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Theoretical study of quantum dissipation and laser-noise effects on the atomic response
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The nonlinear dynamics of dissipative quantum systems in incoherent laser fields is studied in the frame-
work of a master equation with the random telegraph model describing the laser noise and the Markovian
approximation dealing with the system-bath couplings. Floquet theory and time-dependent perturbation meth-
ods are used to facilitate both analytical and numerical solutions. We develop a theoretical formalism that
provides a powerful tool for the detailed analysis of the dissipative quantum dynamics of multilevel systems
driven by intense stochastic laser fields. It is found that the system relaxes to a steady state from the effect of
the laser phase and frequency noise and the kinetics of this relaxation increases with the addition of dissipative
terms, introduced by the coupling to the reservoir. Amplitude fluctuations show a different behavior. Other
results concerning the destruction of quantum coherence and the dynamical localization will be established and
further relaxation mechanisms such as spontaneous emission and the ionization process will also be consid-
ered.[S1050-294{@8)02312-9

PACS numbd(s): 42.50.Lc, 42.50.Ct

[. INTRODUCTION and frequency. Several works have reported on the action of
random process on a two-level syst¢m-10,12—1% par-

The time evolution of quantum systems, which are driverticularly the evolution populationg,, and the ionization
by an external field and in contact with a heat béa#ser-  probability.
voir) has received a great deal of attention in recent years In the present paper we elucidate the role of quantum
[1-4]. In quantum optics, such systems are investigated imlissipation and laser noise on the atomic response. For this
the dressed-atom picture of resonance fluorescdbde purpose we derive a master equation, which provides a gen-
where a beam of atoms interacts with a coherent laser fieldral framework for the dynamics of atoms interacting with
and all the electromagnetic modes of the vacuyBinMore-  strong laser noise and a thermal reservoir.
over, it is now recognized that nearly all types of laser-atom The basic idea underlying the theoretical formalism of
interactions can be strongly affected by laser noise. Indeedhat paper is to take into account the exact dynamics of the
one practical reason for this fact is the use, in experiments, dhteraction between an atomic system and an external field
high powers obtained in pulsed operation, at the expense dify employing the Floquet basis for the reduced system rather
poorly stabilized laser beams. Furthermore, real atoms expd¢han the stationary unperturbed staf@<]. The interaction
rience a fluctuating environment of many perturbing interac-of the laser-atom system with the reservoir will be treated by
tions and ideal lasers exist only in theoretical models, whileghe time-dependent perturbation theory, which leads to a
the used laser sources are subjected to many types of flugeneralized quantum master equation for the reduced density
tuations notably in phase, amplitude, and frequeleylQ.  matrix. Such a statistical fundamental equation, introduced in
Other kinds of fluctuations due to collisional effects can af-quantum optic by Burshteill6—1§, contains information
fect the atomic transition frequencig8,11]. Therefore, we concerning the atomic transition dynamics, the stochastic
cannot establish, without taking into account the dissipativeevolution of laser field fluctuations, and the dissipative
action of the environment and the statistical properties of thenechanisms. We are concerned here with an important
laser light, a rigorous comparison between theoretical prediccheme of contemporary research, namely, the interplay be-
tions and experimental results. tween quantum coherence and external noise. In fact, the

Different approaches to the dissipative dynamics of opemlestruction of quantum coherence by noise is central to many
guantum systems in strong external fields have been prdields and is reflected in the many papers recently published
posed and applied to the description of atoms under the iren this subjecf19-23.
fluence of thermal noisgl—4]. While for the incoherence of Our computations are made at an exact resonance, where
laser field a series of models, all based on so-called prehe effects of spontaneous emission are impoitadt, and
Gaussian Markovian processgg-10], have been used in for a strong laser field, where the probability to realize an
order to describe the stochastic behavior of the laser field. pnization of atoms is highest. Therefore, we shall extend our
is important to mention a few technical features of theseheory here by the inclusion of the relaxation rates corre-
models. They are based on the two-state random telegrapsponding to the spontaneous emission and the ionization pro-
They are not Gaussian models but rather pre-Gaussian, wittesses and present the corresponding numerical results.
a Gaussian limif{8]. Our choice of the random telegraph is  The theory is developed in Sec. Il by considering the case
based on the simplicity of this model, which permits a uni-of the strong laser-atom interaction in the presence of laser
fied treatment of different noisy lasers in phase, amplitudenoise and dissipative effects, which are introduced by the
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coupling to the reservoir. Within the framework of the component of the dipole operator on tB& axis. The free
Floquet representation and the Markovian approximationHamiltonian of the reservoir is represented by

detailed theoretical calculations are feasible to obtain the re-

duced matrix density elements. The account of Floquet T .

theory given here is rather brief since the theory has been HR:ﬁEI.: wj(aja;+3z), (6)
discussed at length in the recent literat(see, e.g., Refs.

