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Quantum superposition states in third-harmonic generation
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~Received 12 December 1997!

We investigate numerically the distribution functions of photon number and phase in third-harmonic gen-
eration in the region of instability. It is shown that in this system the quantum superposition states for the third
harmonic and fundamental mode can appear.@S1050-2947~98!00910-X#

PACS number~s!: 42.65.Ky
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I. INTRODUCTION

The production and detection of nonclassical light cont
ues to be an important topic in quantum optics. T
quantum-mechanical superposition states@1# are nonclassica
states of light which are of great interest currently.

Wolinsky and Carmichael have shown that the quantu
mechanical superposition states can be obtained during
generation of a second subharmonic in the case of a l
nonlinearity@2#. The second subharmonic has two stable s
tionary classical solutions above the threshold of genera
for the radiation field amplitude. In the region of stron
quantum noises~large nonlinearities of interaction! the sys-
tem is in a coherent state of superposition of two com
nents. In the weak noise region~small nonlinearities! the
superposition state goes to a state which is a classical
ture of these components.

The possibility to obtain the superposition states in
process of two-photon absorption for the coherent parame
excitation case was shown by Knight and co-workers@3#. In
this paper the dynamics of the Wigner function for this p
cess was investigated. It was shown that the competitive o
photon absorption process even if it is weak destroys w
time the superposition state.

The quantum-mechanical superposition states were in
tigated also in Refs.@4–12#. Recently superposition state
were observed experimentally with a single laser-coo
trapped ion@13# and by excitation of an atomic electron
give a coherent superposition of Rydberg states@14#.

In Ref. @15# the dynamics of distribution of the phases
interacting modes for the process of the second-harm
generation was investigated in the positiveP representation
@16#. The second harmonic, in contrast to the second sub
monic, has one classical solution for the field amplitu
which becomes unstable above the bifurcation point of
optical system@17,18#. The system has in this domain on
quantum solutions and is a macroscopic quantum object.
the fundamental mode and second harmonic a superpos
state will be realized at large times. As distinct from t
process of the second subharmonic, the quantum super
tion state can be obtained in the case of a small nonlinea

In Ref. @19#, Mlynek and co-workers used the method
quantum trajectories@20# to investigate the Wigner function
for the third subharmonic. The classical treatment gives
the third subharmonic four steady solutions~one of which is
the vacuum state!. By demonstration of the quantum traje
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tories of an optical system the authors have shown that in
system a classical mixture of the states is realized, i.e.,
system spends most of its time localized close to one of
classical solutions.

In the present paper the dynamics of fluctuations of
photon number and phases is investigated for the proces
third-harmonic generation~THG!. With this purpose we
simulate in the positiveP representation the Langevin equ
tions of an optical system. This method was proposed
Dörfle and Schenzle to calculate the dynamics of the m
number of photons and quadrature amplitude of the field
the second-harmonic generation@21#. Various methods of
calculations are given in Refs.@22–26#. In the present work
we show that the fundamental mode, and the third harmo
above the bifurcation point of an optical system at lar
times are in a quantum-mechanical superposition state.
investigate also joint fluctuations of phases of interact
modes.

II. BASIC EQUATIONS

We consider a double resonant third-harmonic genera
in which three photons of frequencyv1 in the fundamental
mode a1 can annihilate to produce a photon with the fr
quencyv253v1 in the third-harmonic modea2 . The fun-
damental mode is resonantly driven by an external class
field. The interaction of the fundamental mode with that
the third harmonic in a nonlinearx (3) medium is described
by the following Hamiltonian:

H5\v1a1
†a113\v1a2

†a21H int1H loss,

H int5 i\x~a1
3a2

†2a1
†3a2!1 i\~Ee2 iv1ta1

†2E* eiv1ta1!,

H loss5a1G1
†1a1

†G11a2G2
†1a2

†G2 , ~1!

werex is the resulting coupling constant proportional to t
third-order susceptibilityx (3), E is the amplitude of the driv-
ing field at the frequencyv1 , andG i , G i

† ( i 51,2) are res-
ervoir operators for the fundamental and third-harmo
modes, which will give rise to the cavity damping constan
g1 andg2 , respectively.

Using standard techniques for the Hamiltonian~1!, we
obtain the master equation for the density matrix of the s
tem. Furthermore, in the positiveP representation, this equa
tion is converted to a Fokker-Planck equation for the q
4862 © 1998 The American Physical Society
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PRA 58 4863QUANTUM SUPERPOSITION STATES IN THIRD- . . .
siprobability distribution function P(a1 ,a2 ,b1 ,b2 ,t),
wherea i andb i ( i 51,2) are the independent complex va
ables corresponding toai andai

† , respectively. Using the Ito
rules, from the Fokker-Planck equation, we can obtain
Langevin stochastic equations for thea i andb i variables as
@27#

da15~«2a123kb1
2a2!dt1A26kb1a2j1~t!Adt

1A26ka2h1~t!A3 dt,

db15~«* 2b123ka1
2b2!dt1A26ka1b2j2~t!Adt

1A3 26kb2h2~t!A3 dt,
~2!

da25~2ra21ka1
3!dt,

db25~2rb21kb1
3!dt.

