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Electronic-field correlation functions
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In this paper the correlation function of an arbitrary order is derived for an electron field in which the
components corresponding to different particle numbers and momenta are mutually uncorrelated. The result is
expressed in terms of the complex degree of coherence. The correlation functions clearly demonstrate the
antibunching effect. All the computational steps are shown in d¢&ill050-294{@8)08712-3
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I. INTRODUCTION avoid problems with the normalization of the density opera-
tor.

Correlation functions characterize the statistical properties According to Silvermar2] we take the electron state as a
of quantum fields. Their theory is richly developed in quan-mixture of Fock states with a Poissonian distribution of the
tum optics and the correlation functions of arbitrary order areparticle number. The probability that there arelectrons in
familiar for various types of photon fields, some of themthe system is theP(n)=e {"(n)"/n!, where (n) is the
having been measured experimentflly; On the other hand, average number of electrons, and the density operator of the
fermion correlation functions have been widely explored nei-System can be expressed as
ther theoretically nor experimentally and their theory has
only been developed more progressively in recent ygars O .

7]. One of the most important results in this area was pub- p= Z P(n)pn, (€8]
lished by Silvermari2], namely, the correlation function of n=o

the second order for a multiparticle electron state, in which .

the individual momentum as well as particle-number compowherep,, are the density operators corresponding to the com-
nents of the field are mutually uncorrelated. The correlatiorponents of the field with a definite particle number.

function demonstrated antibunching, i.e., the fact that elec- Let us denote the normalized one-electron momentum
trons avoid coming into a detector in pairs. Another work, distribution asf(p). The normalization condition is

published by Saitet al.[3], deals with a correlation function

of an arbitrary order for an electron field in a so-called cha-

otic state. This state is believed to be produced by the most 2 f(p)=1, @
coherent electron source known up to now, the field- P

emission gun. In the following a detail derivation of the cor-
relation function of an arbitrary order is given for the state
introduced by Silvermaf2] that could provide a good de-
scription of the electron beams used in the experimental ele
tron interferometry.

where the sum is taken over the complete set of momentum
eigenvalues. The momentum should be understood as a
three-dimensional vector, which means that the function
f(p) contains information about not only the spectral but
also the spatial properties of the electron field.

As has been mentioned, the different momentum compo-
nents of the field are uncorrelated. Therefore thgarticle
density operator can be written in the form of an incoherent

In the following we consider the case of quasimonochro-superposition of momenta eigenstates. The probability that
matic, noninteracting, nonrelativistic, and spin-polarizedthe n electrons have momentay,p,, ... ,p, is given by
electrons. The first three assumptions are fully acceptable fahe productf (p;)f(p,)---f(p,), and the density operates,
electrons with energies of about 5 keV, an energy bandwidtipas therefore the form,=A,/Tr(A,) with
under 1 eV, and emission currents undeuA. The last
assumption enables us to neglect the spinor structure of the
electron field and to treat it as a scalar field. This is no loss of A= X f(p)f(pY) - f(Pw)IP1s - .- P
generality, however. It can be shown that the correlation P1. -+ Pn
functions for partially polarized or completely unpolarized x(p o 3
electrons can be expressed with the help of the analogous Lrowee ol
functions for polarized electrons and the degree of polariza- ) ) .
tion [8]. We will also suppose that the complete set of elec\Where|ps. ... ,pn) is the totally antisymmetrical Fock state
tron momentum eigenstates is countable, which allows us t8f N electrons with momentg,, ... ,p, normalized to 1

(not the 6 function) andE")ly ... p, denotes the sum over all
momentap,,p- . . . ,p, different from each other. The rea-
*Electronic address: tomtyc@physics.muni.cz son why there are no terms in the sum with sqmg; equal
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is that in this case the stalp;, ... ,p,) does not have any (r;,t;), respectively. The correlation function expresses the
physical meaning due to the Pauli principle. The tracApf Probability density of finding k electrons at points
is equal to r{,f2, ... r and timesty,t,, ... t,, and it should be

noted that in general it is not proportional to the probability
~ / of detectingk electrons at the corresponding points and
Tr(An)=p E . f(p0)f(p2) - f(P)Tr{[P1, ... Pn) times. The latter is in fact connected with the particle fluxes
to rather than densities, which is the reason why some authors
, (e.g.,[2,3]) define the correlation function with the help of
(P - 'p“|}:p E . F(PF(P2) - T(Pn). fiux operators. For quasimonochromatic electrons, however,
b the detection probability is proportional to the correlation
4 function (5) by the factorll",a;vS;, whereq; and S; are
because the trace of the projection OperatorIhe quantum effici(_ency and cross se_ction of itthedetector,
D1, - - PPy, - .. pul is equal to unity. Now the only T€SPectively, ana is the mean velocity of the electrons.
reason why we introduced the momentum discretization was
to avoid the problems with the normalization of the densitylV. CALCULATION OF THE CORRELATION FUNCTION
operator. We can therefore assume that the nunhberf
states contributing significantly to the sum in Eg) is very
large, as in the case of a quasicontinuous momentum spe
trum. It can be shown that the normalized difference