[25-29). Moreover, the influence of the ionization process,,jith w; the frequency corresponding to thth mode of the
on the response atomic function is presented. Numericg{gg quantified radiation.

results concerning a model of the two-level system are pre- Thg yon Neumann equation for the statistical operator
sented in Sec. Ill. A summary of our results is given in ¢ ihe total system reads
Sec. IV.

. dp
Il. THEORY ih E=[H(t),p]- (7)

We consider an atomic system that interacts with an ex- ) ] ]

ternal classical laser field. Moreover, the laser-atom systerd/e introduce the interaction representation to treat &

is coupled to a quantified radiation field in thermal equilib-and we set

rium. In the following we will consider the behavior of the

atom coupled to a reservoir with many degrees of freedom. Ho(t)=Ha.L(1) +Hg, ®
The aim of this paper is to provide a description of the = i o

dynamics in terms of the degrees of freedom of the atomidvhich is the time-dependent unperturbed Hamiltonian. The

system alone by elimination of the reservoir variables. Sinc&€Volution operator corresponding to this Hamiltonian is

the atoms are driven strongly by an external laser field, ou@iven by

master equation is based on the atomic Floquet states rather

than the unperturbed atomic states. U(t)=Uo() @ Ug(t) ©)
The total Hamiltonian governing the dynamics of the

coupled system of matter and radiation degrees of freedornd

takes the form

it
H(t)=Ha.()+H+ Hg, & U= eXP{ "7 fOHA-L“ at ] )
whereH 4| (t) is the total Hamiltonian of the atomic system i
and the external laser field, without an interaction with the ><exp( 7 Hgt |, (10
reservoir, given by
Ha(t)=Ha+V(t)+Hgg, (2 Where[ ], is a time-ordering operator. In the interaction

representation, the total density operai¢t) and the inter-
with H, the stationary atomic Hamiltonia,(t) the dipole  action HamiltoniarH, take the forms
interaction between the atomic system and the laser field,

and Hgg the Hamiltonian of the simultaneous emission, ()=UT(t)p(t)U(t) (11
which reads
and
Hee= h r 3
=2 © F(H=UT(HHU() (12)

wherel’ is a diagonal matrix composed of the Einstein co-anq the dynamic equatiof¥) becomes
efficients of the spontaneous emission process and is defined
by [29] (1)

) -
i ——=[H®pO]. (13

Ton= 2 Yoo - 4
n'<n We assume that the interaction between the atomic system
and the reservoir is weak so that the coupling constants

SE . .
Herey, is the radiative decay rate. i‘_}o andy’t=const fort—. Under these conditions, Eq.
t

The Hamiltonian that describes the coupling between th
matter degrees of freedom and the quantified radiation fiel
may be written in the dipole approximation as

j
13) will be treated by the time-dependent perturbation

eory. At second order ifl,, this reads

HO 1
leﬁ; 2(yja;+al ), (5 ot i (HA()]
wherey; are the coupling constants] anda; are the quan- - % Jtdt'[ﬁ.(t).[ﬁ|(t’),TJ(t')]]- (14
tum creation and annihilation operators, andlenotes the Ae It
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In writing Eqg. (14) it has been assumed that the interaction is(s=1,2), corresponding to the telegraph signal amplitude
adiabatically switched on at tintg— —. Prior to this, the {—a,+a}. T denotes the dwell timéi.e., the mean time
atomic system and the reservoir are uncorrelated and the ttetween interruptionsof the telegraph. In the following, in
tal density matrix is given by the direct product the presence of the noise, all physical operators, such as the
reduced density operator, interaction Hamiltonian, and di-
(15) pole operator, will be denoted by the indsxo indicate the
stochasticity influence.
By elimination of the reservoir variables in E(L4) we
where o (ty) is the reduced system density operator at thehave
initial time in the interaction representation and is defined by
the trace over the reservoir stateg. is the reservoir distri-

