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Schrödinger-like equation for a nonrelativistic electron in a photon field of arbitrary intensity

Dong-Sheng Guo* and R. R. Freeman
Lawrence Livermore National Laboratory, Livermore, California 94550

Yong-Shi Wu†

Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
~Received 2 March 1998!

The Schro¨dinger equation with minimal coupling for a nonrelativistic electron interacting with a single-
mode photon field is not satisfied by the nonrelativistic limit of the exact solutions to the corresponding Dirac
equation. A Schro¨dinger-like equation valid for arbitrary photon intensity is derived from the Dirac equation
without the weak-field assumption. The ‘‘eigenvalue’’ in the present equation is an operator in a Cartan
subalgebra. An approximation consistent with the nonrelativistic energy level derived from its relativistic value
replaces the eigenvalue operator by an ordinary number, recovering the Schro¨dinger eigenvalue equation used
in the formal scattering formalism. The Schro¨dinger-like equation for the multimode case is also presented.
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The exact analytical solutions for an electron interact
with a photon field play a very important role in theories a
calculations of multiphoton ionization~MPI! and multipho-
ton scattering processes@1–8#. These theoretical results hav
achieved notable agreement@2,4,8# with experiments done
during late 1980s@9–11#. However, rigorously speaking, th
theoretical treatments for a nonrelativistic~NR! electron in-
teracting with a photon field@3–6# had a logical loophole;
the purpose of this paper is to fill this loophole. A bonus
our efforts is the derivation of a Schro¨dinger-like equation
for a NR electron interacting with a photon field that is va
for arbitrary photon intensity~within the range consisten
with the NR motion of the electron!.

Before proceeding to formal considerations, let us fi
point out an important feature of the MPI phenomeno
Namely, the total energy of the photons interacting with
electron in a strong radiation field can be comparable to
electron mass. For example, the photon energy of 1064 n
of the order 1 eV and when the laser intensity is of the or
1013 W/cm2, the ponderomotive number is of order of unit
This number is the photon number in a disk volumeVp with
thickness as the electron classical radiusr c and the cross
section made by the radius of the photon circular wavelen
l/2p. The interaction volume of an atomic electronV can be
regarded as a disk volume with the thickness as the B
radius and the same cross section ofVp . ThusV51372Vp .
At the mentioned intensity the background photon numbe
about 23104 with total energy of the order 23104 eV. If
one increases the intensity of the light with the same wa
length to 2.531014 W/cm2, the total interacting backgroun
photon energy will be around the electron mass. So
weak-field approximation used in the usual quantum elec
dynamics does not apply here. We are confronting the pr
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lem to get a nonrelativistic approximation with arbitrary ph
ton intensity. The problem addressed in this paper is reali
and in the range of current experiments.

The previous treatments@3–8# of the MPI theory adopt a
second-quantized formulation for the laser field. The eq
tions of motion, in the Heisenberg picture, for a relativis
~first-quantized! electron interacting with a photon field i
the well-known Dirac equation, which, say, for the case o
single-mode laser, reads

@ ig]2egA~kx!2me#C~x!50, ~1!

where

A~kx!5g~eae2 ikx1e* a†eikx!, ~2!

with a anda†, respectively, the photon annihilation and cr
ation operator andg5(2Vgv)21/2, Vg being the normaliza-
tion volume of the photon field and the polarization fou
vectore5(0,e). The Dirac equation has been solved exac
either with a single-mode photon field@1# or with a multi-
mode photon field that propagates in one direction@7#. The
NR limit of these exact solutions has been derived in Ref.@2#
and one is tempted to use them in the theory for MPI
which the emitted electrons are nonrelativistic.

As usual, the MPI theory started with the Schro¨dinger
equation with the standard minimum coupling@12#, which in
the Schro¨dinger picture was the eigenvalue equation

HC~r !5EC~r !, ~3!

with the Hamiltonian

H5
1

2me
@2 i“2eA~2k•r !#21vNa , ~4!

where

A~2k•r !5g~eeik•ra1e* e2 ik•ra†! ~5!
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andg5(2Vgv)21/2, Vg being the normalization volume o
the photon field.Na is the photon number operator

Na5 1
2 ~aa†1a†a!. ~6!

