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Electronic-field correlation functions

Tomáš Tyc*
Department of Theoretical Physics, Masaryk University, 611 37 Brno, Czech Republic

~Received 15 July 1998!

In this paper the correlation function of an arbitrary order is derived for an electron field in which the
components corresponding to different particle numbers and momenta are mutually uncorrelated. The result is
expressed in terms of the complex degree of coherence. The correlation functions clearly demonstrate the
antibunching effect. All the computational steps are shown in detail.@S1050-2947~98!08712-5#

PACS number~s!: 42.50.Dv, 05.30.Fk, 42.50.Ar
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I. INTRODUCTION

Correlation functions characterize the statistical proper
of quantum fields. Their theory is richly developed in qua
tum optics and the correlation functions of arbitrary order
familiar for various types of photon fields, some of the
having been measured experimentally@1#. On the other hand
fermion correlation functions have been widely explored n
ther theoretically nor experimentally and their theory h
only been developed more progressively in recent years@2–
7#. One of the most important results in this area was p
lished by Silverman@2#, namely, the correlation function o
the second order for a multiparticle electron state, in wh
the individual momentum as well as particle-number com
nents of the field are mutually uncorrelated. The correlat
function demonstrated antibunching, i.e., the fact that e
trons avoid coming into a detector in pairs. Another wo
published by Saitoet al. @3#, deals with a correlation function
of an arbitrary order for an electron field in a so-called ch
otic state. This state is believed to be produced by the m
coherent electron source known up to now, the fie
emission gun. In the following a detail derivation of the co
relation function of an arbitrary order is given for the sta
introduced by Silverman@2# that could provide a good de
scription of the electron beams used in the experimental e
tron interferometry.

II. ELECTRON STATE

In the following we consider the case of quasimonoch
matic, noninteracting, nonrelativistic, and spin-polariz
electrons. The first three assumptions are fully acceptable
electrons with energies of about 5 keV, an energy bandw
under 1 eV, and emission currents under 1mA. The last
assumption enables us to neglect the spinor structure o
electron field and to treat it as a scalar field. This is no los
generality, however. It can be shown that the correlat
functions for partially polarized or completely unpolarize
electrons can be expressed with the help of the analog
functions for polarized electrons and the degree of polar
tion @8#. We will also suppose that the complete set of el
tron momentum eigenstates is countable, which allows u
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avoid problems with the normalization of the density ope
tor.

According to Silverman@2# we take the electron state as
mixture of Fock states with a Poissonian distribution of t
particle number. The probability that there aren electrons in
the system is thenP(n)5e2^n&^n&n/n!, where ^n& is the
average number of electrons, and the density operator o
system can be expressed as

r̂5 (
n50

`

P~n!r̂n , ~1!

wherer̂n are the density operators corresponding to the co
ponents of the field with a definite particle number.

Let us denote the normalized one-electron moment
distribution asf (p). The normalization condition is

(
p

f ~p!51, ~2!

where the sum is taken over the complete set of momen
eigenvalues. The momentump should be understood as
three-dimensional vector, which means that the funct
f (p) contains information about not only the spectral b
also the spatial properties of the electron field.

As has been mentioned, the different momentum com
nents of the field are uncorrelated. Therefore then-particle
density operator can be written in the form of an incoher
superposition of momenta eigenstates. The probability
the n electrons have momentap1 ,p2 , . . . ,pn is given by
the productf (p1) f (p2)¯ f (pn), and the density operatorr̂n

has therefore the formr̂n5Ân /Tr(Ân) with

Ân5 ( 8
p1 , . . . ,pn

f ~p1! f ~p2!¯ f ~pn!up1 , . . . ,pn&

3^p1 , . . . ,pnu, ~3!

whereup1 , . . . ,pn& is the totally antisymmetrical Fock stat
of n electrons with momentap1 , . . . ,pn normalized to 1
~not thed function! and(p1 , . . . ,pn

8 denotes the sum over a

momentap1 ,p2 . . . ,pn different from each other. The rea
son why there are no terms in the sum with somepi ,pj equal
4967 © 1998 The American Physical Society
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is that in this case the stateup1 , . . . ,pn& does not have any
physical meaning due to the Pauli principle. The trace ofÂn
is equal to