. : o . ) 1 [t ~ ~ -
bution function at equilibrium given by Gt)=— = ft dt' TralH (), [Fis(t), a4t 1.
0

p(to) =7 (ty) ® pr,

_exp(—Hg/kgTRg) (21

PR Za (16)
After tracing over the reservoir variables, we combine the
Chapman-Kolmogorov equatiof20), which represents the
HereZg andTr are, respectively, the partition function and stochastic evolution of the random telegraph, with E4),
the temperature of the reservoir akg is the Boltzmann which represents the atomic dynamics. A master equation for

constant. the reduced density operator is derived in the interaction pic-
We need to define the Hamiltonian of the interaction betyre

tween the atomic system and the laser field without its cou-
pling with the bath. In the dipole approximation it reads

F(1)=2 WE Ty (1) +D(t), (22
V(t)=eFyz co§ wt+ @(t) +x(t)] (17 s’
in the case of phase fluctuations and where
Vih=eRlltx(D]zcogotte®] 18 Byp=- % f:dt'TrR[Fi.sm. [Fis(t), 5111 (23)
0

in the case of amplitude fluctuations, wheapeis the laser

frequency ana is the electron chargé, is the electric-field  is the time-dependent operator describing the dissipative ef-
amplitude(possibly fluctuating in magnitudl@nde(t) is the  fects induced by the coupling to the reservoir. In writing the
instantaneous phase of the laffrctuating around the mean expression oD(t) we have replace@(t) ~a<(t)® pgr Up
valug. We use an intense laser field affected by a temporajo second order in the coupling constants by its zeroth-order
stochastic process of jumps. These fluctuation meCha”iS”b?)proximate. Sincél,(t) is a periodic function in time, we
are described by the pre-Gaussian Markovian mofiéls  expjicitly construct the operatody(t). To this end, it is
10]. In particular, we adopt the simplest example of a two-pecessary to treat the interaction with the strong incoherent

state random telegraph, which is defined ®{t)==+a, |5ser field exactly and solve the corresponding Sdimger
V\{herea is the amount of the jump assigned to the SIOChaSt'%quation generated by the Hamiltonigin_, (t) by using the
signal. Floquet theory. According to Floquet's theordi25—29,

Since the telegraph process that we are considering here igere exists a complete set of solutions labeled by quantum
Markovian, the conditioned probability density function as- 3 ymbersa of the form

sociated with it, namelyp(s,t|sg,tg), is shown to satisfy the

Chapman-Kolmogorov equatidii—10,3q )y = expl— e tI) | b o(1)) (24

d 1 1
— p(s,t|Sp,te) = — = p(S,t|Sp,te) + = P(—S,t|Sy, o). , _ ,
dt P(S:t/so.to) T P(Sitisoto) T Pl So.to) wherefie, and| ¢, <(t)) are, respectively, the quasienergies

(19 and the eigenstates of Floquet theory. The time-evolution
operatorU(t) for the matter degrees of freedom in the Flo-

Heres, is the initial state of random telegraph at the titpe quet representatioft,2] is given by

In compact form[31] Eq. (19) is written as

%:2 weP, | 20 Uo(t) =expli €,t/%1)[ da,s(1) ) a,s(0)]. (29

dt

, In the interaction picture, the annihilation, creation, and di-
where W3 =(1M)[ 1 4] is the relaxation matrix com- pole operators, , aJT, andz, respectively take the forms
posed of the frequencies of the telegraph jumps process and

s ands’ are two different states of the random telegraph "aj=UT(t)ajU(t)=exp(—iwjt)aj, (26)
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a =expiojt)a) (27
and
Z(t)=UT(t)zU(t)
= EBk’ exl i €,5(K)11Z5.5(K) | b o)) b s(0)],

(28)

where

1) 27w
ZupslK)= g | At exi Kot} o012 540
9
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fa)=N p(ﬁwj) 1r (35)
(ajaj)=N(wj)=| ex KaTr .
N(w;j) is the photon number operator. Since the degrees of
freedom of the bath are infinite, we can make the substitution
Ejyjz---—>fda) J(w)--+, whereJ(w) is a function that is
proportional to the bath spectral density. To perform integra-
tion, which is present in the expression®(t) [Eq. (33)],
further conditions must be imposed on the reservoir to pre-
vent the energy, initially in the atomic system, from return-
ing from the heat bath to the system in any finite time, i.e.,
the coupling of the reduced system to the reservoir must be
treated as an irreversible process. At this stage, we make two
approximations.

