher than the frequencies of longitudinal excit
tions, ;2p3300 Hz in our example. If one operates ov
time scales long enough to avoid longitudinal excitations,
implication one does not drive transverse excitations eith
The perturbing potentialV(x) could be produced, e.g., b
dipole forces of light. Superfluid motion might be detect
by erecting suddenly a stationary~in the laboratory frame!

e
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potential barrier. An asymmetry in the condensate sho
result, depending on from which side the fluid runs into t
barrier.

Thanks to the very low temperature, this type of fluid
mesoscopic even at near-millimeter sizes. Novel phenom
might ensue. For instance, what happens to the stability
guments atc;1, in which case the quantization of both pe
sistent current modes and elementary excitations have t
considered more carefully than we have done? Another
pect we want to emphasize is that alkali-metal vapor cond
sates are clean, well-characterized, and highly controlla
systems. Here we have the opportunity and the incentiv
discuss superfluidity under a variety of conditionsab initio,
using microscopic methods. Research projects immedia
suggest themselves. For instance, superfluid flow is stable
a sufficiently small perturbationV(x). What happens ifV(x)
is not so small?

Notably absent from our argument is spontaneously b
ken gauge symmetry@18#. It has been shown earlier that
number of staples of broken symmetry, such as Joseph
effect and interference of two condensates, may be analy
without ever invoking symmetry breaking@19#. Now, these
examples have dealt with theglobal phase of the condensat
and superfluidity may seem different; superfluid flow velo
ity is attributed to the gradient of the phase of the superfl
order parameter@5#, a local reference to the phase. Noneth
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less, we have in effect@18# managed to predict characterist
consequences of superfluidity without invoking a condens
or superfluid phase or order parameter. In fact, we beli
that no broken symmetry, order parameter, or global or lo
condensate phase is in principle needed for a descriptio
superfluidity. Bloch@8# has some time ago presented a ana
sis of persistent currents in toroidal geometry that is in co
plete agreement with our no-phase philosophy. Howev
Ref. @8# builds on abstract properties of many-body wa
functions, and is of limited utility in practical calculations
When one wants predictions in complicated condens
matter systems, phenomenology in terms of an order par
eter may still be the best, or all, one has. Our thrust is t
with alkali-metal vapor condensates one could, and sho
think of methods that do not rely on an order parameter.

We have advocated the toroidal trap as an advantage
configuration for studies of superfluidity and persistent c
rents, discussed the stability of superfluid flow, and devise
method to excite a persistent current. Apart from these te
nical items, we have a broader agenda: We wish to prom
low-temperature alkali-metal vapors as clean, mesosco
systems for experimental and theoretical, microscopic,ab
initio investigations of superfluidity.

This work is supported in part by the National Scien
Foundation, Grant No. PHY-9421116. S.M.P. is suppor
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