PHYSICAL REVIEW A VOLUME 58, NUMBER 1 JULY 1998
H-atom ionization by elliptically polarized microwave fields: Three-dimensional analysis
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The classical analysis of H-atom ionization by elliptically polarized microwave fields is performed for a
realistic three-dimensional model of an atom. As a limiting situation the circular polarization case is discussed
in detail too. The sensitivity of initial electronic orbits of different orientation to microwave perturbation is
studied analytically using the Chirikov overlap criterion. Generally the orbits lying in the polarization plane are
most vulnerable to microwave perturbation, although important exceptions from this rule of thumb are found.
In particular a class of orbits is found that is unusually stable against the perturbation. This behavior is linked
to vanishing widths of the corresponding resonance islands within the first-order perturbation theory. The
results of a recent experimefBellermanet al, Phys. Rev. Lett76, 892(1996] are qualitatively reproduced
by the theory[S1050-2947®8)05907-1

PACS numbsgs): 32.80.Rm, 32.80.Wr, 32.80.Fb, 05.4%h

[. INTRODUCTION this behavior one should not only consider initial states most
vulnerable to perturbation but consider orbits of different
The ionization of hydrogen atoms by linearly polarized angular momenta and orientatiof2,13. The results may
(LP) microwaves has been intensively studied for more tharbe then also directly applicable to future experiments where,
twenty years(for a recent review sefl]). Recently a con- hopefully, initial states with all well-defined quantum num-
siderable understanding of the phenomena induced by circiers fg,l9,mg) will be prepared.
larly polarized(CP) radiation has been also achievig3]. The general elliptical polarization case is highly non-
By comparison, much less is known for a general case ofrivial. For LP microwaves the conservation of the angular
elliptically polarized(EP) microwaves. The early studi@—  momentum projection onto the polarization axis, makes
6] discussed the ionization threshold dependence on the mihe dynamics effectively two dimensional. For the CP case
crowave polarization in the regime of low frequenciee.,  while L, is not conserved, the transformation to the frame
when the microwave frequencw<wy, Where wy is the  rotating with the microwave frequency removes the explicit
Kepler frequency corresponding to the initial atomic state oscillatory time dependende]. Both these simplifications
This domain of frequencies has been reexamined in a vergre no longer possible in the general EP microwave field and
recent experimerit7] showing a quite surprising sensitivity the problem becomes truly multidimensional, providing new
of the ionization yield to minute changes of the polarization.challenges to the theory. Therefore, in a previous wWa
The experimental data have been reproduced fully by classiwe have considered classically the threshold behavior in the
cal simulations. simplified, two-dimensional2D) model of an atom. The
The regime of high frequencies has been partially dis-electronic motion has been limited, there, to the polarization
cussed within the framework of quantum localization theoryplane.
using the so-called Kepler mdg]. This approach has been,  The aim of this paper is to remove this limitation and
however, questionedat least for the limiting case of CP consider classically a realistic fully three-dimensiol2D)
microwave$ by Nauenberd?9]. atom. We consider the onset for the unbounded diffusion as
For most interesting moderate frequencies, wheand  determined by the Chirikov overlap criteriph4]. For initial
wg are comparable in magnitude experimental data becamarbits lying in the microwave polarization plane we recover
also availablg 10]. The data show a surprising similarity in the previous 2D results for both the GP2] and EP[13]
the ionization[11] threshold behavior as a function of the cases. Importantly, however, the 3D analysis provides addi-
scaled frequencw,= w/wy for different microwave polar- tional understanding of the microwave-atom interaction.
ization (provided the microwave amplitude is appropriately The paper is organized as follows. In Sec. Il we introduce
rescaleg, again reproduced by classical simulations. The rethe necessary notation and perform the resonance analysis.
sults, obtained fow,[0.6,1.4, i.e., in the broad neighbor- These results are then used in Sec. Ill for the discussion of
hood of the primary resonance between the driving field andhe ionization threshold dependence on the shape and orien-
the Kepler motion, may be, as briefly described by the autation of the initial electronic orbit. In particular, we concen-
thors of[10], understood by classical analysis of the pendu-rate on a family of states resistant to the microwave pertur-
lum Hamiltonian valid in the vicinity of the primary reso- bation. A subset of such orbits has been already found in the
nance. 2D analysis[13]. We discuss also briefly the effect of the
The polarization of the microwave field becomes moreadditional dimension on the classical predictions for the ion-
important for higher ionization yields, when differently ori- ization threshold for the microcanonical sample of atoms
ented initial states contributé&he initial sample of atoms based on the Chirikov overlap criterid8ec. I\). The sum-
having a well definechy is a mixture of different angular mary and the future perspectives form the content of the
guantum numbers in the experimdrt0]). To understand concluding part.
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[l. RESONANCE ANALYSIS OF THE SYSTEM Then the unperturbed motion in the local coordinate

We shall consider a hydrogen atom perturbed by an eII||0frame may be expressed as a Fourier sqisg

tically polarized microwave field in the dipole approxima-

tion. The Hamiltonian(in atomic unit$ of the system reads X! =— 3_J2 322 cosn0

H=Hy+FH, (2.1 .

