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Persistent currents in a toroidal trap
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Using elementary microscopic methods, we theoretically study persistent flow of an alkali-metal vapor
Bose-Einstein condensate around a tight toroidal trap. The angular velocity of a persistent current must be
smaller than the angular frequency of the lowest condensate excitation. A supercurrent may be excited by
rotating a perturbing potential that is strong enough to cut the toroidal condef&a#&0-294{©8)07907-4

PACS numbgs): 03.75.Fi, 05.30-d, 32.80.Pj

Experimental studies of Bose-Einstein condens@&C)  will frequently prove convenient to discuss the fluid in a
in alkali-metal vapors are now well under wa¥]. While  rotating coordinate system in which a stationary condensate
experimental data are not yet available, the potential of suwould rotate like a wheel at the angular velocityw. We
perfluidity and persistent currents in these systems has be@mploy the dimensionless parameter mRPw/# for the an-
recognized from the outset. Theoretical eff@} has focused gular velocity. Without restricting the generality, in the fol-
on vortex states of a weakly interacting Bose gas bound to lbbwing we assume that=0. Finally, we useR as the unit of
harmonic trap, states in which the entire condensate rotatdength, the atomic mass as the unit of mass, aricf/(mR?)
in accordance with a quantized value of angular momentunas the unit of energy.

Studies of excitations of such vorticg3,4] have led to ar- All told, the atoms move in the intervale [ — 7, 7] with
guments that a vortex cannot be stalglgin a trap with the  periodic boundary conditions. In the basis of the plane waves
minimum of the confining potential at the center. u(x)=1+27 ** with k=0,+1,..., the second-

Unimpeded by the no-go ruld], a persistent current may quantized many-body Hamiltonian in the rotating frame
be stable in other types of traps that can pin the vortex. Weeads
consider a rather extreme case, a trap that confines a conden- 2
sate to a torus. With the additional assumption that trans- _ t & t
verse confinement is tight, the motion of the condensate H_Ek: (?_Vk)bkbﬁ% V(p—a)bpby
along the torus is amenable to a simple microscopic treat-
ment. We point out that superfluid flow may be stable as
long as the angular velocity at which the condensate circu-
lates around the torus is lower than the angular frequencies
of the elementary excitations of the condensate. Creating We allow for a potentiaM(x) in the direction of the torus,
persistent current also proves to be a nontrivial task. Wend V(k)=(1/27) ™ dxe **V(x) are the Fourier coeffi-
develop an approach whereby the condensate is stirred up lgjents of the potential. The corresponding Gross-Pitaevskii

1
T t
- Egk%q by 4P} qbpbi- (1)

a rotating potential strong enough to cut the torus. equation[5,6] (GPB for a system ofN atoms is
Specifically, we take the radius of the condensate t&us

to be much larger than the transverse dimensions of a cut 1 9 Vet 2NEl l? 2

across the condensate. Two simplifications ensue from such 2 o’!_xzﬂy&-i_ +2aNE Y% | = e @

an assumption. First, the frequencies of the excitations in- ]
volving the transverse coordinates, call thgrandz, tend to [N the absence of the potenthd| the plane wavesy are still

be much higher than the excitation frequencies of the motiofhe €igenstates of the GPE, though the enéefigmical po-
in the direction along the ring coordinate In what follows tentia) depends on both rotation and atom-atom interactions:

