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Theoretical study of quantum dissipation and laser-noise effects on the atomic response
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The nonlinear dynamics of dissipative quantum systems in incoherent laser fields is studied in the frame-
work of a master equation with the random telegraph model describing the laser noise and the Markovian
approximation dealing with the system-bath couplings. Floquet theory and time-dependent perturbation meth-
ods are used to facilitate both analytical and numerical solutions. We develop a theoretical formalism that
provides a powerful tool for the detailed analysis of the dissipative quantum dynamics of multilevel systems
driven by intense stochastic laser fields. It is found that the system relaxes to a steady state from the effect of
the laser phase and frequency noise and the kinetics of this relaxation increases with the addition of dissipative
terms, introduced by the coupling to the reservoir. Amplitude fluctuations show a different behavior. Other
results concerning the destruction of quantum coherence and the dynamical localization will be established and
further relaxation mechanisms such as spontaneous emission and the ionization process will also be consid-
ered.@S1050-2947~98!02312-9#

PACS number~s!: 42.50.Lc, 42.50.Ct
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I. INTRODUCTION

The time evolution of quantum systems, which are driv
by an external field and in contact with a heat bath~reser-
voir! has received a great deal of attention in recent ye
@1–4#. In quantum optics, such systems are investigated
the dressed-atom picture of resonance fluorescence@5#,
where a beam of atoms interacts with a coherent laser
and all the electromagnetic modes of the vacuum@6#. More-
over, it is now recognized that nearly all types of laser-at
interactions can be strongly affected by laser noise. Inde
one practical reason for this fact is the use, in experiments
high powers obtained in pulsed operation, at the expens
poorly stabilized laser beams. Furthermore, real atoms e
rience a fluctuating environment of many perturbing inter
tions and ideal lasers exist only in theoretical models, wh
the used laser sources are subjected to many types of
tuations notably in phase, amplitude, and frequency@7–10#.
Other kinds of fluctuations due to collisional effects can
fect the atomic transition frequencies@9,11#. Therefore, we
cannot establish, without taking into account the dissipa
action of the environment and the statistical properties of
laser light, a rigorous comparison between theoretical pre
tions and experimental results.

Different approaches to the dissipative dynamics of op
quantum systems in strong external fields have been
posed and applied to the description of atoms under the
fluence of thermal noise@1–4#. While for the incoherence o
laser field a series of models, all based on so-called
Gaussian Markovian processes@7–10#, have been used in
order to describe the stochastic behavior of the laser fiel
is important to mention a few technical features of the
models. They are based on the two-state random telegr
They are not Gaussian models but rather pre-Gaussian,
a Gaussian limit@8#. Our choice of the random telegraph
based on the simplicity of this model, which permits a u
fied treatment of different noisy lasers in phase, amplitu
PRA 581050-2947/98/58~6!/4892~12!/$15.00
n

rs
in

ld

d,
of
of
e-
-
e
c-

-

e
e
c-

n
o-
n-

e-

It
e
h.

ith

-
,

and frequency. Several works have reported on the actio
random process on a two-level system@7–10,12–15#, par-
ticularly the evolution populationssnn and the ionization
probability.

In the present paper we elucidate the role of quant
dissipation and laser noise on the atomic response. For
purpose we derive a master equation, which provides a g
eral framework for the dynamics of atoms interacting w
strong laser noise and a thermal reservoir.

The basic idea underlying the theoretical formalism
that paper is to take into account the exact dynamics of
interaction between an atomic system and an external fi
by employing the Floquet basis for the reduced system ra
than the stationary unperturbed states@1,2#. The interaction
of the laser-atom system with the reservoir will be treated
the time-dependent perturbation theory, which leads t
generalized quantum master equation for the reduced de
matrix. Such a statistical fundamental equation, introduce
quantum optic by Burshtein@16–18#, contains information
concerning the atomic transition dynamics, the stocha
evolution of laser field fluctuations, and the dissipati
mechanisms. We are concerned here with an impor
theme of contemporary research, namely, the interplay
tween quantum coherence and external noise. In fact,
destruction of quantum coherence by noise is central to m
fields and is reflected in the many papers recently publis
on this subject@19–23#.

Our computations are made at an exact resonance, w
the effects of spontaneous emission are important@24#, and
for a strong laser field, where the probability to realize
ionization of atoms is highest. Therefore, we shall extend
theory here by the inclusion of the relaxation rates cor
sponding to the spontaneous emission and the ionization
cesses and present the corresponding numerical results.

