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Characterization of third-harmonic generation in Fibonacci optical superlattices
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A Fibonacci optical superlattice~FOS! made from a single crystal with a quasiperiodic laminar ferroelectric
domain structure was proposed to realize a third-harmonic generation~THG! process. Due to its quasiperiodic
structure, a FOS can provide more plentiful reciprocal-lattice vectors to compensate for the mismatch phase in
optical parametric processes, which causes most of third-harmonic peaks labeled by the corresponding
reciprocal-lattice vector indices. Numerical calculation shows that the THG spectrum exhibits a self-similarity
property in real space. Effects of the phase mismatch of second-harmonic generation and THG, the bandwidth,
and the relative intensity of the second harmonic peak on THG are discussed. We also found THG peaks for
which the quasi-phase-matching condition in THG process is not completely satisfied. The physical origins of
the phenomenon are presented and discussed.@S1050-2947~98!07612-4#

PACS number~s!: 42.65.Ky, 77.80.Dj
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I. INTRODUCTION

Recently, much attention has been paid to harmonic g
eration, especially to second-harmonic generation~SHG! @1–
5#. Traditionally, harmonic generation is produced by pha
matching using the birefringence of nonlinear crystals. S
an approach limits the range of frequencies which can
used to generate harmonics and the choice of nonlinear
efficients. On the other hand, it is difficult to realize hig
order harmonic generation by the traditional method. O
solution is quasi-phase-matching~QPM! @6,7#, which is
known as an attractive way to obtain good phase match
and has been studied intensively@5#. With the QPM tech-
nique, phase matching becomes possible at ambient tem
ture and does not introduce spatial walk-off; the polarizat
with the largest nonlinearity can be used, and materials w
larger nonlinearities can be exploited, which are not ph
matchable by angle or temperature tuning. The physics
QPM involves constructing a periodic structure with t
phase of nonlinear polarization shifted from one laminar
the next by ap radian along the direction of propagatio
Since the nonlinear-optical coefficient forms a third-rank te
sor, it will change the signs from positive domains to neg
tive ones@8#. As a result, the nonlinear coefficient in th
superlattice is modulated with a periodic sign reversal,
which an additional~grating! vector is introduced. In optica
parametric processes, the additional vector can compen
for the mismatch between the wave vectors of the fundam
tal and harmonic waves. Although this approach does
allow a perfect phase match between the fundamental
harmonic, it can lead to quasi-phase-matchable harm
generation. In past few years, the experimental difficulties
QPM have been overcome and stable techniques have
developed, such as domain inversion, proton exchange,
PRA 581050-2947/98/58~6!/4956~5!/$15.00
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etching and cladding in ferroelectric material, to mention
few.

Usually, periodic optical superlattices provide a series
reciprocal-lattice vectors, which is an integer times a prim
tive vector. In a quasiperiodic Fibonacci optical superlatt
~FOS!, however, the reciprocal-lattice vectors are govern
by two integers rather than by one integer as in the cas
the periodic one. Therefore, the superlattice can prov
more reciprocal-lattice vectors, which will make the optic
parametric processes in the FOS more colorful than in
periodic superlattice. These parametric processes can b
ficiently realized in the superlattice.

In this paper, we report our theoretical results on thi
harmonic generation~THG! in a Fibonacci optical quasiperi
odic superlattice. We study the dispersion relation effects
THG, and the spectrum of the THG intensity in real a
reciprocal spaces. We found that most of the intense th
harmonic peaks can be labeled by indices of the recipro
lattice vectors, but some of them are not labelable. T
physical conditions for efficient THG are presented and d
cussed. By properly designing the parameter of a FOS, T
at a desired output wavelength, with a strong intensity,
be realized.

