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Improved spin-orbit inversion method
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We report modifications to an inversion procedure by which central and spin-orbit potentials can be deter-
mined starting with scattering phase shifts given at a fixed energy. The formalism can be used to analyze data
from the scattering of projectiles with arbitrary spin and the procedure we adopt gives more accurate results
than obtained before with this method.@S1050-2947~98!02412-3#

PACS number~s!: 03.65.Nk, 03.80.1r, 24.10.2i
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The spin-orbit interaction is an important feature of ma
scattering systems ranging from electron-atom to nuc
heavy-ion collisions. When spin-1

2 particles are scattere
from unpolarized targets, the usual measured data are
differential cross sections and Sherman functions or the a
lyzing powers. Those data define the helicity amplitudes
scattering from which one can extract sets of scattering ph
shifts that depend on the orbital and total angular momen
quantum numbers (l , j ). Thereby most methods of fixed en
ergy, quantal inversion@1# that have been used to date
analyze actual scattering data@2# are not appropriate as the
are based upon an equation of motion in which the scatte
potentials are not dependent uponl , i.e., such as the spin
orbit interaction. We note that there exist numerical inv
sion techniques, such as the totally phenomenological~opti-
cal model potential! approach to the iterative-perturbativ
methods of Mackintosh and Cooper@3#, to ascertain spin-
orbit interactions. However, our interest lies with global i
verse scattering theories and for those interpolation form
@4# provide the connection that, in principle, allows inversi
of phase shift sets to extract both central and spin-orbit
tentials. Hooshyar@5# has used the Sabatier interpolation fo
mulas to construct such an inversion method and Huber
Leeb @6# have investigated an approach to this problem
some detail. Likewise, an approximate scheme@7# has been
used with some success@8# to analyze neutron-a particle
scattering data in particular. However, a most promis
method has been developed@9#. It is also based upon th
Sabatier interpolation formulas, but reduces the proces
inversion to finding the solution of a system of linea
algebraic equations.

In this Brief Report we develop the linear-algebraic a
proach@9# to give a formalism suitable for the analysis
quantal scattering of spin-1

2 particles, such as of electron
from atoms and nucleons from nuclei. We demonstrate
suitability by reanalyzing the nuclear scattering proble
studied with the original scheme@9# and ones extended t
include Coulomb as well as flux loss effects. The results
find are in better agreement with the test potentials than w
those obtained previously@9#, as well as being for potential
of the form used in standard phenomenological analyse
actual scattering data.

In this study we assume that the scattering of a spiS
particle with center-of-mass energyE can be specified from
solutions of partial-wave Schro¨dinger equations that have th
form
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\2 2
l ~ l 11!

r 2 2
2m

\2 $Vc~r !1Vso~r !^2L–S&%G
3Rl ,S,J~r !50. ~1!

Thus we seek an inversion scheme to specify two poten
functionsVc(r ) andVso(r ). To do so requires knowledge o
two sets of phase shifts. For spin-1

2 cases only two such set
exist havingJ5L6 1

2 . Only two sets would be required als
if this approach was adopted to analyze the scattering
other ~nonzero! spin particles. Choosing the casesJ5L6S
means that the following development is extendable to
non-zero spin cases. For those two angular momentum
the Schro¨dinger equations reduce to the dimensionless for

@~d2/dr2! 112Uc~r!1SUso~r!72SlUso~r!

2~l22 1
4 !/r2#xl

6~r!50. ~2!
Therein, with l5l 10.5, we have used Uc(r)
5Vc(r )/E, Uso(r)5Vso(r )/E, r5kr, and k5A2mE/\2.
Note that the spin valueS only scales the spin-orbit poten
tials in these equations.

The global inverse scattering theory upon which our d
velopment is based is epitomized by the Sabatier interp
tion formulas @4# by which the general Newton-Sabatie
fixed energy inverse scattering theory@4# is approximated in
a matrix form. The class of potentials resulting depends u
the nature of the selected indices~angular momentum val-
ues!. The set corresponding to the physical angular mome
is a choice for which the phase shift function may be kno
from solely an analysis of scattering data. However, that m
be too coarse a grid and a finer set can be chosen as the p
shift function can be specified at other angular momenta
analytic continuation. One could use Pade´ approximants to
do that, but we find that a simple spline suffices. For the
of integer and half-integer values, however, Sabatier@10#
generalized the matrix method specifically to give the int
polation formulas to effect inversion. The result is a set
equations from which the central and spin-orbit interactio
can be specified by knowing at a fixed energy all of t
phase shiftsdl

6 , at all positive integer and half-integer va
ues ofl. Even so the inversion equations are nonlinear a
so are very difficult to solve. The beauty of a method
cently developed@9# is that the process can be transcribed
one of solving a set of linear-algebraic equations. The de
opment given previously@9# is recast herein to allow any
4993 © 1998 The American Physical Society
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4994 PRA 58BRIEF REPORTS
value of spinS and to indicate advantages of different a
pects in the technique of solution.