The theory is developed in Sec. II by considering the c
of the strong laser-atom interaction in the presence of la
noise and dissipative effects, which are introduced by
4892 © 1998 The American Physical Society
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PRA 58 4893THEORETICAL STUDY OF QUANTUM DISSIPATION . . .
coupling to the reservoir. Within the framework of th
Floquet representation and the Markovian approximati
detailed theoretical calculations are feasible to obtain the
duced matrix density elements. The account of Floq
theory given here is rather brief since the theory has b
discussed at length in the recent literature~see, e.g., Refs
@25–29#!. Moreover, the influence of the ionization proce
on the response atomic function is presented. Numer
results concerning a model of the two-level system are p
sented in Sec. III. A summary of our results is given
Sec. IV.

II. THEORY

We consider an atomic system that interacts with an
ternal classical laser field. Moreover, the laser-atom sys
is coupled to a quantified radiation field in thermal equil
rium. In the following we will consider the behavior of th
atom coupled to a reservoir with many degrees of freedo

The aim of this paper is to provide a description of t
dynamics in terms of the degrees of freedom of the ato
system alone by elimination of the reservoir variables. Si
the atoms are driven strongly by an external laser field,
master equation is based on the atomic Floquet states r
than the unperturbed atomic states.

The total Hamiltonian governing the dynamics of t
coupled system of matter and radiation degrees of freed
takes the form

H~ t !5HA-L~ t !1H11HR , ~1!

whereHA-L(t) is the total Hamiltonian of the atomic syste
and the external laser field, without an interaction with t
reservoir, given by

HA-L~ t !5HA1V~ t !1HSE, ~2!

with HA the stationary atomic Hamiltonian,V(t) the dipole
interaction between the atomic system and the laser fi
and HSE the Hamiltonian of the simultaneous emissio
which reads

HSE52
\

2
G, ~3!

whereG is a diagonal matrix composed of the Einstein c
efficients of the spontaneous emission process and is de
by @29#

Gnn5 (
n8,n

gnn8
SE . ~4!

Heregnn8
SE is the radiative decay rate.

The Hamiltonian that describes the coupling between
matter degrees of freedom and the quantified radiation fi
may be written in the dipole approximation as

HI5\(
j

z~g jaj1aj
†g j* !, ~5!

whereg j are the coupling constants,aj
† andaj are the quan-

tum creation and annihilation operators, andz denotes the
,
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component of the dipole operator on theOZ axis. The free
Hamiltonian of the reservoir is represented by

HR5\(
j

v j~aj
†aj1

1
2 !, ~6!

with v j the frequency corresponding to thej th mode of the
free quantified radiation.

The von Neumann equation for the statistical operator
of the total system reads

i\
]r

]t
5@H~ t !,r#. ~7!

We introduce the interaction representation to treat Eq.~7!
and we set

H0~ t !5HA-L~ t !1HR , ~8!

which is the time-dependent unperturbed Hamiltonian. T
evolution operator corresponding to this Hamiltonian
given by

U~ t !5U0~ t ! ^ UR~ t ! ~9!

and

U~ t !5FexpH 2
i

\ E
0

t

HA-L~ t8!dt8J G
1

3expS 2
i

\
HRt D , ~10!

where @ #1 is a time-ordering operator. In the interactio
representation, the total density operatorr(t) and the inter-
action HamiltonianH1 take the forms

r̃~ t !5U†~ t !r~ t !U~ t ! ~11!

and

H̃I~ t !5U†~ t !HIU~ t ! ~12!

and the dynamic equation~7! becomes

i\
]r̃~ t !

]t
5@H̃I~ t !,r̃~ t !#. ~13!

We assume that the interaction between the atomic sys
and the reservoir is weak so that the coupling consta
g j→0 andg j

2t5const fort→`. Under these conditions, Eq
~13! will be treated by the time-dependent perturbati
theory. At second order inH̃I , this reads

]r̃~ t !

]t
5

1

i\
@H̃I~ t !,r̃~ t0!#

2
1

\2 E
t0

t

dt8†H̃I~ t !,@H̃I~ t8!,r̃~ t8!#‡. ~14!
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In writing Eq. ~14! it has been assumed that the interaction
adiabatically switched on at timet0→2`. Prior to this, the
atomic system and the reservoir are uncorrelated and th
tal density matrix is given by the direct product

r̃~ t0!5s̃~ t0! ^ rR , ~15!

where s̃(t0) is the reduced system density operator at
initial time in the interaction representation and is defined
the trace over the reservoir states.rR is the reservoir distri-
bution function at equilibrium given by

rR5
exp~2HR /kBTR!

ZR
. ~16!

