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H-atom ionization by elliptically polarized microwave fields: Three-dimensional analysis

Krzysztof Sacha and Jakub Zakrzewski
Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagiellon´ski, ulica Reymonta 4, 30-059 Krako´w, Poland

~Received 17 October 1997!

The classical analysis of H-atom ionization by elliptically polarized microwave fields is performed for a
realistic three-dimensional model of an atom. As a limiting situation the circular polarization case is discussed
in detail too. The sensitivity of initial electronic orbits of different orientation to microwave perturbation is
studied analytically using the Chirikov overlap criterion. Generally the orbits lying in the polarization plane are
most vulnerable to microwave perturbation, although important exceptions from this rule of thumb are found.
In particular a class of orbits is found that is unusually stable against the perturbation. This behavior is linked
to vanishing widths of the corresponding resonance islands within the first-order perturbation theory. The
results of a recent experiment@Bellermanet al., Phys. Rev. Lett.76, 892 ~1996!# are qualitatively reproduced
by the theory.@S1050-2947~98!05907-1#

PACS number~s!: 32.80.Rm, 32.80.Wr, 32.80.Fb, 05.45.1b
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I. INTRODUCTION

The ionization of hydrogen atoms by linearly polariz
~LP! microwaves has been intensively studied for more th
twenty years~for a recent review see@1#!. Recently a con-
siderable understanding of the phenomena induced by c
larly polarized~CP! radiation has been also achieved@2,3#.
By comparison, much less is known for a general case
elliptically polarized~EP! microwaves. The early studies@4–
6# discussed the ionization threshold dependence on the
crowave polarization in the regime of low frequencies~i.e.,
when the microwave frequency,v!vK , wherevK is the
Kepler frequency corresponding to the initial atomic stat!.
This domain of frequencies has been reexamined in a v
recent experiment@7# showing a quite surprising sensitivit
of the ionization yield to minute changes of the polarizatio
The experimental data have been reproduced fully by cla
cal simulations.

The regime of high frequencies has been partially d
cussed within the framework of quantum localization theo
using the so-called Kepler map@8#. This approach has been
however, questioned~at least for the limiting case of CP
microwaves! by Nauenberg@9#.

For most interesting moderate frequencies, whenv and
vK are comparable in magnitude experimental data bec
also available@10#. The data show a surprising similarity i
the ionization@11# threshold behavior as a function of th
scaled frequencyv05v/vK for different microwave polar-
ization ~provided the microwave amplitude is appropriate
rescaled!, again reproduced by classical simulations. The
sults, obtained forv0P@0.6,1.4#, i.e., in the broad neighbor
hood of the primary resonance between the driving field
the Kepler motion, may be, as briefly described by the
thors of @10#, understood by classical analysis of the pend
lum Hamiltonian valid in the vicinity of the primary reso
nance.

The polarization of the microwave field becomes mo
important for higher ionization yields, when differently or
ented initial states contribute~the initial sample of atoms
having a well definedn0 is a mixture of different angula
quantum numbers in the experiment@10#!. To understand
PRA 581050-2947/98/58~1!/488~10!/$15.00
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this behavior one should not only consider initial states m
vulnerable to perturbation but consider orbits of differe
angular momenta and orientations@12,13#. The results may
be then also directly applicable to future experiments whe
hopefully, initial states with all well-defined quantum num
bers (n0 ,l 0 ,m0) will be prepared.

The general elliptical polarization case is highly no
trivial. For LP microwaves the conservation of the angu
momentum projection onto the polarization axis,Lz , makes
the dynamics effectively two dimensional. For the CP ca
while Lz is not conserved, the transformation to the fram
rotating with the microwave frequency removes the expl
oscillatory time dependence@2#. Both these simplifications
are no longer possible in the general EP microwave field
the problem becomes truly multidimensional, providing ne
challenges to the theory. Therefore, in a previous work@13#
we have considered classically the threshold behavior in
simplified, two-dimensional~2D! model of an atom. The
electronic motion has been limited, there, to the polarizat
plane.

The aim of this paper is to remove this limitation an
consider classically a realistic fully three-dimensional~3D!
atom. We consider the onset for the unbounded diffusion
determined by the Chirikov overlap criterion@14#. For initial
orbits lying in the microwave polarization plane we recov
the previous 2D results for both the CP@12# and EP@13#
cases. Importantly, however, the 3D analysis provides a
tional understanding of the microwave-atom interaction.

The paper is organized as follows. In Sec. II we introdu
the necessary notation and perform the resonance ana
These results are then used in Sec. III for the discussio
the ionization threshold dependence on the shape and o
tation of the initial electronic orbit. In particular, we conce
trate on a family of states resistant to the microwave per
bation. A subset of such orbits has been already found in
2D analysis@13#. We discuss also briefly the effect of th
additional dimension on the classical predictions for the io
ization threshold for the microcanonical sample of ato
based on the Chirikov overlap criterion~Sec. IV!. The sum-
mary and the future perspectives form the content of
concluding part.
488 © 1998 The American Physical Society



llip
a-

i
er

-

C

em
za

P
n.
Th
a

Its

to
n

n
th

ds

tri

th

-
-

te

n

tes
us

Eq.

fy

PRA 58 489H-ATOM IONIZATION BY ELLIPTICALLY POLARIZED . . .
II. RESONANCE ANALYSIS OF THE SYSTEM

We shall consider a hydrogen atom perturbed by an e
tically polarized microwave field in the dipole approxim
tion. The Hamiltonian~in atomic units! of the system reads

H5H01FH1 , ~2.1!

where

H05
px

21py
21pz

2

2
2

1

Ax21y21z2
, ~2.2!

and

H15x cosvt1ay sin vt. ~2.3!