We begin the calculation with the general relation that
holds for the annihilation and creation operators

=2 K(rtpap).
2 fpof(po) o fp= 2 f(p)f(p) - f(py) ©

T .,
> RRICUCORSEN gt % K*(r,t|p) a’(p).

goes to zero for largdl. This follows from the fact that the Herea(p) and a'(p) are the annihilation and creation op-
relative number of combinations,, ... ,p, with pj=p, for  erators of an electron with momentymand K(r,t|p) is the
some i,j (i#j) with respect to the number of all electron propagator in the momentum-coordinate representa-
combination$ behaves like M and hence goes to zero for tion. The operatora(p), a'(p) and ¢(r,t), #'(r,t) satisfy
large N. Therefore we can use an approximationthe standard fermion anticommutation relations

Eély ~pn_’EP1v by in the following. From Eqs(2) and

(4) and this approximation, it follows immediately that a'(p)a(p’)+a(pa’(p)=s(p.p"),
Tr(A,)=1, and we can writp,=A,, which will also be X X X X @)
used in the following. ST OP O+ DY) =8r—r’),

Ill. CORRELATION FUNCTION OF THE kTH ORDER where 5(p,p’) denotes the Kronecker delta, whil&(r

—r") is the three-dimensional Dirac delta function. If we
denote the field operatos(r; .t;), ¢'(r;.t;) and the propa-
gatorK (r;,ti|p) as¢;, &, andK;(p), respectively, we can
GU(ry,t,rots, oot fiut) simplify the notation as follows:

The correlation function of théth order is defined as
follows:

=Tr{pd (ro,ty) T (r L) d(r i ) - dh(r 1, ty)},
(5

where ¢(r;,t;) and ¢'(r; ,t;) are the field operators annihi- With the help of the relation€) we can express the product
lating and creating an electron at the space-time poinof the field operators from Ed5) in the following way:

?psg Ki(p)a(p), :,7/?:; Kf(p)a'(p). (©®

&I---&xwk---&l:{ El} K3 (a2)-+ K (@0 K@) Ka(a)a'(ay)---a'(awalay)--a(ay). (9)
CIAT]

HereXq (¢} €Xpresses the summation owgr, ... gy andqs, ... . Using the form(1) of the density operatgs, we
can write

Of course, the momenta belong now to the set of the correspodigigenvalues only.
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G= 2, P(MTr{pnihy -t g} = 2 PG, (10)

whererf‘) is the correlation function corresponding to thelectron density operatdrn. We have omitted the arguments
r; ,t; for simplicity. The correlation function corresponding to the density opeataan be now expressed with the help of
Egs.(3) and(9) and the approximatiop,,=A, as

cl= > X f(pn) K3 (A1) K (A Ki(ae)- - Ke(a) Tr{|ps, - . .Pn)
{a}{a’} P1» -+ Pn
X(p1, ... pala(ay)---a’(awalay)---a(qy}. (12

It can be shown on the basis of anticommutation relations that the trace (1 Bds equal to

TH|p1, -+ PP, - PolaT(ay)---aT(galay)---a(gy)}
=(p1, ... Pala’(ay)---a’(galay)---ag|ps, .- Py
:PEPSigr(P) 8(01,0pn) - 8(dk , Apiio). Z 15(pi11q1)"'5(pik1qk)- (12
e i1, e =
all i different

Here P, B), and sign(P) denote a permutationloindexes 1,2, ...k, and thejth element and sign of this permutation,
respectively. The first sum is made over the Beif all permutations. The fermion nature of the electrons is demonstrated by
the factor sign(P).