(i) Equation(33) containsa(t') in the integral and hence

are the dipole matrix elements between Floquet states. TH8€ be,havior of the atomic system depends on its history
prime in the sum of Eq(28) indicates that only the triplets from t’=to to t. The motion of the atomic system is, how-

(a,B,k) that verify the conditiore,— €5+ ki w>0 will be

ever, damped by the coupling to the reservoir and damping

considered, with the purpose of eliminating the degeneratéestroys the knowledge of the past behavior of the system.
Floguet eigenstates. In order to calculate the dissipation optherefore, the first assumption is thaft) depends only on

eratorD(t), we follow the methodology formulated in Ref.

[1]. We have

His(t)= Eﬁk > yjleleas®—oltE o a +H.cl,
aBk

(30)
with H.c. the Hermitian conjugate,
Faps=|9as(0)){(#ps0)], (31
and
€,5(K)=€,— egtkhw, (32

where— o <k< +%. By taking into account Eq30), D(t)
reads

Bs(t) = 2 ’

t
X ﬁ dt,{<a}.aj>[A(t1t,)Faﬁ,s‘&s(t,)FBa,S
0

—AT(tLU)F gasFarpr sTs(t')]
(@) )[AT(LU)F go T st )F i s
— At )F up.sF prasos(t') ]+ H.CY, (33)
with
A(tt)=Z,5(K)Z5 0 (K EXRi[ €,5(K) — i1t}
xexpi[€qap (k) —wj]t'} (34)

and

its present valu@(t) (Markovian approximation[1,2].

(i) Let us consider an operatd® of the bath and its
time correlation functiof B(t—t’')B™). The reservoir is as-
sumed to be large and Markovian. Thus it is expected that
(B(t—t")B™) will be nonzero for some time interval
t—t'<rg, Whererg is the correlation time of the reservoir.
Interactions at timesandt’ become progressively less cor-
related for t—t'>7gz. The correlation function(B(t
—t")B™) is maximum att=t’. Therefore the upper bound
of integration in Eq(33) tends to infinity (—o).

With these two approximations and using the expression
for the initial timety— —oo,

f+wdt, eXp[i[w— farﬁr(k,)]t,}zz’ﬁé(w_ farﬁr(kl)),
(36)

the integro-differential equation reads

Dy=2m>" X'

a,B.k a/,,B,,kl

IMewp(K)]

X (N[egr g (KA (DF 450s(t")F ga s

— AT (OF go sF arpr (D ]+{1+ N[ €45 (KT}
XA (VF go sTs(DF 4 pr s

—A"(OF 45sFprar s0s(1)]+H.C), (37

where

A’ (1) =expli[ €ap(K) — €4 (K) 1t} Zap S(K) Z3, 0 (K').
(38)

This last quantity is maximal for

€.58(K)— €45 (K')=2n1, (39



4896 O. EL AKRAMINE, A. MAKHOUTE, M. ZITANE, AND M. TIJ PRA 58

wheren is a positive or negative integer. For the case of 1
n=0 only terms such asa, 8,k)=(a’,B',k’) must be kept

in Eq. (37). Equation(33) takes the final form

Dy(t)= Eﬁk Qo 5(K) (N[ €,5(K) H{F op.sT<(1),F o]

+[Faps:0s()F ga,slh+{1+Nle,p(K) 1}

X{[Fﬁa,sas(t) ’ Faﬁ,s] + [Fﬁ’a,s 15’5(0 Fa,ﬁ’,s]})v

with

Qo p(K) =27 €,5(K)1|Zaps(K)|%

By projecting on the Floquet bas{$¢, s(0))}, the master
equation for the diagonal and the off-diagonal elements

Tqa,s(t) @ando g s(t), respectively, read

&aa,s(t) = 2 var’a-aa,s’(t)

(40)

(41)

2 My o) =My Taas(D)] (42
and
&aﬁ,sm:g WE Tpsr (1)
—3 2 Moyt M) [Taps(t),  (43)
where the coefficientM ., are defined by
Maﬁ;z; {1+ N[ €,5(K) 134 5(K)
+N[€,p(K) 12 ga(K)) (44)
and their solutions are given by
?rw,s<t)=g [exp( = A10)]upssTpps(0)  (45)
and
aaﬁys(t):Es, [exp(—A20)],,ssTyps(0),  (46)
7.
where
Alypse=—WE 8,5~ | Mg,— 5aﬂ2ﬂ Mg, 8ss (47)
and

Populations

Populations

FIG. 1. Populationgr,, versus timgin units of the inverse Rabi
frequency()) for two-level atoms resonantly excited by an intense
electric laser field such that the Rabi frequefity 1 a.u. The emis-
sion spontaneous coefficiep;=Q/10° a.u.(a) The effects of both
noise and dissipation are neglectedherent laser and no coupling
to the reservoir. (b) Noise is absent and dissipation is considered.