II. THEORETICAL ANALYSIS

Let us construct a FOS. First, two building blocksA andB
with thicknessesl A and l B , respectively, are defined. Eac
block is composed of two ferroelectric domains with opp
site polarization@see Fig. 1~a!#. Let l A

1 ( l A
2) and l B

1 ( l B
2)

represent the thickness of the positive~negative! domains in
blocksA andB. We assume that

l A5 l A
11 l A

2 , l B5 l B
11 l B

2 , ~1!
4956 © 1998 The American Physical Society
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with l A
15 l B

15 l , and define the parameterst andd by

l A
25 l ~11d!, l B

25 l ~12td!. ~2!

It is well known that the substitution rules of a Fibonac
sequence areA→AB andB→A. The corresponding produc
tion rule is Sj5Sj 211Sj 22 for j .2 with S15$A% and S2
5$AB%. We arrange blocksA and B as the sequence o
ABAABABA.... . Thus a FOS is established, as shown
Fig. 1~b!.

The optical wave propagation in the FOS can be obtai
from the small-signal approximation@4,9#. A pump beam
with frequencyv15v is incident normal to the superlattic
surface from the left along thex axis, with the electric field
aligned along thez axis. The domain walls are parallel to th
y-z plane @see Fig. 1~b!#. With this geometry, the larges
nonlinear coefficientd33 is exploited. The second harmon
with v252v and the third harmonic withv353v are pro-
duced via the optical parametric processes. The elec
fields at the three frequencies are described asEi(x,t)
5Ei(x)exp@ i (v i t2kix)# ( i 51,2,3). The nonlinear polariza
tions atv2 andv3 are

P2v~x,t !52d~x!E1
2~x!exp@ i ~2v1t22k1x!#, ~3a!

P3v~x,t !54d~x!E1~x!E2~x!

3exp$ i @~v11v2!t2~k11k2!x#%, ~3b!

where d(x) is the modulated nonlinear optical coefficien
d(x)5d33 if x is in the positive domains, andd(x)52d33
elsewhere.

In this paper, we only consider a second-order proces
which the second-harmonic generation occurs as a resu
two incident beams mixing, and THG is due to sum fr
quency of the fundamental and the second harmonic. F
Maxwell’s equations, using the small-signal approximati
and assuming the undepleted input beam, i.e.,kidEi(x)/dx
@d2Ei(x)/dx2, dE1(x)/dx50, and E1(x)@E2(x) and
E3(x), we obtain@4,9#

dE2~x!

dx
52 i

4pv2
2

k2c2
d~x!E1

2~x!exp~ idk2x!, ~4a!

FIG. 1. Schematic diagram of the unit blocksA and B in the
construction of the FOS and the sequence of the FOS. The ar
in each block represent the direction of domain polarization.
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dE3~x!

dx
52 i

8pv3
2

k3c2
d~x!E1~x!E2~x!exp~ idk3x!, ~4b!

with

dk25k222k154p~n22n1!/l, ~5a!

dk35k32k22k15~6pn324pn222pn1!/l, ~5b!

wheredk2 and dk3 are the phase mismatches in SHG a
THG, respectively. In Eq.~5!, n1, n2 , andn3 are the refrac-
tive indices for the fundamental, second harmonic, and th
harmonic, respectively. By numerical calculation, we can o
tain the intensity of SHG and THG. In the following discu
sion, we use KTiOPO4 crystal as an example, the refractiv
indices of which as functions of wavelength at room te
perature are taken from Ref.@10#. The intensities of the sec
ond and third harmonics are all normalized to a unit for t
intensity of the fundamental waveuE1u2 with ud33E1u2

510214.
In the integration ofE2(x) andE3(x), the most important

factor is the modulated nonlinear coefficientd(x). Being a
Fibonacci distribution function, it has an important effect
the harmonic intensity. So before discussing the harmo
generation properties of the FOS, we first analyze the fu
tion d(x) of the structure. It is known that the Fourier tran
form of d(x) can be obtained by the direct@11# or the pro-
jection @12# method for an infinite array, and can be writte
as @2#

d~x!5(
m,n

d33

sin~1/2kl !