we assume that the transverse motion is _frozen _to a wave e v)=k22— vk+ NE. 3)
function ¢(y,z). Second, as has been anticipated in our no-
tation already, in our mathematics we straighten the torust is a peculiarity of the transformation to the rotating frame
and treat the motion along the ring as linear translation. As #hat atoms in the rotating-frame eigenstatestill have the
vestige of the original topology we impose periodic bound-velocity v =k with respect to thestationaryframe.
ary conditions over the circumference of the torusR2 Let us momentarily ignore both atom-atom interactions
For atom-atom interactions we adopt the conventiahal and the potential/(x), and work in the nonrotating labora-
function pair potential characterized by thevave scattering tory frame withv=0. A state with all theN atoms in any
lengtha. As it comes to the interactions, the only relevantone-particle state, is evidently an eigenstate of the Hamil-
parameter of the transverse motion is the length scale-  tonian(1). By the translational symmetry, such a state should
fined byl 2= fdydZ#(y,z)|*. We embody atom-atom in- be a good first approximation to an eigenstate of the Hamil-
teractions into the dimensionless parameger2aR/I?. It tonian (1) even in the presence of atom-atom interactions.
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Here we are merely restating the observation that planshows that a persistent current still is a local energy mini-
waves are the solutions to the GRB), the Hartree-Fock mum for theN-atom system. In microscopic terms, this is the
equation for the Boson system. Hor-0 we have a putative essence of superfluidiy8].
persistent current. In accordance with standard arguments One might rotate the entire apparatus while the atoms are
about quantization of circulatiof5], the flow velocity of cooled through the BEC phase transition, which is likely to
persistent current is quantized in units 86=Ak=1. To leave behind a rotating condensate. However, we wish to
eliminate inessential complications in the notation we takeconsider less drastic measures to stir up superfluid flow. The
k=0, unless the context implies otherwise. guestion of creating a persistent current is nontrivial; the sta-
We next address the stability of the circulating current, sdionary condensate is a persistergro current, and resists
far keepingV(x) =0. While in the usual textbook analyses change in its own right. We shall investigate the effects of a
[5] of Bogoliubov theoryk=0 is assumed, the calculations rotating potentialV(x— »t) in the co-rotating frame using
can equally easily be carried out for a nonzero flow velocityEgs. (1) and (2).
of the condensate; cf7]. The frequency of an excitation of We begin with a perturbative treatment of the potential
the condensate with wave numbet g turns out to be V(x), first ignoring atom-atom interactions. In this case we
essentially adapt the argument of REf3] as follows. The
unperturbed states are the plane wawgswith energies
wy+q=Ka+ g Vc?+q?/4. (4)  e(v)=k?2—kv. The statek andk+1 become degenerate
at the angular velocity of rotation=k+ 1/2, when the ve-
locity of the moving potential is halfway between the atomic

Herec=JN¢ is the speed of zero sound in the condensateyelocities of the two states. If the matrix elemewits

The sign ambiguity in _B_ogoliubo_v theor_yt_|q| o has V(kzl) is nonzero, the perturbation lifts the degeneracy to
been resolved by requiring that in the limit of a stationary . L~ .
first order inV. The crossing of the statédsandk+1 then

noninteractin ask—0 and c—0, excitation energies . . ; .
g gask- _ 9 turns into an avoided crossing. When the angular velogity

should be positive. Fas =k>c, Eq. (4) gives a soft mode iss ramped up slowly enough, the avoided crossings are tra
and negative excitation frequencies. We take these as si ! ]
g g gversed adiabatically ds=0—1—2— - ... This establishes

of instability. For instance, slightest nonidealities of the torus

or even quantum fluctuations pump the soft mode, and th@ Persistent current. . . .
circulating condensate is destroyed. In the next step we incorporate atom-atom interactions,

Equation (4) makes an explicit verification of the well- Put continue to assume that only two plane-wave states

known argumenf5] about the excitation spectrum of a mov- — K @nd f=k+1 participate in the crossing. The relevant
ing fluid based on Galilean transformations. The square rodf@miltonian is

term corresponds to the excitation energy of a stationary con-

densate, and thieq term is akin to a Doppler shift. We also H=vbb;+V(blb;+b'bs) + £blbsbb; . (5)
have the familiaf5,8] condition that a rotating condensate

may be stable only if the speed of the fluid is slower than th&ye have made a few inconsequential simplifications, in par-
speed of zero sound. As there have recently been scores @ jar we have ignored a polynomial of the conserved total

discussions of elementary excitations of a condengte particle numberb?bﬁb}rbf. The exchange energy ¢ is

12], another viewpoint may be illuminating. By our assump- . . . . ~
tions excitations across the torus are frozen out, leaving ex- hat remains of atom-atom interactions. This time we tdke

citations along the ring. The lowest mode clearly is a soun @ be a perturbation in comparison with the exchange inter-

. action
wave that completes one wavelength around the torus, givin ' .
the angular frequencyg. The stability conditiorv <c is the The zeroth-order eigenstates are the number sfateg

same as requiring that in stable circulation the angular velocVith ni+n¢=N, and the corresponding energies &)
niv+én,(N—n;). The statesn; and n;+1 cross atv

