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Phase collapse and excitations in Bose-Einstein condensates

Klaus Mo” lmer
Institute of Physics and Astronomy, University of Aarhus, DK-8000 A˚ rhus C, Denmark

~Received 25 June 1997!

A study of fragmented condensates is presented to elucidate the interplay between excitations and the
collapse of relative phases within single condensates. Implications for experimental observation of interference
between weakly coupled condensates are discussed, and means for computation are suggested and applied to a
one-dimensional model system.@S1050-2947~98!06207-6#

PACS number~s!: 03.75.Fi, 42.50.Fx, 32.80.2t
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I. INTRODUCTION

Bose-Einstein condensation has been observed in tra
dilute gases of rubidium@1#, sodium @2#, and lithium @3#
atoms. The experimental developments have been imp
sive, and a number of fundamental properties of these ma
body systems can be investigated due to the ideal poss
ties for manipulation and monitoring of the condensat
Theoretically they are well treated by the simplest appro
mate theories of many-body physics, and they are there
ideal for investigating fundamental and generic properties
simple many-body systems. Be it debatable or not whe
these studies contribute to the well-established domain
many-body physics, they will certainly serve to spread
techniques and experience of this field into other domain
physics such as atomic physics and quantum optics.

In Sec. II of this paper, we briefly review the derivatio
of the Gross-Pitaevskii equation. In Sec. III, we address
issue of phase collapse, and we show the explicit agreem
between ‘‘particle’’ and ‘‘quantum field’’ approaches pub
lished independently in the literature@4–7#. In Sec. IV we
analyze the excitation spectrum of a Bose-Einstein cond
sate. Excitations and condensate phase collapse are re
and in Sec. V, we consider the collapse of the relative ph
between components of a fragmented condensate. Spati
terference has been observed when such fragments
brought together@8#, and our work suggests an element
the quantitative analysis of this interference, in particular
analysis of the phase synchronization induced by excha
of particles between the fragments. The analysis is sup
mented by a numerical example in Sec. VI.

II. CONDENSATE GROUND STATE

We consider Bose-Einstein condensation of a trapped
of atoms. The atoms interact by elastic collisions and
assume that the low kinetic energies of the atoms and
short range of their interaction permit the replacement of
potential by a d function, Vint(rW)→gd(rW)54p\2asc /
Md(rW), where asc is the s-wave scattering length for th
binary atomic collision process, andM is the atomic mass.

In the formalism of second quantization, one introduc

field operatorsĈ(rW), Ĉ(rW8)†, which annihilate and creat
atoms atrW andrW8, respectively. They fulfill the bosonic com

mutation relations@Ĉ(rW),Ĉ(rW8)†#5d(rW2rW8), and, using
PRA 581050-2947/98/58~1!/566~10!/$15.00
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these operators, the~grand-canonical! Hamiltonian for the
system can be written

H5E d3rWĈ~rW !†F2
\2

2M
¹21Vext~rW !

1
1

2
gĈ~rW !†Ĉ~rW !GĈ~rW !. ~1!

The Hartree ansatz for the ground-state wave function oN
atoms can be written in terms of the field creation opera
appliedN times on the vacuum state,

uC&5
1

AN!
F E d3rWc~rW !Ĉ~rW !†GN

u0&. ~2!

This expression is analogous to the one for number state
quantum optics, and one finds that the mode functionc(rW),
i.e., the single-particle wave function, minimizing the expe
tation value of the Hamiltonian~1! is the solution of the
Hartree equation:

F2
\2

2M
¹21Vext~rW !1~N21!guc~rW !u2Gc~rW !5mc~rW !,

~3!

wherem is the single-particle energy.
The Hamiltonian~1! commutes with the total number op

erator, the particle number is conserved, and the exact ei
states for the problem are number eigenstates. Still, it ma
beneficial to carry out calculations where one relaxes
condition and instead considers eigenstates of the field
erators. This also applies in quantum optics where s
states correspond to classical fields. Classical fields rep
operators byc numbers, and this can be formulated mo
rigorously by assuming a state of the system that is an eig
state of the field annihilation operators, known as t
Glauber coherent state in quantum optics.

Let uCN& denote the eigenstate of field annihilation ope
tors

Ĉ~rW !uCN&5CN~rW !uCN&, ~4!

with an average number of particles*d3rW^Ĉ(rW)†Ĉ(rW)&
5*d3rWCN(rW)* CN(rW)5N. Minimizing the expectation
566 © 1998 The American Physical Society
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value of the Hamiltonian with respect to variations of t
function CN(rW), one finds thatCN(rW)5ANc(rW), where
c(rW) solves the equation

F2
\2

2M
¹21Vext~rW !1Nguc~rW !u2Gc~rW !5mc~rW !. ~5!

This equation, called the Gross-Pitaevskii equation, is id
tical to the Hartree equation~3!, except for the insignifican
difference betweenN and N21 in the nonlinear term. The
state vectoruCN& obeying Eq.~4!, however, is very different
from the number state~2!, since it has a fluctuating numbe
of atoms and it has a nonvanishing expectation value of

field operator ^CNuĈ(rW)uCN&5CN(rW). Although these
properties have a negligible influence on the determina
of m and, e.g., the particle densityNuc(rW)u2, they are impor-
tant for the way we describe interference phenomena of c
densates.