1/2kl

sinXm,n

Xm,n
d„k2G~m,n!…exp~ ikx!

5(
m,n

dm,nexp@ iG~m,n!x#, ~6!

with

Xm,n5pt2~mlA2nlB!/D,

D5t l A1 l B ,

G~m,n!52p~m1nt!/D,

whereG(m,n) is the reciprocal-lattice vectors of a FOS.
these vectors can compensate for the phase mismatch
optical parametric processes for a pump beam, a pea
harmonics will appear at that wavelength. In Eq.~6!, the
Fourier transformation coefficientdm,n is defined as the ef-
fective nonlinear coefficient of the superlattice, which co
tains two factors sin@1/2G(m,n) l #/1/2G(m,n) l and
sinXm,n /Xm,n . For the factor sin@1/2G(m,n) l #/1/2G(m,n) l ,
the smaller the indices ofm andn, the larger the value of the
former term. The factor sinXm,n /Xm,n depends onm andn in
the manner that, asmlA2nlB approaches zero, i.e.,n/m
→ l A / l B , the value of sinXm,n /Xm,n approaches unity, which
is the largest value the factor can take.

THG occurs as a result of sum frequency of the fund
mental and the second harmonic. Its intensity depends

ws
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three factors—d(x), E2(x), and phase mismatchdk3—for a
fixed intensity of the pump beam. When the QPM SHG co
dition is satisfied, i.e.,

DK25dk22G~m,n!50, ~7!

where DK2 is quasi-phase mismatch in SHG process,
second-harmonic peaks will appear in the harmonic gen
tion spectrum of the structure, and the spectrum is then
beled by indices (m,n) of the reciprocal-lattice vecto
G(m,n). If there is another reciprocal-lattice vecto
G(m8,n8) which can satisfy the QPM THG condition, i.e.

DK35dk32G~m8,n8!50, ~8!

whereDK3 is a quasi-phase-mismatch in the THG proces
THG peak will occur simultaneously for the pump bea
This implies that in this case the third-harmonic peak can
labeled by two types of indices (m,n) and (m8,n8).

III. NUMERICAL RESULTS AND DISCUSSIONS

Now we turn our attention to discuss the fascinating p
nomena of third-harmonic spectra in real and recipro
spaces. In real space, we keep the incident wavelengthl0
fixed. Then the dispersive relation will have no effect on t
third-harmonic spectrum. Figure 2 shows the dependenc
the third harmonic on structure parameterl , in which the
indices without prime in circular bracket is for SHG, an
those with prime is for THG. From the QPM THG conditio
of Eq. ~8!, the third-harmonic peaks occur at

l ~m8,n8!5
~m81n8t!l0

~6n324n222n1!„11t1~t2t !d/2…
. ~9!

FIG. 2. The dependence of the third-harmonic spectrum on
structure parameterl , with t51.7, d50.36, andl51.3 mm, and
the corresponding second-harmonic spectrum. The inset is the
larged intensity spectrum, and the dashed line stands for the c
sponding SHG spectrum.
-
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Thus the spectrum exhibits self-similarity, a characteristic
the Fibonacci sequence. From Fig. 2, it is clear that the
lation l (38,58)5 l (18,28)1 l (28,38) holds. The second-
harmonic spectrum also has this kind of property.

In addition, in Fig. 2, most of the THG peaks occur wit
out a corresponding SHG peak. This is obviously beca
the situations of THG QPM can be frequently met, wherea
simultaneous occurrence of QPM in both SHG and TH
rarely occurs by changing the structure parameterl . We can
understand the phenomenon by plotting the dependenc
the intensity on block number within the superlattice f
these THG peaks. Figure 3~a! shows the intensity distribu
tion of third-harmonic intense peak (28,48) at l 57.898 mm
within the FOS. For comparison, the corresponding seco
harmonic intensity distribution in the structure is also plo
ted. As Fig. 3~a! shows, the third-harmonic intensity accu
mulates in a stepwise manner, whereas the second-harm
intensity fluctuates periodically. In this case the seco
harmonic process is severely quasi-phase-mismatched
the third harmonic is quasi-phase-matched. One stage
third-harmonic intensity corresponds to every oscillation
second-harmonic intensity. When the second-harmonic
tensity varies in the vicinity of a trough, a stage appears
the third-harmonic intensity. So we believe that the comp
sation ofdk3 is more important than that ofdk2 for an effi-
cient THG process. If the third harmonic is quasi-pha
matched, the third harmonic still may have a strong
intensity, even though the second harmonic is quasi-ph
mismatched.