B 39\]2 E
where =T + a, cosnd,
PPy +P; 1 \/ Jn(n -
Ho= 2 T oo (2.2 =2J? 2 oln né= > b, sinné,
X +y +2z =1 n =
(2.9
and
where 7,(x) and J;,(x) denote the ordinary Bessel function

H;=X coswt+ ay sin wt. (2.3 and its derivative, respectively.
The relations between the laboratory frame coordinates
F andw denote the amplitude and the frequency of the mi-and the local frame related to the electronic ellipse allow us
crowave field, respectively. The degree of ellipticity is deter-to express the Hamiltonian in action-angle variables. Eq.
mined bya. In the limiting casese=0(a=1) corresponds (2.1) becomes
to a linear(circulan polarization of the microwave field. Ex-

pressing Eq(2.3) as H(6,d,4,L,¢,M,t)=Ho+FHy, (2.9
1+« where
H,= (X coswt+y sin wt)
1
1-a Ho(3)=— =,
+ 5 (X coswt—y sin wt) (2.9 2J
1+«
allows us to visualize the interaction as being due to two CP H,(6,J,¢,L,¢,M t)—— E [V,cogno+ ¢— wt)
waves, of different amplitude@xcept fora=0) rotating in n=-=
the opposite sense. _ ; _
As the next step we express the Hamiltonian, dl), in Unsin(né+¢=wt)]
action-angle variables of the unperturbed Coulomb problem. 1—
We follow here the earlier treatments of the linear polariza- +— 2 [Vhcogno+ ¢+ wt)
tion [15] as well as the two-dimensional models for the CP n=o
[16,12 and the EF 13] cases with necessary modification. —U,sinn6+ ¢+ ot)]. 2.7

Due to its high symmetry, several choices are possible. The

standard solution is to consider the canonically conjugat@dere, the Fourier expansion coefficients for0 are
pairs J,0), (L,¥), and M,¢). J is the principal action
(corresponding to the principal quantum numbeelated to
the size of the ellipse. The corresponding angledeter-
mines the position of the electron on its elliptic trajectory. Its

derivative 9 is the Kepler frequencyf=dHy/dd=1/3° 3eM

=wy . L is the angular momentuny the angle of rotation Uo(J.LM, i) == ——JI"sin ¢, 2.8
around the axis defined by the angular momentum vector.

Similarly, M, ¢ denote the projection of the angular momen-while those corresponding to+0 are

tum on the laboratoryOz axis and the angle of rotation

3e
Vo(J,L,#) =~ I*cos i,

around that axis, respectively. The high symmetry of the \/1 e?
Coulomb problem is reflected by the fact that bgttand ¢ Vo(dL M, )= — j(ne)+ e Jn(nejcosy,
are cyclic variablegthe unperturbed Hamiltonian depends
onJ only). 32IMm P
The shape of the ellipse is best described by its eccentric- U,(J,L,M,¢)= F{fjﬁ(ne)jt jn(ne)}sin .

ity e=/1—L?%/J? while its orientation in the configuration
space is determined byg(M/L,y). Define B8 via cosp
=M/L; B is the angle between the plane defined by the The primary resonances for the perturbed motion satisfy
ellipse and theOxy plane. In fact, ¢,8,#) are nothing but

the Euler angles as defined by Goldstgl@] (with the no- mé+ ¢— wt=const (2.10
tation changed— B) if the unperturbed ellipse defines a lo-

cal coordinate system witlhz' along the angular momen- for the part of the perturbation proportional to{1x)/2 in
tum vector andOx’ along the Runge-Lenz vector. Eq. (2.7), i.e., a right polarized circular wave, and

(2.9
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k+ ¢+ wt=const (2.1)  nance values of the principal actioh=J—J,, with J,
for the second pafiproportional to (- «)/2, corresponding (=2J6n)1/irrlrgoand leaving the terms quadratic Jniransforms Eg.
to the second, left circular polarized wadvéf one of these '
resonance conditions is satisfied, the second is also true, si- 1 3732 1
multaneously; the electron interacts resonantly with both y _ = ©; m_+|:ﬂ{v cog 0 + ¢)

. . _ — 1/3 . res 2 m 4 2 m
waves. Explicitly, forJ=J,,=(m/w)~"* the m:1 resonance 235, m 23,

occurs due to the first part of the perturbation while the sec-
ond resonance condition is met o= —m, J,=J,,. Note
that, for positivem andM the first resonance corresponds to
the situation when the electronic motion projected onto the )
polarization plane rotates around the nucleus in the same ~U_nsin(¢—0)}. (2.13
sense as the first CP wave in E8.4). We shall call such a ) i ) )
situation a “corotating” resonance, generalizing to 3D the | N€ first term inH esis the unperturbed energy, the second is
description introduced for 2D problenig2,13. Then thek & constant energy shift due to transformati@l to the
=—m<0 condition merely expresses the fact that the sam&oving fram_e, the remaining terms congtltute the lsecglar
motion projected onto the polarization plane must rotate ifnotion Hamiltonian™,. The resonance island motion is
the opposite sense to the second CP wave in(Ed) (the  described byl and conjugate to it the angl®. A careful
counter-rotating resonancdt was shown in12,13 that in ~ analysis of time scalegl5] shows that¢, ¢, M, L

2D the co-rotating resonances strongly affect the electronigay change significantly over time3(F ~2). By compari-
motion while for the counter-rotating resonance the effect okon the motion inJ® is much faster[with the period
the microwave perturbation is less pronounced. This is diQ(F ~'?) [15]]. The former variables describe thus the initial
rectly related to the form of Fourier coefficient,9), where  elliptical trajectory, its shape(via the eccentricity e

for M>0 the two terms in brackets have the same sign for= /1 — |_2/32m) and its orientation in space. This allows one

n>0 and different signs fon negative. o to castH,y, into the form of the pendulum Hamiltonigafter
Consider now a givem:1 resonance. In its vicinity one some algebia

may apply the secular perturbation theqd8]. Making a
canonical transformation to slowly varying variables