A2y 59 =—WE 8oyt 38,,06¢ }nj (M, + MM)).
(48)
The theoretical expressions for populations and coherence of
guasienergie states, Eq45) and (46), respectively, have to

be transformed back into the atomic basis, which yieids
ando,, . In the Schrdinger picture we then obtain

s0) ==+ [Ho(D),0a(0]+ 3 WE o (0 +D(0),

(49
with
D4(t)=UyDUg , (50
Dy(t) = Zﬁk’ Qo) {1+ N[ €,,5(K) T}
><{[R;B,s(t)-Us(t)Ra,B,s(t)]
+[R;B,S(t)o-s(t)iRaﬁ,s(t)]}
+N[ €58k H[Rups(),os()R 5 (1]
+[Raﬁ,s(t)gs(t)’RZﬁ,s(t)]})l (5)

where
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1.0

QT =10 Qr=10

Populations
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ar=1 QT=1

i1

Populations

0 20 O 20

QT =0.1 QT=0.1
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’,f’
s
Y

0 20 0 20
Qt Qt

FIG. 2. Populationsr,, versus time(in units of the inverse Rabi frequendy) for two-level atoms resonantly excited by random
telegraph phase noise. Successive frames are for different values of the phase switching #afe$, 1, and 10. We use a strong laser field
such that the Rabi frequend) =1 a.u. The phase jump parameter0.47 and the emission spontaneous coefficigni=Q/10° a.u.
Column(A) represents the effects of phase noise. ColdB)nrepresents the same situation as colu@y but with the dissipative effects.

Rap.s(t) =Uo()F 45 Ug (1) projecting on the atomic basn)}, the master equation in
' the Schrdinger picture finally reads
:exq_l(ea_ Eﬁ)]|¢a,s(t)><¢ﬁ,s(t)| (52)

The main difficulty of typical problems lies in the correct /

averaging of the matrix density over all realizations of noise. ‘Tmn,s(t):Z W 0mnsr (1)

In fact, what is physically wanted ¥}, that is, the so- S

lution to the master equation in the atomic states and aver- i

aged over the ensemble of jumps of the implicit telegraph +2 (Dlm'n,s(t)+ 7 HO(t)m’n,s(t))Umm’,s(t)
X(t). To obtain{o,,/) one proceeds indirectly, by defining a m

marginal average,, s(t), given by the equation i
e +z Dlmm’,s(t)_ % HO(t)mm’,s 0'mm’,s(t)
m!

(Tan) =2 9(S)0nn s, (53

s + 2 D2mm’n’n,s(t)0'm’n’,s(t)r (54
m’,n’

whereg(s) is the initial probability distribution of the ran-

dom process and (t) the average value af,,/(t) un-

der the condition that(t) is fixed at the valus at timet. By ~ with the two terms responsible for the dissipation defined by
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A) (B)

Qr=1 QT =1

FIG. 3. Same as Fig. 2, but for an amplitude noise with the jump parametérl a.u. and three switching rat&sr=0.1, 1, and 100.

depend on time. This is the main difference from the usual

Dlmns()=— 2" Q0K optical Bloch equations. The physical interpretation of this
bk fact is the strong distortion of the atomic dipole moment,
X ({1+ N[eaﬁ(k)]}d)ma,s(t)d)ga,s(t) which is induced by the external laser field. Since the atom
couples to the environment via its dipole moment, the laser

+N[€aﬁ(k)]¢mﬁ,s(t)¢gﬁ,s) (55  field also strongly influences the dissipation prodeds

and
ll. RESULTS AND DISCUSSION

D2nmnns(t)=2 > Q,p(K){1+N[e,5(K) T} In this section we gather typical numerical results for the
a,Bk excitation and ionization of two-level atoms by strong laser