We can solve Eqs.~3! and~5! by a propagation in imagi-
nary timet, replacingmc(rW) by 2(]/]t)c(rW,t): The wave
function norm in the long-time limit decays with the ratem,
and the renormalized wave function is the desired solu
c(rW). In the Thomas-Fermi approximation one neglects
kinetic-energy operator in Eqs.~3! and~5! and divides by the
wave function to obtain

ucTF~rW !u25@m2Vext~rW !#/~Ng! ~6!

for the single-particle density. This expression is appl
only when the right-hand side is positive, andm is deter-
mined by the normalization ofcTF(rW) to unity.

For later convenience we present the results for harmo
oscillator trapping potentials in one, two, and three dim
sions,

mTF~1D!5F S Mv2

2 D 1/23

4
NgG2/3

,

mTF~2D!5F S M v̄2

2
D 2

p
NgG1/2

,

mTF~3D!5F S M v̄2

2
D 3/2

15

8p
NgG2/5

, ~7!

wherev is the oscillator frequency@v̄5(vxvy)
1/2 in 2D and

v̄5(vxvyvz)
1/3 in 3D#.

III. PHASE FLUCTUATIONS OF THE BOSE-EINSTEIN
CONDENSATE

A. Interference, mean fields, and number states

Two condensates,A and B, that overlap at a position
sensitive detector give rise to an interference pattern. S
interferences have been observed experimentally@8#, and
they follow easily from theory if one assumes that both co
densates are in annihilation operator eigenstates:
position-dependent counts at the detector positionsrWD are
proportional to the local number operators,^@CA

†(rWD)
-

e

n

n-

n
e

d

c-
-

ch

-
he

1CB
†(rWD)#@CA(rWD)1CB(rWD)#& containing both direct terms

proportional to the respective condensate densities, and c
terms like^CA

†(rWD)CB(rWD)&, which are nonvanishing in the
coherent-state case; and if the atoms in the condensates
different momentakeW x and2keW x , an interference pattern a
cos(2kx1g) appears, whereg accounts for the phase differ
ence between the two condensates.

If both condensates are in number states, the cross te
vanish, but an interference pattern builds up anyway@9#:
After the detection of the first atom at a random position,
cannot tell from which condensate the atom was absorbe
the detector. The state vector after the detection is therefo
superposition of the ones where the atom was taken from
and from the other condensate, and in this state the c
terms do not vanish anymore. When more and more ato
are detected, a stable interference pattern builds up th
indistinguishable from the one obtained from condensate
coherent states. For further discussions of these interfere
see@10,11#.

The interference pattern appears with a random posit
ing of the fringes, which is determined either by the rando
relative phase of the coherent-state fieldsC(rW)5eiguC(rW)u
or by the first few random detection events~particle picture!.
If the intereference pattern is determined att50, and the
condensates are left for their own free evolution for a cert
time, what is the probability that a shift in the interferen
pattern has occurred if detection is recommenced? Both
‘‘particle’’ and the ‘‘quantum field’’ analysis of this problem
have been presented in the literature, and we shall bri
review both and show that they produce identical results

In addition to the discussion of phase collapse, one m
perform a calculation with the correct matter wave propa
tion, since the momentum dispersion of the condensates
wash out interferences as well. This effect adds to the exp
mental difficulty of investigating the phase diffusion of co
densates. Here we merely recall that interference frin
have been observed, and in fact, a more detailed theoretic
analysis including the momentum dispersion of the cond
sates has shown good agreement with the experimental
ings @12#.

B. Particle picture of phase diffusion

A number state has no phase, but due to back actio
phase-sensitive measurement will introduce a dispersio
the number of atoms remaining in the condensate and m
the equivalent of a phase appear. If the measurement is d
by interference with theNst atoms of another larger conden
sate, the entangled state of both condensates aftern atomic
detections can be written(k50

n ckuN2k& ^ uNst2(n2k)&, in
a suggestive quantum optics notation@10#. Assuming that the
big condensate has a chemical potential that does not
with the number of atoms, the amplitudesck of the entangled
state acquire different phase factors exp(2imN2kt/\), and the
interference of the terms in the sum is modified wh
Dmt/\;1, whereDm denotes the variation inm over the
particle number distribution. In Refs.@6,7#, the number of
atoms in the condensate is assumed to fluctuate followin
Poisson distribution. Estimating thus the variation in chem
cal potential byAN]m/]N, one obtains the ‘‘collapse’’ time
tc ,
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tc5\/~AN]m/]N!. ~8!

For the harmonic-oscillator trap in 1D, 2D, and 3D, w
get within the Thomas-Fermi approximation~7!

h/tTF~1D!5F S Mv2

2 D 1/23

4
gG2/32

3
N1/6,

h/tTF~2D!5F S M v̄2

2
D 2

p
gG1/2

1

2
N0,

h/tTF~3D!5F S M v̄2

2
D 3/2

15

8p
gG2/5

2

5
N21/10, ~9!

where typical experimental values inserted in the 3D exp
sion yield a time scale of 100 ms.