F andv denote the amplitude and the frequency of the m
crowave field, respectively. The degree of ellipticity is det
mined bya. In the limiting cases,a50(a51) corresponds
to a linear~circular! polarization of the microwave field. Ex
pressing Eq.~2.3! as

H15
11a

2
~x cosvt1y sin vt !

1
12a

2
~x cosvt2y sin vt ! ~2.4!

allows us to visualize the interaction as being due to two
waves, of different amplitudes~except fora50) rotating in
the opposite sense.

As the next step we express the Hamiltonian, Eq.~2.1!, in
action-angle variables of the unperturbed Coulomb probl
We follow here the earlier treatments of the linear polari
tion @15# as well as the two-dimensional models for the C
@16,12# and the EP@13# cases with necessary modificatio
Due to its high symmetry, several choices are possible.
standard solution is to consider the canonically conjug
pairs (J,u), (L,c), and (M ,f). J is the principal action
~corresponding to the principal quantum number!, related to
the size of the ellipse. The corresponding angle,u, deter-
mines the position of the electron on its elliptic trajectory.
derivative u̇ is the Kepler frequencyu̇5]H0 /]J51/J3

5vK . L is the angular momentum,c the angle of rotation
around the axis defined by the angular momentum vec
Similarly, M ,f denote the projection of the angular mome
tum on the laboratoryOz axis and the angle of rotatio
around that axis, respectively. The high symmetry of
Coulomb problem is reflected by the fact that bothc andf
are cyclic variables~the unperturbed Hamiltonian depen
on J only!.

The shape of the ellipse is best described by its eccen
ity e5A12L2/J2 while its orientation in the configuration
space is determined by (f,M /L,c). Define b via cosb
5M/L; b is the angle between the plane defined by
ellipse and theOxy plane. In fact, (f,b,c) are nothing but
the Euler angles as defined by Goldstein@17# ~with the no-
tation changeu→b) if the unperturbed ellipse defines a lo
cal coordinate system withOz8 along the angular momen
tum vector andOx8 along the Runge-Lenz vector.
-

-
-
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Then the unperturbed motion in the local coordina
frame may be expressed as a Fourier series@15#:

x852
3e

2
J212J2(

n51

` Jn8~ne!

n
cosnu

52
3e

2
J21 (

n51

`

an cosnu,

y852J2
A12e2

e (
n51

` Jn~ne!

n
sin nu5 (

n51

`

bn sin nu,

~2.5!

whereJn(x) andJn8(x) denote the ordinary Bessel functio
and its derivative, respectively.

The relations between the laboratory frame coordina
and the local frame related to the electronic ellipse allow
to express the Hamiltonian in action-angle variables.
~2.1! becomes

H~u,J,c,L,w,M ,t !5H01FH1 , ~2.6!

where

H0~J!52
1

2J2
,

H1~u,J,c,L,w,M ,t !5
11a

2 (
n52`

`

@Vncos~nu1f2vt !

2Unsin~nu1f2vt !#

1
12a

2 (
n52`

`

@Vncos~nu1f1vt !

2Unsin~nu1f1vt !#. ~2.7!

Here, the Fourier expansion coefficients forn50 are

V0~J,L,c!52
3e

2
J2cosc,

U0~J,L,M ,c!52
3eM

2L
J2sin c, ~2.8!

while those corresponding tonÞ0 are

Vn~J,L,M ,c!5
J2

n FJn8~ne!1
MA12e2

Le
Jn~ne!Gcosc,

Un~J,L,M ,c!5
J2

n FM

L
Jn8~ne!1

A12e2

e
Jn~ne!Gsin c.

~2.9!

The primary resonances for the perturbed motion satis

mu1f2vt5const ~2.10!

for the part of the perturbation proportional to (11a)/2 in
Eq. ~2.7!, i.e., a right polarized circular wave, and
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ku1f1vt5const ~2.11!

for the second part@proportional to (12a)/2, corresponding
to the second, left circular polarized wave#. If one of these
resonance conditions is satisfied, the second is also true
multaneously; the electron interacts resonantly with b
waves. Explicitly, forJ5Jm5(m/v)1/3 the m:1 resonance
occurs due to the first part of the perturbation while the s
ond resonance condition is met fork52m, Jk5Jm . Note
that, for positivem andM the first resonance corresponds
the situation when the electronic motion projected onto
polarization plane rotates around the nucleus in the s
sense as the first CP wave in Eq.~2.4!. We shall call such a
situation a ‘‘corotating’’ resonance, generalizing to 3D t
description introduced for 2D problems@12,13#. Then thek
52m,0 condition merely expresses the fact that the sa
motion projected onto the polarization plane must rotate
the opposite sense to the second CP wave in Eq.~2.4! ~the
counter-rotating resonance!. It was shown in@12,13# that in
2D the co-rotating resonances strongly affect the electro
motion while for the counter-rotating resonance the effec
the microwave perturbation is less pronounced. This is
rectly related to the form of Fourier coefficients,~2.9!, where
for M.0 the two terms in brackets have the same sign
n.0 and different signs forn negative.

