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Phase collapse and excitations in Bose-Einstein condensates
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A study of fragmented condensates is presented to elucidate the interplay between excitations and the
collapse of relative phases within single condensates. Implications for experimental observation of interference
between weakly coupled condensates are discussed, and means for computation are suggested and applied to a
one-dimensional model systefi1050-294{8)06207-9
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[. INTRODUCTION these operators, th@rand-canonical Hamiltonian for the
system can be written
Bose-Einstein condensation has been observed in trapped
dilute gases of rubidiunjl], sodium[2], and lithium [3]
atoms. The experimental developments have been impres-
sive, and a number of fundamental properties of these many-
body systems can be investigated due to the ideal possibili-
ties for manipulation and monitoring of the condensates.
Theoretically they are well treated by the simplest approxi-
mate theories of many-body physics, and they are therefor&he Hartree ansatz for the ground-state wave functioN of
ideal for investigating fundamental and generic properties ofitoms can be written in terms of the field creation operator
simple many-body systems. Be it debatable or not whetheappliedN times on the vacuum state,
these studies contribute to the well-established domain of
many-body physics, they will certainly serve to spread the 1
techniques and experience of this field into other domains of W)= \/——
. A : : N!
physics such as atomic physics and quantum optics.

inSecibol _th|s paper, we briefly review the derivations This expression is analogous to the one for number states in
of the Gross-Pitaevskii equation. In Sec. Ill, we address the . d finds that th de f >
issue of phase collapse, and we show the explicit agreemeﬂf’an;um _opt||cs, an | one mfs that the mode unrr;]tﬁ()n),
between “particle” and “quantum field” approaches pub- I.e., the single-particle wave function, minimizing the expec-

lished independently in the literatufé—7]. In Sec. IV we tation value of the Hamiltoniargl) is the solution of the

analyze the excitation spectrum of a Bose-Einstein conderl1atree equation:
sate. Excitations and condensate phase collapse are related, 52
and in Sec. V, we consider the collapse of the relative phase | — _MV2+Vext(F)+(N_1)g|¢’(F)|2 (1) =pap(r),
between components of a fragmented condensate. Spatial in-
terference has been observed when such fragments are 3)
brought togethef8], and our work suggests an element to . . .

where u is the single-particle energy.

the quantitative analysis of this interference, in particular an S .

analysis of the phase synchronization induced by exchange The Hamllto_nlan(l) commutes with the total number op-

of particles between the fragments. The analysis is supplee—rator' the particle number is conser_ved, and the exact eigen-

mented by a numerical example in Sec. VI. state; fpr the problem are numb_er eigenstates. Still, it may pe
beneficial to carry out calculations where one relaxes this

condition and instead considers eigenstates of the field op-

Il. CONDENSATE GROUND STATE erators. This also applies in quantum optics where such

We consider Bose-Einstein condensation of a trapped ga%tates correspond to classical fields. Classical fields replace

of atoms. The atoms interact by elastic collisions and wedperators byc numpers, and this can be formulgted more
assume that the low kinetic energies of the atoms and thggorously by assuming a state of the system that is an eigen-

short range of their interaction permit the replacement of thetate of the field ann!hllatlon operators, known as the
ial b 5 function, Vi (F)—go(r)=4mti2a./ Glauber coherent state in quantum optics.

potegtla y a ) v int g_ — AT dse Let | W) denote the eigenstate of field annihilation opera-

M&(r), whereag. is the s-wave scattering length for the tgrs

binary atomic collision process, aM is the atomic mass.
In the formalism of second quantization, one introduces ‘i’(F)|‘I’N>=‘I’N(F)|‘I’N> (4)

field operatorS\if(F), \i’(F’)*, which annihilate and create
atoms ar andr’, respectively. They fulfill the bosonic com- with an average number of particlefd® (W (r)™¥(r))
mutation relations[ ¥ (r),¥(r’)]=8(r—r"), and, using = d3W¥y(r)*¥,(r)=N. Minimizing the expectation

2
H=jd3flif(F)T[—h—V2+V )
2M ex

W (r). (1)

1 .~ L.~ o
+§g‘1'(r)“l'(r)

N
|0). )

fd?’Fw(F>~if<F>T
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value of the 1—|amilt0nian with resp%ct to varigtions of the +‘1’E(FD)][‘1’A(FD)+‘I’B(FD)]> containing both direct terms,
function W (r), one finds thatWy(r)=+Ny(r), where proportional to the respective condensate densities, and cross

#(r) solves the equation terms like(W i (rp)¥g(rp)), which are nonvanishing in the
) coherent-state case; and if the atoms in the condensates have

(L > S| >, different momente, and —ke,, an interference pattern at

“oam ¥ Ve NG Yr) =mi(r). - (5) cos(Xx+7) appear:,xwhere/ aecxcounts for the phapse differ-
ence between the two condensates.