C. Quantum field picture of phase collapse

Although the state vector is assumed to be an eigens
of the field annihilation operators, there are quantum fluct
tions around their eigenvalues, following, for example, fro
the field commutator relations. A standard procedure, app
also in quantum optics, is to expand the field operators a
mean-field~c-number! and a ‘‘noise’’ operator part

Ĉ~rW !5ANc~rW !1dĈ~rW !. ~10!

After elimination of a simple rotation, thec-number part
represents a static component with no phase or number
tuations associated with it. Fluctuations are described by
noise part, and, for any locationrW in space, the atomic field
can be pictorially described as a pointc(rW) in the complex
plane with an uncertainty cloud around it. In the annihilati
operator eigenstate att50, this cloud is circular, and its sub
sequent dynamics yields the phase collapse of the ato
field.

The requirement that the Hamiltonian~1! have no terms
linear in the noise operators is fulfilled ifc(rW) solves the
Gross-Pitaevskii equation~5!. Assuming that the noise term
are smaller than the mean-field terms, we omit contributi
to the Hamiltonian~1! of order higher than 2 in noise opera
tors, leaving us with the quantum noise contribution to
energy of the system:

dH5E d3rW@dĈ~rW !†~L12Nguc~rW !u2!dĈ~rW !

1 1
2 Ngc~rW !2dĈ~rW !†dĈ~rW !†

1 1
2 Ngc* ~rW !2dĈ~rW !dĈ~rW !#, ~11!

whereL52(\2/2M )¹21Vext(rW)2m.
If we introduce the the Bogoliubov transformation,

dĈ~rW !5(
k

@Uk~rW !ĝk2Vk* ~rW !ĝk
†#, ~12!

and the canonically conjugated ‘‘position’’ and ‘‘momen
tum’’ operators
s-

te
-

d
a

c-
e

ic

s

e

Q̂5 i E d3rWf~rW !„dĈ~rW !2dĈ~rW !†
…,

P̂5E d3rWc~rW !@dĈ~rW !1dĈ~rW !†#, ~13!

the Hamiltonian~11! takes the canonical form@4,5#,

dH5a P̂2/21 (
kÞ0

\vkgk
†gk , ~14!

where@gk ,gk8
†

#5dkk8 , provided the functionsUk(r ),Vk(r )
fulfill the coupled Bogoliubov–de Gennes equations, d
cussed in Sec. IV A below.

The functionf(rW) satisfies@4,5# the equation

@L13Nguc~rW !u2#f~rW !5ac~rW ! ~15!

and the constraint

2E d3rWf~rW !c~rW !51, ~16!

which determine the value ofa in Eq. ~14!.
We can solve Eq.~15! by propagation of the inhomoge

neous equation,df(rW,t)/dt52$@L13Nguc(rW)u2#f(rW,t)
2ac(rW)%. We first takea51, and we subsequently dete
mine the correct value as the reciprocal of the normalizat
integral in Eq.~16!. If we neglect the kinetic-energy operato
in Eq. ~15! we obtain a Thomas-Fermi approximation forf:

fTF~rW !5@Vext~rW !2m13NgucTF~rW !u2#21acTF~rW !

5„2NgcTF~rW !…21a. ~17!

Within this approximation the integrand in Eq.~16! is a con-
stant, and independently of the external potentialVext(rW) we
can expressa in terms ofN, g, and the volumeV of space in
which the atomic density is nonvanishing:

a5Ng/V. ~18!

The excitation of the condensate described bya P̂2/2 is
the gapless Goldstone mode resulting from the U~1! symme-
try breaking@13#. In @4# it is argued howP̂ and Q̂ are am-
plitude and phase noise operators of the atomic field, and
the variance inP̂ should be taken on the order of unity. Th
variance ofQ̂ grows with time, and, following@4#, we re-
placeANc(rW)2 ic(rW)Q̂ by ANc(rW)exp(2iQ̂/AN); i.e., the
uncertainty cloud in the pictorial representation introduc
above first attains the shape of an ellipse, but then it is gra
ally being bent along a circle with radiusANc(rW) in the
complex plane. The expectation value of the field operato
the center of gravity of the cloud, and we understand h
this gradually converges towards the origin. The commuta
of Q̂ and the Hamiltonian~11! is given asia P̂, and the
phase spreading;Q̂/AN with time thus causes the expect
tion value of the field to vanish on a time scaletc where

tc5AN/a. ~19!

We shall see that this collapse time coincidesexactlywith
the one determined in the particlelike description~8!.
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D. Identity of particle and quantum field predictions
for phase collapse

The two approaches to phase collapse lead to iden
results. The proof of this leads to an identification of vario
quantities in the two approaches, in particular of the funct
f(rW). We introduce the ‘‘macroscopic’’ wave functio
CN(rW)5ANc(rW), obeying the equation

@L1guCN~rW !u2#CN~rW !50. ~20!