Consider now a givenm:1 resonance. In its vicinity one
may apply the secular perturbation theory@18#. Making a
canonical transformation to slowly varying variables

Ĵ5J/m, Q5mu2vt ~2.12!

allows us to average the Hamiltonian over the fast time v
able@15,13#. Expanding simultaneouslyH0 around the reso-
si-
h
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nance values of the principal actionJ̃5 Ĵ2 Ĵm with Ĵm

5Jm /m and leaving the terms quadratic inJ̃ transforms Eq.
~2.6! into

H res52
1

2Jm
2

2
v

m
Jm2

3m2J̃2

2Jm
4

1F
11a

2
$Vm cos~Q1f!

2Um sin~Q1f!%1F
12a

2
$V2mcos~f2Q!

2U2m sin~f2Q!%. ~2.13!

The first term inH res is the unperturbed energy, the second
a constant energy shift due to transformation~2.12! to the
moving frame, the remaining terms constitute the secu
motion HamiltonianHm . The resonance island motion
described byJ̃ and conjugate to it the angleQ. A careful
analysis of time scales@15# shows thatf, c, M , L
may change significantly over timesO(F22). By compari-
son the motion inJ̃Q is much faster@with the period
O(F21/2) @15##. The former variables describe thus the initi
elliptical trajectory, its shape~via the eccentricity e
5A12L2/Jm

2 ) and its orientation in space. This allows on
to castHm into the form of the pendulum Hamiltonian~after
some algebra!:

Hm52
3m2

2Jm
4

J̃21FGm~Jm ,L,c,M ,f;a!cos~Q2d!,

~2.14!

where
tan d5
~12a!~V2msin f1U2mcosf!2~11a!~Vmsin f1Umcosf!

~12a!~V2mcosf2U2msin f!1~11a!~Vmcosf2Umsin f!
~2.15!

gives the center of the resonance island inQ. d is a constant up to first order inF, and may be incorporated intoQ by the shift
of the origin. The strength of the resulting perturbation,Gm(Jm ,L,c,M ,f;a), is given by

Gm5H S 11a

2 D 2

@Vm
2 1Um

2 #1S 12a

2 D 2

@V2m
2 1U2m

2 #1
12a2

2
@~VmV2m2UmU2m!cos 2f2~VmU2m1UmV2m!sin 2f#J 1/2

.

~2.16!

For circular polarizationa51 and the above expression simplifies to

Gm5~Vm
2 1Um

2 !1/2, ~2.17!

becoming independent off, as expected.
For a arbitrary but restricting the electronic motion to the polarization plane we haveuM u5L, thus uVm /coscu

5uUm/sincu5Vn and

Gm5F S 11a

2
VmD 2

1cos 2~c1f!
12a2

2
VmV2m1S 12a

2
V2mD 2G1/2

. ~2.18!
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Here rotation around theOz axis is equivalent to rotation
aroundL, thus, sayM andf are redundant variables. Iden
tifying c1f with the global angle of rotation aroundOz we
recover the result found previously@13#, Eq. ~2.17!.

The pendulum Hamiltonian~2.14! with the explicit form
of the perturbation, Eq.~2.16!, constitute the main analytica
results of this work. They form the basis of the physic
interpretation presented in the remaining sections.

III. CHIRIKOV RESONANCE OVERLAP ANALYSIS

The Hamiltonian, Eq.~2.14!, together with Eq.~2.16! al-
lows for a direct application of the Chirikov overlap criterio
@14# to estimate the threshold for the unbounded diffusion
a given ~with well-defined orientation and angular mome
tum! initial orbit. The criterion says that the chaotic u
bounded diffusion~leading to high excitation and eventual
ionization of our system! may take place when two neigh
boring resonances overlap. Form:1 andm11:1 resonances
together with the heuristic ‘‘2/3’’ rule, which allows one t
estimate the influence of higher-order resonances@14,18#, we
obtain

Fc~L,c,M ,f;a,m!5
@~m11!1/32m1/3#2

3@~m11!2/3AGm111m2/3AGm#2
v2/3

~3.1!

for the threshold microwave amplitude. This gives an a
lytic lower bound for the unbounded chaotic diffusion sta
ing somewhere on the border betweenm:1 and m11:1
resonances.

It is important to realize that once this diffusion is po
sible the electron will eventually ionize, i.e., there are
further bottlenecks for the excitation process. The reason
it is simple, the electron gains energy, the Coulomb fo
becomes weaker while the microwave perturbation beco
relatively stronger~with the fixed value ofF) @19#. The per-
turbative, first order inF, approach yielding to Eq.~2.14! is
no longer valid and, in particular, the adiabatic parame
determining the initial electronic orbit are no longer appro
mately constant. But our aim is not to accurately describe
details of this excitation process but merely to give the e
mate for its onset for a given initial orbit. And that is pro
vided by Eq.~3.1!.