Tr~Ân!5 ( 8
p1 , . . . ,pn

f ~p1! f ~p2!¯ f ~pn!Tr$up1 , . . . ,pn&

3^p1 , . . . ,pnu%5 ( 8
p1 , . . . ,pn

f ~p1! f ~p2!¯ f ~pn!,

~4!

because the trace of the projection opera
up1 , . . . ,pn&^p1 , . . . ,pnu is equal to unity. Now the only
reason why we introduced the momentum discretization
to avoid the problems with the normalization of the dens
operator. We can therefore assume that the numberN of
states contributing significantly to the sum in Eq.~2! is very
large, as in the case of a quasicontinuous momentum s
trum. It can be shown that the normalized difference

(
p1 , . . . ,pn

f ~p1! f ~p2!¯ f ~pn!2 ( 8
p1 , . . . ,pn

f ~p1! f ~p2!¯ f ~pn!

(
p1 , . . . ,pn

f ~p1! f ~p2!¯ f ~pn!

goes to zero for largeN. This follows from the fact that the
relative number of combinationsp1 , . . . ,pn with pi5pj for
some i , j ( i 5” j ) with respect to the number of a
combinations1 behaves like 1/N and hence goes to zero fo
large N. Therefore we can use an approximati
(p1 , . . . ,pn

8 →(p1 , . . . ,pn
in the following. From Eqs.~2! and

~4! and this approximation, it follows immediately tha
Tr(Ân)51, and we can writer̂n5Ân , which will also be
used in the following.

III. CORRELATION FUNCTION OF THE kTH ORDER

The correlation function of thekth order is defined as
follows:

G~k!~r 1 ,t1 ,r 2 ,t2 , . . . ,r k ,tk!

5Tr$r̂ĉ†~r 1 ,t1!¯ĉ†~r k ,tk!ĉ~r k ,tk!¯ĉ~r 1 ,t1!%,

~5!

whereĉ(r i ,t i) and ĉ†(r i ,t i) are the field operators annih
lating and creating an electron at the space-time p
r

s

c-

t

(r i ,t i), respectively. The correlation function expresses
probability density of finding k electrons at points
r 1 ,r 2 , . . . ,r k and timest1 ,t2 , . . . ,tk , and it should be
noted that in general it is not proportional to the probabil
of detecting k electrons at the corresponding points a
times. The latter is in fact connected with the particle flux
rather than densities, which is the reason why some aut
~e.g., @2,3#! define the correlation function with the help o
flux operators. For quasimonochromatic electrons, howe
the detection probability is proportional to the correlati
function ~5! by the factor) i 51

n a ivSi , wherea i and Si are
the quantum efficiency and cross section of theith detector,
respectively, andv is the mean velocity of the electrons.

IV. CALCULATION OF THE CORRELATION FUNCTION

We begin the calculation with the general relation th
holds for the annihilation and creation operators

ĉ~r ,t !5(
p

K~r ,tup!â~p!,

~6!

ĉ†~r ,t !5(
p

K* ~r ,tup! â†~p!.

Here â(p) and â†(p) are the annihilation and creation op
erators of an electron with momentump andK(r ,tup) is the
electron propagator in the momentum-coordinate represe
tion. The operatorsâ(p), â†(p) and ĉ(r ,t), ĉ†(r ,t) satisfy
the standard fermion anticommutation relations

â†~p!â~p8!1â~p8!â†~p!5d~p,p8!,
~7!

ĉ†~r ,t !ĉ~r 8,t !1ĉ~r 8,t !ĉ†~r ,t !5d~r 2r 8!,

where d(p,p8) denotes the Kronecker delta, whiled(r
2r 8) is the three-dimensional Dirac delta function. If w
denote the field operatorsĉ(r i ,t i), ĉ†(r i ,t i) and the propa-
gatorK(r i ,t i up) asĉ i , ĉ i

† , andKi(p), respectively, we can
simplify the notation as follows:

ĉ i5(
p

Ki~p! â~p!, ĉ i
†5(

p
Ki* ~p! â†~p!. ~8!

