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Schrodinger-like equation for a nonrelativistic electron in a photon field of arbitrary intensity
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The Schrdinger equation with minimal coupling for a nonrelativistic electron interacting with a single-
mode photon field is not satisfied by the nonrelativistic limit of the exact solutions to the corresponding Dirac
equation. A Schidinger-like equation valid for arbitrary photon intensity is derived from the Dirac equation
without the weak-field assumption. The “eigenvalue” in the present equation is an operator in a Cartan
subalgebra. An approximation consistent with the nonrelativistic energy level derived from its relativistic value
replaces the eigenvalue operator by an ordinary number, recovering thelidgerceigenvalue equation used
in the formal scattering formalism. The ScHinger-like equation for the multimode case is also presented.
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PACS numbd(s): 32.80.Rm

The exact analytical solutions for an electron interactinglem to get a nonrelativistic approximation with arbitrary pho-
with a photon field play a very important role in theories andton intensity. The problem addressed in this paper is realistic
calculations of multiphoton ionizatiotMPI) and multipho- and in the range of current experiments.
ton scattering processgb—8]. These theoretical results have ~ The previous treatmen{8—8] of the MPI theory adopt a
achieved notable agreemei#,4,8 with experiments done second-quantized formulation for the laser field. The equa-
during late 1980$9—11]. However, rigorously speaking, the tions of motion, in the Heisenberg picture, for a relativistic
theoretical treatments for a nonrelativistR) electron in-  (first-quantized electron interacting with a photon field is
teracting with a photon fieldi3—6] had a logical loophole; the well-known Dirac equation, which, say, for the case of a
the purpose of this paper is to fill this loophole. A bonus ofsingle-mode laser, reads
our efforts is the derivation of a Schtimger-like equation

for a NR electron interacting with a photon field that is valid [iyd—eyA(kx) —me]¥(x)=0, (1)
for arbitrary photon intensity(within the range consistent
with the NR motion of the electrgn where
Before proceeding to formal considerations, let us first _ _
point out an important feature of the MPI phenomenon. A(kx)=g(eae *+e*a’e"), )

Namely, the total energy of the photons interacting with the

electron in a strong radiation field can be comparable to thavith a anda’, respectively, the photon annihilation and cre-
electron mass. For example, the photon energy of 1064 nm &tion operator and=(2V,w) % V., being the normaliza-
of the order 1 eV and when the laser intensity is of the ordetion volume of the photon field and the polarization four-
10" W/cn?, the ponderomotive number is of order of unity. vectore=(0,e). The Dirac equation has been solved exactly
This number is the photon number in a disk voluewith ~ either with a single-mode photon fie[d] or with a multi-
thickness as the electron classical radiysand the cross mode photon field that propagates in one direcfich The
section made by the radius of the photon circular wavelengtfNR limit of these exact solutions has been derived in R&f.
\/27. The interaction volume of an atomic electrdrcan be  and one is tempted to use them in the theory for MPI in
regarded as a disk volume with the thickness as the Bohwhich the emitted electrons are nonrelativistic.

radius and the same cross sectiorVgf. ThusV=1372V,,. As usual, the MPI theory started with the Satlirger

At the mentioned intensity the background photon number igquation with the standard minimum couplifig], which in
about 2< 10* with total energy of the order 210* ev. If ~ the Schrdinger picture was the eigenvalue equation

one increases the intensity of the light with the same wave-

length to 2.5< 10" W/cn?, the total interacting background HW(r)=&¥(r), ()
photon energy will be around the electron mass. So the o

weak-field approximation used in the usual quantum electrowith the Hamiltonian

dynamics does not apply here. We are confronting the prob-

— ; 2
H_Zme[ iV—eA(—k-r)]*+wN,, (4)
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Lake City, UT 84112. A(—k-r)=g(ee'*Ta+e e al (5)
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andgz(zvyw)‘l’z, V, being the normalization volume of To justify the use of the NR wave functions, one of the