The polarization vectorse ande* are defined by

e5@ex cos~j/2!1 i ey sin~j/2!#eiQ/2,

e* 5@ex cos~j/2!2 i ey sin~j/2!#e2 iQ/2 ~7!

and satisfy

e•e* 51, e•e5cosjeiQ, e* •e* 5cosje2 iQ.

The anglej determines the degree of polarization, such t
j5p/2 corresponds to circular polarization andj50 to lin-
ear polarization.~The phase angleQ/2 is introduced to char-
acterize the initial phase value of the photon mode in
earlier work @3#. With this phase, a full ‘‘squeezed light’
transformation@13# can be fulfilled in the solution process
In multimode cases, the relative value of this phase for e
mode will be important.!

In the following, we first show that the Schro¨dinger ei-
genvalue equation~3! with the NR Hamiltonian~4! is not
satisfied by the NR wave functions obtained from the ex
solutions to the corresponding Dirac equation~1!. To see
this, let us remove the coordinate dependence of
A(2k•r ! field by applying a canonical transformatio
@14,15#

C~r !5e2 ik•rNaf~r !. ~8!

Equation~3! then becomes

H 1

2me
~2 i“2kNa!22

e

2me
@~2 i“ !•A1A•~2 i“ !#

1
e2A2

2me
1vNaJ f~r !5Ef~r !, ~9!

wherek•A50 by transversality. HereA is coordinate inde-
pendent and defined as

A5eik•rNaA~2k–r !e2 ik–rNa5g~ea1e* a†!. ~10!

Setting f(r )5eip•rf, we obtain the coordinate
independent equation

F 1

2me
~p2kNa!22

e

me
p•A1

e2A2

2me
1vNaGf5Ef.

~11!

Now we note that the term (kNa)2[kNa•kNa in Eqs. ~9!
and ~11! does not exist in the Dirac equation~1! and its
squared form, which contain the creation and annihilat
operators only up to quadratic terms. The exact solution
the Dirac equation and their NR limit were obtained from t
photon Fock states, i.e., the number states, by only sque
light and coherent light transformations@1#. Any equation
satisfied by these states can consist of operatorsa or a† only
up to quadratic ones. Thus the known NR wave functio
@16# do not satisfy the NR Schro¨dinger eigenvalue equatio
~3!.
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To justify the use of the NR wave functions, one of th
authors has introduced a special ansatz@3# that allows the
replacement in Eq.~11! of thekNa terms bykk, with k a real
number to be determined. The implicit assumption beh
this ansatz is that the corrections caused by this replacem
should be at most comparable to relativistic effects. With t
ansatz and certain covariance requirements, the solut
turned out to be just the NR wave functions obtained by
NR limit from the exact solutions of the Dirac equation
Later, the ansatz was extended to the cases of multim
photon fields with multiple propagation directions@3,4,6#.
Though this procedure leads to the correct NR wave fu
tions in the single-mode case, the reasons why the an
works were not explained. Moreover, the validity of usin
the Schro¨dinger eigenvalue equation to describe a NR el
tron in a strong photon field and the validity of the ansatz
multimode cases have never been rigorously justified.

Unlike the classical-field treatment, where the light fie
is treated as an external field, our quantum field-theoret
approach for photons requires a careful treatment to main
relativistic invariance for the photon field, while only th
electron is to be considered as a NR particle. The cor
equation of motion should be derived from the Dirac equ
tion in the Schro¨dinger picture

~He1Hg1V!C~r !5p0C~r !, ~12!

where

He5a•~2 i“ !1bme ,

Hg5vNa5
v

2
~aa†1a†a!, ~13!

V5ea•A~2k•r !,

with C(r )5(C2(r )
C1(r )) and

a5S 0
s

s

0 D , b5S I
0

0
2I D , ~14!

where C1(r ) and C2(r ) are the major and minor compo
nents, respectively. Thus Eq.~12! can be written as

s•@2 i“2eA~2k•r !#C2~r !1~me1vNa!

3C1~r !5p0C1~r !, ~15a!

s•@2 i“2eA~2k•r !#C1~r !1~2me1vNa!

3C2~r !5p0C2~r !, ~15b!

From Eq.~15b! we have

C2~r !5~p01me2vNa!21s•@2 i“2eA~2k•r !#C1~r !;
~16!

Substituting C2(r ) in Eq. ~15a! and ignoring the term
s•@2eA(2k•r )#C2(r ) that pertains to the minor compo
nent, we obtain a solo equation for the major componen

$s•@2 i“2eA~2k•r !#%2C1~r !