ity must be smaller than the angular frequency of the lowest-~ -
energy condensate excitation. This observation underlines §(2ni+1—N). Since the perturbation:V has a matrix
the difference between persistent currents and elementary eRlement between the stateg and n;+1, the avoided-
citations. crossing scenario emerges once more, but with a twist. For
Another implication of the condition <c follows be- ordinary condensates the scattering length and hence the pa-
cause on one hand the lowest possible persistent curref@meter¢ are positive, and the type of cham=N—N-1
speed isv=1, and on the other hand the speed of sound— """ that transfers the atoms from the initial stat¢éo the
satisfiesc= NE. Superfluidity requires a minimum strength final statek+.1 ensues when the rotation frequency is swept
from atom-atom interactions, namei&>1. A similar con- downward »<0. The somewhat bizarre prescription
dition was found in Ref[4]. emerges that one first sweeps up the angular velocity of the
Of course, for a perfect torus conservation of angular moperturbationV(x) through the transitiork—k+1 diabati-
mentum alone guarantees a persistent current. The crux hetally, then backtracks adiabatically to effect the desired tran-
is that our argument may apply even if a perturbatif(x) sition k—k+1, and finally sweeps back through the transi-
breaks circular symmetry. Then the plane waugsare no tion diabatically to continue to the nekt
longer exact eigenstates of the one-body Hamiltonian, and Unfortunately, there is a common uncertainty in these
neither is the excitation spectrum of a flowing condensatgerturbative schemes. Consider the crossing of statsd
given exactly by Eq.(4). Nonetheless, ifV(x) is “small k+1. In the absence of atom-atom interactions the nearest
enough,” Eq. (4) should be a useful approximation, and many-body state with all atoms in a single one-particle state
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15 T T T Were there no potentidl(x), at v=_0 the energies would
simply bek?/2 with k=0,+1,=2, ..., all states excepk

=0 being doubly degenerate. The potenti(x) has
coupled strongly the statds=0 andk==1. The resulting
three states are pulled to negative energies, i.e., below the
51 - top of the potential, and are bound to a varying degree. Other
states are affected little at=0. With the rotation, the rela-
tively unaffected state doublets split according ké/2

10- -

OF N = |k|v. Where states witthk=1 meet we see anticrossings,
but otherwise most of the states practically cross whes
L N varied. The bound states are a notable exception. In particu-

lar, the energy of the ground state varies witlvery accu-
rately as— 2.

One may solve the GPE in the same way for nonvanishing
interatomic interactionsé# 0. Deep potentialsy max— Vmin
>1, strong atom-atom interactiond£>1, and level cross-

FIG. 1. Energies of the 11 lowest-energy eigenstates of thgngs are the makings of numerical problems, but we have
Gross-Pitaevskii equatiof) as a function of the angular velocity peen aple to verify the same qualitative behavior as in Fig. 1
qf rota_tlon v of the _potenugIV(x) in the corotating frame. The well into the domain of superfluidity.
figure is for the noninteracting condensate wgth 0, and the po- . . .
tential isV(x) = — 2 co2(x/2). _ A strategy to produce a persistent current is now obvious.

First one either condenses the atoms with the potevi{ia)
would be the one with the atoms in the stikte 1. This is  in place, or first condenses and then turnsvg§r) adiabati-
separated from the state with all atoms in the skalyy the  cally. Next one accelerates the potential adiabatically. After
energyN. When atom-atom interactions are taken into ac-the desired rate of rotation is achieved, the strength of the
count in the system of statédsandk+ 1 using Eq.(5), ex-  rotating potentialV(x) is slowly turned to zero. One may
change interactions are seen to move the ensuing many-boshant to choose the final angular velocityclose to an integer
states around by as much B3&/4. If N2£/4=N, it may no  to avoid the mixing of states that happens at half-integer
longer be permissible to treat the crosskg k+1 without  values ofv. The ground state in the rotating frame in the
including the statek—1. Perturbative arguments are prob- presence of the potenti&i(x) then evolves into the ground
ably valid only for Né<1, when there iso superfluidity.  state for the potentia¥/(x)=0, a persistent current witk
The qualitative results are not necessarily incorrect in thequal to the integer nearest io “Slowly” or “adiabati-
presence of superfluidity, but without an elaborate furtheically” mean slowly on the time scales of the elementary
analysis one cannot tell which are reliable and which are notexcitations of the condensate.

That is why we defer details of the perturbative arguments to Our thesis is that robust driving of a persistent current is
a future publicatior]14]. possible using a potenti®l(x) that confines the condensate,

Instead, we turn to a nonperturbative method to excite a.e., cuts the torus. Repulsive atom-atom interactions lead to
persistent current. We begin by noting thatfifx) is a so- an expansion of the condensate and make the confinement
lution with energye to the GPE(2) for the nonrotating po- more difficult, but the argument applies just the same.
tential V(x), then the momentum-translated stat&*¢(x) A toroidal trap could be prepared by making a radially
with the energye—3v? is a formal solution in the co- Symmetric trap and then punching the center out with a blue-
rotating frame for the same potential rotated at angular vedetuned laser beafi6]. Extrapolating from current experi-
locity ». We say “formal” because, unlessis an integer, in ments[1], the dimensions could biR~0.05 mm and ~0.01
generak' "¢ (x) does not satisfy the correct periodic bound- mm. Together with the scattering length- 108 m, these
ary conditions. A bound state is a notable exception. Assumgive the estimate&~ 10 2. At present atom numbers reach
ing that the minimum of the potentia(x) is atx=0, fora  up to about 1Band we estimatdlé~ 10%, deep in the regime
bound statep(x) nearly vanishes ag— + 7 [15], and so  of superfluidity. Using the mass of a Na atom, we have the
doese'™¢(x). Thereforee' ™ ¢(x) may be a good approxi- frequency scale for superfluid rotatioh/(mR) ~ 2
mation to the true eigenstate in the rotating frame. When the<0.1 Hz. The frequency of the lowest elementary excitation
angular velocity is increased, bound states should drop iis JN¢ times that, the familiar order of magnituder2
unison in energy, as 3. X10 Hz. In the Thomas-Fermi limit, large atom number,