The variable t5g1t is the scaled time,«5E/g1 , k
5x/g1 , r 5g2 /g1 , andj1(t), j2(t), h1(t), h2(t) are the
independent Langevin sources of the noise with the follo
ing nonzero correlation functions:

^j1
2&5^j2

2&51, ^h1
3&5^h2

3&51. ~3!

The system of equations~2! without the noise terms has fo
large times stable stationary solutions for the photon nu
bers and phases,

nj5a jb j , f j52 ln~a j /b j !/2i , ~4!

only in the case of weak perturbation fields«,«cr , where
«cr is the critical value of the perturbation~the Hopf’s point
of bifurcation! determined by the following formula:

«cr5A4 r /6k2@~11r !1/41 1
2 ~11r !5/4#. ~5!

In the case of a strong perturbation«.«cr , small fluctua-
tions of the phases of the fundamental and the third harm
do not damp in time@the system loses stability near the s
tionary solutions of Eqs.~2! without the noise terms#, while
the semiclassical solutions for the numbers of photons
into the auto-oscillation regime@27#.

III. DYNAMICS OF FLUCTUATIONS AND FORMATION
OF QUANTUM-MECHANICAL SUPERPOSITION

STATE

We proceed with the calculation of the dynamics of t
distribution function of the fundamental mode phase. W
calculate this function with the help of the following obviou
formula:

P~f1 ,t!5 lim
N→`

Df1→0

S SN~t!

N D . ~6!

HereP(f1 ,t) is the density of phase distribution at the m
ment of timet, SN(t) is the number of those realizations
Eqs. ~2! which at the moment of timet are in the phase
elementDf1 with the pointf1 inside. Figure 1 shows the
e
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dynamics of the distribution function of the fundamen
mode phase for the Gaussian initial condition of both mod

^a i~0!&5^b i~0!&50, ^b i~0!a j~0!&52d i j ~ i , j 51,2!.
~7!

Here and below the following values of parameters are u
for calculations:r 51, k251029, «5380. At these values
the critical perturbation is«cr'270.

At t50 we have a uniform distribution of phases in th
interval ~2p/2,p/2!. After some very small period the fun
damental mode moves, due to the classical perturbation fi
towards the coherent state with very narrow phase distr
tion. Then the system gradually moves towards the state w
the two most probable values of the phase. States with
components are formed in the system. Hereafter the distr
tion function does not vary.

An incoherent superposition~classical mixture! is the lim-
iting case of quantum superposition states where the tim
the localization of the system in component states exce
greatly the time of transition between them@19#. Since dur-
ing the transition it is impossible to determine in which com
ponent the system is, the components interfere in the c
where the transition time is of the order of the localizati
time. The system becomes a quantum object.

In Fig. 2 the dynamics of a certain realization of the fu
damental mode phase is shown. The dashed lines corres
to the two most probable values of the phase. Time of tr
sition of the system between these states is about the
time in them. This indicates that in the system a coher
superposition of these states is realized.

The fact that a classical mixture is localized in its comp
nents is a consequence of the damping of fluctuations in
optical system. When a damping arises in a quantum su
position state, the interference between the componen
destroyed and the system decays into the classical mixtur
the components@3#. For the process of THG in the instabilit

FIG. 1. Dynamics of distribution function of phase for the fu
damental mode in the case of an initial Gaussian state of b
modes and for following values of parameters:r 51, k251029, «
5380. The function is calculated with the help of 100 000 indep
dent trajectories of Eqs.~2!.
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4864 PRA 58S. T. GEVORKYAN
region, small fluctuations of phases of interacting modes
not damp@27# which means quantum-mechanical interfe
ence between state components of the modes exists.

In Fig. 3 @curve ~1!# the density of phase distribution o
the fundamental mode is shown at the moment of timet
59.5. It is approximated by the following function:

FIG. 2. Realization of a phase for the fundamental mode. T
dashed lines lead to the two most probable values of the phase
function is calculated for the case of parameters of Fig. 1.

FIG. 3. Phase distribution function for the fundamental mode
the moment of timet59.5 ~curve 1! and for values of parameter
of Fig. 1. 100 000 trajectories of Eqs.~2!. Curve ~2! represents
approximation of this function with the help of formula~8!. Accu-
racy of the approximation is 7%.
o

P~Re f1!5N$F2~f01Re f1!1F2~f02Re f1!