This equation, called the Gross-Pitaevskii equation, is iden- If both condensates are in number states, the cross terms
tical to the Hartree equatiof8), except for the insignificant vanish, but an interference pattern builds up anyWay
difference betweeMN andN—1 in the nonlinear term. The After the detection of the first atom at a random position, we
state vectofW¥ ) obeying Eq«(4), however, is very different cannot tell from which condensate the atom was absorbed by
from the number stat€), since it has a fluctuating number the detector. The state vector after the detection is therefore a
of atoms and it has a nonvanishing expectation value of theuperposition of the ones where the atom was taken from one
field operator (‘I’N|‘i’(F)|‘1’N>:‘1’N(F)- Although these and from the other condensate, and in this state the cross

properties have a negligible influence on the determinatiof€™Ms do not vanish anymore. When more and more atoms

of uand, e.g., the particle densily| l//(F)|2 thev are imoor- &€ detected, a stable interference pattern builds up that is
tan’Lthor tﬁe'\?v'e’l wepdescribe interference’ he):mmenapof Cori_ndistinguishable from the one obtained from condensates in
densates y P coherent states. For further discussions of these interferences

. . see[10,11.
We, can solve Equ) agd(S) by & propaﬁgatmn N imagi- The interference pattern appears with a random position-
nary timer, replacingu(r) by —(d/d7)¢(r,7): The wave  jnq of the fringes, which is determined either by the random

function norm in the long-time limit decays with the raie relative phase of the coherent-state fielllér)=e'?| ¥ (r)|
and the renormalized wave function is the desired solution

> ) L or by the first few random detection evefparticle picture.
¢(r). In the Thomas-Fermi approximation one neglects th§s the intereference pattern is determinedtat0, and the
kinetic-energy operator in Eqe3) and(5) and divides by the  ¢ndensates are left for their own free evolution for a certain
wave function to obtain time, what is the probability that a shift in the interference
TE 2 . pattern has occurred if detection is recommenced? Both the
[ (D]*=[1—=Vex(r)]/(Ng) (6)  “particle” and the “quantum field” analysis of this problem

. . . . L . _have been presented in the literature, and we shall briefly
for the single-particle density. This expression is applieqgjie hoth and show that they produce identical results.
only when the right-hand side is positive, apdis deter-

R In addition to the discussion of phase collapse, one must

mined by the normalization af™"(r) to unity. perform a calculation with the correct matter wave propaga-
For later convenience we present the results for harmoniqion, since the momentum dispersion of the condensates may

oscillator trapping potentials in one, two, and three dimenwash out interferences as well. This effect adds to the experi-

sions, mental difficulty of investigating the phase diffusion of con-
Mo?| 123 23 densates. Here we merely recall that interference fringes

MTF(lD):H w ) e Ng} have been observednd in fact, a more detailed theoretical
2 4 ' analysis including the momentum dispersion of the conden-

" sates has shown good agreement with the experimental find-

T Mw?| 2 ings[12].
w'F(2D)=| | ——| —Ng| .
B. Particle picture of phase diffusion
TE Mw?|*? 15 2 A number state has no phase, but due to back action a
p (3D)= 2 8_7TN9 ’ (7) " phase-sensitive measurement will introduce a dispersion in

the number of atoms remaining in the condensate and make
wherew is the oscillator frequenclyjz (wxwy)uz in 2D and the.equivalent of a phase appear. If the measurement is done
— 13 ; by interference with thég, atoms of another larger conden-
= (0xwyw,) ™ in 3D]. sate, the entangled state of both condensates mftégomic
detections can be writteBy_ ¢, |N—k)®|Ng— (n—K)), in
IIl. PHASE FLUCTUATIONS OF THE BOSE-EINSTEIN a suggestive quantum optics notat[d®]. Assuming that the
CONDENSATE big condensate has a chemical potential that does not vary
A. Interference, mean fields, and number states with the number of atoms, the amplitudgsof the entangled

n state acquire different phase factors exjy_t/%), and the
Two condensatesh and B, that overlap at a position- jierference of the terms in the sum is modified when

sensitive detector give rise to an interference pattern. SucﬂMle whereAy denotes the variation ipe over the

interferences have been observed experimenfdly and 5 rticle number distribution. In Ref$6,7], the number of

they follow easily from theory if one assumes that both cON-¢5ms in the condensate is assumed to fluctuate following a

den§§tes are in annihilation operator eiger?sEates: ThBoisson distribution. Estimating thus the variation in chemi-
position-dependent counts at the detector positignsare  cal potential byyNau/dN, one obtains the “collapse” time
proportional to the local number operator§, ¥ i(rp) Tes
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re=h1(NIulIN). (8)

For the harmonic-oscillator trap in 1D, 2D, and 3D, we

©=if d3r () (8W(r)— oW (r)h),

get within the Thomas-Fermi approximati¢n) ﬁ:f d3F¢(F)[5\if(F)+ W(F)T], (19
w2\ 123 12189
h/TTF(lD):[<T 29 §N1’5, the Hamiltonian(11) takes the canonical forifa,5],
— 1112 = aP?2/2+ )
D) Mo?| 2 lNo SH=aP?2 k};,g h ok, (14)
2 |79 2%
’ Where[gk,glﬁ,]= Sk » provided the functiondJ (r),V,(r)
Mo2\¥% 15 1%° fulfill the coupled Bogoliubov—de Gennes equations, dis-
h/7TF(3D)= ( 3 ) B nglflo, (9)  cussed in Sec. IV A below.