The energym and the wave functionCN(rW) depend onN,
and if we take the derivative of Eq.~20! with respect toN we
obtain the equation

@L13guCN~rW !u2#
]CN~rW !

]N
2

]m

]N
CN~rW !50. ~21!

The similarity with Eq.~15! is striking: we treat]m/]N as an
unknown, like a in Eq. ~15!, and note that
2*d3rW@]cN(rW)/]N#cN(rW)5(]/]N)*d3rWcN(rW)251 enforces
the value of]m/]N to the value ofa/N; Eqs. ~8! and ~19!
are thus identical definitions.

Equation ~21! reveals a connection between thef(rW)
function and the condensate wave function:

f~rW !5AN]@ANc~rW !#/]N. ~22!

The field approach to lowest order assumes the same
particle~mode! function for all occupation numbers within
Poisson distribution. The functionf(rW) describes the first-
order change ofc(rW) whenN is varied. If atoms are added t
the condensate it grows in size, and the wave functionc(rW)
particularly changes value near the edge of the conden
so this is where the functionf(rW) is maximal, cf. also the
Thomas-Fermi approximation~17!. A more drastic incorpo-
ration of such a change assuming different ‘‘mode fun
tions’’ depending on the occupation number, has rece
been applied in the description of Schro¨dinger-cat states o
bicondensates@14#.

We note that also within the Thomas-Fermi approxim
tion the two expressions fortc , Eqs.~8! and~19!, are iden-
tical. This follows from a replicate of the general proof
agreement between the two approaches in which the kin
energy part in the operatorL is omitted. The functionf(rW),
and the functions describing discrete excitations, have
portant contributions on the edge of the condensate, wh
the Thomas-Fermi ansatz for the wave function is parti
larly ill-suited, but it follows from the reliable prediction o
m(N) that this has little effect on the quality of the quan
tative prediction for the collapse time. Our use of t
Thomas-Fermi approximation in the following, suppl
mented with numerical results, is based on this quantita
observation rather than on a physical expectation of its
lidity.

IV. EXCITATIONS OF THE BOSE-EINSTEIN
CONDENSATE

Work on phase collapse and on excitations has so far d
exclusively with one or the other effect. Our aim in the fo
al
s
n

e-

te,

-
ly

-

ic-

-
re
-

e
-

alt

lowing sections, and a major purpose of the paper, is to sh
how closely related these two phenomena are, and in par
lar how we may use this relationship to formulate a quan
tative analysis of local phase collapse within a single c
densate.

A. Excitations in the field and particle picture

To obtain the excitation spectrum of the condensate
solve the coupled Bogoliubov–de Gennes equations@4#

@L12gNuc~rW !u2#Uk~rW !2gNuc~rW !u2Vk~rW !5\vkUk~rW !,

@L12gNuc~rW !u2#Vk~rW !2gNuc~rW !u2Uk~rW !52\vkVk~rW !,

~23!
subject to the normalization and~bi!orthogonality relations:

E d3rW@Uk~rW !Uk8
* ~rW !2Vk~rW !Vk8

* ~rW !#5dkk8 . ~24!

The Bogoliubov transformation mixes annihilation an
creation operators, so that within a given number-state s
space, we qualitatively identify components where t
atomic density is depleted in one region@function Vk(rW1)#,
and increased in another@function Uk(rW2)#, and vice versa.
The many-particle state where the particle numbers in dif
ent regions are oscillating in this highly entangled way a
very economically described within the quantum field p
ture. Some spurious expectation values are introduced,
particle number conservation is violated, but as long as
cussions are restricted to measurable operators, e.g., th
ergy of the system, these introduce negligible errors, as
cussed in the seminal BCS paper on superconductivity@15#
and in later more philosophical digressions@16,17#.

If a solution forVk(rW) is small in magnitude compared t
Uk(rW) the excitation is particlelike, cf. Eq.~12!, and the first
of the Bogoliubov–de Gennes equations becomes an o
nary Schro¨dinger equation for the excited stateUk(rW). Par-
ticlelike excitations out of the condensate experience tw
the interaction term. This effect is well-known and incorp
rated in the so-called Popov approximation applied at fin
temperatures@18#; see also@19#.

Let us rewrite the Bogoliubov–de Gennes equations,

@L1Nguc~rW !u2#ck~rW !5
\vk

h
fk~rW !,

@L13Nguc~rW !u2#fk~rW !5\vkhck~rW !, ~25!

where we have introduced

ck~rW !5
1

A2h
@Uk~rW !1Vk~rW !#,

~26!

fk~rW !5Ah

2
@Uk~rW !2Vk~rW !#,

and whereh is a constant ensuring unit normalization
ck(rW).
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These equations are interesting. If we focus on a situa
with Uk(rW) and Vk(rW) comparable in magnitude and\vk
negligible, we recognize the upper equation as the Gro
Pitaevskii equation~5!, and, if the proper limit is taken, the
lower equation becomes equivalent to Eq.~15!, yielding the
free phase collapse of the condensate in the mean-
ground state. Due to the normalization condition~24!, we
have 2*d3rWfk(rW)ck(rW)51, just like Eq.~16!.