U, sin(+¢)}+F1_Ta{V_mcos(¢—®)

3m’,,
Hn=— -3+ Fl'n(Im, L, .M, $;a)cod 0 - 6),

J=Jim, ©=mb-wt (2.12 23
(2.19
allows us to average the Hamiltonian over the fast time vari-
able[15,13. Expanding simultaneousk, around the reso- where
|
an 5= (1—a)(V_Sin g+U_,cosd)—(1+ a)(VSin ¢+ U,,coS @) 01
ano= (1—a)(V_,c0sp—U_sin ¢)+(1+ a)(Vy,cos ¢—Usin ¢) (219

gives the center of the resonance islan®iné is a constant up to first order F, and may be incorporated int by the shift
of the origin. The strength of the resulting perturbatibp,(J,,L,¢¥,M,¢;a), is given by

2 1/2
[(VmV-m=UpU_p)cos 26— (VU t UmV—m)Sin 2¢]

(2.1

1-«a 1-«

2
T) [V2 +U2 ]+ 5

1+a\? > 2
I‘Im: T [Vm+Um]+

For circular polarizationn=1 and the above expression simplifies to
Iy=(VE+UDY2 (217

becoming independent @f, as expected.
For a arbitrary but restricting the electronic motion to the polarization plane we hsje=L, thus |V/cosy
=|Up/sin ¢1=V, and

2 1_a2 1—a 211/2
+cos A+ @) TVme+(TVm> } . (2.18

1+«
2 Vim
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Here rotation around th®z axis is equivalent to rotation “across the resonances,” taken into account by the Chirikov
aroundL, thus, sayM and ¢ are redundant variables. Iden- criterion, may lead to ionization in realistic interaction times.
tifying s+ ¢ with the global angle of rotation arour@iz we On the other hand, for the very same reason, namely, the
recover the result found previoudlg3], Eq. (2.17). finite interaction time, the estimates based on the Chirikov
The pendulum Hamiltoniaf2.14) with the explicit form  criterion must be treated with caution. Close to the threshold
of the perturbation, Eq2.16), constitute the main analytical for the unbounded diffusion, the transport in the phase space
results of this work. They form the basis of the physicalmay be significantly slowed down due to several bottlenecks

interpretation presented in the remaining sections. such as cantofi23]. Thus even above the onset of the cha-
otic motion very long times may be required for high exci-
lIl. CHIRIKOV RESONANCE OVERLAP ANALYSIS tation or ionization of atoms. Numerical estimates have

shown that the classical “ionization threshold” may signifi-
The Hamiltonian, Eq(2.14), together with Eq(2.16 al-  cantly decrease with increasing interaction tifaa].

lows for a direct application of the Chirikov overlap criterion  Keeping all that restrictions in mind, it is still worthwhile
[14] to estimate the threshold for the unbounded diffusion forto use the Chirikov criterion with the understanding that it
a given(with well-defined orientation and angular momen- yields the qualitative trends rather than the quantitative pre-
tum) initial orbit. The criterion says that the chaotic un- dictions. For example, while for experimental interaction
bounded diffusior(leading to high excitation and eventually times the criterion will generally underestimate the thresh-
ionization of our systemmay take place when two neigh- old, it should, however, help to understand which initial or-
boring resonances overlap. Forl andm+ 1:1 resonances, bits are most vulnerable to the perturbation as well as which
together with the heuristic “2/3” rule, which allows one to orbits can stand quite strong microwave fields.
estimate the influence of higher-order resonaftdsl g, we As mentioned above fow=0 the microwave field be-
obtain comes linearly polarized. We do not discuss this case here

since the LP case has been covered substantially in the 2D

[(m+1)Y3—m3)? 5 Study[13]. The results in 3D are practically the same as the
Fo(L,¢,M, ¢ a,m)= 23 23 2@ projection of the angular momentum on the polarization axis
3L(M+ 1)\ T g+ M i i
(3.1) is ponserved. Thgy pecome exgctly equivalent Kbr=0
while the generalization toM #0 is simple. On the other

for the threshold microwave amplitude. This gives an anal'@nd we commence the discussion of the results with the

lytic lower bound for the unbounded chaotic diffusion start-Circular polarization comparing the 3D predictions with pre-

ing somewhere on the border betweenl andm+1:1  Viously reported 2D analysid2]. _
reSONances. For the presentation of the results we used scaled vari-

It is important to realize that once this diffusion is pos- @0les defining scaled angular momentug=L/J and the
sible the electron will eventually ionize, i.e., there are noScaled projection on th®©z axis Me=M/J. Similarly the
further bottlenecks for the excitation process. The reason fof!lcrowave field amplgcudeéand frequencyis scaled as~
it is simple, the electron gains energy, the Coulomb force=FJ (@o=w/wx=wJ"). This is possible due to typical
becomes weaker while the microwave perturbation becomedassical scaling present in the Coulomb problems and is
relatively strongefwith the fixed value oF) [19]. The per- commonly used in microwave ionization studigs8]. For
turbative, first order irF, approach yielding to Eq2.14) is simplicity we drop. in the following th(_a subscript 0 since we
no longer valid and, in particular, the adiabatic parameter§hall @lways consider the scaled variables.
determining the initial electronic orbit are no longer approxi-
mately constant. But our aim is not to accurately describe the