It is worthwhile, however, to understand the limitations
such a procedure. We consider here a multidimensional
tem; the phase space is seven dimensional. Therefore
Arnold diffusion @18# may lead to excitation~and ionization!
of the atom even for very weak microwave amplitudes,
low the Chirikov threshold. The Kolmogorov-Arnold-Mose
~KAM ! tori does not divide the phase space, while the Ch
ikov criterion gives the estimate for the diffusion ‘‘across t
resonances,’’ the Arnold diffusion ‘‘along the resonances’
always present. One may question therefore the usefulne
the Chirikov criterion for the estimation of ionization thres
olds. However, in real experiments@1,10# the microwaves
interact with atoms for a relatively short time of the order
a few hundred microwave periods. The Arnold diffusion pr
cess, on the other hand, is quite slow@18,20#. It has been
shown, moreover, that it slows down significantly in the
cinity of KAM tori @21#. Therefore, only the diffusion
l
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‘‘across the resonances,’’ taken into account by the Chirik
criterion, may lead to ionization in realistic interaction time

On the other hand, for the very same reason, namely,
finite interaction time, the estimates based on the Chirik
criterion must be treated with caution. Close to the thresh
for the unbounded diffusion, the transport in the phase sp
may be significantly slowed down due to several bottlene
such as cantori@23#. Thus even above the onset of the ch
otic motion very long times may be required for high exc
tation or ionization of atoms. Numerical estimates ha
shown that the classical ‘‘ionization threshold’’ may signi
cantly decrease with increasing interaction time@22#.

Keeping all that restrictions in mind, it is still worthwhile
to use the Chirikov criterion with the understanding that
yields the qualitative trends rather than the quantitative p
dictions. For example, while for experimental interacti
times the criterion will generally underestimate the thre
old, it should, however, help to understand which initial o
bits are most vulnerable to the perturbation as well as wh
orbits can stand quite strong microwave fields.

As mentioned above fora50 the microwave field be-
comes linearly polarized. We do not discuss this case h
since the LP case has been covered substantially in the
study @13#. The results in 3D are practically the same as
projection of the angular momentum on the polarization a
is conserved. They become exactly equivalent forM50
while the generalization toMÞ0 is simple. On the other
hand we commence the discussion of the results with
circular polarization comparing the 3D predictions with pr
viously reported 2D analysis@12#.

For the presentation of the results we used scaled v
ables defining scaled angular momentumL05L/J and the
scaled projection on theOz axis M05M /J. Similarly the
microwave field amplitude~and frequency! is scaled asF0
5FJ4(v05v/vK5vJ3). This is possible due to typica
classical scaling present in the Coulomb problems and
commonly used in microwave ionization studies@1,8#. For
simplicity we drop in the following the subscript 0 since w
shall always consider the scaled variables.

A. Circular polarization

For the CP casea561 and one of the two CP waves i
Eq. ~2.4! vanishes. Considera51. Then orbits withM.0
will be corotating with the field whileM,0 will correspond
to orbits counter-rotating with respect to~w.r.t.! the micro-
waves. The results fora521 may be recovered from thos
for a51 by reversing the direction of the angular mome
tum vector of the orbit~in particular by M→2M inter-
change!, thus in the following we considera51 only.

As mentioned above, the resonant interaction stren
~2.17! depends on two of the Euler anglesb,c only for CP
microwaves. Forb50 we recover the 2D system, the ele
tronic ellipse lies in the polarization plane and the dep
dence onc also disappears, as expected from the rotatio
symmetry of the microwave field.

Consider first the corotating orbits. In 2D@12# the lowest
threshold for the unbounded diffusion as given by the Ch
ikov criterion is obtained for medium eccentricity (e'0.8)
orbits. Slightly higher threshold values are obtained for m
elongated orbits with the eccentricity close to unity.
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The behavior of the low eccentricity orbits is marked
different. The electronic motion on the circular (e50) orbit
is harmonic. In effect all primary resonancesm:1 with m
Þ1 do not exist~have zero width!, the correspondingVm and
Um coefficients, compare Eq.~2.9!, of the perturbation~with
arbitrary microwave polarization! vanish. That implies that
the Chirikov criterion diverges. The first-order perturbati
theory is thus not sufficient to describe the behavior of su
orbits and one should, in principle, use the higher orders
the analysis.

The crucial point is to realize that extremely small firs
order resonance widths provide already an interesting qu
tative picture~and, as mentioned above, only the qualitati
predictions may be obtained using the Chirikov analys!.
Since primary resonances disappear and regular structur
the phase space may be affected by higher-order terms in
perturbation, orbits with such properties will be more stab
against the perturbation and can resist higher microwave
plitudes. We shall use this argument frequently in the follo
ing discussion, especially in the treatment of ‘‘counte
rotating’’ resonances.

As qualitative as they sound the above predictions ag
very well with results of numerical simulations for circula
orbits ~compare Fig. 1 in@24#! where the rapid increase o
the threshold around the scaled frequencyv05v/vK53 has
been observed. This correlates well with the divergence
the Chirikov criterion for the overlap between 2:1 and 3
resonances for circular orbits.