the photon fieldN, is the photon number operator authors has introduced a special and&fzthat allows the
Lot replacement in Eq11) of thekN, terms byxk, with « a real
N.=z(aa'+a'a). (6)  number to be determined. The implicit assumption behind

this ansatz is that the corrections caused by this replacement

o . )
The polarization vectore and €™ are defined by should be at most comparable to relativistic effects. With this

e=[e cOg£/2) Tig, sin(£/2)1e'°72, ansatz and certain covariance requirements, the solutions
turned out to be just the NR wave functions obtained by the
€ =[g cod¢l2)—ig sin(&/2)]e" 1072 (77 NR limit from the exact solutions of the Dirac equations.
Later, the ansatz was extended to the cases of multimode
and satisfy photon fields with multiple propagation directiof3,4,6].

Though this procedure leads to the correct NR wave func-
tions in the single-mode case, the reasons why the ansatz
. o works were not explained. Moreover, the validity of usin
The angle¢ determines the degree of polarization, such tha}he Schidinger eiggnvalue equation to describeé NR ele%-

=2 C(_)rre_sponds to circular polar_lzgtlon a0 to lin- tron in a strong photon field and the validity of the ansatz in
ear pplarlzatlpq(The phase angl®/2 is introduced to chgr- multimode cases have never been rigorously justified.
2?&2?3\/?& [g't'%i&h?ﬁg Vﬁgj:e OLTUE;I EZOL%lanng? r'{t‘,,an Unlike the classical-field treatment, where the light field
transformatior[iS] can be ?ulfillet.:] in the sglution progess Is treated as an external fjeld, our quantum field—theorgticgl
. . : *_approach for photons requires a careful treatment to maintain
In multlmode cases, the relative value of this phase for eac elativistic invariance for the photon field, while only the
mode will be importan}. electron is to be considered as a NR particle. The correct

In tlhe foIIow;ngllﬁ,g;Ne 'I|I~|rstth5h|c\)|v|; t:at t.rlle Sc}n(jz))nger elt_ equation of motion should be derived from the Dirac equa-
genvalue equatior3) wi e amiltonian(4) is no Pon in the Schidinger picture

satisfied by the NR wave functions obtained from the exac
solutions to the corresponding Dirac equatid). To see (He+H,+\V)¥(r)=po¥(r), (12
this, let us remove the coordinate dependence of the

A(—k-r) field by applying a canonical transformation where

e e =1 ee=coste® € - € =cosce ',

(14,19 .
' He=a- (—iV)+8m,,
W(r)=e""Mag(r). ®
w
Equation(3) then becomes Hy=owNa=% (aa'+a'a), (13
e
_iv— 2_ _ T 1r(—iv). (—i V=ea-A(—Kk-r),
2rne( iV—kN,) 2me[( iV)-A+A-(=iV)] .
202 with qf(r)=(q,;§[§) and
+ TN d(r)=Ed(r), 9
2me 0 o I 0
g o) P=lo i) 4
wherek-A=0 by transversality. Herd is coordinate inde-

pendent and defined as where ¥ ,(r) and ¥,(r) are the major and minor compo-
A=ekMNap(—k.rye i Ma=g(eatefal).  (10) nents, respectively. Thus E(L2) can be written as

Setting ¢(r)=eP'¢, we obtain the coordinate- o [V —eA kD11 + (et oNa)
independent equation XW(r)=po¥(r), (153
2A2

e
— 2__" p. - =
(p—kNp) . p-A+ om. +wNa}¢ Ep.

o [—iV—eA(—k-n)J¥(r)+(—mg+ wN,)
(12) XWo(r)=peWa(r), (15b)