With the help of the relations~8! we can express the produc
of the field operators from Eq.~5! in the following way:
ĉ1
†
¯ĉk

†ĉk¯ĉ15 (
$q%,$q8%

K1* ~q1!¯Kk* ~qk!Kk~qk8!¯K1~q18!â†~q1!¯â†~qk!â~qk8!¯â~q18!. ~9!

Here($q%,$q8% expresses the summation overq1 , . . . ,qk andq18 , . . . ,qk8 . Using the form~1! of the density operatorr̂, we
can write

1Of course, the momenta belong now to the set of the correspondingN eigenvalues only.
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G~k!5 (
n50

`

P~n!Tr$r̂nĉ1
†
¯ĉk

†ĉk¯ĉ1%5 (
n50

`

P~n!Gn
~k! , ~10!

whereGn
(k) is the correlation function corresponding to then-electron density operatorr̂n . We have omitted the argumen

r i ,t i for simplicity. The correlation function corresponding to the density operatorr̂n can be now expressed with the help
Eqs.~3! and ~9! and the approximationr̂n5Ân as

Gn
~k!5 (

$q%,$q8%
(

p1 , . . . ,pn

8 f ~p1!¯ f ~pn!K1* ~q1!¯Kk* ~qk!Kk~qk8!¯K1~q18!Tr$up1 , . . . ,pn&

3^p1 , . . . ,pnuâ†~q1!¯â†~qk!â~qk8!¯â~q18!%. ~11!

It can be shown on the basis of anticommutation relations that the trace in Eq.~11! is equal to

Tr$up1 , . . . ,pn&^p1 , . . . ,pnuâ†~q1!¯â†~qk!â~qk8!¯â~q18!%

5^p1 , . . . ,pnuâ†~q1!¯â†~qk!â~qk8!¯â~q18!up1 , . . . ,pn&

5 (
PPP

sign~P! d~q1 ,qP~1!8 !¯d~qk ,qP~k!8 ! (
i 1 , . . . ,i k51
all i different

n

d~pi 1
,q1!¯d~pi k

,qk!. ~12!

Here P, P( j ), and sign(P) denote a permutation ofk indexes 1,2, . . . ,k, and thejth element and sign of this permutatio
respectively. The first sum is made over the setP of all permutations. The fermion nature of the electrons is demonstrate
the factor sign(P).

We make our notation more clear in an example withk53. Then the set of all permutations is

P5$~1,2,3!,~3,1,2!,~2,3,1!,~1,3,2!,~3,2,1!,~2,1,3!%

and if we choose the permutation P5(2,1,3), we have P(1)52, P(2)51, P(3)53, and sign(P)521 because the permutation
odd.

Substituting Eq.~12! into Eq. ~11! we obtain

Gn
~k!5 (

$q%,$q8%

K1* ~q1!¯Kk* ~qk!Kk~qk8!¯K1~q18! (
PPP

sign~P! d~q1 ,qP~1!8 !¯d~qk ,qP~k!8 !

3 (
i 1 , . . . ,i k51
all i different

n

( 8
p1 , . . . ,pn

f ~p1!¯ f ~pn! d~pi 1
,q1!¯d~pi k

,qk!. ~13!

In Eq. ~13! we calculate first the sum over then momentap1 , . . . ,pn . It is useful to note that for every possible combinati
i 1 , . . . ,i k with all i different, it holds due to the normalization condition~2! of the functionf (p)

( 8
p1 , . . . ,pn

f ~p1!¯ f ~pn! d~pi 1
,q1!¯d~pi k

,qk!5 f ~q1!¯ f ~qk!, ~14!

that is, the sum does not depend on the indexesi 1 , . . . ,i k . We have used here again the approximation(8→(. Therefore
all the n(n21)¯(n2k11) terms@we will denote this product asV(k,n) in the following# in the sum overi 1 , . . . ,i k
different from each other give the same result, and we obtain

(
i 1 , . . . ,i k51
all i different

n

( 8
p1 , . . . ,pn

f ~p1!¯ f ~pn! d~pi 1
,q1!¯d~pi k

,qk!5V~k,n! f ~q1!¯ f ~qk!. ~15!