It is interesting to see how this picture is modified b
extending the model to a real 3D world. As mentioned in t
Introduction an intuition says that the orbits lying in the p
larization plane will be most vulnerable to the perturbatio
This picture is generally correct as shown in Fig. 1. Obser
however, that a high resistivity of circular orbits, even tho
lying in the polarization plane, results in the fact that m

FIG. 1. The critical scaled microwave amplitude value,Fc @Eq.
~3.1!# predicted by the Chirikov criterion for the overlap betwee
m:1 andm11:1 resonances form51 in the plane of the scaled
angular momentumL and the inclination of the orbit as given b
M /L for c50. The microwaves are circularly polarized.
h
in

li-

in
the
e

-
-
-

e

of

e

.
e,
e
-

dium eccentricity orbits inclined w.r.t. the polarization plan
have a threshold lower than that corresponding to low ecc
tricity orbits lying in the plane. Thus the intuitive picture ca
be made more precise by saying that among all orbits of
same eccentricity those lying in the polarization plane will
most vulnerable to the microwave perturbation.

In a full 3D model not only the inclination of the orbi
w.r.t. the polarization plane~i.e., cosb5M/L) but also the
orientation of the orbit~given by c) becomes important—
compare Eq.~2.17!. Generallyc50 corresponds to the low
est whilec5p/2 to the highest threshold values for ecce
tric orbits ~the sensitivity toc disappears of course fo
circular orbits!.

This is exemplified in Fig. 2. Observe that the thresho
rises for elongated orbits~small L) strongly inclined w.r.t.
the polarization plane. This is understandable, the interac
between the electronic motion and the microwave field v
ishes in the first order when the projection of the orbit on
polarization plane degenerates into the point. That happ
for elongated orbits andc5p/2. Figure 2 represents th
Chirikov overlap thresholds forc50.4p to avoid the diver-
gence of the first-order theory atc5p/2.

To obtain quantitative predictions in the domain of sm
widths of primary resonances one should go to higher ord
This is beyond the scope of the paper. Qualitatively it
reasonable to assume that the regions of smallGm will be
more stable against the perturbation. Still the absolute n
bers obtained in the first order for the threshold microwa
amplitude in the vicinity of Chirikov overlap criterion diver
gence should be treated with extreme caution.

FIG. 2. Same as Fig. 1 but forc50.4p, i.e., in the vicinity of
the singular pointc5p/2. Note the maximum in the threshold cen
tered atL50, M /L50. The large microwave amplitude is re
quired for the overlap because the effective perturbation stren
Gm of the resonances for lowL andM /L values andc close top/2
are very small. For such ellipses their projection on the polariza
plane ~and, thus the projection of the Fourier components of
perturbation, directly responsible for the effective interaction! re-
duces to the point centered at origin. The microwaves are circul
polarized.
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Let us now discuss the counter-rotating orbits (M nega-
tive!. They have in 2D much higher threshold for the u
bounded diffusion than the co-rotating orbits@12#. For such
orbits an inclination w.r.t. the polarization axis typicallylow-
ers the threshold as depicted in Fig. 3. Observe that the
clination of the orbit has the strongest effect for low ecce
tricity orbits. Already Nauenberg@9# in his 2D map analysis
of the CP problem noticed the stability of circular orbits~in
the counter-rotating case! and mentioned that this stability i
removed by considering the 3D problem. This particular
sult nicely agrees with theL→1 limit in Fig. 3 ~keeping in
mind that again the Chirikov criterion strictly diverges in 2
for L51 case for the reasons discussed above!.

The most surprising and interesting is the fact that
very same stability does not fully disappear in 3D. To lo
for stability one should consider, as before, the minima
Eq. ~2.17!. For the counter-rotating caseM,0 and the mini-
mal Gm50 is obtained, after inspection of Eq.~2.9!, for c
5p/2 ~which makesVm vanish! with a simultaneous condi
tion

M

L
Jm8 ~me!1

A12e2

e
Jm~me!50, ~3.2!

coming from the condition forUm in Eq. ~2.9!. Note that the
similar factor in Vm is always positive~for e.0), thusc
5p/2 is necessary to nullify alsoVm . Condition ~3.2! is
weakly dependent on the resonance numberm, thus the Chir-
ikov criterion will yield a double peak structure@13# as a
function of M /L or L5A12e2, each peak coming from a
vanishing width of one of the two resonances that overl
For c slightly detuned from thec5p/2 value the double-
peak first-order structure disappears and we obtain a sm
ridge of increased stability. This is exemplified in Fig. 4 f

FIG. 3. The critical scaled microwave amplitude value,Fc @Eq.
~3.1!#, predicted by the Chirikov criterion for the overlap betwe
m:1 andm11:1 resonances form51 in the plane of the scaled
angular momentumL and the inclination of the orbit as given b
M /L for c50. Note thatM /L takes now negative values~counter-
rotating case!. The microwaves are circularly polarized.
-

-
-

-

e

f

.

th

the overlap between 1:1 and 2:1 counter-rotating res
nances. Using the Taylor series for Bessel functions for sm
values of the argument one can easily verify that the con
tion ~3.2! reduces, for smalle ~and both resonances!, to
M /L}2A12e21O(e2). Thus, approximately, the stability
condition is equivalent to saying that the projection of th
orbit onto the polarization plane is a circle~at least for small
eccentricity orbits!. For high eccentricity, the stability peaks
tend to the origin in (L,M /L) plane—i.e., to the case when
the projection onto the polarization plane reduces to t
point.