HereZR andTR are, respectively, the partition function an
the temperature of the reservoir andkB is the Boltzmann
constant.

We need to define the Hamiltonian of the interaction b
tween the atomic system and the laser field without its c
pling with the bath. In the dipole approximation it reads

V~ t !5eF0z cos@vt1w~ t !1x~ t !# ~17!

in the case of phase fluctuations and

V~ t !5eF0@11x~ t !#z cos@vt1w~ t !# ~18!

in the case of amplitude fluctuations, wherev is the laser
frequency ande is the electron charge.F0 is the electric-field
amplitude~possibly fluctuating in magnitude! andw(t) is the
instantaneous phase of the laser~fluctuating around the mea
value!. We use an intense laser field affected by a tempo
stochastic process of jumps. These fluctuation mechan
are described by the pre-Gaussian Markovian models@7–
10#. In particular, we adopt the simplest example of a tw
state random telegraph, which is defined byx(t)56a,
wherea is the amount of the jump assigned to the stocha
signal.

Since the telegraph process that we are considering he
Markovian, the conditioned probability density function a
sociated with it, namely,p(s,tus0 ,t0), is shown to satisfy the
Chapman-Kolmogorov equation@7–10,30#

]

]t
p~s,tus0 ,t0!52

1

T
p~s,tus0 ,t0!1

1

T
p~2s,tus0 ,t0!.

~19!

Heres0 is the initial state of random telegraph at the timet0 .
In compact form@31# Eq. ~19! is written as

dPs

dt
5(

s8
Ws

s8Ps8 , ~20!

where Ws
s85(1/T)@ 1

21
21

1 # is the relaxation matrix com
posed of the frequencies of the telegraph jumps process
s and s8 are two different states of the random telegra
s
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(s51,2), corresponding to the telegraph signal amplitu
$2a,1a%. T denotes the dwell time~i.e., the mean time
between interruptions! of the telegraph. In the following, in
the presence of the noise, all physical operators, such as
reduced density operator, interaction Hamiltonian, and
pole operator, will be denoted by the indexs to indicate the
stochasticity influence.

By elimination of the reservoir variables in Eq.~14! we
have

s8 s~ t !52
1

\2 E
t0

t

dt8TrR†H̃Is~ t !,@H̃Is~ t8!,s̃s~ t8!#‡.

~21!

After tracing over the reservoir variables, we combine t
Chapman-Kolmogorov equation~20!, which represents the
stochastic evolution of the random telegraph, with Eq.~21!,
which represents the atomic dynamics. A master equation
the reduced density operator is derived in the interaction
ture

s8 s~ t !5(
s8

Ws
s8s̃s8~ t !1D̃s~ t !, ~22!

where

D̃s~ t !52
1

\2 E
t0

t

dt8TrR†H̃Is~ t !, @H̃Is~ t8!,s̃s~ t8!#‡ ~23!

is the time-dependent operator describing the dissipative
fects induced by the coupling to the reservoir. In writing t
expression ofD̃s(t) we have replacedr̃s(t)'s̃s(t) ^ rR up
to second order in the coupling constants by its zeroth-or
approximate. SinceH̃Is(t) is a periodic function in time, we
explicitly construct the operatorU0(t). To this end, it is
necessary to treat the interaction with the strong incohe
laser field exactly and solve the corresponding Schro¨dinger
equation generated by the HamiltonianHA-L(t) by using the
Floquet theory. According to Floquet’s theorem@25–29#,
there exists a complete set of solutions labeled by quan
numbersa of the form

ucs
a~ t !&5exp~2 i eat/\!ufa,s~ t !&, ~24!

where\ea and ufa,s(t)& are, respectively, the quasienergi
and the eigenstates of Floquet theory. The time-evolut
operatorU0(t) for the matter degrees of freedom in the Fl
quet representation@1,2# is given by

U0~ t !5exp~ i eat/\!ufa,s~ t !&^fa,s~0!u. ~25!

In the interaction picture, the annihilation, creation, and
pole operatorsaj , aj

† , andz, respectively take the forms

ã j5U†~ t !ajU~ t !5exp~2 iv j t !aj , ~26!
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ã j
†5exp~ iv j t !aj

† ~27!

and

z̃s~ t !5U†~ t !zU~ t !