5@~p02vNa!22me
2#C1~r !. ~17!
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PRA 58 523SCHRÖDINGER-LIKE EQUATION FORA . . .
By neglecting the coupling between electron spin and pho
polarization, i.e., the term@s•e,s•e* #, we have~writing
C1 asC!

@2 i“2eA~2k•r !#2C~r !5@~p02vNa!22me
2#C~r !.

~18!

This equation can be written as an eigenvaluelike equati

H 1

2me
@2 i“2eA~2k•r !#21vNaJ C~r !5E~Na!C~r !,

~19!

with

E~Na![
1

2me
@~p02vNa!22me

2#1vNa . ~198!

Equation~19! can be solved exactly. The following ar
the main steps to obtain the solutions. The canonical tra
formation given by Eq.~8! removes the coordinate depe
dence. Thus the equation becomes

~2 i“2eA2kNa!2f~r !5@~p02vNa!22me
2#f~r !.

~20!

By settingf(r )5eip•rf, we get the coordinate-independe
equation

@p222ep•A1e2A212~p0v2p•k!Na#f5~p0
22me

2!f.
~21!

A squeezed light transformation

a5coshxc1sinh xe2 iQc†,
~22!

a†5sinh xeiQc1coshxc†

and a coherent light transformation

f5D†un&c , D5exp~2dc†1d* c!,
~23!

d5egp•ec* /@~p0v2p•k1e2g2!22e4g4 cos2 j#1/2

can be introduced to simplify the equation. Finally, we ha
exact solutions for the Schro¨dinger-like equation~19! or its
equivalent form~18!

C~r !5Ve
21/2 exp@ i ~2kNa1p!•r #D†un&c , ~24!

where

un&c5
c†n

An!
u0&c ,

~25!

u0&c5~coshx!21/2(
s50

`

~ tanhx!sS ~2s21!!!

~2s!!! D 1/2

e2 isQu2s&,

x52
1

2
tanh21 S e2g2 cosj

p0v2p•k1e2g2D .

Here u2s& is the Fock state with 2s photons in the single
mode. The numberp0 is determined by the algebraic equ
tion
n

s-

e

p0
22me

25p212C~n1 1
2 !22e2g2~p•ec!~p•ec* !C21 ,

~26!

C[@~p0v2p•k1e2g2!22e4g4 cos2 j#1/2.

The solutions are also the eigenfunction of the moment
operator

~2 i“1 ikNa!C~r !5pC~r !, ~27!

which shows thatp is the total momentum of this system
The total momentump has a unique decomposition on th
electron mass shell with lightlike component in thek direc-
tion @1,5#:

p5P1kk,

p05me1
P2

2me
1kv,

~28!

k5
C~n1 1

2 !

mev
2

e2g2~P•ec!~P•ec* !

mevC
,

→~n1 1
2 1up! ~ in the strong laser field case!,

with replacingp0v2p•k by mev in C. Hereup is the pon-
deromotive energy in units of photon energy. With the he
of Eq. ~28!, the solutions can be expressed as

C~r !5Ve
21/2 exp@ i ~2kNa1P1kk!•r #D†un&c . ~29!

This result agrees with the known NR limit@2# of the exact
solutions to the Dirac equation~1! because of the following
relation in the NR limit:

p0v2p•k5S me1
P2

2me
Dv2P•k→mev. ~30!

This provides us a consistency check for our Eqs.~19! and
~198!.

We emphasize that the Schro¨dinger-like equation~19!
that we have derived in the NR limit is not an ordina
eigenvalue equation since the ‘‘eigenvalue’’~198! is an op-
erator~rather than a real number!, which is a quadratic ele-
ment in the commuting subalgebra generated byNa in the
enveloping algebra ofa and a†. This subalgebra is also
called a Cartan subalgebra

Though our Eq.~19! has the satisfying feature that th
known NR wave functions solve it exactly, it does not
well the formal scattering formalism, which requires th
wave functions to satisfy a true eigenvalue equation.
propose to resolve this problem by numerizing the eig
value operator to its stationary values. In quantum mech
ics, one can obtain the energy eigenvalues of a quan
system by the variational method. Actually, all the eigenv
ues are stationary values of the operator, not necessarily
minimum value, except for the ground state. Here we do
need any variational method since the wave functions
exactly known. In the following we show that the stationa
values of the operatorE(Na) do give the correct energy lev
els of the NR system. By setting
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dE~Na!