Suppose thatcl(r ) and zl(r ) are regular and irregula
solutions~at the origin! of Schrödinger equations with a loca
central reference potentialU ref(r ). The Sabatier interpolation
formulas relate the regular solution of the complete proble
~2! to the setcl(r ) by

xl
6~r!5F6~r!cl~r!1 (

mPV

2m

p
Wlm~r!

3@bmxm
6~r!2am

6xm
7~r!#, ~3!

wherein the Wronskian Wlm(r)5@cm(r)cl8(r)
2cl(r)cm8 (r)#/(l22m2) for the set of angular moment

V, $ 1
2 ,1,32 ,2,52 ,3, . . .%, and the coefficientsam

6 are to be
found as part of the method of solution. The weightsbl are
1 for integerl and 0 otherwise for a zero reference potent
The scaling functionsF6(r) are defined by

F6~r!5~2/pr! a0x0~r!c0~r!

1
2

pr (
mPV

@am
6xm

7~r!1bmxm
6~r!#cm~r!, ~4!

wherein x0(r) and c0(r) are solutions of the relevan
Schrödinger equations forl 52 1

2 . When the scaling func-
tions are known, the central and spin-orbit potentials foll
from the identities@4#

Uso56~1/Sr! ~F6!8/F6 with F1F251,
~5!

Uc5U01SUso2
1

r
~G1F21G2F1!81~rSUso!

2,

in which we have usedG6(r)5(2/pr)(mPVm@am
6xm

7(r)
2bmxm

6(r)#cm(r).
The inversion procedure involves two steps. First the

tential coefficientsal
6 are ascertained from the chosen valu

of the phase shift set and the selected reference pote
properties. In the second step we deduce the regular w
functionsxl

6(r). We then have all necessary ingredients
specifyUc(r) andUso(r).

The first step is achieved by considering the asympt
properties of wave functions as they relate to the scat
ing phase shifts from data. Thus we assume that ther
a radius r0 beyond which we can takeUso(r) and
DU(r) @5Uc(r)2U ref(r)# both as zero. In that region, th
exact solutions are simply linear combinations of t
~known! regular and irregular solutions of the reference p
tential with phase shiftssl , i.e.,

xl
6~r!5cl

6Tl
6~r!5cl

6@cos~dl
62sl!cl~r!

1sin~dl
62sl!zl~r!#. ~6!

The scaling functionsFl
6 reduce to the constantsh6, viz.,

F6(r.r0)5h65exp@6*0
r0t SUso(t)dt#.

Further we assume that the phase shift differencedl
6

2sl vanishes forl>lmax(r0) so that the series can all b

truncated to span the finite setV8,( 1
2 ,1,32 , . . . ,lmax), and

thus Eq.~3! equates to 4lmax linear equations in the un
known coefficients, namely, forr>r0 andlPV8,

cl~r!5Cl
6Tl

6~r!1 (
mPV8

2m

p
Wlm~r!

3@Tm
7~r!Am

62bmTm
6~r!Cm

6#. ~7!
-

,
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-
s
tial
ve
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is

-

There are 8lmax coefficients in all, viz,.Al
6 (5al

6cl
7h7)

and Cl
6 (5cl

6h7). A solution can be formed by using in
formation at two radial pointsr0 andr1 (.r0). al

6 @now
identified from (h6)2A6/C7] are ascertained when theh6

are determined and those values follow from thel50 form
for Eq. ~7! as

~h1!2

5

c0~r!1 (
mPV8

2m

p
W0m~r!@bmTm

2~r!Cm
22Tm

1~r!Am
2#

c0~r!1 (
mPV8

2m

p
W0m~r!@bmTm

1~r!Cm
12Tm

2~r!Am
1#

.

~8!
The second step of the inversion process is to determ

the inversion potentials. That requires evaluation of the
lutions xl

6(r) for all r. In the scheme we present that
done by multiplying Eq.~3! by F1(r) and rearranging to ge
a set of 8lmax11 linear equations, viz.,

@F1~r!#2cl~r!5F1~r!xl
1~r!2 (

mPV8

2m

p
Wlm~r!