In Fig. 2, there is a special THG peak, i.e., the THG pe
at l 57.924 mm, with a rather stronger intensity that cann
be labeled by THG or SHG indices. To understand the p
nomenon, we have enlarged the SHG and THG spectra
the peak, and we present them in the inset of Fig. 2. It can
seen that the unlabeled THG peak II is sandwiched by
labeled peaks, i.e., the left THG peak III (28,48) at l III
57.898 mm and the right SHG peak I~1,1! at l I58.01 mm.
The intensity distribution of peak II is shown in Fig. 3~b!,
where the third harmonic still has a stronger intensity w

e

n-
re-

FIG. 3. The relation between the THG intensity and block nu
ber for peaks III (28,48), and II shown in~a! and~b!, respectively.
The dashed line in each figure is the corresponding SHG inten
distribution.



di
e
o

d

g

ly.
as

ity

ir

-
f

am
ve

in
th
u

u

is
n

ity
tic

is
G

ow
n

ea
y
th

-
il

ge
l
M

ic
rest

the

gth

ith

er

sity

PRA 58 4959CHARACTERIZATION OF THIRD-HARMONIC . . .
steplike increase behavior. Compared with the intensity
tributions of peaks III in Fig. 3~a!, peak II has a lower stag
number in the THG process. It is further found that the p
sitions of SHG peak~1,1!, the unlabeled THG peak II, an
THG peak (28,48) satisfy a special relation

~ l I2 l II !/~ l II2 l III !5 l 2c/ l 3c, ~10!

where l i ( i 5I,II,III) are the positions of the correspondin
peaks in the inset of Fig. 2, andl 2c andl 3c are the coherence
lengths for the second and third harmonics at pumpl0
51.3 mm used in the calculation of Fig. 2, respective
This means that the absolute value of the quasi-ph
mismatch in THG is the same as that in SHG, i.e.,DK3
1DK250. In this case a THG peak with a larger intens
appears in the spectrum.

It is noted that the peak positions of the second and th
harmonics in real space change with the parametersd if t is
not equal to the golden rationt. This is because the param
eter D52„11t1(t2t)d/2…l changes with the variation o
d if tÞt, and so do the reciprocal-lattice vectorsG(m,n)
52p(m1nt)/D. Only whent5t do the positions of SHG
and THG peaks not change with the variation ofd @3,13#.
This provides us a method to optimize the structure par
eter of a FOS to achieve SHG or THG at a desired wa
length.

In reciprocal-lattice space, the structure parameterl is
kept constant. The harmonic generation spectra are obta
by changing the wavelength of the pump beam. Thus
dependence of refractive indices on the wavelength sho
be taken into account, i.e.,n3(l), n2(l), and n1(l) are
functions of wavelengthl. From the QPM THG condition of
Eq. ~8!, it is readily shown that the intense THG peaks occ
at the wavelength that satisfies the relation

~1/l!m8,n85
~m81n8t!

„6n3~l!24n2~l!22n2~l!…D
. ~11!

The THG intensity as a function of pump wavelength
shown in Fig. 4. It is clearly seen that the relatio
(1/l)28,485(1/l)28,381(1/l)08,18 is no longer held due to the
dispersive effect of the optical material. The self-similar
of the Fibonacci superlattice is destroyed in reciprocal-lat
space due to optical material dispersion.