details of this excitation process but merely to give the esti- _
mate for its onset for a given initial orbit. And that is pro-  For the CP case=*1 and one of the two CP waves in

vided by Eq.(3.1). Eqg. (2.4) vanishes. Conside#=1. Then orbits withM >0

It is worthwhile, however, to understand the limitations of will be corotating with the field whileM <O will correspond
such a procedure. We consider here a multidimensional sy$0 orbits counter-rotating with respect w.r.t.) the micro-
tem; the phase space is seven dimensional. Therefore, theaves. The results fox=—1 may be recovered from those
Arnold diffusion[18] may lead to excitatioand ionization ~ for a=1 by reversing the direction of the angular momen-
of the atom even for very weak microwave amplitudes, betum vector of the orbit(in particular by M— —M inter-
low the Chirikov threshold. The Kolmogorov-Arnold-Moser changg, thus in the following we consider=1 only.
(KAM) tori does not divide the phase space, while the Chir- As mentioned above, the resonant interaction strength
ikov criterion gives the estimate for the diffusion “across the (2.17) depends on two of the Euler anglgsy only for CP
resonances,” the Arnold diffusion “along the resonances” ismicrowaves. Fol3=0 we recover the 2D system, the elec-
always present. One may question therefore the usefulness wbnic ellipse lies in the polarization plane and the depen-
the Chirikov criterion for the estimation of ionization thresh- dence ony also disappears, as expected from the rotational
olds. However, in real experiment4,10] the microwaves symmetry of the microwave field.
interact with atoms for a relatively short time of the order of  Consider first the corotating orbits. In 22] the lowest
a few hundred microwave periods. The Arnold diffusion pro-threshold for the unbounded diffusion as given by the Chir-
cess, on the other hand, is quite sl¢#8,20. It has been ikov criterion is obtained for medium eccentricitg~ 0.8)
shown, moreover, that it slows down significantly in the vi- orbits. Slightly higher threshold values are obtained for more
cinity of KAM tori [21]. Therefore, only the diffusion elongated orbits with the eccentricity close to unity.

A. Circular polarization
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FIG. 1. The critical scaled microwave amplitude valbg,[Eq. FIG. 2. Same as Fig. 1 but fa¥= 0.4, i.e., in the vicinity of
(3.1)] predicted by the Chirikov criterion for the overlap between the singular pointy= /2. Note the maximum in the threshold cen-
m:1 andm+1:1 resonances fan=1 in the plane of the scaled tgred atL=0, M/L=0. The large microwave amplitude is re-
angular momentunt. and the inclination of the orbit as given by quired for the overlap because the effective perturbation strengths
M/L for =0. The microwaves are circularly polarized. I',, of the resonances for low andM/L values andy close to7/2

he behavi f the | . bits i kedl are very small. For such ellipses their projection on the polarization
The behavior of the low eccentricity orbits is markedly plane (and, thus the projection of the Fourier components of the

different. The electronic motion on the circula= 0) orbit perturbation, directly responsible for the effective interagtioe

is harmonic. In effect all primary resonancesl with m  gyces to the point centered at origin. The microwaves are circularly
# 1 do not existhave zero width the corresponding, and  polarized.

U,, coefficients, compare E@2.9), of the perturbatiorfwith
arbitrary microwave polarizatiorvanish. That implies that dium eccentricity orbits inclined w.r.t. the polarization plane
the Chirikov criterion diverges. The first-order perturbationhave a threshold lower than that corresponding to low eccen-
theory is thus not sufficient to describe the behavior of suchricity orbits lying in the plane. Thus the intuitive picture can
orbits and one should, in principle, use the higher orders ilpe made more precise by saying that among all orbits of the
the analysis. same eccentricity those lying in the polarization plane will be
The crucial point is to realize that extremely small first- most vulnerable to the microwave perturbation.
order resonance widths provide already an interesting quali- In a full 3D model not only the inclination of the orbit
tative picture(and, as mentioned above, only the qualitativew.r.t. the polarization planéi.e., cosg=M/L) but also the
predictions may be obtained using the Chirikov analysis orientation of the orbitgiven by ) becomes important—
Since primary resonances disappear and regular structuresdéompare Eq(2.17). Generallyy/=0 corresponds to the low-
the phase space may be affected by higher-order terms in thest while /= 7/2 to the highest threshold values for eccen-
perturbation, orbits with such properties will be more stabletric orbits (the sensitivity toy disappears of course for
against the perturbation and can resist higher microwave angircular orbits.
plitudes. We shall use this argument frequently in the follow- This is exemplified in Fig. 2. Observe that the threshold
ing discussion, especially in the treatment of ‘“counter-rises for elongated orbitésmall L) strongly inclined w.r.t.
rotating” resonances. the polarization plane. This is understandable, the interaction
As qualitative as they sound the above predictions agrebetween the electronic motion and the microwave field van-
very well with results of numerical simulations for circular ishes in the first order when the projection of the orbit on the
orbits (compare Fig. 1 if24]) where the rapid increase of polarization plane degenerates into the point. That happens
the threshold around the scaled frequengy- w/ wx=3 has for elongated orbits ands= w/2. Figure 2 represents the
been observed. This correlates well with the divergence o€Chirikov overlap thresholds fog=0.47 to avoid the diver-
the Chirikov criterion for the overlap between 2:1 and 3:1gence of the first-order theory &= 7/2.
resonances for circular orbits. To obtain quantitative predictions in the domain of small
It is interesting to see how this picture is modified by widths of primary resonances one should go to higher orders.
extending the model to a real 3D world. As mentioned in theThis is beyond the scope of the paper. Qualitatively it is
Introduction an intuition says that the orbits lying in the po-reasonable to assume that the regions of siigliwill be
larization plane will be most vulnerable to the perturbation.more stable against the perturbation. Still the absolute num-
This picture is generally correct as shown in Fig. 1. Observebers obtained in the first order for the threshold microwave
however, that a high resistivity of circular orbits, even thoseamplitude in the vicinity of Chirikov overlap criterion diver-
lying in the polarization plane, results in the fact that me-gence should be treated with extreme caution.
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FIG. 3. The critical scaled microwave amplitude valbeg,[Eq.
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FIG. 4. The critical scaled microwave amplitude valkeg,[Eq.