B. Numerical treatment of excitations

One method to solve the Bogoliubov–de Gennes eq
tions numerically is to rewrite the equations as an eigenva
problem for the eigenvalues\vk and the expansion coeffi
cients of Uk(rW) and Vk(rW) on, e.g., a harmonic-oscillato
it

it
t

try

ce

as
-
nic
n
ne
-

e

-

ti

ua

to
n

s-

ld

a-
e

basis @20,21#. One may also apply the operator@L

13Nguc(rW)u2# on both sides of the first equation in Eq
~25!, resulting in a fourth-order equation forck , which is
readily solved numerically as an eigenvalue problem w
the eigenvalues (\vk)

2. This method was applied to obtai
the 1D results presented below.

For problems where only the lowest excited state is
quired, it is useful to have a method that is effective in 3
and we propose a quantum Monte Carlo variational meth
in which the the values of the functions are specified o

grid in position space. One chooses a random positionrW i on
the grid and a small random numberd. One of the two func-

tions W5U or V is modified:W(rW i)→W(rW i)1d, and based
on whether the functional
S E d3rW$U~rW !LU~rW !1Nguc~rW !u2@2U~rW !2V~rW !#U~rW !%1@U↔V# D Y E d3rW@U~rW !22V~rW !2#[Evar ~27!
or
r,
o-

os-
lue
he
een
-

imi-
cal-
is reduced or not, the change is accepted. To obtain exc

states with this method, we assume a symmetryŜW(rW)

5sW(rW), for the initial trial wave functions, and reinforce
at each step of the computation by applying the change to
wave function in all grid points connected by the symme

@if Ŝ is the parity operator, an odd parity solution experien

both the changeW(rW i)→W(rW i)1d and W(2rW i)→W(2rW i)
2d#.

C. Thomas-Fermi approximation to excitations

One can use the information available from the Thom
Fermi approximation forc(rW) to obtain a good approxima
tion for the lowest excitations of a condensate in a harmo
oscillator potential@22#. In three dimensions the excitatio
spectrum obtained in this way is identical to the one obtai
by a hydrodynamic analysis@23#. We present a brief deriva
tion following a slightly different route than Refs.@22,23#.

The idea is to neglect the kinetic energy in places wher
is relatively less significant. In the operator@L

13Nguc(rW)u2# the kinetic energy may be neglected in com
parison with the remaining term equal to 2@m2Vext(rW)# in
the Thomas-Fermi approximation. Thus, the second equa
in Eq. ~25! can be formally solved forfk(rW) and upon inser-
tion in the first equation we obtain a single eigenvalue eq
tion,

2@m2Vext~rW !#@L1Nguc~rW !u2#ck~rW !5~\vk!
2ck~rW !.

~28!

Subsequently we make the ansatzck(rW)5Wk(rW)c(rW), and
use the fact thatc(rW) solves the Gross-Pitaevskii equation,
get the equation
ed

he

s

-

-

d

it

on

-

2
\2

M
@m2Vext~rW !#@c~rW !¹2Wk~rW !12¹W c~rW !•¹W Wk~rW !#

5~\vk!
2Wk~rW !c~rW !. ~29!

As the last step, we replacec(rW) by cTF(rW) and we note that

¹W cTF(rW)/cTF(rW)52¹W Vext(rW)/$2@m2Vext(rW)#%, so that we
get the equation

2
\2

M
@m2Vext~rW !#¹2Wk~rW !1

\2

M
¹W Vext~rW !•¹W Wk~rW !

5~\vk!
2Wk~rW !. ~30!

Equation~30! generalizes the result of Ref.@22# to arbitrary
potentials.

In case of a 1D harmonic oscillator the equation f
Wk(rW) is solved by polynomials of varying maximum powe
and assumingxk to be the highest power in such a polyn
mium we obtain for thexk component of Eq.~30!,

\2

M
@ 1

2 Mv2k~k21!1Mv2k#xk5~\vk!
2xk, ~31!

and therefore the excitation energies

\vk5\vAk~k11!/2. ~32!

The lowest excitation corresponds to the center-of-mass
cillation of the condensate in the trap, and the eigenva
v15v is exact for the harmonic oscillator, whereas for t
higher excited modes a small discrepancy appears betw
the analytical spectrum~32! and the exact results. We ob
serve that the spectrum is compressed~by a factor of&!
compared to the spectrum of noninteracting particles; a s
lar compression has also been observed in numerical 3D
culations@21#.
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V. EXCITATION AND PHASE COLLAPSE
OF A FRAGMENTED CONDENSATE

A. Interference between well separated fragments

Consider a single condensate, broken into two nonin

acting parts due to a change of the external potentialVext(rW).
If the final potential has two local minima, and if the atom
density is entirely localized in two nonoverlapping regio
around these minima, we may treat the future evolution
the system as that of two independent condensates. One
for example, wait for a certain timeT, after which the two
trapped condensates are released from their traps, and
may observe a spatial interference pattern emerge when
overlap. We may imagine that in the interference region,
atomic density is so low that no collective effects appear
to atom-atom interactions in this part of the experiment. T
situation is not so different from the one realized in expe
ments@8#. If the delay timeT is short, one would expect tha
the phases of the condensates are still given by the pha
the nonfragmented condensate and the interference pa
should have a definite location of the fringes, so that av
ages over repeated experiments yield a signal with high
ibility. If, on the other hand,T is large, the two component
have lost their phase relationship. In individual experime
interference will be observed but the fringe location varies
random from experiment to experiment.