d~vNa!
50, ~31!

and treatingE(Na) as a function ofvNa we find that the
stationary value, atvNa5(p02me)I , with I being the iden-
tity operator, is

E~Na![~p02me!I 1
1

2me
~p02me2vNa!2→EI ,

~32!

with

E[p02me5
P2

2me
1kv, ~328!

which is nothing but the energy level@2# for the interacting
system of the NR electron and the photon field without
cluding the rest mass of the electron. The omission of
quadratic term in Eq.~32! is a NR limit process. We also
observe that by replacingNav in Eq. ~198! either bykv or
by (n11/2)v, E has the same value within the tolerance
the NR limit, showing the stationary nature of the value~32!.
With the replacement of the eigenvalue operator by its
tionary value~328! in the eigenvaluelike equation~19!, we
get an effective eigenvalue equation, which just recovers
Schrödinger eigenvalue equation~3! with the minimal-
coupling Hamiltonian~4!. It is this effective Schro¨dinger
equation together with the NR wave functions~24! that was
used in the previous treatments@3–8#. So the physical pre-
dictions obtained there remain valid.

In this way, we are led to the following procedure f
treating a NR electron in a photon field, which could
generalized to the cases of multimode and multipotentia

~i! Solve the Schro¨dinger-like eigenvalue equation~19! to
obtain the wave functions.

~ii ! Obtain the stationary values of the eigenvalue opera
as the energy levels.

~iii ! Replace the operator eigenvalue by its station
value to obtain an effective Schro¨dinger eigenvalue equatio
to be used in the formal scattering formalism.

In ending this article, we present the Schro¨dinger-like
equation for a NR electron in a two-mode photon field
future studies as

H 1

2me
@2 i“2eA1~2k1–r !2eA2~2k2•r !#2

1v1N11v2N2J C~r !5E~N1 ,N2!C~r !, ~33!
-
e

f

-

e

r

y

r

E~N1 ,N2![
1

2me
@~p02v1N12v2N2!22me

2#

1v1N11v2N2 .

The coordinate-independent equation to solve is

@~p2eA!212p~k1N11k2N2!12e~k1N11k2N2!•A

22k1k2N1N2#f5~p0
22me

2!f, ~34!

where pki[(p0v i2p•k i) ( i 51,2) and k1k2[(v1v2

2k1•k2).
Compared with Eq.~21!, we see that this equation con

tains a higher-order operator termN1N2 . Searching for so-
lutions to this equation is one of our targets in future
search.

To summarize, in this paper we have addressed caref
the problem of the equations of motion for a nonrelativis
electron interacting with a single-mode photon field, which
valid for arbitrary photon intensity. We first showed that t
usual Schro¨dinger eigenvalue equation is not solved by t
NR limit of the wave functions that exactly solve the corr
sponding Dirac equation. Then a Schro¨dinger-like equation
is derived from the Dirac equation without using the wea
field assumption. Though the eigenvalue is an operator
Cartan subalgebra involving the photon number operator,
present equation has a simpler structure compared to
usual eigenvalue equation. An effective Schro¨dinger equa-
tion with ordinary eigenvalues, good in the NR limit,
achieved by replacing the eigenvalue operator by a num
which then can be used in the formal scattering theory. T
Schrödinger-like equation for the multimode case is also p
sented.
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PRA 58 525SCHRÖDINGER-LIKE EQUATION FORA . . .
@11# R. R. Freeman and P. H. Bucksbaum, J. Phys. B24, 325
~1991!.

@12# J. J. Sakurai, Advanced Quantum Mechanics, 6th ed.
~Addison-Wesley, Reading, MA, 1977!.

@13# R. Loudon and P. L. Knight, J. Mod. Opt.34, 709 ~1987!.
@14# T. D. Lee, F. E. Low, and D. Pines, Phys. Rev.90, 297~1953!.
@15# M. Girardeau, Phys. Fluids4, 279 ~1960!.
@16# Those who are curious about the explicit form of the NR wa

functions are advised to take a look at Eqs.~24! or ~29!, which
coincides with the NR limit of the exact solutions to the Dira
equation~1!.