(3.1], predicted by the Chirikov criterion for the overlap between (3.1)], predicted by the Chirikov criterion for the overlap between
m:1 andm+1:1 resonances fan=1 in the plane of the scaled m:1 andm+1:1 resonances fan=1 andM <0 (counter-rotating
angular momentunh. and the inclination of the orbit as given by case in the plane of the scaled angular momenturand the incli-

M/L for ¢y=0. Note thatM/L takes now negative valugsounter-
rotating casp The microwaves are circularly polarized.

Let us now discuss the counter-rotating orbitd fega-

nation of the orbit as given byl/L for =0.487. The ridge of the
threshold is given approximately by E@.2) for m=1. The diver-
gence of the prediction occurs fgr= /2 thus the plot is presented
for slightly different s values. The microwaves are circularly po-

tive). They have in 2D much higher threshold for the un-larized. See text for the discussion.

bounded diffusion than the co-rotating orbiif?]. For such
orbits an inclination w.r.t. the polarization axis typicaléyv-

the overlap between 1:1 and 2:1 counter-rotating reso-

ers the threshold as depicted in Fig. 3. Observe that the innances. Using the Taylor series for Bessel functions for small
clination of the orbit has the strongest effect for low eccen-values of the argument one can easily verify that the condi-

tricity orbits. Already Nauenberf®] in his 2D map analysis
of the CP problem noticed the stability of circular orhiiis

tion (3.2) reduces, for smalk (and both resonancesto
M/Le —\1—e?+0(e?). Thus, approximately, the stability

the counter-rotating casand mentioned that this stability is condition is equivalent to saying that the projection of the
removed by considering the 3D problem. This particular re-orbit onto the polarization plane is a cirdlat least for small

sult nicely agrees with the—1 limit in Fig. 3 (keeping in

eccentricity orbits. For high eccentricity, the stability peaks

mind that again the Chirikov criterion strictly diverges in 2D tend to the origin in ,M/L) plane—i.e., to the case when

for L=1 case for the reasons discussed apove

the projection onto the polarization plane reduces to the

The most surprising and interesting is the fact that thepoint.

very same stability does not fully disappear in 3D. To look

Clearly the stability of the circular orbit in the counter-

for stability one should consider, as before, the minima ofrotating 2D case is a limiting case of the “stability family”

Eqg. (2.17. For the counter-rotating cas&<<0 and the mini-
mal I',,=0 is obtained, after inspection of E(.9), for
= 7/2 (which makesV,, vanish with a simultaneous condi-

tion

M Vi-¢e?
TI(me)+ =7, (me) =0,

coming from the condition fot,, in Eq. (2.9). Note that the
similar factor inV,, is always positive(for e>0), thus ¢
= /2 is necessary to nullify als¥,,. Condition (3.2) is
weakly dependent on the resonance nunmbgthus the Chir-
ikov criterion will yield a double peak structuld3] as a
function of M/L or L=+1—¢?, each peak coming from a

represented in Fig. 4. In this sense the Chirikov criterion
helps us to verify and explain early remarks of Nauenberg
[9].

While we present graphically the results far=1 only
very similar predictions are obtained for overlaps between
andm+ 1 resonances fan>1 (i.e., for higher frequencigs
The condition (3.2) is valid for arbitrary m but is only
weakly dependent numerically an. This indicates that the
stability family persists in a broad frequency rangbe
higher the resonance number, the higher the scaled fre-
guency as may be seen from the transformation to slowly
varying variables in the previous sectjon

B. Elliptical polarization

vanishing width of one of the two resonances that overlap. Consider now the general case of elliptical polarization.

For ¢ slightly detuned from they= m/2 value the double-

Due to the competition between two circular waves rotating

peak first-order structure disappears and we obtain a smooth the opposite sendeompare Eq(2.4)] the effective reso-
ridge of increased stability. This is exemplified in Fig. 4 for nant perturbation strengif2.16) is much more complicated
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FIG. 6. Visualization of the situation leading to a vanishing
width of the resonance island corresponding torth& resonance.
The solid line ellipse represents the approximation to the electronic
motion as given by thenth Fourier component in the expansion
(2.5). The black dot is the current position of the particle, the arrow
indicates the direction of the motion. The shaded ellipse is the pro-
jection of this component on the polarization plab&y and it has
the same eccentricity as the polarizatigiashed ellipse. Note that
the electric field vectoF and the projection of the electronic mo-
tion rotate in the opposite directions.

FIG. 5. Elliptically polarized microwaves with the ellipticity
parametere=0.5. The critical scaled microwave amplitude value,
F. [Eqg. (3.1)], predicted by the Chirikov criterion for the overlap
betweenm:1 andm+1:1 resonances fan=1 in the plane of the
scaled angular momentuin and the inclination of the orbit as
given by M/L. Other Euler angles determining the electronic orbit
orientation are/=0.47 and ¢=0.