The functiong(r) satisfieg4,5] the equation

where typical experimental values inserted in the 3D expres- - - -
sion yield a time scale of 100 ms. [L+3Ng(r)|*]p(r) = ay(r) (15

and the constraint
C. Quantum field picture of phase collapse

Although the state vector is assumed to be an eigenstate ZJ d3F¢>(F) ¢(F)=1, (16)
of the field annihilation operators, there are quantum fluctua-
tions around their eigenvalues, following, for example, fromwhich determine the value af in Eq. (14).
the field commutator relations. A standard procedure, applied We can solve Eq(15) by propagation of the inhomoge-
also in quantum optics, is to expand the field operators as aeous equationddb(ﬁ 7)/dr= —{[L+3Ng|¢(F)|2]q5(F, 7)

mean-field(c-numbey and a “noise” operator part —ay(r)}. We first takea=1, and we subsequently deter-
.~ . R n . mine the correct value as the reciprocal of the normalization
W(r)=VNy(r)+ W (r). (100 integral in Eq.(16). If we neglect the kinetic-energy operator

in Eg. (15 we obtain a Thomas-Fermi approximation
After elimination of a simple rotation, the-number part a.(19 pp for

represents a static component with no phase or number fluc- ™7 (r)=[V (1) — w+3Ng|¢" (1|2 Lay ™ (1)
tuations associated with it. Fluctuations are described by the

noise part, and, for any locatianin space, the atomic field =(@2Ngy™ (1) a. 17

can be pictorially described as a poip(r) in the complex  jithin this approximation the integrand in EQL6) is a con-

plane with an uncertainty cloud around it. In the annihilationStant and independently of the external potentigh(r) we
. . . . . ’ t

operator eigenstate ta-fO, this cloud is circular, and its sub- can express in terms ofN, g, and the volumé’ of space in

sequent dynamics yields the phase collapse of the atom|(Ghich the atomic density is nonvanishing:

field. '

The requirement that the Hamiltonidh) have no terms a=Ng/V. (18

linear in the noise operators is fulfilled ijf(F) solves the o . - :
. .. ; . . The excitation of the condensate describedd®?/2 is
Gross-Pitaevskii equatiofb). Assuming that the noise terms the gapless Goldstone mode resulting from tr&)lsymme-

are smaller than the mean-field terms, we omit contributions i o ~ N
to the Hamiltonian(1) of order higher than 2 in noise opera- try breaking[13]. In [4] it is argued howP andQ are am-

tors, leaving us with the quantum noise contribution to thePlitude and phase noise operators of the atomic field, and that

energy of the system: the variance irP should be taken on the order of unity. The
variance ofQ grows with time, and, followind4], we re-
6H=J 43 oW (1) T(L+2Ng|w(1)[2) 8% (F) place VNy(r) —ig(r)Q by VNy(r)exp(-iQ/VN); i.e., the
uncertainty cloud in the pictorial representation introduced

above first attains the shape of an ellipse, but then it is gradu-
ally being bent along a circle with radiuéﬁ;b(?) in the

+INaU* (28T (F) s (F , 11 complex plane. The expectation value of the field operator is

NGy (1) (Ne¥(r)] (1 the center of gravity of the cloud, and we understand how

wherel = — (ﬁZ/ZM)VerVext(F) _ this gradually converges towards the origin. The commutator

If we introduce the the Bogoliubov transformation, of Q and the Hamiltonia(11) is given asiaP, and the
phase spreading Q/\/N with time thus causes the expecta-
tion value of the field to vanish on a time scalewhere

Te= \/N/a. (19
and the canonically conjugated “position” and “momen- We shall see that this collapse time coincigesctly with
tum” operators the one determined in the particlelike descripti@nh

+INgy(r)2sW ()T ow ()t

&if(r*):Zk [Uk(Ng— Vi (N1, (12)
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D. Identity of particle and quantum field predictions
for phase collapse

The two approaches to phase collapse lead to identic
results. The proof of this leads to an identification of variou
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lowing sections, and a major purpose of the paper, is to show
how closely related these two phenomena are, and in particu-

4gr how we may use this relationship to formulate a quanti-
Jative analysis of local phase collapse within a single con-

quantities in the two approaches, in particular of the functiorf€nSate.

d)(F). We introduce the “macroscopic” wave function

W (r) = JNu(r), obeying the equation

[L+g|Wy(N)|2]¥(r)=0. (20)

The energyw and the wave functionIfN(F) depend onN,
and if we take the derivative of E€R0) with respect td\ we
obtain the equation

aWN(r)  du
AN oN

[L+3g[Wn(r)|?] Tn(r)=0. (21
The similarity with Eq.(15) is striking: we treabu/JdN as an
unknown, like « in Eg. (15, and note that
2J 3 [y (1) INT (1) = (31 IN) [ d3r (1) 2= 1 enforces
the value ofdu/dN to the value ofa/N; Egs.(8) and(19)
are thus identical definitions.