5 ( 8
a,b,k

exp@ i eab~k!t#Zab,s~k!ufa,s~ t !&^fa,s~0!u,

~28!

where

Zab,s~k!5
v

2p E
0

2p/v

dt exp@2 ikvt#^fa,s~ t !uzufb,s~ t !&

~29!

are the dipole matrix elements between Floquet states.
prime in the sum of Eq.~28! indicates that only the triplets
(a,b,k) that verify the conditionea2eb1k\v.0 will be
considered, with the purpose of eliminating the degene
Floquet eigenstates. In order to calculate the dissipation
eratorD̃s(t), we follow the methodology formulated in Re
@1#. We have

H̃Is~ t !5 ( 8
a,b,k

(
j

g j@ei @eab~k!2v j #tFab,saj1H.c.#,

~30!

with H.c. the Hermitian conjugate,

Fab,s5ufa,s~0!&^fb,s~0!u, ~31!

and

eab~k!5ea2eb1k\v, ~32!

where2`,k,1`. By taking into account Eq.~30!, D̃s(t)
reads

D̃s~ t !5 ( 8
a,b,k

( 8
a8,b8,k8

(
j

g j
2

3E
t0

t

dt8$^aj
†aj&@A~ t,t8!Fab,ss̃s~ t8!Fba,s

2A1~ t,t8!Fba,sFa8b8,ss̃s~ t8!#

1^ajaj
†&@A1~ t,t8!Fba,ss̃s~ t8!Fa8b8,s

2A~ t,t8!Fab,sFb8a,ss̃s~ t8!#1H.c.%, ~33!

with

A~ t,t8!5Zab,s~k!Zb8a8,s
* ~k8!exp$ i @eab~k!2v i #t%

3exp$ i @ea8b8~k8!2v j #t8% ~34!

and
he

te
p-

^aj
†aj&5N~v j !5FexpS \v j

kBTR
D21G21

. ~35!

N(v j ) is the photon number operator. Since the degree
freedom of the bath are infinite, we can make the substitu
( jg j

2
¯→*dv J(v)¯ , whereJ(v) is a function that is

proportional to the bath spectral density. To perform integ
tion, which is present in the expression ofD̃s(t) @Eq. ~33!#,
further conditions must be imposed on the reservoir to p
vent the energy, initially in the atomic system, from retur
ing from the heat bath to the system in any finite time, i.
the coupling of the reduced system to the reservoir mus
treated as an irreversible process. At this stage, we make
approximations.

~i! Equation~33! containss̃s(t8) in the integral and hence
the behavior of the atomic system depends on its hist
from t85t0 to t. The motion of the atomic system is, how
ever, damped by the coupling to the reservoir and damp
destroys the knowledge of the past behavior of the syst
Therefore, the first assumption is thats8 (t) depends only on
its present values̃s(t) ~Markovian approximation! @1,2#.

~ii ! Let us consider an operatorB of the bath and its
time correlation function̂B(t2t8)B1&. The reservoir is as-
sumed to be large and Markovian. Thus it is expected t
^B(t2t8)B1& will be nonzero for some time interva
t2t8,tR , wheretR is the correlation time of the reservoi
Interactions at timest and t8 become progressively less co
related for t2t8@tR . The correlation function ^B(t
2t8)B1& is maximum att5t8. Therefore the upper boun
of integration in Eq.~33! tends to infinity (t→`).

With these two approximations and using the express
for the initial time t0→2`,

E
2`

1`

dt8 exp$ i @v2ea8b8~k8!#t8%52pd„v2ea8b8~k8!…,

~36!

the integro-differential equation reads

D̃s~ t !52p ( 8
a,b,k

( 8
a8,b8,k8

J@ea8b8~k8!#

3„N@ea8b8~k8!#@A8~ t !Fab,ss̃s~ t8!Fba,s

2A81~ t !Fba,sFa8b8,ss̃s~ t !#1$11N@ea8b8~k8!#%

3@A81~ t !Fba,ss̃s~ t !Fa8b8,s

2A8~ t !Fab,sFb8a8,ss̃s~ t !#1H.c.…, ~37!

where

A8~ t !5exp$ i @eab~k!2ea8b8~k!#t%Zab,s~k!Za8b8,s
* ~k8!.

~38!

This last quantity is maximal for

eab~k!2ea8b8~k8!52np, ~39!
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where n is a positive or negative integer. For the case
n50 only terms such as (a,b,k)5(a8,b8,k8) must be kept
in Eq. ~37!. Equation~33! takes the final form

D̃s~ t !5 ( 8
a,b,k

Vab~k!„N@eab~k!#$@Fab,ss̃s~ t !,Fba,s#

1@Fab,s ,s̃s~ t !Fba,s#%1$11N@eab~k!#%

3$@Fba,ss̃s~ t !,Fab,s#1@Fba,s ,s̃s~ t !Fab,s#%…,

~40!

with

Vab~k!52pJ@eab~k!#uZab,s~k!u2. ~41!