It is much more fruitful to inspect the threshold for
counter-rotating orbits, where for a given resonance the per-
turbation may vanish in nontrivial situations. Inspecting the
derivation of Eq.(2.16 it is easy to check that the exact
conditions for minimizingl',, are obtained in the following

and depends on all three Euler angles corresponding to tHdepPs: _ _ _

electronic ellipse viewed in the laboratory frame. Let us first (1) Take the Fourier component driven by a given reso-

briefly summarize the 2D resulf43]. nance in Eq.(2.5), this is an e[hpse qentered around the
For corotating orbits the threshold now depends on thé@rigin lying in theOx'y’ plane with main axes, andby,.

mutual orientation between the polarization ellipse and the (2) Project this Fourier component ellipse on the polariza-

electronic ellipse, giveriin the present 3D notatiorby ¢  tion planeOxy. S _ o

+¢. It has been found that the lowest thresholds are ob- (3) Vanishingl'y, are obtained if the resulting projection,

tained when the major axes of the polarization ellipse and th@!So an ellipse, has the major axis perpendicular to the major

electronic ellipse coincide, while the highest occur for the@Xis of the polarization axis and the eccentricities of both

mutually perpendicular major axes. This condition directlythese ellipses are the same.

follows from Eq.(2.18 and is independent of the ellipticity ~ The corresponding situation is visualized in Fig. 6.

parameteir. On the other hand the sensitivity to the mutual ~ Sincean and by, in Eq. (2.5 depend on the resonance

orientation of ellipses depends anand is the strongest for numberm, the Chirikov criterion for the overlap betweem

a small (almost linear polarization This is obvious, for CP@andm+1 resonance will diverge for two close orientations

the orientation of the electronic ellipse plays no role2D).  Of electronic ellipses. Therefore, it is more interesting, as
For the counter-rotating orbits in 2D a first-order resonant€fore, to look at situations slightly “detuned” from the op-

perturbation may vanish fog+ ¢=m/2 and eccentricities timal, i.e., when botfi’,, andI',. ; are very small. Examples

depending onx and weakly on the resonance numberin  Of Such situations are presented in Figs. 7-9.

effect a double-peak structure threshold dependence on ec- Figure 7 represents a situation similar to that shown al-

centricity (or angular momentujnis found. As in the case ready for CP in Fig. 4 but for EP case wik=0.5. As

discussed previously, the two peaks correspond to vanishingefore, instead of taking= /2, a value leading to the di-

I, for each of the two resonances considered for the Chirvérgence, we consider a slightly different orientation of elec-

ikov criterion. tronic ellipses,y=0.487. The divergence of the threshold
Of course the distinction between corotating and counteroccurs when

rotating cases disappears fer=0, i.e., for the linear polar- M b

ization of microwaves. —=—""™ for m=1 or m=2 (3.3
The analysis of the orbits in 3D can be carried out in L adn

analogy to the easier CP case discussed above. Again, fora = ) o

given eccentricity corotating orbits, the orbits lying in the iS satisfied fory;= /2. To make the third condition in the

polarization plane have the lowest Chirikov threshold. Addi-list above apparent, E¢3.3) may be expressed as

tionally the resonant perturbation may vanish if the projec-

tion of the electronic ellipse on the polarization plane re- bm (3.4)

duces to the point. Representative results are shown in Fig. 5. “m T am CosB’
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FIG. 7. Elliptically polarized microwaves with the ellipticity FIG. 9. Same as Fig. 7 but fap=0.487 and =0, for the
parametere=0.5. The critical scaled microwave amplitude value, discussion see text.
F. [Eqg. (3.1)], predicted by the Chirikov criterion for the overlap
between m:1 and m+1:1 resonances fom=1 and M<O0

(counter-rotating cagen the plane of the scaled angular momen- a=— M (3.5
tumL and the inclination of the orbit as given b§/L. Other Euler bm

angles determining the electronic orbit orientation &re 0.48mr

and ¢=0.

as another example of the rules given above.

The rules does not requikg to be close tar/2 to observe
Either of these two condition§.e., form=1 orm=2) de- the increased stability as in the cases shown above. The nec-

scribes approximately the ridge shown in the figure. essary ellipsgor rather its projection orientatiprmay be
The predictions for the threshold depend on all the Euleobtained by adjustingb. As an example consider Fig. 9 for

angles describing the orientation of the electronic ellipse fowhich the stability ridge may be described approximately by

EP case. In effect the position of the stability ridge is also

affected by¢. Figure 8 presents the example. Note that the by, C0S 3

location of the ridge in thel(,M/L) plane depends ogb. a=— 4"

The divergence of the Chirikov threshold happens for am

= ¢=m/2 and when

(3.6

For smallera, i.e., when polarization of microwaves is
closer to being linear, stable families of orbits converge to
the situation resembling those for LP case. Here, in the limit
a=0, the distinction between corotating and counter-
rotating trajectories disappears, a first-order theory predicts
that orbits lying in the plane perpendicular to the polarization
axis are stable. In effect the ridge moves with(compare
Fig. 9 with Fig. 10.