Equation (21) reveals a connection between tlr)
function and the condensate wave function;

B(r)=NI[YNy(r)]/oN. (22)

A. Excitations in the field and particle picture

To obtain the excitation spectrum of the condensate we
solve the coupled Bogoliubov—de Gennes equatidfs

[L+2gN| (1) |21U(1) —gN[$(N)|2Vi(1) = o Uy(r),

[L+2gN¢(N)[ZIVi(r) = gN| (1) [PUk(1) = — Vi D),
(23
subject to the normalization ar{Bi)orthogonality relations:

fdsf[uk(F)u:,<F>—vk<F)v:,<F>]=5kkf. (24)

The Bogoliubov transformation mixes annihilation and
creation operators, so that within a given number-state sub-
space, we qualitatively identify components where the

atomic density is depleted in one regiffanction V(r,)],

and increased in anothfunction Uk(Fz)], and vice versa.
The many-particle state where the particle numbers in differ-
ent regions are oscillating in this highly entangled way are

The field approach to lowest order assumes the same ongery economically described within the quantum field pic-
particle(mods function for all occupation numbers within @ tyre. Some spurious expectation values are introduced, and
Poisson distribution. The functiog(r) describes the first- particle number conservation is violated, but as long as dis-

order change Oi/(F) whenN is varied. If atoms are added to cussions are restricted to measurable operators, e.g., the en-

the condensate it grows in size, and the wave funcfion

particularly changes value near the edge of the condensa
so this is where the functio@(F) is maximal, cf. also the

Thomas-Fermi approximatiofl7). A more drastic incorpo-

ergy of the system, these introduce negligible errors, as dis-

t%ussed in the seminal BCS paper on superconducti¢&y

and in later more philosophical digressidi$,17).
If a solution forV,(r) is small in magnitude compared to

ration of such a change assuming different “mode func-Ui(r) the excitation is particlelike, cf. Eq12), and the first
tions” depending on the occupation number, has recentlf the Bogoliubov—de Gennes equations becomes an ordi-
been applied in the description of ScHiager-cat states of nary Schrdinger equation for the excited statg(r). Par-

bicondensatef14].

ticlelike excitations out of the condensate experience twice

We note that also within the Thomas-Fermi approxima-the interaction term. This effect is well-known and incorpo-

tion the two expressions far., Egs.(8) and(19), are iden-

rated in the so-called Popov approximation applied at finite

tical. This follows from a replicate of the general proof of temperature$l8]; see alsd19].

agreement between the two approaches in which the kinetic- Let us rewrite the Bogoliubov—de Gennes equations,

energy part in the operatdris omitted. The functionﬁ(?),

and the functions describing discrete excitations, have im-
portant contributions on the edge of the condensate, where
the Thomas-Fermi ansatz for the wave function is particu-

> > ﬁwk >
[L+Ng|y(r)] ]¢k(r)=7¢k(f),

larly ill-suited, but it follows from the reliable prediction of [L+3Ng|¢(r)|2]du(r) =honindlr), (25)
1 (N) that this has little effect on the quality of the quanti-

tative prediction for the collapse time. Our use of thewhere we have introduced

Thomas-Fermi approximation in the following, supple-

mented with numerical results, is based on this quantitative - 1 - >

observation rather than on a physical expectation of its va- ()= \/?[Uk(f)JrVk(f)],

lidity. 7 (26)

- 7 - -
IV. EXCITATIONS OF THE BOSE-EINSTEIN di(r)= \[E [U(r)—V(N],
CONDENSATE

Work on phase collapse and on excitations has so far dezf"d wherez is a constant ensuring unit normalization of
exclusively with one or the other effect. Our aim in the fol- ¢ (r).
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These equations are interesting. If we focus on a situatiobasis [20,21]. One may also apply the operatdi_

with Uk(F) and V,(r) comparable in magnitude anfdw, +3Ng|¢//(F)|2] on both sides of the first equation in Eq.
negligible, we recognize the upper equation as the Grosg25), resulting in a fourth-order equation faf,, which is
Pitaevskii equationt5), and, if the proper limit is taken, the readily solved numerically as an eigenvalue problem with

lower equation becomes equivalent to Etf), yielding the  the eigenvalues#(w)2. This method was applied to obtain
free phase collapse of the condensate in the mean-fielghe 1D results presented below.