Next we substitute Eq.~15! into Eq. ~13! and evaluate the sum over the momentaq18 , . . . ,qk8 :
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Gn
~k!5V~k,n! (

$q%,$q8%

f ~q1!¯ f ~qk! K1* ~q1!¯Kk* ~qk!Kk~qk8!¯K1~q18! (
PPP

sign~P! d~q1 ,qP~1!8 !¯d~qk ,qP~k!8 !

5V~k,n! (
PPP

sign~P! (
q1 , . . . ,qk

f ~q1!¯ f ~qk! K1* ~q1!¯Kk* ~qk!KP~1!~q1!¯KP~k!~qk!. ~16!

Gathering the terms with equalqi , we can write the result in the form

Gn
~k!5V~k,n! (

PPP
sign~P!(

q
f ~q! K1* ~q!KP~1!~q!¯(

q
f ~q! Kk* ~q!KP~k!~q!. ~17!

We see that the correlation functions for different electron numbers differ from each other only by the multiplicative
V(k,n). Therefore due to Eq.~10! the evaluation of the ‘‘total’’ correlation functionG(k) reduces now to the averaging of th
factor for the Poissonian distribution. It is easy to verify that for this distribution^V(k,n)&5^n(n21)¯(n2k11)&5^n&k

holds and forG(k) we get

G~k!5 (
n50

`

P~n!Gn
~k!5^n&k (

PPP
sign~P!(

q
f ~q! K1* ~q!KP~1!~q! ¯ (

q
f ~q! Kk* ~q!KP~k!~q!. ~18!
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If we denoteG i j 5^n&(qf (q) Ki* (q)K j (q), this result can be
written in the form of a determinant

G~k!5UG11 G12 . . . G1k

G21 G22 . . . G2k

A A A

Gk1 Gk2 . . . Gkk

U . ~19!

It is very useful to note at this point thatG i j

5Tr$r̂ĉ†(r i ,t i)ĉ(r j ,t j )% ~for the proof see Appendix A!.
Thus the elements of the determinant in Eq.~19! are in fact
the correlation functions of the first order with unequal arg
ments~the field operators correspond to two different spa
time points! referred to as the cross-correlation functions
quantum optics@1#. We also introduce the complex degree
coherenceg i j 5G i j /AG i i G j j , which is the normalized cross
correlation function. The complex degree of coherence
presses the mutual coherence of the electron field at
space-time pointsPi and Pj [ Pi is an abbreviated notatio
for the point (r i ,t i)] and contains information about both th
temporal and spatial coherence of the field. From the de
tion of G i j , g i j and from the normalization condition~2! of
the function f (p), it follows that for all i , j 0<ug i j u<1
holds.2 The caseug i j u51 corresponds to the complete mutu
coherence of the field at the pointsPi ,Pj , while ug i j u50
corresponds to the complete incoherence. With the help
the determinant algebra and the fact thatg i i 51 for all i , the
correlation function can be written as

2Alternatively, the inequalityug i j u<1 follows from the Schwarz
inequality for operators~see Ref.@1#, p. 593!.
-
-

f
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l

of

G~k!5G11G22¯GkkU 1 g12 . . . g1k

g21 1 . . . g2k

A A A

gk1 gk2 . . . 1
U . ~20!

V. ANTIBUNCHING

In Appendix B it is shown that the determinant
Eq. ~20! cannot exceed 1. Using this and the fact thatG i i

5G(1)(r i ,t i), which can be easily verified by substitutin
k51 into Eq.~19!, we obtain a very important inequality,

G~k!~r 1 ,t1 , . . . ,r k ,tk!<G~1!~r 1 ,t1!G~1!~r 2 ,t2!¯

3G~1!~r k ,tk!. ~21!

The case of equality in Eq.~21! corresponds to the situatio
wheng i j 50 for all i , j , i 5” j ~see Appendix B!, i.e., when the
degree of coherence assigned to any pair of pointsPi ,Pj is
zero. This means that if the field at all thek points Pi is
mutually completely incoherent, the probability that we w
find an electron at each of them is simply equal to the pr
uct of the probabilities of finding an electron at the ind
vidual points, which is an expected result.