Finally let us mention that in the 2D restricted analysis
[13] we have suggested that the existence of orbits resistant
to the perturbation may allow one to produce electronic
states of a given eccentricity by adjusting the microwave
polarization and amplitude in such a way so as to ionize most
of the microcanonical sample leaving only atoms with the
chosere value of the initial state. If possible, such a method
would be a crude and cheap way of creating atoms in Ryd-
berg states of well-defined angular quantum numbers supple-
menting other, more elegant but quite complicated in realiza-
tion methodq25]. The present analysis, carried out in a full
3D model, shows that the stat@sbits) that may survive the

microwave pulse are not those of fixed eccentricity but rather
FIG. 8. Same as Fig. 7 but fgs=0.48m, for the discussion see those with a fixed eccentricity of their projection on the

text. plane of polarization.
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FIG. 11. The ratio of LP microwave amplitude to CP microwave
1 M/L amplitude, both leading t8% ionization yield, denoted a8, and
) . o ) the similar ratio for EP microwaves with=0.263 to CP ampli-
) FIG. 10. Samg as Fig. 9_but_f®r: 0.1, ie., elllp_tlcal p_olarlza- tude,Rg, as a function 08%. Full circles(triangles correspond to
tion closer to the linear polarization case, for the discussion see texit;zL (Rg) obtained from Chirikov overlap criterion in the present

work using a full 3D microcanonical ensemble. Open symbols rep-
IV. MICROCANONICAL SAMPLE CONSIDERATIONS resent the results of 2D Chirikov analysis and are taken frb8h

. . . Plusses and crosses represent the experimental values while the

g e ArerL experinenta0] i) o St ener ot ne shon o mamedat e a descrbdh e
numbers except for the principal quantum numbgrClas- Chmléov threshold Tlumer:jcag values areld'f.ferﬁm. from tgf;]e ob-

. . . . ... lalne experlmenta y an Yy numerical simu ation In ,
S|c_ally that corresponds to a microcanonical sample of initia resent 3D results are less sensitivest, especially for EP, in
trgjectorles. Therefore, the result§ presented above cannot Galitative agreement with the experiment. For a further discussion
directly compared with the experimental data. see text.

One way of performing such a partial comparison is to

minimize the classical threshold over all possible orientaing Chirikov overlap predictions are presented in Fig. 11.
tions and shapes of initial electronic ellipses of a given enThe experimental values are taken from Fig. 3[00] by
ergy. Such a classical Chirikov overlap threshold has beefAveraging the data for scaled frequencigs= (1.05,1.2)(for
used in[10]. The advantage of such a definition is its sim- higher wo no data for elliptical polarization are availahle
plicity. On the other hand, such an approach cannot describEne dotted lines in Fig. 11 represent the trendsHpandRe
the ionization yield as a function of the microwave field described if[10]: they remain approximately constant up to

amplitude. s%=30% while for highers% both quantities decrease due
The experimental thresholds are defined as the microwa? the increase of CP thresholds. .
amplitude at which a gives% ionization yield is obtained, Observe that the difference between 2D and 3D Chirikov

predictions are quite small for 10% threshold and do not
agree with the experimental data. We do not compare with
numerical values in 3D since such calculations have been
already performed if10], and as we understand, reproduce
the experiment quite well. Still the 3D Chirikov predictions

the data are presented for 10% and 50% yieldglB]. An
interesting quantity is then the ratio of thresholds for differ-
ent polarizations. Denote bR, (s%)=FP(s%)/F°F(s%)
the ratio of the scaled LP microwave amplitude leading

to s% yield to the correspoggmg angglltude for the CP \yhile overestimating the experimental values quite well rep-
field. Similarly let Re(s%)=F="(s%)/F~"(s%), wherea  resent the dependence Bf and Rz on s%. This points to
=0.263 as in[10] for the EP microwave field. As found the importance of the full 3D analysis for reproducing ex-
experimentally{lO] RL(10%)=1.41 andRE(lo%)= 1.26. perimenta| results.

By making an average over initial trajectories it is pos-  One reason for the discrepancy between the Chirikov pre-
sible to make a theoretical estimate of these quantities usingictions and the experimental results may be due to the fact
the Chirikov overlap criterion. The corresponding yields arethat the former consider a fixed amplitude of the microwaves
obtained by finding the microwave amplitude at which thewhile in the latter a smooth microwave pulse of rather short
Chirikov overlap threshold is at least reached for a gistn (154 cycleg duration has been used. As discussefdLB] the
of microcanonically distributed trajectories. Such a procedifference between a long tini€hirikov) prediction and the
dure has been carried out in the 2D casd1ifi] and com- finite time simulation/experiment may indicate the ser]sitivity
pared with the numerical estimatéshich simulated the mi- Of the speed of the phase space transport to the microwave
crowave pulse shape according[&®] in 2D). The Chirikov ~ Polarization.
overlap ratios in 2D overestimated the numerical values,
both the numerical and ChirikoR, and Rg decreased with V. SUMMARY AND CONCLUSIONS

s% (for the details of the comparison sgE3]). We have considered the ionization thresholds, or more
The similar approach is possible also in 3D and the resultprecisely the onset for the unlimited diffusion in the phase
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space for the fully three-dimensional hydrogen atom illumi-plane perpendicular to the polarization axis. For other micro-
nated by elliptically polarized microwaves. The effective wave polarization two cases are possible. A very intuitive
resonant Hamiltonian valid in the first order in microwave one is the case when the projection of the orbit on the polar-
amplitudeF has been derived analytically, see E(s14)— ization plane reduces to the point centered at origin. A less
(2.16. That in turn has led to an analytical expression for thelfivial condition occurs for counter-rotating orbits only,
threshold microwave amplitud@.1) coming from the over- namely, the projection of the resonantly driven Fourier com-
lap of two nearby resonances. ponent of the orbitgenerically an ellipsemust have a major