Clearly the stability of the circular orbit in the counter
rotating 2D case is a limiting case of the ‘‘stability family’’
represented in Fig. 4. In this sense the Chirikov criterio
helps us to verify and explain early remarks of Nauenbe
@9#.

While we present graphically the results form51 only
very similar predictions are obtained for overlaps betweenm
andm11 resonances form.1 ~i.e., for higher frequencies!.
The condition ~3.2! is valid for arbitrary m but is only
weakly dependent numerically onm. This indicates that the
stability family persists in a broad frequency range~the
higher the resonance numberm, the higher the scaled fre-
quency as may be seen from the transformation to slow
varying variables in the previous section!.

B. Elliptical polarization

Consider now the general case of elliptical polarizatio
Due to the competition between two circular waves rotatin
in the opposite sense@compare Eq.~2.4!# the effective reso-
nant perturbation strength~2.16! is much more complicated

FIG. 4. The critical scaled microwave amplitude value,Fc @Eq.
~3.1!#, predicted by the Chirikov criterion for the overlap betwee
m:1 andm11:1 resonances form51 andM,0 ~counter-rotating
case! in the plane of the scaled angular momentumL and the incli-
nation of the orbit as given byM /L for c50.48p. The ridge of the
threshold is given approximately by Eq.~3.2! for m51. The diver-
gence of the prediction occurs forc5p/2 thus the plot is presented
for slightly different c values. The microwaves are circularly po
larized. See text for the discussion.
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and depends on all three Euler angles corresponding to
electronic ellipse viewed in the laboratory frame. Let us fi
briefly summarize the 2D results@13#.

For corotating orbits the threshold now depends on
mutual orientation between the polarization ellipse and
electronic ellipse, given~in the present 3D notation! by c
1f. It has been found that the lowest thresholds are
tained when the major axes of the polarization ellipse and
electronic ellipse coincide, while the highest occur for t
mutually perpendicular major axes. This condition direc
follows from Eq.~2.18! and is independent of the ellipticit
parametera. On the other hand the sensitivity to the mutu
orientation of ellipses depends ona and is the strongest fo
a small ~almost linear polarization!. This is obvious, for CP
the orientation of the electronic ellipse plays no role~in 2D!.

For the counter-rotating orbits in 2D a first-order reson
perturbation may vanish forc1f5p/2 and eccentricities
depending ona and weakly on the resonance numberm. In
effect a double-peak structure threshold dependence on
centricity ~or angular momentum! is found. As in the case
discussed previously, the two peaks correspond to vanis
Gm for each of the two resonances considered for the C
ikov criterion.

Of course the distinction between corotating and coun
rotating cases disappears fora50, i.e., for the linear polar-
ization of microwaves.

The analysis of the orbits in 3D can be carried out
analogy to the easier CP case discussed above. Again,
given eccentricity corotating orbits, the orbits lying in th
polarization plane have the lowest Chirikov threshold. Ad
tionally the resonant perturbation may vanish if the proj
tion of the electronic ellipse on the polarization plane
duces to the point. Representative results are shown in Fi

FIG. 5. Elliptically polarized microwaves with the ellipticity
parametera50.5. The critical scaled microwave amplitude valu
Fc @Eq. ~3.1!#, predicted by the Chirikov criterion for the overla
betweenm:1 andm11:1 resonances form51 in the plane of the
scaled angular momentumL and the inclination of the orbit as
given byM /L. Other Euler angles determining the electronic or
orientation arec50.4p andf50.
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It is much more fruitful to inspect the threshold fo
counter-rotating orbits, where for a given resonance the p
turbation may vanish in nontrivial situations. Inspecting t
derivation of Eq.~2.16! it is easy to check that the exac
conditions for minimizingGm are obtained in the following
steps:

~1! Take the Fourier component driven by a given res
nance in Eq.~2.5!, this is an ellipse centered around th
origin lying in theOx8y8 plane with main axesam andbm .

~2! Project this Fourier component ellipse on the polariz
tion planeOxy.

~3! VanishingGm are obtained if the resulting projection
also an ellipse, has the major axis perpendicular to the m
axis of the polarization axis and the eccentricities of bo
these ellipses are the same.

The corresponding situation is visualized in Fig. 6.
Since am and bm in Eq. ~2.5! depend on the resonanc

numberm, the Chirikov criterion for the overlap betweenm
andm11 resonance will diverge for two close orientatio
of electronic ellipses. Therefore, it is more interesting,
before, to look at situations slightly ‘‘detuned’’ from the op
timal, i.e., when bothGm andGm11 are very small. Examples
of such situations are presented in Figs. 7–9.

