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Improved spin-orbit inversion method
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We report modifications to an inversion procedure by which central and spin-orbit potentials can be deter-
mined starting with scattering phase shifts given at a fixed energy. The formalism can be used to analyze data
from the scattering of projectiles with arbitrary spin and the procedure we adopt gives more accurate results
than obtained before with this methd&1050-294{08)02412-3

PACS numbes): 03.65.Nk, 03.80+r, 24.10-i

The spin-orbit interaction is an important feature of many [ 92 2uE /(/+1) 2u
scattering systems ranging from electron-atom to nuclear |-+ —7~ 3 F{Vc(r)Jero(r)(ZL'S)}
heavy-ion collisions. When spif- particles are scattered
from unpolarized targets, the usual measured data are the XR/sa(r)=0. @
differential cross sections and Sherman functions or the and-hus we seek an inversion scheme to specify two potential
lyzing powers. Those data define the helicity amplitudes fofunctionsV(r) andV¢r). To do so requires knowledge of
scattering from which one can extract sets of scattering phadwo sets of phase shifts. For spjneases only two such sets
shifts that depend on the orbital and total angular momenturexist havingJ=L + . Only two sets would be required also
quantum numbersA(,j). Thereby most methods of fixed en- if this approach was adopted to analyze the scattering of
ergy, quantal inversiofil] that have been used to date to other (nonzerg spin particles. Choosing the casésL+S
analyze actual scattering dd| are not appropriate as they means that the following development is extendable to all
are based upon an equa“on of motion in which the Scattenngon_zero Spin cases. For those two angu|ar momentum SetS,

potentials are not dependent updn i.e., such as the spin- the Schidinger equations reduce to the dimensionless forms
orbit interaction. We note that there exist numerical inver-

sion techniques, such as the totally phenomenologati- [(d%/dp?) +1=Ug(p)+SUsd p) ¥ 2SAUcd p)
cal model potential approach to the iterative-perturbative 2 1Ny 29 %, 8
methods of Mackintosh and CoopEs], to ascertain spin- ~ (M= 2)/p"1xy (p)=0. @

orbit interactions. However, our interest lies with global in- Therein, with A=/+0.5, we have used U(p)
verse scattering theories and for those interpolation formulas Ve(r)/E, Usdp)=Vs{r)/E, p=Kkr, and k=\2uE/A>
[4] provide the connection that, in principle, allows inversion Note that the spin valu§ only scales the spin-orbit poten-
of phase shift sets to extract both central and spin-orbit potials in these equations.
tentials. Hooshyal5] has used the Sabatier interpolation for-  The global inverse scattering theory upon which our de-
mulas to construct such an inversion method and Huber angelopment is based is epitomized by the Sabatier interpola-
Leeb[6] have investigated an approach to this problem intion formulas[4] by which the general Newton-Sabatier
some detail. Likewise, an approximate schefiehas been fixed energy inverse scattering theddy is approximated in
used with some succe$8] to analyze neutrom particle g matrix form. The class of potentials resulting depends upon
scattering data in particular. However, a most promisinghe nature of the selected indicéangular momentum val-
method has been developgd]. It is also based upon the ,eq The set corresponding to the physical angular momenta
Sabatier interpolation formulas, but reduces the process 6 5 choice for which the phase shift function may be known
inversion to finding the solution of a system of linear- ¢,y solely an analysis of scattering data. However, that may
algebraic equations. . . be too coarse a grid and a finer set can be chosen as the phase
In this Brief Report we develop the linear-algebraic ap-gy,iq s nction can be specified at other angular momenta by
proach[9] to give a formalism suitable for the analysis of analytic continuation. One could use Paafsproximants to
quantal scattering of spik-particles, such as of electrons that. but find t'h t a simol i i For th i
from atoms and nucleons from nuclei. We demonstrate thaqo. at, but we find that a simple spline Suflices. ror the se
of integer and half-integer values, however, SabajtiéH

suitability by reanalyzing the nuclear scattering problem . . o : :
studied with the original scheri®] and ones extended to generalized the matrix method specifically to give the inter-

include Coulomb as well as flux loss effects. The results wdPolation formulas to effect inversion. The result is a set of
find are in better agreement with the test potentials than wergguations from which the central and spin-orbit interactions
those obtained previous[®], as well as being for potentials ¢an be specified by knowing at a fixed energy all of the
of the form used in standard phenomenological analyses dthase shiftss, , at all positive integer and half-integer val-
actual scattering data. ues ofA. Even so the inversion equations are nonlinear and
In this study we assume that the scattering of a §in- so are very difficult to solve. The beauty of a method re-
particle with center-of-mass ener@ycan be specified from cently developed9] is that the process can be transcribed to
solutions of partial-wave Schdinger equations that have the one of solving a set of linear-algebraic equations. The devel-
form opment given previously9] is recast herein to allow any