2mg

Now we note that the termk{N,)2=kN,-kN, in Egs.(9)  From Eq.(15b we have

and (11) does not exist in the Dirac equatidd) and its _ _1 . )
squared form, which contain the creation and annihilation W2(r)=(potme=wNy) 0'[_'V_eA(_k'r)]\p1(8’6)
operators only up to quadratic terms. The exact solutions to
the Dirac equation and their NR limit were obtained from thegypstituting ¥,(r) in Eg. (158 and ignoring the term

photon Fock states, i.e., the number states, by only squeezgd [ —ea(—k-r)]W,(r) that pertains to the minor compo-

light and coherent light transformatiofi]. Any equation  hent we obtain a solo equation for the major component
satisfied by these states can consist of operatansa’ only

up to quadratic ones. Thus the known NR wave functions {o-[—iV—eA(—k-1)]}?¥(r)

[16] do not satisfy the NR Schdinger eigenvalue equation
3). =[(Po— @Na)*=mZ]¥y(r). (17)
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By neglecting the coupling between electron spin and photon p(z,— mgz p?+2C(n+3)—2€?g?%(p-€)(p-€)C !

polarization, i.e., the ternio-€,0- €], we have(writing (26)
¥, asV¥) C=[(pow—p-k+e?g?)2—e’g* cod ¢]*2
H 2 _ _ 2_ A2
[—iV—eA(=k-1)]"W(r)=[(po— @Na)“—mc]¥(r). The solutions are also the eigenfunction of the momentum
(18) operator
This equation can be written as an eigenvaluelike equation (— iV +ikNy)W(r)=p¥(r), @7
5 [—iV—eA(—k-1]?+oN,V(r)=ENHW¥(r), which shows thap is the total momentum of this system.
Me 19 The total momentunp has a unique decomposition on the
electron mass shell with lightlike component in thelirec-
with tion [1,5]:
1 ) p=P+ kk,
E(Ng)=5—[(po— @Nx)*~m]+wN,.  (19)
2m, P2
Equation(19) can be solved exactly. The following are Po=Met 5, T K@
the main steps to obtain the solutions. The canonical trans- (28)

formation given by Eq(8) removes the coordinate depen-
dence. Thus the equation becomes

(—iV—eA—KkNa)2¢(r)=[(po— @Na)2—mZ]¢(r).
(20)

_C(n+3) e’gX(P-&)(P-€;)
 Mew B MewC

K

—(n+3i+ up) (inthe strong laser field cage
By setting#(r)=€'P"¢, we get the coordinate-independent ) _ _
equation with replacingpow —p-k by mew in C. Hereu, is the pon-
deromotive energy in units of photon energy. With the help
[p?—2ep- A+ e?A?+2(pgw—p-k)N,]d=(pi—m?) . of Eq. (28), the solutions can be expressed as
(21)
W(r)=V, "2 exdi(—kN,+ P+ kk)-r]DT|n).. (29)
A squeezed light transformation ° 1 2 1Dy
This result agrees with the known NR linji2] of the exact
(22) solutions to the Dirac equatiofl) because of the following
relation in the NR limit;

a=coshyc+sinh ye T,

a'=sinh ye'®c+coshyc’
P2

me+ H)w—P'kﬁmew. (30

e

and a coherent light transformation
g Pow—p-k=

¢=DT|n),, D=exp —déc'+ 6 c), 23
This provides us a consistency check for our E4$) and
s=egp- € /[ (pow—p-k+e’g?)?—e’g* cos’ £]M2 (19).
We emphasize that the Schiinger-like equation(19)
at we have derived in the NR limit is not an ordinary
eigenvalue equation since the “eigenvalu€l9’) is an op-
erator (rather than a real numbewhich is a quadratic ele-
W(r)=V; Y2 exi(—kNa+p)-r]Dn) (24) ment in the commuting subalgebra generated\Ryin the
€ é ¢ enveloping algebra ot and a’. This subalgebra is also

can be introduced to simplify the equation. Finally, we haveth
exact solutions for the Schidnger-like equatior(19) or its
equivalent form(18)

where called a Cartan subalgebra
Though our Eq.(19) has the satisfying feature that the
ctn known NR wave functions solve it exactly, it does not fit
|n>c:\/ﬁ|o>m well the formal scattering formalism, which requires the