ground state. Due to the normalization conditi@), we For problems where only the lowest excited state is re-
have 2'd% ¢y (r) ¥i(r)=1, just like Eq.(16). quired, it is useful to have a method that is effective in 3D,

and we propose a quantum Monte Carlo variational method,

B. Numerical treatment of excitations in which the the values of the functions are specified on a

One method to solve the Bogoliubov—de Gennes equagrid in position space. One chooses a random posiiimn
tions numerically is to rewrite the equations as an eigenvalughe grid and a small random numb&rOne of the two func-
problem for the eigenvalueswy and the expansion coeffi- tionsw=U or V is modified:W(r;)—W(r;) + 8, and based
cients oka(F) and Vk(F) on, e.g., a harmonic-oscillator on whether the functional

(f d3F{U<F>LU<F>+Nglw(F>|2[ZU(F>—V<F>JU(F>}+[UHVJ)/fd3F[U(F>2—V<F>2]EEUar (27)

is reduced or not, the change is accepted. To obtain excited #?2

-,

P _ T, — \ 2 e S 1 0) .U e
states with this method, we assume a symme&wy(r) v LA~ Vexd DL VW) +2V (1) - VW(1) ]
=sW(F), for the initial trial wave functions, and reinforce it 5 ..
at each step of the computation by applying the change to the = (@) “Wi(r)#(r). (29

wave function in all grid points connected by the symmetryA he | | N by oTF(F) and H
[if Sis the parity operator, an odd parity solution experienceseS the last step, we replag(r) by ¢""(r) and we note that

N N R - TN TR — U = _ o
both the changdV(r;)—W(r;)+ & andW(—r;)—=W(—r;) Vg (D] == VWeu(r) {2 1= Vex(r)1}, s that we
— ], get the equation
h? - R .
= 37 [ VexNDIVPW(F) + 17V V() - VWi(1)
C. Thomas-Fermi approximation to excitations

_ 2 g
One can use the information available from the Thomas- = () "Wi(r). (30)

Fermi approximation fow/(r) to obtain a good approxima- Equation(30) generalizes the result of RdR2] to arbitrary
tion for the lowest excitations of a condensate in a harmonicpgtentials.

spectrum obtained in this way is identical to the one obtaineqN (F) is solved by polynomials of varying maximum power
by a hydrodynamic analys[®3]. We present a brief deriva- ankd assuming* to be the highest power in such a polyno'—

tion following a slightly different route than Reff22,23. ; . K
The idea is to neglect the kinetic energy in places where ifium we obtain for the<* component of Eq(30),

is relatively less significant. In the operatofL 22

+3Ng|¢(r)|?] the kinetic energy may be neglected in com- V[% Mw?k(k—1)+Mo?k]x*=(fw)?x",  (31)
parison with the remaining term equal t@;B—Vext(F)] in

the Thomas-Fermi approximation. Thus, the second equatiogind therefore the excitation energies

in Eqg. (25) can be formally solved f0¢k(F) and upon inser-
tion in the first equation we obtain a single eigenvalue equa- ho=foyk(k+1)/2. (32
tion,
The lowest excitation corresponds to the center-of-mass os-
- - 1o - 5, > cillation of the condensate in the trap, and the eigenvalue
2L = VexdNILLANGY()[*]¢(1) = (Frwi) *gi(r). w,=w is exact for the harmonic oscillator, whereas for the
(28) higher excited modes a small discrepancy appears between
the analytical spectruni32) and the exact results. We ob-
R . serve that the spectrum is compresgby a factor ofv2)
Subsequently we make the ansgig(r) =W(r)#(r), and  compared to the spectrum of noninteracting particles; a simi-
use the fact thai/(r) solves the Gross-Pitaevskii equation, to lar compression has also been observed in numerical 3D cal-
get the equation culations[21].
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In the quantum field description the coherent-state atomic
field in the single well-potential is deformed, as the trap po-
tential is modified, and eventually it attains a form where two
localized components can unambiguously be defined. The
two mean fields at this stage are in phase, but in both wells
we have a phase collapse, as described quantitatively in Sec.
I cC.

20

o

o

B. Phase collapse of weakly coupled condensates

What interests us here is the magnitude of the relative
phase collapse when the separation of the condensate into
two fragments is not complete. During separation the first

excited state, where the wave functidq(F) has opposite
signs in the regions around the potential minima, becomes
%% T o 10 20 degenerate with the ground state of the double-well conden-
Xfa sate. A small population of such a state is already equivalent
to a degradation of the phase between the two condensates,

arlt:i::(lsé 3&':/;?&6' (F)’(())Tfri‘:as(ﬁgx;Ssh;;g’nczor:/xé’:ei‘:& :B;ZL?S;}E_ and we shall cast this in a formulation equivalent to the
P v : ‘ Goldstone mode discussion above.