On the other hand, if the field is mutually coherent,
least at one pair of the pointsPi ,Pj , the inequality~21! is
sharp. Therefore the probability that at each of thek space-
time points we will find an electron is less than the produ
of the probabilities of finding an electron at the individu
points, which demonstrates the electron antibunching. I
useful to note that this result is independent of the positi
of pointsPi , and antibunching is therefore quite a univers
phenomenon. If some two pointsPi ,Pj approach each other
which results inug i j u going to unity, the ‘‘intensity’’ of an-
tibunching increases and in the limiting case whenPi ,Pj
become identical, theith andjth lines of the determinant ma
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trix ~19! become equal. This results in the annulling of t
determinant itself, and therefore the probability that we w
find two electrons at the same point is equal to zero, whic
in fact nothing other than the Pauli principle, however.

VI. CONCLUSION

We have derived the correlation function of an arbitra
order for an electron state in which the momenta as wel
the particle-number components of the field are mutually
correlated. We have expressed the result in a compact f
-
n,

-
5

an
l
is

s
-

rm

~20! in terms of the complex degrees of coherence. Using
features of matrices and determinants we have proved th
the electron field is mutually coherent at the points for wh
the correlation function is expressed, the electrons show
tibunching.
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APPENDIX A: DERIVATION OF THE CROSS-CORRELATION FUNCTION

With the help of the relations~8! we express the operatorĉ i
†ĉ j5ĉ†(r i ,t i)ĉ(r j ,t j ) as follows:

ĉ i
†ĉ j5 (

q,q8
Ki* ~q!K j~q8!â†~q!â~q8!. ~A1!

Then then-electron cross correlation function is

Tr~rnĉ i
†ĉ j !5 (

q,q8
( 8

p1 , . . . ,pn

f ~p1!¯ f ~pn!Ki* ~q!K j~q8! Tr$up1 , . . . ,pn&^p1 , . . . ,pnuâ†~q! â~q8!%

5 (
q,q8

( 8
p1 , . . . ,pn

f ~p1!¯ f ~pn! Ki* ~q!K j~q8! d~q,q8! (
s51

n

d~q,ps!. ~A2!
er
ns-
ary
the

ors

m-

in-
ges.

to

trix
After the evaluation of the sums overp1 , . . . ,pn andq8 in
a way analogous to the one used in Sec. IV, we obtain

Tr~rnĉ i
†ĉ j !5n(

q
f ~q! Ki* ~q!K j~q!, ~A3!

and with the help of Eq.~1! we get the desired result

Tr~rĉ i
†ĉ j !5^n&(

q
f ~q! Ki* ~q!K j~q!5G i j . ~A4!

APPENDIX B: UPPER BOUND OF THE DETERMINANT
IN EQ. „20…

The matrix

A5S 1 g12 . . . g1k

g21 1 . . . g2k

A A A

gk1 gk2 . . . 1

D ~B1!

is Hermitian becauseg i j 5g j i* for all i , j , which follows from
the definition ofg i j andG i j . Therefore it is possible to trans
form it into the diagonal form with a unitary transformatio
i.e., there exists a unitary matrixU for which the matrixB
5UAU21 is diagonal. This transformation changes neith
the determinant of the matrix, because it is a similarity tra
formation, nor the trace of the matrix, because it is a unit
transformation. If we denote the diagonal elements of
matrix B as bi , then Tr(A)5Tr(B)5( i 51

k bi and det(A)
5det(B)5) i 51

k bi evidently holds. At the same time, from
~B1! it follows that Tr(A)5k. Moreover, it is possible to
show on the basis of the Schwarz inequality for operat
~see Ref.@1#, pp. 585 and 593! that the matrixA is non-
negative definite, and hence all its eigenvaluesbi are non-
negative. Thus, we look for the set of non-negative real nu
bers bi for which ) i 51

k bi is maximal under the condition
( i 51

k bi5k. This problem can be easily solved using the
equality between the arithmetical and geometrical avera
The arithmetical average of the numbersbi is ( i 51

k bi /k51

and the geometrical averageAk ) i 51
k bi , which is an ascend-

ing function of) i 51
k bi , is hence always less than or equal

unity, the equality taking place whenb15b25¯5bk51. In
this case the matrixB is a unity matrix, from which it follows
that A is also a unity matrix. Theng i j 50 for i 5” j and
det(A)5det(B)51. Thus, det(A)<1 holds and the equality
takes place when all the nondiagonal elements of the ma
A vanish.
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