1050-2947/98/5%)/49934)/$15.00 PRA 58 4993 © 1998 The American Physical Society



4994 BRIEF REPORTS PRA 58

value of spinS and to indicate advantages of different as-There are & ., coefficients in all, viz, Ay (=a;c, h™)

pects in the technique of solution. . andC; (=c, h™). A solution can be formed by using in-
Suppose that),(r) and ¢,(r) are regular and irregular formation at two radial points, andp; (>po). a; [now

solutions(at the origin of Schralinger equations with a local qentified from (*)2A=/C*] are ascertained when the*

central reference potentilllo(r). The Sabatier interpolation 516 getermined and those values follow from ihe0 form
formulas relate the regular solution of the complete problemsg, Eq. (7) as

(2) to the sety, (r) by

(h™)?
)= (0 S, 2w, (p) 2p
NPT TPIINEIT y T Tel Yop)t 2 T Wo,(p)b,T,(p)C, ~ T, (p)A,]
X[b,x;: (p) a5 X, (p)], 3) _ neld S _
M _

wherein  the  Wronskian W, ,(p)=[#,(p) ¥} (p) o(p) + E, 7Wo#(P)[b,LTZ(P)CZ—TM(P)A;]
— () ¥, (p)1/(N2— u?) for the set of angular momenta pel ®)
Q, {3,12,23,3,...}, and the coefﬁcientai are to be The second step of the inversion process is to determine

found as part of the method of solution. The weighfsare  the inversion potentials. That requires evaluation of the so-
1 for integern and 0 otherwise for a zero reference potential.lutions x, (p) for all p. In the scheme we present that is
The scaling function& = (p) are defined by done by multiplying Eq(3) by F*(p) and rearranging to get
- a set of 8\, 1 linear equations, viz.,
F*(p)=(2/mp) aoxo(p) tholp) max a

2 . . 2
+— 2 [a;xi(p)+b,xi(p)1¥u(p), @ [F*(p) 12 (p)=F (p)xy (p)— 2 %Ww(p)
TPue ueQ’

wherein xo(p) and iy(p) are solutions of the relevant X[bMF+(p)X;(p)—a;F+(p)X;(p)],
Schralinger equations for’= — 3. When the scaling func- 5
tions are known, the central and spin-orbit potentials follow _+ N cp . _

from the identiticd4] () =F (p)xy (p)— 2 ——Wy,(p)[b,F*(p)x,(p)

ne’
Ugo=*(1/Sp) (F*)/F* with F*F~ =1, —a,F (p)x,(p)], )
5
1 2
Ue=Ug+SUs= (GTF+GF) +(pSUs?, {L-F* ()P o(p)= 2 “Wo,(p)l(b,+ay)
ne’

in which we have use®™(p)=(2/mp)=,conla, x, (p) gy PP
—b,x, (P)14,.(p).- moe (Px,(p)—(b,+a})

The inversion procedure involves two steps. First the po- _ XF7(p)x,(p)]-

tential coefficients;” are ascertained from the chosen values' 1€S€ eguations can be solved for they§,+ 1 values of
of the phase shift set and the selected reference potentis] (P)Xx (p) and F“(p) at each value op=p, desired.
properties. In the second step we deduce the regular wavEereafterG=(p) follow as do the inversion potentials from

functionsx, (p). We then have all necessary ingredients toEq'T'.rfii).inversion rocess involves two “technical param
specify Uq(p) andUcd(p). P o

The first step is achieved by considering the asymptoti€ters” Po andps (=po+Ap). Our calculations have shown
fthat the results are not sensitive to the exact choica mf
gave that it should be small. However, the choice of the value

a radius p, beyond which we can takeJ.(p) and of pg is critical. It must be large enough so that the
AU(p) [=U.(p)—U,(p)] both as zero. In that region, the asymptotic forms for the wave functions are valid but small
Cc re . )

exact solutions are simply linear combinations of theenough so that the inversion method does not yield false