It; h he Th -Fermi imation; h . -
sult; dashed curve, the Thomas-Fermi approximation; and the From the analysis we shall recover the limit of well-

single-particle energy is indicated by a solidexac) and a dashed o
line (Thomas-Fermi approximationThe parameters of the calcula- separated 90ndensates’ t.)Ut we shall also get a q-uantltatlve
tion areN'=1000 atomsg=0.15i wa,. theory apphcab_le to the situation of weakly interacting con-
densates. In this way we can supplement the existing quan-
tum optics “toy-models” of Josephson-like coupling of con-
V. EXCITATION AND PHASE COLLAPSE densateg5] by a quantitative analysis for the full matter
OF A FRAGMENTED CONDENSATE wave problem.
We shall focus on the solutiong/(, ¢,) corresponding to
_ _ ] ~ the lowest excited state of the condensate. The ground state
Consider a single condensate, broken into two noninteryf the single condensate adiabatically transforms into the
acting parts due to a change of the external potektia{r). state where the wave function has the same sign in both
If the final potential has two local minima, and if the atomic fragments, and in this limit the wave functiorig and ¢, are
density is entirely localized in two nonoverlapping regionsthe antisymmetric partners @f and ¢.
around these minima, we may treat the future evolution of -
the system as that of two independent condensates. One may, 1. Superposition and product states
for example, wait for a certain timé&, after which the two There is no obvious role played by superpositions of the
trapped condensates are released from their traps, and oselutions to a nonlinear Schiimger equation, but in the
may observe a spatial interference pattern emerge when thdiyit of well-separated condensates it is indeed meaningful
overlap. We may imagine that in the interference region, thg@o  construct localized wave functions  by[ ¢(r)
atomic density is so low that no collective effects appear due, lﬂl(F)]/Vi- Mathematically the algebraic structure of the
to atom-atom interactions in this part of the experiment. Thisiate vector Hilbert space includes both additisaperposi-
situation is not so different from the one realized in experi-tion principle and multiplication(product states
ments[8]. If the delay timeT is short, one would expect that  States with a definite number of atoms can be represented
the phases of the condensates are still given by the phase & anNth power of a single particle state, e.g., the ground
the nonfragmented condensate and the interference pattegfhie (1) of a condensate in a double-well potential. If this
should have a definite location of the fringes, so that averstate is expanded on components localized in either well, the
ages over repeated experiments yield a signal with high visyth power leads to a binomial splitting of the atoms in the
ibility. If, on the other handT is large, the two components two wells.
have lost their phase relationship. In individual experiments The eigenstates of the annihilation operator, egonen-
interference will be observed but the fringe location varies atials of one-particle state§25]. Thus, when the single-
random from experiment to experiment. particle state is written as a superposition, the coherent state
The particle picture yields a simple description of thejs the exponential of this superposition, i.e., a product of two
relative phase diffusion of the two components. If a condencoherent-state solutions, as follows from the fundamental
sate with exactlyN atoms is split in two, the resulting property of the exponential function,
guantum-mechanical state will be a superposition state in-
volving a binomial distribution over components with a exp(x+y)=exp(x)expy). (33
given population of one or the other condensate. In a bino-
mial distribution the variance is proportional to the mean, as
in the Poisson distribution, and the dephasing is readily ob- Restricting ourselves to the gapless excitation and the ex-
tained, and it is quantitatively similar to the one obtained bycitation with the lowest discrete excitation energy, we can
the quantum field theor}24]. rewrite SH [Eq. (14)],

ENERGY (hamonic oscillator units)

o

A. Interference between well separated fragments

2. Relative phase, “Goldstone boson with variable mass”
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C. Relative phase within a single condensate, long-range
order, and condensate fraction

When the barrier is lowered our association of operators
with the left- and the right-hand sides is no longer precise,
and we can hence not take this theory too far quantitatively.
But it is appealing to keep the qualitative picture that within
a single condensate the relative phase in different regions
may fluctuate within a finite interval identified by the equa-
tions given above.

For example, the left- and right-hand sides of a conden-
sate in a simple 1D harmonic oscillator may experience a
relative quantum phase fluctuation within the intervéy

1 ~Va/(fiwN), where w;=w. Within the Thomas-Fermi
0‘ ‘ ‘ approximation, the lowest excitation in a 1D harmonic-
0.0 20 40 6.0 oscillator trapping potential is described W (x) X, and a

o straightforward calculation gives

p and a (harmonic oscillator units)

FIG. 2. The dependence pf (upper curviéanda on the poten-
tial displacemeni,. The dashed curve indicates the valueagf
determined in Sec. V. The physical parameters are as in Fig. 1. The
filled circles present the Thomas-Fermi predictions for simple os-
cillator potentials, and as observed they are excellent approximaeonfirmed by our numerical calculation of; described in
tions whenx,=0 andx,>6a,. the next sectionvalue atxy=0). The Thomas-Fermi ap-
proximation for the value ofx is given in Eq.(7). For an
. - 1 . interaction dominated condensate wijthsignificantly larger
SH=aP?/2+ a;P3/2+ gwiQf- (34 thanw, the phase uncertainty is in excébsit not necessarily
! by much of the value enforced by complementarity between
ghase and particle number and what can conceivably be de-
termined experimentally.
What we are discussing here is in fact the off-diagonal