We make our notation more clear in an example with3. Then the set of all permutations is

P={(1,2,3,(3,1,2,(2,3,1,(1,3,2,(3,2,1,(2,1,3)}

and if we choose the permutatior=f2,1,3), we have ®=2, F?=1, F¥=3, and sign(P¥ — 1 because the permutation is
odd.
Substituting Eq(12) into Eq. (11) we obtain

GF= > Ki(gy- ’;(qk)Kk(qo---Kl(q;)gpsigr(P) 8(01, )" ** (G, Apis)

{ah.{a'}
n
x 2 2 f(py)--f(pn) 8(piG0) 8P, G- (13)
i1, - dk=1p1, ... Py
alli different
In Eqg. (13) we calculate first the sum over themomentap,, ... ,p,. Itis useful to note that for every possible combination
i1, ... with all i different, it holds due to the normalization conditi®) of the functionf(p)
i 2’p f(py)-+F(pn) 8(pi ,01) - 8P, G) = ()~ F (), (14)
1+« Pn

that is, the sum does not depend on the indexes .. ,i,. We have used here again the approximalidn->. Therefore
all the n(n—1)---(n—k+1) terms{we will denote this product a¥(k,n) in the following] in the sum overiq, ... i\
different from each other give the same result, and we obtain

n

> f(py)F(pa) APy, A0) 8P, G = V(KN F(qy)- - F(ql).- (15

i1, o k=1 P ... Pp
alli different

Next we substitute Eq15) into Eq.(13) and evaluate the sum over the momegia . .. ,q;:
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esr>=v<k,n>{ E } f(qy)---f(a) K (gy)- :<qk>Kk<q;>---Kl<qi>PEP SigN(P) &(qy,0p1)" **8(Cly Ak
at.{a’ c

=V<k,n>PEPsigrrP>q > f(gy)-F(a) KE(gy) K (a0 Kpa(Gy)- - Kpio(gy).- (16)
€ 1r vee

Ak

Gathering the terms with equg|, we can write the result in the form

G&k>=V<k,n)P§P sign(P)% f(q) Ki(q)Kmmq)---; f(q) K (q)Kp(Q)- (17)

We see that the correlation functions for different electron numbers differ from each other only by the multiplicative factor
V(k,n). Therefore due to Eq10) the evaluation of the “total” correlation functioB™ reduces now to the averaging of this
factor for the Poissonian distribution. It is easy to verify that for this distribufiétk,n))=(n(n—1)---(n—k+1))=(n)X

holds and forG® we get

Gl= 2, P(MGY=(m* 2, sigrtp@ f(a) K} (a)Kpa(q) - ; f(q) K§ (@)Kpuo(q). (18)
I
If we denotel’;;=(n)2,f(q) K" (q)K;(q), this result can be 1 v ... Yik
written in the form of a determinant 1
Y21 s Yok
G(k)zrllrzz"'rkk : : : . (20
Yo Yk2 o - 1
1—‘11 1—‘12 1—‘1k
K For T oo Ty
G= . . e (19 V. ANTIBUNCHING
Ty T ... T In Appendix B it is shown that the determinant in

Eqg. (20) cannot exceed 1. Using this and the fact that
=GY(r;,t;), which can be easily verified by substituting

It is very useful to note at this point thaf, k=1 into Eq.(19), we obtain a very important inequality,

=Tr{p'(r; ,ti)fﬂ(rj ,t;)} (for the proof see Appendix A GO(ryty, o ot <GO(ry t)GM(ry,ty) -
Thus the elements of the determinant in ELP) are in fact
the correlation functions of the first order with unequal argu- X G (ry,ty). (21)

ments(the field operators correspond to two different space-

time points referred to as the cross-correlation functions inThe case of equality in Eq21) corresponds to the situation
quantum optic§1]. We also introduce the complex degree of Wheny;;=0 for alli,j, i#] (see Appendix B i.e., when the
coherencey;; =T';;/\T';T'j;, which is the normalized cross- degree of coherence assigned to any pair of pdhi®; is

correlation function. The complex degree of coherence exZ€"0- This means that if the field at all thepoints P; is
presses the mutual coherence of the electron field at th@utually completely incoherent, the probability that we will

space-time point®; and P; [P; is an abbreviated notation ind an electron at each of them is simply equal to the prod-

for the point ¢; ,t;)] and contains information about both the U.Ct OT th? probﬁblgt[es of finding an ellectron at the indi-
temporal and spatial coherence of the field. From the defini\-/Idua points, which is an expe_cted_ result.
) On the other hand, if the field is mutually coherent, at