By projecting on the Floquet basis$ufa,s(0)&%, the master
equation for the diagonal and the off-diagonal eleme
s̃aa,s(t) and s̃ab,s(t), respectively, read

s8 aa,s~ t !5(
s8

Ws
s8s̃aa,s8~ t !

1( 8
g

@Mgas̃gg,s~ t !2Mags̃aa,s~ t !# ~42!

and

s8 ab,s~ t !5(
s8

Ws
s8s̃ab,s8~ t !

2 1
2 F( 8

g
~Mag1Mbg!G s̃ab,s~ t !, ~43!

where the coefficientsMab are defined by

Mab52(
k

„$11N@eab~k!#%Vab~k!

1N@eab~k!#Vba~k!… ~44!

and their solutions are given by

s̃aa,s~ t !5 (
b,s8

@exp~2L1t !#ab,ss8s̃bb,s8~0! ~45!

and

s̃ab,s~ t !5(
g,s8

@exp~2L2t !#ag,ss8s̃gb,s8~0!, ~46!

where

L1ab,ss852Ws
s8dab2S Mba2dab(

h
MahD dss8 ~47!

and
f

s

L2ag,ss852Ws
s8dag1 1

2 dagdss8S ( 8
h

~Mah1Mbh! D .

~48!

The theoretical expressions for populations and coherenc
quasienergie states, Eqs.~45! and~46!, respectively, have to
be transformed back into the atomic basis, which yieldssnn
andsnn8 . In the Schro¨dinger picture we then obtain

ṡs~ t !52
i

\
@H0~ t !,ss~ t !#1(

s8
Ws

s8ss8~ t !1Ds~ t !,

~49!

with

Ds~ t !5U0D̃sU0
1 , ~50!

Ds~ t !5 ( 8
a,b,k

Vab~k!„$11N@eab~k!#%

3$@Rab,s
1 ~ t !,ss~ t !Rab,s~ t !#

1@Rab,s
1 ~ t !ss~ t !,Rab,s~ t !#%

1N@eab~k!#$@Rab,s~ t !,ss~ t !Rab,s
1 ~ t !#

1@Rab,s~ t !ss~ t !,Rab,s
1 ~ t !#%…, ~51!

where

FIG. 1. Populationssnn versus time~in units of the inverse Rab
frequencyV! for two-level atoms resonantly excited by an inten
electric laser field such that the Rabi frequencyV51 a.u. The emis-
sion spontaneous coefficientg215V/105 a.u.~a! The effects of both
noise and dissipation are neglected~coherent laser and no couplin
to the reservoir!. ~b! Noise is absent and dissipation is considere
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FIG. 2. Populationssnn versus time~in units of the inverse Rabi frequencyV! for two-level atoms resonantly excited by rando
telegraph phase noise. Successive frames are for different values of the phase switching ratesVT50.1, 1, and 10. We use a strong laser fie
such that the Rabi frequencyV51 a.u. The phase jump parametera50.4p and the emission spontaneous coefficientg215V/105 a.u.
Column ~A! represents the effects of phase noise. Column~B! represents the same situation as column~C!, but with the dissipative effect
ct
se

ve
p
a

-

by
Rab,s~ t !5U0~ t !Fab,sU0
1~ t !

5exp@2 i ~ea2eb!#ufa,s~ t !&^fb,s~ t !u. ~52!

The main difficulty of typical problems lies in the corre
averaging of the matrix density over all realizations of noi
In fact, what is physically wanted iŝsnn8&, that is, the so-
lution to the master equation in the atomic states and a
aged over the ensemble of jumps of the implicit telegra
x(t). To obtain^snn8& one proceeds indirectly, by defining
marginal averagesnn8,s(t), given by the equation

^snn8&5(
s

g~s!snn8,s , ~53!

whereg(s) is the initial probability distribution of the ran
dom process andsnn8,s(t) the average value ofsnn8(t) un-
der the condition thatx(t) is fixed at the values at timet. By
.

r-
h

projecting on the atomic basis$un&%, the master equation in
the Schro¨dinger picture finally reads

ṡmn,s~ t !5(
s8

Ws
s8smn,s8~ t !

1(
m8

S D1m8n,s~ t !1
i

\
H0~ t !m8n,s~ t ! Dsmm8,s~ t !

1(
m8

S D1mm8,s~ t !2
i

\
H0~ t !mm8,sDsmm8,s~ t !