3@bmF1~r!xm
1~r!2am

1F1~r!xm
2~r!#,

cl~r!5F1~r!xl
2~r!2 (

mPV8

2m

p
Wlm~r!@bmF1~r!xm

2~r!

2am
2F1~r!xm

1~r!#, ~9!

$12@F1~r!#2%c0~r!5 (
mPV8

2m

p
W0m~r!@~bm1am

2!

3F1~r!xm
1~r!2~bm1am

1!

3F1~r!xm
2~r!#.

These equations can be solved for the 8lmax11 values of
F1(r)xl

6(r) and F1(r) at each value ofr<r0 desired.
ThereafterG6(r) follow as do the inversion potentials from
Eqs.~5!.

This inversion process involves two ‘‘technical param
eters’’ r0 andr1 (5r01Dr). Our calculations have show
that the results are not sensitive to the exact choice ofDr,
save that it should be small. However, the choice of the va
of r0 is critical. It must be large enough so that th
asymptotic forms for the wave functions are valid but sm
enough so that the inversion method does not yield fa
~small-amplitude! oscillations in the potentials. The latter re
flects a numerical problem when very large numbers of sm
phase shifts~even ones given with accuracy from the te
potential calculation! must be used to find convergence
some series. Those large numbers of entries can dominat
matrix structure from which we have to specify the coef
cientsal

6 such that false results are possible. The probl
would be exacerbated if the process sought to start with
tual data. The many small phase shift values for the largl
that are in the summations (lmax is linked tor0) then would
be poorly known at best and many such small contributio
add considerable uncertainties in results. We have also fo
that no advantage was gained by using more radial po
(r i.r0) and thus seeking a solution of an overdetermin
system of equations. In fact, our results were best alw
with just two radial points. However, the procedure so
was used as the benchmark for our improved scheme an
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PRA 58 4995BRIEF REPORTS
designate it as the ‘‘straightforward’’ approach. We ha
found a way to improve the application of that straightfo
ward method by reducing the reliance on the many par
terms to specify the scaling functions per Eq.~4!. However,
there is an even better way of proceeding, as we discuss

The problems described above are partly linked to
choice for the asymptotic behavior of the wave functio
Such wave functions are valid only for very larger
(→`). A marked improvement has been found by using
technique developed by Mayet al. @11# with which the phase
shifts are transformed so that one deals with new sets t
inverted using the scheme with no background. This de
opment allows use of much smaller values ofr0 andlmax.
Essentially one assumes that the interaction is known at
beyond a reasonable matching radius as are the regula
irregular solutions of the Schro¨dinger equation of tha
~known! long-range potential form. The spin-orbit term
not affected by this process, so we consider just the cen
part in this discussion. We consider a potential

Ṽ~r !5H Vc~r ! for r ,r 0 ~5r0 /k!

Vc~r 0! for r .r 0 ,
~10!

whereVc(r 0)52hE/r0 if the long-range potential is take
as the Coulomb interaction. If we consider the Schro¨dinger
equation with the potentialṼ(r )2Vc(r 0), scattering phase
shifts result by matching logarithmic derivatives atr 0 with
the external solutions being free-particle~zero-potential! so-
lutions. If the energy of such solutions is chosen to beẼ
5E2Vc(r 0), then the phase shifts so found (d̃l) are linked
to those forE andV(r ) by matching atr5r0 ,

@d/d~br!# ln@cosd̃lHl~br!1sind̃lI l~br!#

5~1/b! ~d/dr! ln@cosdlcl~r!1sindlzl~r!#,

~11!

in which Hl and I l are the regular and irregular free sol
tions ~zero potential!, respectively. The dimensionless rat
b is A12Vc(r0)/E (5A122h/r0 for the Coulomb poten-
tial!. From Eq.~11!, with the primes denoting differentiatio
with respect tobr, we deduce

d̃l52arctanS Hl8~br0!2Hl~br0!Dl

I l8~br0!2I l~br0!Dl
D , ~12!

where the right-hand side of Eq.~11! is denoted asDl .
Inversion of thed̃l gives a dimensionless potentialŨ(x)
from which we obtain the full potential by the transform
Vc(r )5E @b2Ũ(x)112b2# and r 5x/kb for r ,r 0 .