The particle picture yields a simple description of t
relative phase diffusion of the two components. If a cond
sate with exactlyN atoms is split in two, the resulting
quantum-mechanical state will be a superposition state
volving a binomial distribution over components with
given population of one or the other condensate. In a bi
mial distribution the variance is proportional to the mean,
in the Poisson distribution, and the dephasing is readily
tained, and it is quantitatively similar to the one obtained
the quantum field theory@24#.

FIG. 1. Model potential~38! is shown forx055a0 . The single-
particle densityuc(x)u2 is shown: solid curve, exact numerical re
sult; dashed curve, the Thomas-Fermi approximation; and
single-particle energym is indicated by a solid~exact! and a dashed
line ~Thomas-Fermi approximation!. The parameters of the calcula
tion areN51000 atoms,g50.15\va0 .
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In the quantum field description the coherent-state ato
field in the single well-potential is deformed, as the trap p
tential is modified, and eventually it attains a form where tw
localized components can unambiguously be defined.
two mean fields at this stage are in phase, but in both w
we have a phase collapse, as described quantitatively in
III C.

B. Phase collapse of weakly coupled condensates

What interests us here is the magnitude of the rela
phase collapse when the separation of the condensate
two fragments is not complete. During separation the fi
excited state, where the wave functionc1(rW) has opposite
signs in the regions around the potential minima, becom
degenerate with the ground state of the double-well cond
sate. A small population of such a state is already equiva
to a degradation of the phase between the two condens
and we shall cast this in a formulation equivalent to t
Goldstone mode discussion above.

From the analysis we shall recover the limit of we
separated condensates, but we shall also get a quantit
theory applicable to the situation of weakly interacting co
densates. In this way we can supplement the existing qu
tum optics ‘‘toy-models’’ of Josephson-like coupling of con
densates@5# by a quantitative analysis for the full matte
wave problem.

We shall focus on the solutions (c1 ,f1) corresponding to
the lowest excited state of the condensate. The ground s
of the single condensate adiabatically transforms into
state where the wave function has the same sign in b
fragments, and in this limit the wave functionsc1 andf1 are
the antisymmetric partners ofc andc.

1. Superposition and product states

There is no obvious role played by superpositions of
solutions to a nonlinear Schro¨dinger equation, but in the
limit of well-separated condensates it is indeed meaning
to construct localized wave functions by@c(rW)
6c1(rW)#/&. Mathematically the algebraic structure of th
state vector Hilbert space includes both addition~superposi-
tion principle! and multiplication~product states!.

States with a definite number of atoms can be represe
as anNth power of a single particle state, e.g., the grou
statec(rW) of a condensate in a double-well potential. If th
state is expanded on components localized in either well,
Nth power leads to a binomial splitting of the atoms in t
two wells.

The eigenstates of the annihilation operator, areexponen-
tials of one-particle states@25#. Thus, when the single
particle state is written as a superposition, the coherent s
is the exponential of this superposition, i.e., a product of t
coherent-state solutions, as follows from the fundamen
property of the exponential function,

exp~x1y!5exp~x!exp~y!. ~33!

2. Relative phase, ‘‘Goldstone boson with variable mass’’

Restricting ourselves to the gapless excitation and the
citation with the lowest discrete excitation energy, we c
rewrite dH @Eq. ~14!#,

e
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dH5a P̂2/21a1P̂1
2/21

1

2a1
v1

2Q̂1
2 . ~34!

Q̂1 /AN is the relative phase operator of the two condens
fractions, and whenv1Þ0, this quantum phase is seen to
a harmonically bound variable, in contrast to the over
phase, which is free.

Quantitatively, we must determine the properties of t
oscillator: We first determine v1 by solving the
Bogoliubov–de Gennes equations. Subsequently we c
pute the numberh normalizingc1(rW). And, finally, we ob-
tain a15h\v1 , according to Eq.~25!.

The ground-state width of theQ̂1 oscillator divided by
AN is a measure of the steady-state phase fluctuationsdg
between the fragments, and with our suggested procedur
obtaining the excitation energy and wave functions we
able to compute their characteristic variation

dg;Aa1 /~\v1N!. ~35!

In the case of a weak coupling, the relative phase varia
moves freely over a wide range, and if this range exceedsp
we conclude that the relative phase collapses as for the
condensate case with a collapse timetc5AN/a1 . In this
limit a15a, and the Hamiltonian~34! may be rewritten as a
sum of two free kinetic energies, corresponding to the pha
of the two separated condensates rather than the symm
~overall phase! and antisymmetric~relative phase! collapse
terms.