1 (
m8,n8

D2mm8n8n,s~ t !sm8n8,s~ t !, ~54!

with the two terms responsible for the dissipation defined
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FIG. 3. Same as Fig. 2, but for an amplitude noise with the jump parametera50.1 a.u. and three switching ratesVT50.1, 1, and 100.
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D1mn,s~ t !52 ( 8
a,b,k

Vab~k!

3„$11N@eab~k!#%fma,s~ t !fna,s
† ~ t !

1N@eab~k!#fmb,s~ t !fnb,s
†

… ~55!

and

D2mm8n8n,s~ t !52 ( 8
a,b,k

Vab~k!„$11N@eab~k!#%

3fmb,s~ t !fm8a,s
†

~ t !fn8a,s~ t !fn,b,s
† ~ t !

1N@eab~k!#fma,s~ t !fm8b,s
†

~ t !

3fn8b,s~ t !fna,s
† ~ t !…, ~56!

wherefna,s(t) are the Floquet states, which are projected
the atomic basis$un&%.

It is important to note that the general master equat
~54! contains dissipative terms~55! and ~56! that explicitly
n

n

depend on time. This is the main difference from the us
optical Bloch equations. The physical interpretation of th
fact is the strong distortion of the atomic dipole mome
which is induced by the external laser field. Since the at
couples to the environment via its dipole moment, the la
field also strongly influences the dissipation process@2#.

III. RESULTS AND DISCUSSION

In this section we gather typical numerical results for t
excitation and ionization of two-level atoms by strong las
fields in the presence of noise and dissipation mechanis
To illustrate the effects of dissipation and laser noise on
atomic response, we present the evolution of atomic pop
tionssnn(t), which are obtained by numerical integration
the master equation~54!. Our theoretical formalism is valid
for the general case of multilevel systems, but in order
keep the discussion simple we will restrict our application
the two-level atoms for which a detailed study of the dis
pative nonlinear dynamics will be presented. Particular att
tion will be paid to the case of a strong laser field, where
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FIG. 4. Same as Fig. 3, but for frequency noise.
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dipole operator is taken between the Floquet eigenst
$ufa,s(t)&% rather than between unperturbed atomic sta
$un&%.

We have established the effects of strong laser noise
the atomic response and explored several features of di
ent sources of noise~phase, amplitude, and frequency!. We
now concentrate our attention on the examination of qu
tum dissipation induced by coupling to the reservoir a
when the noise is added to the laser field. We choose
inverse Rabi frequencyV as the time unit to analyze th
results obtained in terms of the noise magnitude. We
interested in a large light intensity such that the Rabi f
quency is set equal to the atomic unit (V51 a.u.). This cer-
tainly is a very strong intensity.

A. Dissipative nonlinear quantum dynamics
in the excitation of two-level systems

We begin by representing the effects of quantum diss
tion on the atomic response. Figures 1~a! and 1~b! show the
time evolution of populations of a two-level atomic syste
es
s

n
r-

-
d
he

re
-

-

driven by a strongcoherent laser fieldsufficiently intense to
remove a significant fraction of the population from th
atomic ground state. One might think that the only con
quence of a field this intense would be to lower the ove
response of the atom. The optical field is nearly reson
with the allowed transition between discrete states of
two-level atom. In the absence of spontaneous emission
cay and ionization effects, Fig. 1~a! represents the atomi
response without dissipation. The atomic system oscilla
between the ground stateu1& and some other discrete levelu2&
and we have ordinary Rabi oscillations. In Fig. 1~b! the dis-
sipation effect introduces a damping of Rabi oscillations
damping effects are present, we expect that the Rabi osc
tions will eventually become damped out and the popu
tion’s difference will approach some steady-state value fo
large scale of time. Hence Rabi oscillations are not presen
the steady state.

It is interesting to note the presence of an irregular beh
ior of the oscillations of the two populations for a stron
laser field. In fact, we observe small oscillations that sup
pose the Rabi oscillations; their amplitude is weak and d
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appears when the electric field strengthF0 becomes smal
with respect to the atomic unit of the field strength. The
little oscillations represent the fast nonrotating varia
phases exp@6i(v1vnn8)t# in the laser-atom interaction
which is treated in a nonperturbative way~Floquet theory!.