+ + fields in the presence of noise and dissipation mechanisms.
X bmp,s(1) Dy 4, o(1) b, s() i .s(1) To illustrate the effects of dissipation and laser noise on the
t atomic response, we present the evolution of atomic popula-
NL€ap(K) 1 bmas(V) b Bvs(t) tions o,,(t), which are obtained by numerical integration of
X d?n/ﬁ,s(t)(ﬂa,s(t)), (56)  the master equatio(b4). Our theoretical formalism is valid

for the general case of multilevel systems, but in order to

whereg,, s(t) are the Floquet states, which are projected orkeep the discussion simple we will restrict our application to
the atomic basig|n)}. the two-level atoms for which a detailed study of the dissi-
It is important to note that the general master equatiorpative nonlinear dynamics will be presented. Particular atten-
(54) contains dissipative term&5) and (56) that explicity  tion will be paid to the case of a strong laser field, where the
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FIG. 4. Same as Fig. 3, but for frequency noise.

dipole operator is taken between the Floquet eigenstatedriven by a strongoherent laser fielgufficiently intense to
{|¢..s(t))} rather than between unperturbed atomic statesemove a significant fraction of the population from the
{|m}. atomic ground state. One might think that the only conse-

We have established the effects of strong laser noise oguence of a field this intense would be to lower the overall
the atomic response and explored several features of differesponse of the atom. The optical field is nearly resonant
ent sources of noisphase, amplitude, and frequencyWe  with the allowed transition between discrete states of the
now concentrate our attention on the examination of quantwo-level atom. In the absence of spontaneous emission de-
tum dissipation induced by coupling to the reservoir andcay and ionization effects, Fig.(d represents the atomic
when the noise is added to the laser field. We choose theesponse without dissipation. The atomic system oscillates
inverse Rabi frequency) as the time unit to analyze the between the ground st and some other discrete leVa)
results obtained in terms of the noise magnitude. We arand we have ordinary Rabi oscillations. In Figb)lthe dis-
interested in a large light intensity such that the Rabi fresipation effect introduces a damping of Rabi oscillations. If
guency is set equal to the atomic un@2 €1 a.u.). This cer- damping effects are present, we expect that the Rabi oscilla-
tainly is a very strong intensity. tions will eventually become damped out and the popula-
tion’s difference will approach some steady-state value for a
large scale of time. Hence Rabi oscillations are not present in
the steady state.

It is interesting to note the presence of an irregular behav-

We begin by representing the effects of quantum dissipaior of the oscillations of the two populations for a strong
tion on the atomic response. Figurgs)land Xb) show the laser field. In fact, we observe small oscillations that super-
time evolution of populations of a two-level atomic systempose the Rabi oscillations; their amplitude is weak and dis-

A. Dissipative nonlinear quantum dynamics
in the excitation of two-level systems
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appears when the electric field strendth becomes small 1 - —— ———
with respect to the atomic unit of the field strength. These | QT=01 no “/h/s,smam’“/
little oscillations represent the fast nonrotating variable = -
phases eqpti(w+w,)t] in the laser-atom interaction, § 74{/?,_7 e e
which is treated in a nonperturbative wéloquet theory. dcf ) "’/'/ dissipation only
Figure 2 shows some typical results. We take into account ¢ |/ / .~
both laser phase noise and dissipation influences. We have a & |/ / /Withnoise I
phase jumpa=0.47 and three switching rateQT=0.1, 1, S | // - without noise
and 10. We display the time evolution populations in two .2 | /,-
columns. In column(A) only the effect of laser noise is 0 L (a)

considered. We remark, in this case, that for a switching rate
QT=1, i.e., the noise frequencyTlis of the same size order
as the Rabi frequenc§?, a destruction of the atomic coher-
ence is observed. The damping rate is strong and the relax- 1
ation to the steady state is rapid. The Rabi oscillations are QT=1
restored when we consider the case of slow fluctuations
(Q2T=10) and fast fluctuation(}T=0.1) and the damping
rate is weak. ColumiiB) represents the same situation, but
with the laser noise of the dissipative terfisee Eqs(55)
and(56)]. The behavior is similar to that of colum#), but

the damping rate is more intense. For a switching faie
=0.1, a partial destruction of the atomic coherence is in- i
duced by the dissipation effects. The kinetics of the popula- 0 L (b)
tion relaxation is more rapid than in colungA). One of the