When the excitation frequency is gradually increas
~corresponding to a lowering of the barrier between the t
potential minima and an increased passage of particles
tween the two fragments!, Var(Q̂1) becomes an oscillating
rather than quadratically growing function, and in the lim
the relative phase is limited to fluctuations of magnitudedg
smaller than 2p: there is no collapse of the relative phas
only a finite smearing.

FIG. 2. The dependence ofm ~upper curve! anda on the poten-
tial displacementx0 . The dashed curve indicates the value ofa1

determined in Sec. V. The physical parameters are as in Fig. 1.
filled circles present the Thomas-Fermi predictions for simple
cillator potentials, and as observed they are excellent approx
tions whenx050 andx0.6a0 .
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C. Relative phase within a single condensate, long-range
order, and condensate fraction

When the barrier is lowered our association of operat
with the left- and the right-hand sides is no longer preci
and we can hence not take this theory too far quantitativ
But it is appealing to keep the qualitative picture that with
a single condensate the relative phase in different reg
may fluctuate within a finite interval identified by the equ
tions given above.

For example, the left- and right-hand sides of a cond
sate in a simple 1D harmonic oscillator may experienc
relative quantum phase fluctuation within the interval,dg
;Aa1 /(\v1N), wherev15v. Within the Thomas-Fermi
approximation, the lowest excitation in a 1D harmon
oscillator trapping potential is described byW1(x)}x, and a
straightforward calculation gives

h5
2

5
m/\v, a15

2

5
m, ~36!

confirmed by our numerical calculation ofa1 described in
the next section~value at x050!. The Thomas-Fermi ap
proximation for the value ofm is given in Eq.~7!. For an
interaction dominated condensate withm significantly larger
thanv, the phase uncertainty is in excess~but not necessarily
by much! of the value enforced by complementarity betwe
phase and particle number and what can conceivably be
termined experimentally.

What we are discussing here is in fact the off-diago
long-range order@26#, suitably defined for an inhomoge
neous system. In homogeneous systems, like superfluid4He,
the order parameter, defined through the expectation v

^Ĉ†(rW1)Ĉ(rW2)&, is used to identify the condensate fractio
f c , i.e., the probability, or the fraction of time, that an ato
spends in the condensate. It is natural for an inhomogene
problem to define this fraction heuristically by the followin
equation:

^Ĉ~rW !†Ĉ~rW8!&5N fcc~rW !* c~rW8!, ~37!

whererW,rW8 are chosen on opposite sides of the condens
With this identification, we obtain f c;^exp(iQ̂1 /AN)&
;exp(2dg2/2)5exp@2a1 /(2\v1N)#.

If we insert theN dependence ofa1;m we get a scaling
of the argument in the exponential asN21/3 ~1D!, N21/2

~2D!, andN23/5 ~3D!, which is thus the large-N dependence
of the noncondensed fraction suggested by this phase
lapse argument. We recall the heuristic character of our d
nition of ‘‘long’’ range order and our inclusion of only the
lowest excitation~in the 1D problem higher-order excitation
yield values ofak /vk;k22!, so these estimates should b
taken at most as a suggestion for the noncondensed fra
at zero temperature.

In the particle picture, the existence of a nonconden
fraction at zero temperature reflects the only approxim
character of the Hartree ansatz. A proper treatment invo
excitations out of this state due to atom-atom interactio
and the amount of such excitations may be estimated f
the expectation value of the interaction term relative to
excitation energies. This, in fact, suggests the same com

he
-
a-
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nation of parametersa ~or ]m/]N! and v1 and hence the
sameN dependence as above.

One may speculate that the off-diagonal order could
made the subject of experimental investigations by cutt
the condensate into pieces and subsequently performin
interference experiment. For small regions, the informat
available from higher excitation modes enters, although th
higher and higher energies may suppress their individ
contributions. If there are too few atoms in each piece,
precision on the phase measurement is limited, but one
make a compromise so that the level of discrimination
sufficient to probe the expected phase fluctuations.

VI. 1D MODEL SYSTEM

We consider atoms confined by a potential that we
modify through a single control parameter so that it chan
continuously from a single harmonic oscillator into tw
separate oscillator potentials with the same oscillator
quencyv as the single potential. For simplicity we assum
the following model potential,

Vext~x!5
1

2
Mv2~x6x0!2, ~38!

where the1 ~2! sign applies forx negative~positive!, and
where the positive quantityx0 provides the location of the
potential minima at6x0 . When the potential barrierE0

5(1/2)Mv2x0
2 at x50 exceeds the energy of the particlesm,

the two fragments are separated. The potential is illustra
in Fig. 1, the figure also indicates the square of the grou
state wave function and the chemical potentialm obtained
both within the Thomas-Fermi approximation and exac
Results in this section are presented for a specific choic
parameters~in harmonic-oscillator units!; we assumeN
51000 atoms andg50.15\va0 , where the width of the
oscillator ground state isa05A\/Mv. Positions are pre-
sented in units ofa0 . The results in Fig. 1 assumex0
55a0 .