tion of I'yj , ¥;; and from the normalization conditioi®) of o35t at one pair of the poin®; ,P;, the inequality(21) is
the fuznctlon f(p), it follows that for alli,j O<|yj|<1  gharp Therefore the probability that at each of khepace-
holds” The casgy;, |.: 1 corresponds to the complete mutual time points we will find an electron is less than the product
coherence of the field at the poinB;,P;, while [yj|=0  of the probabilities of finding an electron at the individual
corresponds to the complete incoherence. With the help Qfgints, which demonstrates the electron antibunching. It is
the determinant algebra and the fact thgt=1 for alli, the  sefyl to note that this result is independent of the positions
correlation function can be written as of pointsP;, and antibunching is therefore quite a universal
phenomenon. If some two poini; ,P; approach each other,
which results in|y;;| going to unity, the “intensity” of an-
“Alternatively, the inequality ;| <1 follows from the Schwarz ~tibunching increases and in the limiting case wHenP;
inequality for operatorgsee Ref[1], p. 593. become identical, thigth andjth lines of the determinant ma-
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trix (19) become equal. This results in the annulling of the(20) in terms of the complex degrees of coherence. Using the
determinant itself, and therefore the probability that we will features of matrices and determinants we have proved that if
find two electrons at the same point is equal to zero, which ishe electron field is mutually coherent at the points for which
in fact nothing other than the Pauli principle, however. the correlation function is expressed, the electrons show an-
tibunching.
VI. CONCLUSION

We have derived the correlation function of an arbitrary
order for an electron state in which the momenta as well as
the particle-number components of the field are mutually un- The author would like to thank M. Lenc, F. Hasselbach,
correlated. We have expressed the result in a compact formnd H. Kiesel for many helpful discussions.
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APPENDIX A: DERIVATION OF THE CROSS-CORRELATION FUNCTION

With the help of the relationéB) we express the operatgs ;= ¢'(r; ,t;)) 4(r; ,t;) as follows:

=2 KF(q)K;(g)al(@a(a’).

a.q’

Then then-electron cross correlation function is

Tr(pnihl ) =2 2
a.q’ Pi---

Pn

=> 2>

9,9" P1+ -+ Pn

After the evaluation of the sums ovpi, ... ,p, andq’ in
a way analogous to the one used in Sec. IV, we obtain

Tr(pntl ) =n2 H(@) K (@K@, (A3)
and with the help of Eq(1l) we get the desired result

Tr(pmn:m@ f(q) KF(@Kj(@)=T}. (A4)

APPENDIX B: UPPER BOUND OF THE DETERMINANT

IN EQ. (20)
The matrix
1 Y12 .- VYik
Y1 1 IR 13
A= . . . (B1)
Y1 Yk2 . 1

is Hermitian becausg;; = y}"i foralli,j, which follows from

f(po)- - F(P) KT (@)K;(a") Tr{[py, ...

f(py)- - f(pa) KF ()K;(q") 5(q,q'>§l 8(9,ps).

(A1)

Po)(P1, - .. pola(a) a(g’)}

(A2)

i.e., there exists a unitary matrld for which the matrixB
=UAU™ ! is diagonal. This transformation changes neither
the determinant of the matrix, because it is a similarity trans-
formation, nor the trace of the matrix, because it is a unitary
transformation. If we denote the diagonal elements of the
matrix B as b;, then TrA)=Tr(B)=3K_,b; and detp)
=det(B)=H!‘:lbi evidently holds. At the same time, from
(B1) it follows that Tr(A)=Kk. Moreover, it is possible to
show on the basis of the Schwarz inequality for operators
(see Ref[1], pp. 585 and 593that the matrixA is non-
negative definite, and hence all its eigenvalbesre non-
negative. Thus, we look for the set of non-negative real num-
bersb; for which IT¥_;b; is maximal under the condition
Ez‘zlbi= k. This problem can be easily solved using the in-
equality between the arithmetical and geometrical averages.
The arithmetical average of the numbéxsis Eik:lbi k=1

and the geometrical averadg k_ b, which is an ascend-
ing function ofﬂg‘zlbi , Is hence always less than or equal to
unity, the equality taking place whén=b,=---=b,=1.In
this case the matriB is a unity matrix, from which it follows
that A is also a unity matrix. Theny;=0 for i#] and
det(A) =det(B) =1. Thus, detp)<1 holds and the equality

the definition ofy;; andI';; . Therefore it is possible to trans- takes place when all the nondiagonal elements of the matrix
form it into the diagonal form with a unitary transformation, A vanish.
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