effects of the quantum dissipation is the breaking of the
atomic coherence especially ffT=0.1 and the establish- £ 5. |onization probability,(t) versus timein units of the

ment of the dynamical localization regime fdT=1. In  jyverse Rabi frequencg). The parameters are the same as in the
Fig. 3 we plot the time evolution of two-level atom popula- previous figures. The relaxation rate from bound states to the con-
tions in two situations: In the first we neglect the effect of tinuum is R,.=/100. (a) Dotted line, P;(t) in the absence of
quantum dissipatioficolumn(A)] and consider only an am- noise and dissipation; dashed line, only the effect of phase noise for
plitude telegraph noise and in the second we combine th@T=0.1 is considered; dash-dotted line, only the effect of dissipa-
influences of noise and quantum dissipation. We have ation is considered; solid line, the effects of both noise and dissipa-
amplitude jumpa=0.1a.u. and three different switching tion are consideredb) Same aga), but for an amplitude noise with
ratesQT=0.1, 1, and 100. ColumpA) shows pronounced QT=1.

guasioscillations. We note a very weak dampind)at=1
and 100 and rapid relaxation f&®@ T=0.1 with respect to ; A
QT=1 and 100. In order to lead the system to the stead ve take into account guantum dissipation, the two popula-

state we must use a larger number of Rabi periods than in tllf)eoncso[]elﬁﬁ tot:rt]hzqggltﬁni?\?rqoztl?éee.s-r:icgrrfrlrgg ggftijgggﬁﬁ
case of phase fluctuations. ColurfB) shows behavior simi- y piing P

lar to that in column(A). The complicated structure of these the atomic coherence. The kinetics of relaxation and rate
mping decreases from the case of fast fluctuations

curves is a consequence of the action of the amplitude Iasfra .
: . T=0.1) to slow fluctuations@T=100).
noise on the reduced system dynamics. In fact, one observ 9 n Figs. 2 and 4 the comparison between colutisand

) i o |
a separation between the two occupation probabilities. Eac N .

: : : shows that the dissipation that behaves as nsmal
populationay(t) ando,(t) performs independently irregu- &(?ise leads the systemp to an equilibrium statre( with rapid

lar illations, which conver tionar te. Asg. 7 X )
ar osciiations, ch converge to a stationary state. As ilnetlcs of relaxation. The damping rates become large when

constraint on the phase, the addition of dissipation in Fig. . SR
[column (B)] introduces a weakness of the damping. we introduce the .d|SS|pat|on tgrrﬁsolumn(B)]. W.e C"?af'y
see the destruction of atomic coherence, which increases

Figure 4 illustrates the case of frequency fluctuations:.

This kind of noise is introduced by collisional effects. The yvhen we take into account dissipation. The dynamical local-

transition frequencyw,; can also fluctuate around its fixed ization regime appears for phase and frequency noises. How-

value. The simplest model of such interruption collisionsVe" Fig. 3 shows important asymmetries. This behavior

; o is justified by the fact that in the case of amplitude fluctua-
9.1 assumes that the atomic transition frequensy, tions, the jump parametex; assigned to stochastic processes
should be replaced by (t) = wy+x(t). We have a jump » (e Jump p . assig p

N . : appears in terms of the laser intensky(1+a), while in
parametera=0.1 a.u. and three different frequency switch- . .
: .~ . the case of phase noise the dependence occurs in terms of
ing ratesQT=1, 10, and 100. Note the damped quasiperi-. (-ia)
odic oscillations in column(A). QT=10 corresponds to pi1a).
strong damping without any convergence to a steady state.
The relaxation to an equilibrium state of valgés clear for
a switching rateQT=1. The damping becomes weak for
(T=100 and two independent beat phenomena are ob- We have established a formal framework for the excita-
served. The complicated time evolution of populations is aion of atoms by laser noise in the presence of the reservoir

0 Ot 100

Ionization Probability

0 Ot 100

result of Rabi oscillation interference. In coluni), where

B. Dissipative nonlinear quantum dynamics
in the ionization of two-level systems
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FIG. 6. ColumngA) and(B) are the same as Figs(a and 2b), respectively, but take into account the ionization process represented
by the probabilityP,,(t). The relaxation rate from bound states to the continuufRyjs=/100.