Figure 7 represents a situation similar to that shown
ready for CP in Fig. 4 but for EP case witha50.5. As
before, instead of takingc5p/2, a value leading to the di
vergence, we consider a slightly different orientation of ele
tronic ellipses,c50.48p. The divergence of the threshol
occurs when

M

L
52

bm

aam
for m51 or m52 ~3.3!

is satisfied forc5p/2. To make the third condition in the
list above apparent, Eq.~3.3! may be expressed as

a52
bm

am cosb
. ~3.4!

t

FIG. 6. Visualization of the situation leading to a vanishin
width of the resonance island corresponding to them:1 resonance.
The solid line ellipse represents the approximation to the electro
motion as given by themth Fourier component in the expansio
~2.5!. The black dot is the current position of the particle, the arr
indicates the direction of the motion. The shaded ellipse is the p
jection of this component on the polarization planeOxy and it has
the same eccentricity as the polarization~dashed! ellipse. Note that
the electric field vectorF and the projection of the electronic mo
tion rotate in the opposite directions.
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Either of these two conditions~i.e., for m51 or m52) de-
scribes approximately the ridge shown in the figure.

The predictions for the threshold depend on all the Eu
angles describing the orientation of the electronic ellipse
EP case. In effect the position of the stability ridge is a
affected byf. Figure 8 presents the example. Note that
location of the ridge in the (L,M /L) plane depends onf.
The divergence of the Chirikov threshold happens forc
5f5p/2 and when

FIG. 7. Elliptically polarized microwaves with the ellipticity
parametera50.5. The critical scaled microwave amplitude valu
Fc @Eq. ~3.1!#, predicted by the Chirikov criterion for the overla
between m:1 and m11:1 resonances form51 and M,0
~counter-rotating case! in the plane of the scaled angular mome
tum L and the inclination of the orbit as given byM /L. Other Euler
angles determining the electronic orbit orientation arec50.48p
andf50.

FIG. 8. Same as Fig. 7 but forf50.48p, for the discussion see
text.
r
r

o
e

a52
am cosb

bm
, ~3.5!

as another example of the rules given above.
The rules does not requirec to be close top/2 to observe

the increased stability as in the cases shown above. The
essary ellipse~or rather its projection orientation! may be
obtained by adjustingf. As an example consider Fig. 9 fo
which the stability ridge may be described approximately

a52
bm cosb

am
. ~3.6!

For smallera, i.e., when polarization of microwaves i
closer to being linear, stable families of orbits converge
the situation resembling those for LP case. Here, in the li
a50, the distinction between corotating and count
rotating trajectories disappears, a first-order theory pred
that orbits lying in the plane perpendicular to the polarizat
axis are stable. In effect the ridge moves witha ~compare
Fig. 9 with Fig. 10!.

Finally let us mention that in the 2D restricted analys
@13# we have suggested that the existence of orbits resis
to the perturbation may allow one to produce electro
states of a given eccentricity by adjusting the microwa
polarization and amplitude in such a way so as to ionize m
of the microcanonical sample leaving only atoms with t
chosene value of the initial state. If possible, such a meth
would be a crude and cheap way of creating atoms in R
berg states of well-defined angular quantum numbers sup
menting other, more elegant but quite complicated in reali
tion methods@25#. The present analysis, carried out in a fu
3D model, shows that the states~orbits! that may survive the
microwave pulse are not those of fixed eccentricity but rat
those with a fixed eccentricity of their projection on th
plane of polarization.

FIG. 9. Same as Fig. 7 but forf50.48p and c50, for the
discussion see text.
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IV. MICROCANONICAL SAMPLE CONSIDERATIONS

In the current experiments@10# initial atomic states enter
ing the microwave cavity do not have well-defined quant
numbers except for the principal quantum numbern0. Clas-
sically that corresponds to a microcanonical sample of ini
trajectories. Therefore, the results presented above cann
directly compared with the experimental data.

One way of performing such a partial comparison is
minimize the classical threshold over all possible orien
tions and shapes of initial electronic ellipses of a given
ergy. Such a classical Chirikov overlap threshold has b
used in@10#. The advantage of such a definition is its sim
plicity. On the other hand, such an approach cannot desc
the ionization yield as a function of the microwave fie
amplitude.

The experimental thresholds are defined as the microw
amplitude at which a givens% ionization yield is obtained
the data are presented for 10% and 50% yields in@10#. An
interesting quantity is then the ratio of thresholds for diffe
ent polarizations. Denote byRL(s%)5FLP(s%)/FCP(s%)
the ratio of the scaled LP microwave amplitude lead
to s% yield to the corresponding amplitude for the C
field. Similarly let RE(s%)5FEP(s%)/FCP(s%), wherea
50.263 as in@10# for the EP microwave field. As found
experimentally@10# RL(10%)51.41 andRE(10%)51.26.

By making an average over initial trajectories it is po
sible to make a theoretical estimate of these quantities u
the Chirikov overlap criterion. The corresponding yields a
obtained by finding the microwave amplitude at which t
Chirikov overlap threshold is at least reached for a givens%
of microcanonically distributed trajectories. Such a pro
dure has been carried out in the 2D case in@13# and com-
pared with the numerical estimates~which simulated the mi-
crowave pulse shape according to@10# in 2D!. The Chirikov
overlap ratios in 2D overestimated the numerical valu
both the numerical and ChirikovRL andRE decreased with
s% ~for the details of the comparison see@13#!.