Many concepts we have brought up are demonstrated ione may think of condensate excitations as acoustic reso-
Fig. 1. We choose a potentisl(x) = —2 cog(x/2) such that nances of zero sounfl7]. The frequencies of excitations
at v=0 there are three negative-energy eigenstates. The p#volving transverse directions should thus be of the order
tential is peculiar in that it only has nonzero Fourier compo-27R/|l higher than the frequencies of longitudinal excita-
nents atk=0,=1, so that stat& is directly coupled only to tions, ~27X300 Hz in our example. If one operates over
statesk+ 1. We seté=0, and solve the GPE by integrating time scales long enough to avoid longitudinal excitations, by
the corresponding time-dependent GPE in imaginary timémplication one does not drive transverse excitations either.
using the split-operator methgd1]. Figure 1 shows the en- The perturbing potential/(x) could be produced, e.g., by
ergies of eleven lowest-lying eigenstates as a function of thdipole forces of light. Superfluid motion might be detected
angular velocity of rotation. by erecting suddenly a stationatiyn the laboratory frame
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potential barrier. An asymmetry in the condensate shouldess, we have in effe¢fl8] managed to predict characteristic
result, depending on from which side the fluid runs into theconsequences of superfluidity without invoking a condensate
barrier. or superfluid phase or order parameter. In fact, we believe
Thanks to the very low temperature, this type of fluid isthat no broken symmetry, order parameter, or global or local
mesoscopic even at near-millimeter sizes. Novel phenomerPndensate phase is in principle needed for a description of
might ensue. For instance, what happens to the stability aguperfluidity. Bloct8] has some time ago presented a analy-
guments at~ 1, in which case the quantization of both per- SIS of persistent currents in toroidal geometry that is in com-
sistent current modes and elementary excitations have to Hi€t€_agreement with our no-phase philosophy. However,
considered more carefully than we have done? Another ad3€f- [8] builds on abstract properties of many-body wave
pect we want to emphasize is that alkali-metal vapor conde 'unctions, and is of limited utility in practical calculations.
sates are clean, well-characterized, and highly controllablm(,t:te,["gr gnsetemgmshepr:g?nlgg%?os 'r}nigmsl'co"’f‘tgg Oﬁgg?er;sr:ﬁ_
systems. Here we have the opportunity and the incentive tg y P gy P

. L : - S eter may still be the best, or all, one has. Our thrust is that
discuss superfluidity under a variety of conditicats initio, : ;
with alkali-metal vapor condensates one could, and should,

using microscopic metho_ds. Research prqjects ir_nmedia’tel%ink of methods that do not rely on an order parameter
suggest themselves. For instance, superfluid flow is stable for We have advocated the toroidal trap as an advantagéous
a sufficiently small perturbatiow(x). What happens ¥/(x) configuration for studies of superfluidity and persistent cur-

i ?

IS rlllogtzglsn;s!ént from our arqument is spontaneous| bro[ents, discussed the stability of superfluid flow, and devised a
y 9 P ; y method to excite a persistent current. Apart from these tech-

ken gauge symmetr}18]. It has been shown earlier that a

number of staples of broken symmetry, such as Josephs nical items, we have a broader agenda: We wish to promote

n . )
. 98w-temperature alkali-metal vapors as clean, mesoscopic
effect and interference of two condensates, may be analyze

without ever invoking symmetry breakifd.9]. Now, these _syﬁtems fotr e?penmfental afr|1 d. dt_?eoretlcal, MICroSCORL,
examples have dealt with tliggobal phase of the condensate, initio investigations of supertiuidity.

and superfluidity may seem different; superfluid flow veloc- This work is supported in part by the National Science
ity is attributed to the gradient of the phase of the superfluidcoundation, Grant No. PHY-9421116. S.M.P. is supported
order parametdi5], alocal reference to the phase. Nonethe- by the KOSEF through the ASSRC.
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