action and explored some of its general predictions. We turations where noise and dissipation are neglected, only the
now to the examination of ionization effects on the popula-noise is considered, only the dissipation effect is retained,
tions and the illustration of the modifications generated byand both noise and dissipation exist. In Figa)5we have
the different kinds of noise and quantum dissipation on theonsidered a phase noisea# 0.47. The results depend on
ionization rates. In order to analyze the ionization effects wehe fluctuations time scale (Ily compared to the other char-
adopt the extended two-level system model proposed by Yehcteristic time scales of the problem such as the Rabi fre-
and Eberly{14,32. The computation of ionization probabil- quency. The minimum variations of the ionization prob-
ity is made by the incorporation of the term responsible forability are obtained, where we neglect both noise and
ionization [—Tecomns, With  7ec=RncSmnt L/2(Rme dissipation. When we take into account dissipation, the ion-
+Rno) (1 8mp) andR, the relaxation rate from the excited ization probability increases. For a large Rabi period, the
state|n) to the continuumlc)] in the motion equatiori54).  phase fluctuation effect is more important than the reservoir
The trace ofo over a complete set of atomic states leads taaction. In fact, the ionization probability rapidly increases
the expressioP;,,(t) = 1—Eﬁ:1¢rnn for the total ionization when we introduce phase fluctuations corresponding to
probability of the systenj4,13,33. QT=0.1. In the presence of dissipation terms, the ioniza-
We begin by showing successively the effects of lasetion probability variations remain almost constant. We con-
noise and reservoir dissipation on the ionization probability.clude that noise and dissipation rapidly lead the atom to the
As illustrated in Fig. 5, we have plotted the total ionizationionization states. Figure(B) shows the amplitude noise,
as a function of Rabi periods. We have an intense electrigvhere the jump parameter=0.1 a.u. and a switching rate
laser field such a§l=1 a.u. and a resonant laser frequency.QT=1. The behavior is similar to that observed in Figg)5
The four curves of Fig. 5 correspond respectively to the situbut the amplitude noise effect is very weak. The technique
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FIG. 7. ColumngA) and(B) are the same as Figs(/ and 3B), respectively, but take into account the ionization process represented
by the probabilityP;,,(t). The relaxation rate from bound states to the continuuR,js=/100.

that we have used will be applied subsequently to frequencylissipative effects are considered. Figure 7 displays the same

noise. behavior as in Fig. 6, but for an amplitude noise.
A plot that gives a pictorial sense of how ionization pro-
ceeds in time is given in Fig. 6. The total probability of V. CONCLUSION

ionization P;,,(t) as a function of the Rabi period is plotted

together with the occupation probabilities of bound states. In this paper we have investigated at length the nonlinear
The oscillations in these curves reflect the Rabi oscillationglynamics of dissipative quantum atomic systems subjected
of the atom between the resonantly coupled stdjesnd|2).  to the action of a heat bath and periodically driven by a
These oscillations are damped by ionization on a small numstrong laser field that is affected by classical noise. We have
ber of Rabi frequencies. This behavior is well known fromderived and solved a master equation for atoms in strong
the study of bound states coupled by an intense field. Colroisy laser fields and in the presence of reservoir dissipative
umn (A) of Fig. 6 shows the response of a two-level systemeffects. Such an equation, based on the Floquet states rather
in the presence of phase noise dodlumn(B)] by consid-  than the unperturbed atomic states, has given typical and
ering the effect of dissipation. The parameters are the samateresting results concerning the atomic dynamics. In fact,
as in Fig. 2. The populations, which have not been losive have demonstrated how the master equation formalism,
through direct ionization to the atomic continuum, oscillatethe Floquet theory, the pre-Gaussian models of laser noise,
in the same manner as in the absence of the ionization effecnd the Markovian coupling of a quantum system to an en-
but there is a progressive decay to a zero probability. Th@ironment can be combined together to tackle a general the-
ionization probability can be viewed as dominant in a feworetical formalism and be used as a powerful tool for the
Rabi periods and increases rapidly in time when the quanturdetailed analysis of the interaction of an atomic system with
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an intense incoherent laser field and with a large reservoir.amplitude fluctuations show a different behavior. We have
We have shown that the dissipation terms, which are timalso analyzed the modifications induced by ionization ef-

dependent with respect to those in the Bloch equations, forctects.

the system to settle to some “preferred state,” that is, the

dynamical Iocahzapon regime observed in the cgses'of phase ACKNOWLEDGMENTS
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