The similar approach is possible also in 3D and the res

FIG. 10. Same as Fig. 9 but fora50.1, i.e., elliptical polariza-
tion closer to the linear polarization case, for the discussion see
l
be
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be
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ng
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ing Chirikov overlap predictions are presented in Fig. 1
The experimental values are taken from Fig. 3 of@10# by
averaging the data for scaled frequenciesv0P(1.05,1.2)~for
higher v0 no data for elliptical polarization are available!.
The dotted lines in Fig. 11 represent the trends forRL andRE
described in@10#: they remain approximately constant up
s%530% while for highers% both quantities decrease du
to the increase of CP thresholds.

Observe that the difference between 2D and 3D Chirik
predictions are quite small for 10% threshold and do
agree with the experimental data. We do not compare w
numerical values in 3D since such calculations have b
already performed in@10#, and as we understand, reprodu
the experiment quite well. Still the 3D Chirikov prediction
while overestimating the experimental values quite well re
resent the dependence ofRL and RE on s%. This points to
the importance of the full 3D analysis for reproducing e
perimental results.

One reason for the discrepancy between the Chirikov p
dictions and the experimental results may be due to the
that the former consider a fixed amplitude of the microwav
while in the latter a smooth microwave pulse of rather sh
~154 cycles! duration has been used. As discussed in@13# the
difference between a long time~Chirikov! prediction and the
finite time simulation/experiment may indicate the sensitiv
of the speed of the phase space transport to the microw
polarization.

V. SUMMARY AND CONCLUSIONS

We have considered the ionization thresholds, or m
precisely the onset for the unlimited diffusion in the pha

xt.

FIG. 11. The ratio of LP microwave amplitude to CP microwa
amplitude, both leading tos% ionization yield, denoted asRL and
the similar ratio for EP microwaves witha50.263 to CP ampli-
tude,RE , as a function ofs%. Full circles~triangles! correspond to
RL (RE) obtained from Chirikov overlap criterion in the prese
work using a full 3D microcanonical ensemble. Open symbols r
resent the results of 2D Chirikov analysis and are taken from@13#.
Plusses and crosses represent the experimental values whil
dotted lines show the intermediate trend as described in@10#. While
Chirikov threshold numerical values are different from those o
tained experimentally and by numerical simulation in 3D@10#,
present 3D results are less sensitive tos%, especially for EP, in
qualitative agreement with the experiment. For a further discuss
see text.
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space for the fully three-dimensional hydrogen atom illum
nated by elliptically polarized microwaves. The effecti
resonant Hamiltonian valid in the first order in microwa
amplitudeF has been derived analytically, see Eqs.~2.14!–
~2.16!. That in turn has led to an analytical expression for
threshold microwave amplitude~3.1! coming from the over-
lap of two nearby resonances.

These expressions have been used to investigate the
pendence of the classical threshold on the orientation
shape of initial electronic orbits. A comparison with earli
studies in two-dimensional atomic models confirmed that
restricted approximations are quite useful as far as the m
mal thresholds for a given orbit shape are considered
vided the orbits are of the corotating type, i.e., the electro
motion when projected on the polarization plane rotates
the same direction as the electric field does. On the o
hand, inclined counterrotating orbits have lower thresho
than those lying in the polarization plane. In effect studies
ensemble of orbits~see last section as an example! require a
full 3D treatment.

We have paid particular attention to orbits for which
first-order perturbation term vanishes. Such orbits can
ionize due to higher order inF effects but for them the rea
threshold is expected to be much higher than for other orb
Examples of several families of such orbits have been id
tified and the conditions that they must fulfill have be
given. By changing the ellipticity of the microwaves, d
scribed bya we may consider the limiting situations of
circular (a51) or linear (a50) polarizations. The families
of stable~in the first order inF) orbits reduce in the well-
understood case of LP polarization to orbits lying in t
A

.

y

s

an

.

s
ca
nt
-

e

de-
nd

i-
o-
ic
n
er
s
f

ill

s.
n-

plane perpendicular to the polarization axis. For other mic
wave polarization two cases are possible. A very intuit
one is the case when the projection of the orbit on the po
ization plane reduces to the point centered at origin. A l
trivial condition occurs for counter-rotating orbits only
namely, the projection of the resonantly driven Fourier co
ponent of the orbit~generically an ellipse! must have a major
axis perpendicular to the major axis of the polarization
lipse and the same eccentricity. The families of resistant
bits discussed here reduce, in the 2D limit, to the orbits id
tified and tested in@13#.

The existence of orbits resistant to the perturbation in
cates a mixed character of the phase space of atom1 micro-
wave field problem even at relatively high scaled fields. T
indicates that the mechanism of transport in this system
highly nontrivial.

Finally let us mention that the resonance analysis p
sented here may be used for semiclassical quantizatio
states located in the corresponding resonance islands.
an approach is well known for one-dimensional driven s
tems@26#, the present analysis makes possible its extens
to multidimensional systems, in particular a realistic micr
wave driven hydrogen atom. Work in this direction is
progress.
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