2 2
77=§,u/ﬁw, =g M (36)

Qll\/N is the relative phase operator of the two condensat
fractions, and whemw, # 0, this quantum phase is seen to be

h ically bound variable, i trast to th Il X ; .
Shaztrar,n\(/)vwiii ?{S fr(;lg? variable, in contrast to the overa long-range ordel26], suitably defined for an inhomoge-

Quantitatively, we must determine the properties of this"€0US System. In homogeneous systems, like supeffléd
oscillator: We first determine w, by solving the the order parameter, defined through the expectation value

Bogoliubov—de Gennes equations. Subsequently we Con(lPT(Fl)‘i’(Fz)), is used to identify the condensate fraction
pute the number normalizing#,(r). And, finally, we ob-  fc. i-€., the probability, or the fraction of time, that an atom
tain a;= nhw,, according to Eq(25). spends in the condensate. It is natural for an inhomogeneous
' problem to define this fraction heuristically by the following

The ground-state width of thé}1 oscillator divided by equation:

JN is a measure of the steady-state phase fluctuatiyns
between the fragments, and with our suggested procedure for S epe o > -,
obtaining the excitation energy and wave functions we are (W)™ (r"))=Nfep(r)* ¢(r’), (37)

able to compute their characteristic variation . _ )
wherer,r’ are chosen on opposite sides of the condensate.

Sy~ail(hwiN). (35  With this identification, we obtainf.~(exp(Q;/\VN))
~exp( 8Y212)=exd — a; /(2hw,N)].

In the case of a weak coupling, the relative phase variable |f we insert theN dependence of;~ 1 we get a scaling
moves freely over a wide range, and if this range exceeds 2of the argument in the exponential & 3 (1D), N~ 12
we conclude that the relative phase collapses as for the frqu), andN 3 (3D), which is thus the largét dependence
condensate case with a collapse time=N/a;. In this  of the noncondensed fraction suggested by this phase col-
limit @, =, and the Hamiltoniait34) may be rewritten as a |apse argument. We recall the heuristic character of our defi-
sum of two free kinetic energies, corresponding to the phasesition of “long” range order and our inclusion of only the
of the two separated condensates rather than the symmetigvest excitatior(in the 1D problem higher-order excitations
(overall phaspand antisymmetricrelative phasecollapse yield values ofay/w~k™2), so these estimates should be
terms. taken at most as a suggestion for the noncondensed fraction

When the excitation frequency is gradually increasedat zero temperature.
(corresponding to a lowering of the barrier between the two |n the particle picture, the existence of a noncondensed
potential minima and an increased passage of particles bgaction at zero temperature reflects the only approximate
tween the two fragmenksVar(Q,) becomes an oscillating character of the Hartree ansatz. A proper treatment involves
rather than quadratically growing function, and in the limit excitations out of this state due to atom-atom interactions,
the relative phase is limited to fluctuations of magnitéje and the amount of such excitations may be estimated from
smaller than 2z there is no collapse of the relative phase,the expectation value of the interaction term relative to the
only a finite smearing. excitation energies. This, in fact, suggests the same combi-
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8.0 ‘ ‘ Within the Thomas-Fermi approximation it is not difficult
to obtain the ground-state wave function and the engtgy
for the potential38). Normalizing the particle density to the
desired number of atoms, we obtain a third-order equation
relatingu andxq. For largexy, u becomes smaller than the
barrier heightey, andu is then given by the resulf) for a
single harmonic oscillator witiN/2 atoms(the number of
atoms in each harmonic wgllThe value ofu (and of a) is
accordingly reduced by a factor of (1#%~0.63 when the
condensate is split. Within the Thomas-Fermi approximation
the splitting is completed whenx,>(3Ng/4M w?)?
~4.83, for the applied parameters, but this approximation
of course underestimates the wave function in the classically
forbidden region between the two fragments.

In Fig. 2 is shown the dependence @fand a on X,
X2 obtained for a fixed number of particl&s=1000. The rela-

FIG. 3. Nine lowest excitation energiés, as a function ok, . tive phase collapse parametay is determined from the

The parameters are as in the other figures. The dashed lines indic4inctions associated with the lowest excitation energy, and
the analytical expressio(32) obtained by use of the Thomas-Fermi 'tS depe_ndence OXy is shown as a dashed line in the figure.
approximation. As predicteda; and a converge to the same value for large

separations. The filled circles indicate the Thomas-Fermi

nation of parameters (or du/dN) and »; and hence the Predictions applicable in the case of simple harmonic-
sameN dependence as above. oscillator potentials. o _