FIG. 3. Nine lowest excitation energies\vk as a function ofx0 .
The parameters are as in the other figures. The dashed lines ind
the analytical expression~32! obtained by use of the Thomas-Ferm
approximation.
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Within the Thomas-Fermi approximation it is not difficu
to obtain the ground-state wave function and the energm
for the potential~38!. Normalizing the particle density to th
desired number of atoms, we obtain a third-order equa
relatingm andx0 . For largex0 , m becomes smaller than th
barrier heightE0 , andm is then given by the result~7! for a
single harmonic oscillator withN/2 atoms~the number of
atoms in each harmonic well!. The value ofm ~and ofa! is
accordingly reduced by a factor of (1/2)2/3;0.63 when the
condensate is split. Within the Thomas-Fermi approximat
the splitting is completed whenx0.(3Ng/4Mv2)1/3

;4.83a0 for the applied parameters, but this approximati
of course underestimates the wave function in the classic
forbidden region between the two fragments.

In Fig. 2 is shown the dependence ofm and a on x0 ,
obtained for a fixed number of particlesN51000. The rela-
tive phase collapse parametera1 is determined from the
functions associated with the lowest excitation energy, a
its dependence onx0 is shown as a dashed line in the figur
As predicteda1 anda converge to the same value for larg
separations. The filled circles indicate the Thomas-Fe
predictions applicable in the case of simple harmon
oscillator potentials.

We present in Fig. 3 the variation of the nine lowest e
citation frequencies with the parameterx0 . We clearly iden-
tify the convergence of pairs of levels corresponding to
generate even and odd solutions. The dashed lines in F
show the excitation energies predicted analytically by ap
cation of the Thomas-Fermi approximation, and applica
both for x050 and for largex0 . We have applied the quan
tum Monte Carlo variational procedure and verified that
very efficiently yields the same results as the diagonaliza
procedure for the first excitation of the condensate.

This excitation frequency decreases, and, as discu
above, in the limit of two separated fragments, the relat
phase between the two is unbounded. The relative phase
certaintydg is shown in Fig. 4 as a function ofx0 .

We have assured ourselves of the rapid convergenc
the lowest excitation to zero as both the height and the w
of the barrier increase withx0 . There is a close relationshi
between the energy difference between odd and even s
of double-well systems and the probabilityT of tunneling
through the barrier. This establishes a connection betw
the relative phase fluctuations determined above and a
ticlelike picture where the passage of atoms among differ
regions ensures the entanglement responsible for the rel
phase. In case of a tunnel barrier with a transmission coe
cient of T, settingv1;Tv, we can interpret the phase syn
chronization as a result ofN atoms ‘‘knocking’’ on the bar-
rier with a frequencyv and a fractionT of them actually
getting through to communicate the phase of the conden
from one to the other side of the barrier. The tunneling
atoms between condensates has recently been studie
some detail@27#. In competition with the relative phase co
lapse, we may understand how this process limits the ph
fluctuations as predicted by Eq.~35!.

VII. DISCUSSION

We have considered the phase of a Bose condensate
the means for calculating the time scale for its collapse un

ate
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different circumstances. We have demonstrated the str
connection between phase collapse and excitations of
condensate, which is of course evident as both are descr
by the Bogoliubov–de Gennes equations in the quan
field picture. We have in particular identified how separat
collapsing phases emerge from the gapless excitation an
first discrete excitation when a condensate is broken

FIG. 4. The characteristic magnitude of fluctuations of the re
tive phase between the two fragments of the condensate. Fox0

small, the identification of two components is ambiguous, and
values ofdg should only be understood in a qualitative sense.
an

n,
tt.

et

tt

.

e

P

s

ng
he
ed
m
y
the
p.

Nonsymmetry-breaking analyses of the dynamics of ve
low-temperature condensates have recently been prop
@28,29#. Explicitly time-dependent analyses may contribu
even further to our understanding of the relations betw
excitation and phase collapse; see also@30#.

We have considered only the case of zero temperature
shown in@4#, temperature-dependent phase collapse rates
be evaluated within the Popov approximation. In our pro
lem of weakly coupled condensates, a closer scrutiny is n
essary to determine the influence of the transfer of therm
excited atoms among the condensates.

It has been proposed that a mechanism similar to
phase collapse can account for the observed damping o
cillations in condensates in time-dependent traps. The p
posed mechanism refers to the spreading in number
quanta in the excited mode and the mode anharmonic
which causes a dephasing of the superposition of grou
and excited-state wave functions@31,32#. The calculations
that we have particularly carried out for the lowest excit
state can be straightforwardly applied to higher exci
states, and we imagine that this may be a promising ave
for further studies.

In a recent study@33# it was shown how a model with a
transmission barrier inserted in a simple box of nucleo
may account for the congruence energy, a contribution
nuclear binding associated with the granularity of nucleo
density and not obtainable from the Thomas-Fermi mode
the nucleus. The relevance of phase in connection w
nuclear excitation and fission may be an interesting line
research, with parallels to the study of Bose condensate
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