(known) regular and irregular solutions of the reference po_(small—amplituqesosciIIations in the potentials. The latter re-
tential with phase shifts, , i.e flects a numerical problem when very large numbers of small

. L . . phase shiftgeven ones given with accuracy from the test
xx (p)=c\ Ty (p)=cy[cog 6y — o)) d(p) potential calculationmust be used to find convergence of
+ sin( 5§ —a)40(p)]. (6) some series. Those large numbers of entries can dominate the
The scaling functions; reduce to the constants®, viz. matrix structure from which we have to specify the coeffi-
F*(p>po) =h* = ex = [2t SUt)dt]. cientsa, such that fals_e results are possible. The pr(?blem
- " would be exacerbated if the process sought to start with ac-
Further we assume that the phase shift differeidge

ishes foi = hat th ) i b tual data. The many small phase shift values for the large
— o), vanishes ol =\maypo) so that the series can all be y,5¢ are in the summationa 4, is linked topg) then would

truncated to span the finite s&',(3,13, ... Ama), and  be poorly known at best and many such small contributions
thus Eq.(3) equates to X,.x linear equations in the un- add considerable uncertainties in results. We have also found
known coefficients, namely, fgg=py andA e Q’, that no advantage was gained by using more radial points
2u (pi>po) and thus seeking a solution of an overdetermined

I(p)=CiTr(p)+ 2 —W,,(p) system of equations. In fact, our results were best always

we' T with just two radial points. However, the procedure so set

X[T(p)A,—b,T,(p)C,]. (7)  was used as the benchmark for our improved scheme and we
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designate it as the “straightforward” approach. We have
found a way to improve the application of that straightfor-
ward method by reducing the reliance on the many partial
terms to specify the scaling functions per E4). However,
there is an even better way of proceeding, as we discuss next.
The problems described above are partly linked to the
choice for the asymptotic behavior of the wave functions.
Such wave functions are valid only for very large
(—>). A marked improvement has been found by using a
technigue developed by Mat al.[11] with which the phase
shifts are transformed so that one deals with new sets to be
inverted using the scheme with no background. This devel-
opment allows use of much smaller valuespgfand\ ,5y-
Essentially one assumes that the interaction is known at and
beyond a reasonable matching radius as are the regular and

Ve (MeV)

4995

irregular solutions of the Schdinger equation of that
(known) long-range potential form. The spin-orbit term is

not affected by this process, so we consider just the central

part in this discussion. We consider a potential
V.(r) for r<ry (=pgo/k)

Ve(ro)
whereV (ro) =27E/pg if the long-range potential is taken

as the Coulomb interaction. If we consider the Sdimger

equation with the potentiaV(r)—V.(r,), scattering phase
shifts result by matching logarithmic derivativesragtwith
the external solutions being free-parti¢eero-potential so-

lutions. If the energy of such solutions is chosen toFbe

=E—V(ro), then the phase shifts so found,j are linked
to those forE andV(r) by matching atp=pg,

[d/d(Bp)]In[cosd,H,(Bp)+sind,1,(Bp)]
=(1/B) (d/dp) In[coss, ¥ (p)+sin 8,4y (p)],
(11)

in which H, andl, are the regular and irregular free solu-
tions (zero potentigl respectively. The dimensionless ratio
Bis V1—V (po)/E (=+1—27lp, for the Coulomb poten-
tial). From Eq.(11), with the primes denoting differentiation
with respect toBp, we deduce

H;\(/?’Po)_ Hx\(Bpo) Dy
1\(Bpo) —1\(Bpo)Dy |’

where the right-hand side of E¢ll) is denoted ad, .
Inversion of the’d, gives a dimensionless potentibl(x)

V(r)= (10)

for r>ryg,

~5A =— arctar( (12

Vso (MeV)

Radius  (fm)

FIG. 1. Comparison of two inversion results with the original
centralV(r) and spin-orbitV(r) potentials for scattering of 150-
MeV neutrons. The original potentials are displayed by the solid
curves, while the short- and long-dashed lines depict the inversion
result found previously9] and that found with our modified proce-
dure, respectively.