One may speculate that the off-diagonal order could be We presentin Fig. 3 the variation of the nine Iov_vest ex-
made the subject of experimental investigations by cuttingitation frequencies with the parameigy. We clearly iden-
the condensate into pieces and subsequently performing aty the convergence of pairs of levels corresponding to de-
interference experiment. For small regions, the informatiorfenerate even and odd solutions. The dashed lines in Fig. 3
available from higher excitation modes enters, although theiphow the excitation energies predicted analytically by appli-
higher and higher energies may suppress their individuatation of the Thomas-Fermi apprOX|mat|0n,.and applicable
contributions. If there are too few atoms in each piece, thd0th forxo=0 and for largex,. We have applied the quan-
precision on the phase measurement is limited, but one ma{m Monte Carlo variational procedure and verified that it
make a compromise so that the level of discrimination isVery efficiently yields the same results as the diagonalization

sufficient to probe the expected phase fluctuations. procedure for the first excitation of the condensate.
This excitation frequency decreases, and, as discussed

above, in the limit of two separated fragments, the relative
V1. 1D MODEL SYSTEM phase between the two is unbounded. The relative phase un-

We consider atoms confined by a potential that we carfertaintydy is shown in Fig. 4 as a function ob.
modify through a single control parameter so that it changes W€ have assured ourselves of the rapid convergence of
continuously from a single harmonic oscillator into two the lowest excitation to zero as both the height and the width
separate oscillator potentials with the same oscillator fre©f the barrier increase witk,. There is a close relationship
quencyw as the single potential. For simplicity we assumePetween the energy difference between odd and even states
the following model potential, of double-well systems and the probabilify of tunneling
through the barrier. This establishes a connection between
1 the relative phase fluctuations determined above and a par-
VexdX) = 5 Maw?(x*Xg)?, (38) fticlelike picture where the passage of atoms among different
2 regions ensures the entanglement responsible for the relative
phase. In case of a tunnel barrier with a transmission coeffi-
where the+ (—) sign applies fox negative(positive), and  cient of T, settingw;~ Tw, we can interpret the phase syn-
where the positive quantity, provides the location of the chronization as a result & atoms “knocking” on the bar-
potential minima at*Xx,. When the potential barrieE,  rier with a frequencyw and a fractionT of them actually
=(1/2)M wzxé atx=0 exceeds the energy of the particles  getting through to communicate the phase of the condensate
the two fragments are separated. The potential is illustrateftom one to the other side of the barrier. The tunneling of
in Fig. 1, the figure also indicates the square of the groundatoms between condensates has recently been studied in
state wave function and the chemical potengiabbtained some detai[27]. In competition with the relative phase col-
both within the Thomas-Fermi approximation and exactly.lapse, we may understand how this process limits the phase
Results in this section are presented for a specific choice dfuctuations as predicted by E(B5).
parameters(in harmonic-oscillator unils we assumeN
=1000 atoms andj=0.1%iwa,, where the width of the
oscillator ground state isy,=VA/Mw. Positions are pre-
sented in units ofag. The results in Fig. 1 assune, We have considered the phase of a Bose condensate and
=b5a,. the means for calculating the time scale for its collapse under

bl
=}
T

ENERGY (harmonic oscillator units)
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VIl. DISCUSSION
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0.40 ‘ ‘ Nonsymmetry-breaking analyses of the dynamics of very-
low-temperature condensates have recently been proposed
[28,29. Explicitly time-dependent analyses may contribute
/ even further to our understanding of the relations between
0.80 1 /1 excitation and phase collapse; see 43|

We have considered only the case of zero temperature. As
shown in[4], temperature-dependent phase collapse rates can
be evaluated within the Popov approximation. In our prob-
lem of weakly coupled condensates, a closer scrutiny is nec-
essary to determine the influence of the transfer of thermally
excited atoms among the condensates.

It has been proposed that a mechanism similar to the
phase collapse can account for the observed damping of os-
‘ cillations in condensates in time-dependent traps. The pro-

000 | ‘ , posed mechanism refers to the spreading in number of

00 20 va 40 60 quanta in the excited mode and the mode anharmonicity,
’ which causes a dephasing of the superposition of ground-
o ) ) and excited-state wave functiofi81,32. The calculations
. FIG. 4. The characteristic magnitude of fluctuations of the rela-y5t we have particularly carried out for the lowest excited
tive phase between the two fragments of the condensatexfor giate can be straightforwardly applied to higher excited
small, the identification of two components is ambiguous, and thestates and we imagine that this may be a promising avenue
values of§y should only be understood in a qualitative sense. for furiher studies.

In a recent study33] it was shown how a model with a
different circumstances. We have demonstrated the strongansmission barrier inserted in a simple box of nucleons
connection between phase collapse and excitations of th@ay account for the congruence energy, a contribution to
condensate, which is of course evident as both are describeunliclear binding associated with the granularity of nucleonic
by the Bogoliubov—de Gennes equations in the quantundensity and not obtainable from the Thomas-Fermi model of
field picture. We have in particular identified how separatelythe nucleus. The relevance of phase in connection with
collapsing phases emerge from the gapless excitation and timiclear excitation and fission may be an interesting line of
first discrete excitation when a condensate is broken umesearch, with parallels to the study of Bose condensates.
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