As a test case of the method we consider the scatterin
neutrons~spin S5 1

2 ) from a potential of the Woods-Saxo
form usually chosen as the~phenomenological! neutron-
nucleus optical potential, namely,

Vc~r !52Vc$11exp@~r 2R!/a#%21,
~13!

Vso~r !52Vso

1

r

d

dr
$11exp@~r 2R!/a#%21.

The parameter values for the specific cases analyzed arVc
550 MeV, Vso515 MeV, R53 fm , and a50.6 fm.
The phase shift sets for this~purely real! interaction that we
use in the first test of our scheme were evaluated at a ce
of-mass energy of 150 MeV and a~free! wave number of
1.894 29 fm21 ~coinciding with a reduced mass ofmn/2).
l
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Our first study was to invert those phase shifts using
zero background~reference! potential. This case is exactl
that used in the study in@9#. The results are shown in Fig. 1
wherein the starting potentials are depicted by the so
curves and the results of the current inversion and of t
found previously@9# are portrayed by the long- and shor
dashed curves, respectively. Clearly our current resul
markedly better as a reproduction of the starting interact
than the previous attempt. This is due to the way in wh
the scale functionsF6(r) were calculated. In the previou
study@9#, Eq. ~4! was used. For convergence, some 82 ph
shift values were required (lmax540) and the inversion po
tentials that result are sensitive to the exact choice of
many small values for the largel. However, when we used
Eq. ~3! with l50 to obtain the scale functions, only 4
phase shifts in total were needed for convergence and
inversion potentials that result clearly reproduce the in
interactions well.

This variant in the procedure has been used in the o
studies we have made, first to add a Coulomb reference
tential to the same real central plus spin-orbit interactio
and then to allow the nuclear potentials to be complex. T
results of those studies are shown in Figs. 2 and 3. We n
consider the starting interaction to be representative of
for the scattering of two nuclei and so a point Coulom
interaction is included. That Coulomb interaction was set
a charge productZ1Z2 of 18, which gave a Sommerfeld pa
rameter value ofh50.163 664. Using the phase shift tran
form approach plus the method we now deem most usefu
find the scaling functions, the inversion procedure leads
the results shown in Fig. 2. The matching radiir0 and r1
were taken as 19.8 and 19.81 fm and 40 partial waves o

FIG. 1. Comparison of two inversion results with the origin
centralVc(r ) and spin-orbitVso(r ) potentials for scattering of 150
MeV neutrons. The original potentials are displayed by the so
curves, while the short- and long-dashed lines depict the inver
result found previously@9# and that found with our modified proce
dure, respectively.
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4996 PRA 58BRIEF REPORTS
are needed to give the results that are quite excellent re
ductions of the starting potentials, even at quite small ra
where the Coulomb field dominates.

There are cases where the potentials are complex, the
allowing for scattering with a flux loss from the elastic cha
nel. Our third application was to add to the preceding t
interaction imaginary terms for both central and spin-or
elements. The form of those imaginary potential terms is t
given in Eq. ~13!, but with parameter valuesVc⇒Wc
520 MeV, Vso⇒Wso527.5 MeV, R52.7 fm, and a
50.6 fm. The results of our inversion analyses are co
pared with the starting interactions in Fig. 3. The start
interactions are displayed by the solid curves, while the
version results are shown by the dashed curves. The re
duction again is very good, but we do not do as well with t
spin-orbit interaction for small radii<1 fm. However, the
short-range character of potentials does not greatly influe
phase shift values and concomitantly are the least determ
aspects in the inverse scattering theory.

FIG. 2. Comparison of the inversion potentials with the origin
~nuclear! ones for a model nucleus-nucleus scattering problem
the case ofh50.163 664. The inversion procedure was made us
a Coulomb background potential.
e
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In summary, the linear-algebraic reduction of the Saba
interpolation formulas approach to inversion of scatter
phase shifts from a central plus spin-orbit potential scatter
problem works very well with sets of phase shifts typical f
quantal scattering by potentials of short-range character.
using a phase shift transformation plus a reference ba
ground, it does so as well for interactions that have a lo
range attribute, such as from a polarization potential wit
1/r 4 asymptotic form in electron-atom scattering and from
Coulomb field in nuclear scattering. Complex phase sh
can also be used in the scheme to extract complex inte
tions that are typical for many atomic and nuclear scatter
cases, although some loss in reproduction of details at s
radii was found.
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FIG. 3. Same as in Fig. 2 except for the addition of absorption
both the central and spin-orbit components.
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