Figure 2 shows some typical results. We take into acco
both laser phase noise and dissipation influences. We ha
phase jumpa50.4p and three switching ratesVT50.1, 1,
and 10. We display the time evolution populations in tw
columns. In column~A! only the effect of laser noise i
considered. We remark, in this case, that for a switching
VT51, i.e., the noise frequency 1/T is of the same size orde
as the Rabi frequencyV, a destruction of the atomic cohe
ence is observed. The damping rate is strong and the re
ation to the steady state is rapid. The Rabi oscillations
restored when we consider the case of slow fluctuati
(VT510) and fast fluctuations (VT50.1) and the damping
rate is weak. Column~B! represents the same situation, b
with the laser noise of the dissipative terms@see Eqs.~55!
and~56!#. The behavior is similar to that of column~A!, but
the damping rate is more intense. For a switching rateVT
50.1, a partial destruction of the atomic coherence is
duced by the dissipation effects. The kinetics of the popu
tion relaxation is more rapid than in column~A!. One of the
effects of the quantum dissipation is the breaking of
atomic coherence especially forVT50.1 and the establish
ment of the dynamical localization regime forVT51. In
Fig. 3 we plot the time evolution of two-level atom popul
tions in two situations: In the first we neglect the effect
quantum dissipation@column ~A!# and consider only an am
plitude telegraph noise and in the second we combine
influences of noise and quantum dissipation. We have
amplitude jumpa50.1 a.u. and three different switchin
ratesVT50.1, 1, and 100. Column~A! shows pronounced
quasioscillations. We note a very weak damping atVT51
and 100 and rapid relaxation forVT50.1 with respect to
VT51 and 100. In order to lead the system to the ste
state we must use a larger number of Rabi periods than in
case of phase fluctuations. Column~B! shows behavior simi-
lar to that in column~A!. The complicated structure of thes
curves is a consequence of the action of the amplitude l
noise on the reduced system dynamics. In fact, one obse
a separation between the two occupation probabilities. E
populations11(t) ands22(t) performs independently irregu
lar oscillations, which converge to a stationary state. A
constraint on the phase, the addition of dissipation in Fig
@column ~B!# introduces a weakness of the damping.

Figure 4 illustrates the case of frequency fluctuatio
This kind of noise is introduced by collisional effects. Th
transition frequencyv21 can also fluctuate around its fixe
value. The simplest model of such interruption collisio
@9,11# assumes that the atomic transition frequencyv21
should be replaced byv21(t)5v211x(t). We have a jump
parametera50.1 a.u. and three different frequency switc
ing ratesVT51, 10, and 100. Note the damped quasipe
odic oscillations in column~A!. VT510 corresponds to
strong damping without any convergence to a steady s
The relaxation to an equilibrium state of value1

2 is clear for
a switching rateVT51. The damping becomes weak fo
VT5100 and two independent beat phenomena are
served. The complicated time evolution of populations i
e
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result of Rabi oscillation interference. In column~B!, where
we take into account quantum dissipation, the two popu
tions relax to an equilibrium state. The thermal noise induc
by coupling to the bath introduces a complete destruction
the atomic coherence. The kinetics of relaxation and r
damping decreases from the case of fast fluctuati
(VT50.1) to slow fluctuations (VT5100).

In Figs. 2 and 4 the comparison between columns~A! and
~B! shows that the dissipation that behaves as noise~thermal
noise! leads the system to an equilibrium state with rap
kinetics of relaxation. The damping rates become large w
we introduce the dissipation terms@column~B!#. We clearly
see the destruction of atomic coherence, which increa
when we take into account dissipation. The dynamical loc
ization regime appears for phase and frequency noises. H
ever, Fig. 3 shows important asymmetries. This behav
is justified by the fact that in the case of amplitude fluctu
tions, the jump parametera, assigned to stochastic process
appears in terms of the laser intensityF0(16a), while in
the case of phase noise the dependence occurs in term
exp(6ia).

B. Dissipative nonlinear quantum dynamics
in the ionization of two-level systems

We have established a formal framework for the exci
tion of atoms by laser noise in the presence of the reser

FIG. 5. Ionization probabilityPion(t) versus time~in units of the
inverse Rabi frequencyV!. The parameters are the same as in
previous figures. The relaxation rate from bound states to the c
tinuum is R2c5V/100. ~a! Dotted line,Pion(t) in the absence of
noise and dissipation; dashed line, only the effect of phase noise
VT50.1 is considered; dash-dotted line, only the effect of dissi
tion is considered; solid line, the effects of both noise and diss
tion are considered.~b! Same as~a!, but for an amplitude noise with
VT51.
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FIG. 6. Columns~A! and~B! are the same as Figs. 2~a! and 2~b!, respectively, but take into account the ionization process represe
by the probabilityPion(t). The relaxation rate from bound states to the continuum isR2c5V/100.
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action and explored some of its general predictions. We t
now to the examination of ionization effects on the popu
tions and the illustration of the modifications generated
the different kinds of noise and quantum dissipation on
ionization rates. In order to analyze the ionization effects
adopt the extended two-level system model proposed by
and Eberly@14,32#. The computation of ionization probabi
ity is made by the incorporation of the term responsible
ionization @2tECsmn,s , with tEC5Rmcdmn11/2(Rmc
1Rnc)(12dmn) andRnc the relaxation rate from the excite
stateun& to the continuumuc&# in the motion equation~54!.
The trace ofs over a complete set of atomic states leads
the expressionPion(t)512(n51

2 snn for the total ionization
probability of the system@4,13,33#.