In Fig. 4, two kinds of THG peaks in real space also ex
in reciprocal-lattice space; THG peaks labeled only by TH
indices, and THG peaks not labeled by any indices, as sh
in inset~a! of Fig. 4. The corresponding intensity distributio
is presented in Figs. 5~a! and 5~b!. It is noted that in Fig. 4,
there is another kind of THG peak near the widest SHG p
~1,0! at l52.172 mm. The THG peak cannot be labeled b
THG indices, and its shape is enlarged and plotted in
inset~b! of Fig. 4. It is known that mismatch phasesdk2 and
dk3 in our calculated range decrease with an increase
wavelength for KTiOPO4 crystal. When the SHG QPM con
dition is satisfied, an intense SHG peak with low indices w
appear at the long-wavelength side with a relatively lar
full width at half maximum~FWHM!. These SHG peaks wil
influence the THG dramatically. We found that the FWH
of the second-harmonic peak~1,0! is about 0.02mm, which
covers the corresponding third-harmonic peak@see inset~b!
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of Fig. 4#. Although the mismatch phase of third harmon
cannot be completely compensated for by the nea
reciprocal-lattice vectorG(m8,n8) to dk3 in the THG pro-
cess, the third harmonic grows to a large intensity within

FIG. 4. The dependence of the THG spectrum on wavelen
with t51.75, d50.39, andl 57.96 mm, and the corresponding
SHG spectrum. The two insets are the amplified THG spectra, w
a dashed line for the SHG spectra.

FIG. 5. The relation between THG intensity and block numb
for three THG peaks.~a! is for peak (18,28) at l51.601 mm, ~b! is
for the unlabeled peak atl51.596 mm in inset~a! of Fig. 4, and
~c! is for the unlabeled peak atl52.172 mm in inset~b! of Fig. 4.
The dashed line in each figure is the corresponding SHG inten
distribution.
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FOS, as the result of an intense second-harmonic peak.
plot the intensity distribution of the peak in Fig. 5~c!. It can
be seen that both SHG and THG intensities increase w
block number, but with obvious fluctuation in THG intensi
distribution, which is different from THG peaks with THG
indices, but not SHG indices for which the third-harmon
intensity increases in a stepwise fashion.

From a study of the relation between the intensity spe
and the incident wavelength for different structure para
etersl , we also found that the profiles of the spectra mo
toward the short-wavelength side with a decrease ofl . For
example, if we choosel 5 l 2c(l0), i.e., the coherence lengt
for SHG at wavelengthl0, an intense SHG peak with indice
(1,1) always appears in the vicinity of wavelengthl0. To
realize efficient harmonic generations at a short wavelen
a normal method is to decrease the domain width, espec
in a periodic optical superlattice. But it is difficult to obta
very thin domains in experiment. In an optical quasiperio
superlattice, this difficulty can be overcome. As discus
above, a multiwavelength harmonic-generation character
can be realized in a FOS. By properly designing the struc
parameters of a FOS, we can realize harmonic generatio
the desired wavelength with a stronger intensity. This p
vides a chance to implement compact short-wavelength
herent light sources in a FOS.
.
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IV. CONCLUSION

In summary, we have investigated harmonic generati
in the Fibonacci optical superlattice. Due to the dispers
effects of the optical material, the self-similarity of the TH
harmonic spectrum in real space is destroyed in recipro
space. In the spectrum of the third harmonic, only sm
positions of the peaks can be labeled by two types of indic
whereas most of intense peaks are only labeled by th
harmonic indices. We also found some peaks which can
be labeled by any indices. For an efficient THG proce
compensation of phase mismatchdk3 is more important than
that of the mismatched phasedk2. Other factors, such as th
FWHM of the second harmonic, and its relative intensi
will also affect the THG. We also discussed the possibility
realizing the third harmonic at any wavelength by a prop
choice of the structure parameter of a FOS in practical
plications.
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