(25)  wave functions to satisfy a true eigenvalue equation. We

12 propose to resolve this problem by numerizing the eigen-
e159|2s), value operator to its stationary values. In quantum mechan-
ics, one can obtain the energy eigenvalues of a quantum

system by the variational method. Actually, all the eigenval-

2 S (2s—1)1
[0)c=(coshy) ™22, (tanhy) (W

1 _, e?g? cosé ues are stationary values of the operator, not necessarily the
X= = g ket minimum value, except for the ground state. Here we do not

need any variational method since the wave functions are
Here |2s) is the Fock state with € photons in the single exactly known. In the following we show that the stationary
mode. The numbep, is determined by the algebraic equa- values of the operataf(N,) do give the correct energy lev-
tion els of the NR system. By setting
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ey _, (31) E(Ny,N )=i[( — wiN;— w,Ny)2—m?]
d(wN,) N2 = om, Po— wiN3—woN; e
and treating€(N,) as a function ofwN, we find that the +wiN;+ wyNs.

stationary value, abN,= (pg—m¢)!, with | being the iden-
tity operator, is
The coordinate-independent equation to solve is

1
E(Na)z(po_me)l + 2m (po_me_wNa)z_’gly
e

(32 [(p—eA)2+2p(kiN;+koN,) +2e(k;N;+koNy) - A
with —2k1koNiNo 1= (p§—md) b, (34)
PZ
EEpo—me=2—+Kw, (32)
Me where pk=(powi—p-ki) (i=1,2) and kjk,=(wiw,

which is nothing but the energy levig2] for the interacting —Ki-ka). _ ) i
system of the NR electron and the photon field without in- Compared with Eq(21), we see that this equation con-
cluding the rest mass of the electron. The omission of thdains a higher-order operator temiyN,. Searching for so-
quadratic term in Eq(32) is a NR limit process. We also lutions to this equation is one of our targets in future re-
observe that by replacinl,w in Eq. (19') either byxw or ~ search.
by (n+1/2)w, £ has the same value within the tolerance of ~TO summarize, in this paper we have addressed carefully
the NR limit, showing the stationary nature of the va(@8).  the problem of the equations of motion for a nonrelativistic
With the replacement of the eigenvalue operator by its staelectron interacting with a single-mode photon field, which is
tionary value(32') in the eigenvaluelike equatiofi9), we  valid for arbitrary photon intensity. We first showed that the
get an effective eigenvalue equation, which just recovers thasual Schrdinger eigenvalue equation is not solved by the
Schralinger eigenvalue equatioi3) with the minimal-  NR limit of the wave functions that exactly solve the corre-
coupling Hamiltonian(4). It is this effective Schrdinger  sponding Dirac equation. Then a Sctiimger-like equation
equation together with the NR wave functiof#}) that was s derived from the Dirac equation without using the weak-
used in the previous treatmer8-8|. So the physical pre- field assumption. Though the eigenvalue is an operator in a
dictions obtained there remain valid. Cartan subalgebra involving the photon number operator, the
In this way, we are led to the following procedure for hresent equation has a simpler structure compared to the
treating a NR electron in a phc_)ton field, wh|ch coulq be sual eigenvalue equation. An effective Salinger equa-
gen_erallzed to the cases of'mult_lmode and mult!potentlals. tion with ordinary eigenvalues, good in the NR limit, is
(i) Solve the Schrdinger-like eigenvalue equatid@9) to achieved by replacing the eigenvalue operator by a number,

obtain the wave functions. which then can be used in the formal scattering theory. The

(i) Obtain the stationary values of the eigenvalue oloeratoéchr"ajinger-like equation for the multimode case is also pre-
as the energy levels. Ye,emed

(i) Replace the operator eigenvalue by its stationar
value to obtain an effective Schiimger eigenvalue equation D.S.G. is supported in part by NSF Grant No. PHY-
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