We begin by showing successively the effects of la
noise and reservoir dissipation on the ionization probabil
As illustrated in Fig. 5, we have plotted the total ionizati
as a function of Rabi periods. We have an intense elec
laser field such asV51 a.u. and a resonant laser frequen
The four curves of Fig. 5 correspond respectively to the s
rn
-
y
e
e
h

r

o

r
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ic
.
-

ations where noise and dissipation are neglected, only
noise is considered, only the dissipation effect is retain
and both noise and dissipation exist. In Fig. 5~a! we have
considered a phase noise ofa50.4p. The results depend on
the fluctuations time scale (1/T) compared to the other char
acteristic time scales of the problem such as the Rabi
quencyV. The minimum variations of the ionization prob
ability are obtained, where we neglect both noise a
dissipation. When we take into account dissipation, the i
ization probability increases. For a large Rabi period,
phase fluctuation effect is more important than the reser
action. In fact, the ionization probability rapidly increas
when we introduce phase fluctuations corresponding
VT50.1. In the presence of dissipation terms, the ioni
tion probability variations remain almost constant. We co
clude that noise and dissipation rapidly lead the atom to
ionization states. Figure 5~b! shows the amplitude noise
where the jump parametera50.1 a.u. and a switching rat
VT51. The behavior is similar to that observed in Fig. 5~a!,
but the amplitude noise effect is very weak. The techniq
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FIG. 7. Columns~A! and~B! are the same as Figs. 3~A! and 3~B!, respectively, but take into account the ionization process represe
by the probabilityPion(t). The relaxation rate from bound states to the continuum isR2c5V/100.
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that we have used will be applied subsequently to freque
noise.

A plot that gives a pictorial sense of how ionization pr
ceeds in time is given in Fig. 6. The total probability
ionizationPion(t) as a function of the Rabi period is plotte
together with the occupation probabilities of bound stat
The oscillations in these curves reflect the Rabi oscillati
of the atom between the resonantly coupled statesu1& andu2&.
These oscillations are damped by ionization on a small n
ber of Rabi frequencies. This behavior is well known fro
the study of bound states coupled by an intense field. C
umn ~A! of Fig. 6 shows the response of a two-level syst
in the presence of phase noise and@column ~B!# by consid-
ering the effect of dissipation. The parameters are the s
as in Fig. 2. The populations, which have not been l
through direct ionization to the atomic continuum, oscilla
in the same manner as in the absence of the ionization ef
but there is a progressive decay to a zero probability. T
ionization probability can be viewed as dominant in a fe
Rabi periods and increases rapidly in time when the quan
y

s.
s

-

l-

e
t

ct,
e

m

dissipative effects are considered. Figure 7 displays the s
behavior as in Fig. 6, but for an amplitude noise.

IV. CONCLUSION

In this paper we have investigated at length the nonlin
dynamics of dissipative quantum atomic systems subjec
to the action of a heat bath and periodically driven by
strong laser field that is affected by classical noise. We h
derived and solved a master equation for atoms in str
noisy laser fields and in the presence of reservoir dissipa
effects. Such an equation, based on the Floquet states r
than the unperturbed atomic states, has given typical
interesting results concerning the atomic dynamics. In fa
we have demonstrated how the master equation formal
the Floquet theory, the pre-Gaussian models of laser no
and the Markovian coupling of a quantum system to an
vironment can be combined together to tackle a general
oretical formalism and be used as a powerful tool for t
detailed analysis of the interaction of an atomic system w
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an intense incoherent laser field and with a large reservo
We have shown that the dissipation terms, which are t

dependent with respect to those in the Bloch equations, fo
the system to settle to some ‘‘preferred state,’’ that is,
dynamical localization regime observed in the cases of ph
and frequency noises, as we have explored in this pa
Moreover, under the action of these decay mechanisms
atomic system exhibits different regimes such as the dest
tion of coherence and the relaxation to equilibrium state
general, the strength of damping and the kinetics of rel
ation increase with the addition of dissipation effects, but
y,

v.

. B
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c
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amplitude fluctuations show a different behavior. We ha
also analyzed the modifications induced by ionization
fects.
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