Our first study was to invert those phase shifts using a
zero backgroundreference potential. This case is exactly
that used in the study if®]. The results are shown in Fig. 1,
wherein the starting potentials are depicted by the solid
curves and the results of the current inversion and of that
found previously[9] are portrayed by the long- and short-
dashed curves, respectively. Clearly our current result is
markedly better as a reproduction of the starting interaction
than the previous attempt. This is due to the way in which
the scale function& “(p) were calculated. In the previous
study[9], Eq. (4) was used. For convergence, some 82 phase
shift values were required\¢,,,=40) and the inversion po-
tentials that result are sensitive to the exact choice of the
many small values for the large. However, when we used
Eq. (3) with A=0 to obtain the scale functions, only 40
phase shifts in total were needed for convergence and the

from which we obtain the full potential by the transforms inversion potentials that result clearly reproduce the input

V(r)=E [B20(x)+1-B?%] andr=x/kg for r<r,.

interactions well.

As a test case of the method we consider the scattering of This variant in the procedure has been used in the other

neutrons(spin S=3) from a potential of the Woods-Saxon
form usually chosen as thé@henomenological neutron-
nucleus optical potential, namely,
V(r)=—V{l+exd(r—R)/a]} 1,
1d (13
VdF)= ZVSOF a{lﬁL exd (r—R)/a]} L.
The parameter values for the specific cases analyze¥ are

=50 MeV, V¢=15 MeV, R=3 fm, and a=0.6 fm.
The phase shift sets for thipurely real interaction that we

studies we have made, first to add a Coulomb reference po-
tential to the same real central plus spin-orbit interactions
and then to allow the nuclear potentials to be complex. The
results of those studies are shown in Figs. 2 and 3. We now
consider the starting interaction to be representative of that
for the scattering of two nuclei and so a point Coulomb
interaction is included. That Coulomb interaction was set for
a charge producZ,Z, of 18, which gave a Sommerfeld pa-
rameter value ofp=0.163 664. Using the phase shift trans-
form approach plus the method we now deem most useful to

use in the first test of our scheme were evaluated at a centefind the scaling functions, the inversion procedure leads to

of-mass energy of 150 MeV and (&ee) wave number of
1.89429 fm? (coinciding with a reduced mass of,/2).

the results shown in Fig. 2. The matching ragj and p;
were taken as 19.8 and 19.81 fm and 40 partial waves only
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FIG. 2. Comparison of the inversion potentials with the original o . o
(nucleaj ones for a model nucleus-nucleus scattering problem in FIG- 3. Same as in Fig. 2 except for the addition of absorption in
the case ofy=0.163 664. The inversion procedure was made using?©th the central and spin-orbit components.

a Coulomb background potential.
In summary, the linear-algebraic reduction of the Sabatier

are needed to give the results that are quite excellent reprc')r]terp()l"’ltlon formulas approach to inversion of scattering

ductions of the starting potentials, even at quite small radifDhase shifts from a central_plus spin-orbit potential sc_attering
where the Coulomb field dominatés problem works very well with sets of phase shifts typical for

There are cases where the potentials are complex, there uantal scattering by potentials of short-range character. By

allowing for scattering with a flux loss from the elastic chan- r(')rlﬁ da i?t;?)sei :2'2Stﬁgﬁfggmiiggcﬁlgﬁsihzfﬁfvnecz I?) ?]Ck_'
nel. Our third application was to add to the preceding tes?an e é\ttribute such as from a polarization potential withga
interaction imaginary terms for both central and spin-orbit J ' P P

4 . . _ -
elements. The form of those imaginary potential terms is tha /c:ulgr?]yt;nlfi)(ta?élCirzorrlrScllgaerlesCé;?trs]a railrt]om é‘gfﬁt?g;g igg;rgmﬁas
given in Eq. (13, but with parameter valuey/c= W can also be used in the scheme tc? .extracrt) conﬁ) lex interac-
=20 MeV, Vo=W,,=—7.5 MeV, R=2.7 fm, and a P

—0.6 fm. The results of our inversion analyses are Com_’uons that are typical for many atomic and nuclear scattering

pared with the starting interactions in Fig. 3. The Startingcases, although some loss in reproduction of details at small

interactions are displayed by the solid curves, while the in-radll was found.

version results are shown by the dashed curves. The repro- D.R.L. and K.A. gratefully acknowledge the hospitality

duction again is very good, but we do not do as well with theand support given to them during a visit to the Justus-Liebig-
spin-orbit interaction for small radis1 fm. However, the Universita where the basis of this study was established.
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