These expressions have been used to investigate the (%'S perpendicular to the major axis of the polarization el-
pendence of the classical threshold on the orientation antPS€ and the same eccentricity. The families of resistant or-
shape of initial electronic orbits. A comparison with earlier PItS discussed here reduce, in the 2D limit, to the orbits iden-
studies in two-dimensional atomic models confirmed that 20fied and tested if13]. , L
restricted approximations are quite useful as far as the mini- | N€ existence of orbits resistant to the perturbation indi-
mal thresholds for a given orbit shape are considered proc@tes @ mixed character of the phase space of atamicro-

vided the orbits are of the corotating type, i.e., the electronidvave field problem even at relatively high scaled fields. This

motion when projected on the polarization plane rotates i ndicates that the mechanism of transport in this system is

the same direction as the electric field does. On the othet9Ny r|1|on|trivial. o that th s
hand, inclined counterrotating orbits have lower thresholds Fmar)]/ et us mention t ft the r.elsona.mcle analysis pre-f
than those lying in the polarization plane. In effect studies off€Nted here may be used for semiclassical quantization o

ensemble of orbitésee last section as an examplequire a states located in the corresponding resonance islands. Such
full 3D treatment. an approach is well known for one-dimensional driven sys-

We have paid particular attention to orbits for which atems[26], the present analysis makes possible its extension

first-order perturbation term vanishes. Such orbits can stilf Multidimensional systems, in particular a realistic micro-
ionize due to higher order iff effects but for them the real Wave driven hydrogen atom. Work in this direction is in
threshold is expected to be much higher than for other orbitd?O9ress.
Examples of several families of such orbits have been iden-

tified and the conditions that they must fulfill have been

given. By changing the ellipticity of the microwaves, de- We thank Dominique Delande for discussions. The sup-
scribed bya we may consider the limiting situations of a port by the Polish Committee of Scientific Research under
circular (#=1) or linear (@=0) polarizations. The families Project No. 2P03B 0141&.S. and 2P03B 03810J.Z) is

of stable(in the first order inF) orbits reduce in the well- acknowledged. K. Sacha acknowledges financial support
understood case of LP polarization to orbits lying in thefrom the Foundation for Polish Science.

ACKNOWLEDGMENTS

[1] P. M. Koch and K. A. H. van Leeuwen, Phys. R@&35 289  [15] J. G. Leopold and D. Richards, J. Phys18 1125(1986.
(1995. [16] J. E. Howard, Phys. Rev. A6, 364(1992.

[2] J. Zakrzewski, R. Gearowski, and D. Delande, Phys. Rev. A [17] H. Goldstein,Classical DynamicgAddison-Wesley, Reading,
54, 691 (1996, and references therein. MA, 1980), p. 146.

[3] D. Delande and J. Zakrzewski, @lassical, Semiclassical and [18] A. J. Lichtenberg and M. A. LibermarRegular and Chaotic
Quantum Dynamics in Atomsdited by H. Friedrich and B. Dynamics 2nd ed.(Springer, New York, 1992
Eckhardt, Lecture Notes in Physics No. 4&pringer, Berlin,  [19] The other, more formal way to view the relative importance of

1997). Coulomb and microwave perturbations is via the classical scal-
[4] P. Fu, T. J. Scholz, J. M. Hettema, and T. F. Gallagher, Phys. ing properties discussed [1,8] and used in our work for the
Rev. Lett.64, 511 (1990. discussion of the results.

% IAF g‘?‘#iﬁher' dM[;’d# Phylf' Llf:' B R259 ;139?2' 5781909, 201 K Kaneko and R. J. Bagley, Phys. LElIOA 435(1985,
- A GMihs and D. Farretly, Fhys. Rev. 45, ' [21] J. Laskar, Physica B7, 257 (1993; J. Laskar(private com-

[7] M. R. W. Bellermann, P. M. Koch, and D. Richards, Phys. o
munication).

Rev. Lett.78, 3840(1997. . .
[8] G. Casati, I. Guameri, and D. L. Shepelyansky, IEEE J. Quan_[zz] O. Benson, A. Buchleitner, G. Raithel, M. Arndt, R. N. Man-
tegna, and H. Walther, Phys. Rev.4, 4862(1995.

tum Electron.24, 1420(1988.

[9] M. Nauenberg, Europhys. Lett3, 611 (1990. [23] R. S. MacKay, J. D. Meiss, and I. C. Percival, Physicd®
[10] M. R. W. Bellermann, P. M. Koch, D. R. Mariani, and D. 55 (1984.

Richards, Phys. Rev. LetT6, 892(1996. [24] R. Ggbarowski and J. Zakrzewski, Phys. Rev. 54, 1508
[11] In the experimenfl10], by effective ionization one understands (1995.

either a genuine ionization or excitation above some critical25] J. C. Day, T. Ehrenreich, S. B. Hansen, E. Horsdal-Pedersen,
principal quantum numbet,~ 110, which leads to subsequent K. S. Mogensen, and K. Taulbjerg, Phys. Rev. L&, 1612

ionization by electric field outside of the microwave cavity. (1994, and references therein.
[12] K. Sacha and J. Zakrzewski, Phys. Rev58, 568 (1997). [26] J. Henkel and M. Holthaus, Phys. Rev.4A, 1978(1992; M.
[13] K. Sacha and J. Zakrzewski, Phys. Rev58, 719 (1997). Holthaus, Chaos Solitons Fractdls 1143 (1995, and refer-

[14] B. V. Chirikov, Phys. Rep52, 265(1979. ences therein.