12 cos~c!F~f01Re f1!F~f02Re f1!%.

~8!

Here the first two terms determine the components of
system state with a positive or negative value of the pha
the third term is determining the interference between th
components,N is the normalization factor, 2 cos(c) is the
factor of interference between the two states, and

F~f!5H ba

G~a!
fa21e2bf at f.0

0 at f<0

~9!

is the density ofG distribution @28#. In the approximation
used the above quantities are equal tof0'0.67, 2 cos(c)
'1.57,a'1.10,b'2.03. In this case a strong superpositi
state 2 cos(c).1 will be realized in the system.

Dynamics of the phase distribution of the third harmon
is shown in Fig. 4. Here, as well as in the case of the fun
mental mode, the quantum-mechanical superposition s
will be formed in the system at large times. At the mome
of time t59.5 the quantities of approximation of the pha
distribution function of the third harmonic entering the fo
mula ~8! are equal tof0'1.51, 2 cos(c)'0.11, a'1.42, b
'1.18. In this case a strong superposition state 2 cos(c),1
will be realized in the system.

The densities of the joint distribution of photon numbe
and phases of the fundamental mode and the third harm
are shown in Figs. 5~a! and 5~b!, respectively. Both distribu-
tions are symmetric with respect to the zero phase. For e
mode in the state with a negative phase and in the state
a positive phase the values of photon numbers are the s
The maximum value of the photon number in the fundam
tal mode is realized together with the most probable value
the phase for this mode. The zero value of the phase is r
ized with the minimum value of the photon number. For t
third harmonic the maximum and minimum values of phot
number can be realized when this mode accepts the
value of the phase.

e
he

t

FIG. 4. Dynamics of phase distribution for the third harmonic
the case of an initial Gaussian state of both modes and for value
parameters of Fig. 1. 100 000 trajectories.



o
as

e
n
its
se
n
d

nt
th

es

ti
in
e
e-

a
are
i-

e.

se

00

e

nic.

PRA 58 4865QUANTUM SUPERPOSITION STATES IN THIRD- . . .
IV. NONSTATIONARY SUPERPOSITION STATES

We now proceed with the calculation of the dynamics
the fundamental mode phase distribution function in the c
of coherent initial states in both modes:

a j~0!511 i , b j~0!512 i ~ i , j 51,2!. ~10!

Dynamics of this function is shown in Fig. 6~a!. In this
case the distribution function in the domain of large tim
has no stationary solution. The distribution function tur
into the auto-oscillation regime. A similar behavior exhib
also the distribution function of the third-harmonic pha
@see Fig. 6~b!#. For a brighter illustration of behavior of a
optical system in the case of a coherent initial state the
namics of the average phase of third harmonic is shown
Fig. 7. At the moments of time corresponding to the poi
C, the system is in superposition states. The density of
joint distribution of photon numbers and phases in th
points coincides with the function presented in Fig. 5~b!. At
the moments of time corresponding to the pointsN, the sys-
tem moves towards the single peak state with the nega
most probable value of the phase. The density of the jo
distribution of photon numbers and phases at these mom
of time is shown in Fig. 8. At the moments of time corr

FIG. 5. Density of joint distribution of photon number and pha
for the fundamental mode~a! and third harmonic~b! at the moment
of time t59.5 and for values of parameters of Fig. 1. 100 0
trajectories.
f
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sponding to the pointsP, the system is in the state with
positive value of the phase. Thus the superposition states
destroyed with time and formed again in the system. A sim
lar temporal behavior also exhibits the fundamental mod

FIG. 6. Dynamics of distribution function of a phase for th
fundamental mode~a! and third harmonic~b! in the case of coher-
ent initial state of both modes. 100 000 trajectories.

FIG. 7. Dynamics of the average phase for the third harmo
50 000 trajectories.
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4866 PRA 58S. T. GEVORKYAN
V. PHASE MATCHING IN THIRD-HARMONIC
GENERATION

In this section the function of the joint distribution o
phases of the fundamental mode and third harmonic is in
tigated. This function at the momentt59.5 and in the case
of a Gaussian initial state in both modes~7! is shown in Fig.
9. The distribution density is calculated for the values
parameters as in Fig. 1. The function has two peaks wh
determine two states of the optical system. In either of th
states the third harmonic and the fundamental mode ac
identical signs of phases concerned with the phase of pe
bation fields.

Such a state of an optical system has no classical ana
so this system is a quantum object. This state of the sys
can be termed a two-mode superposition state. The even
some domain surrounding the point (Ref150, Ref250!
~this point determines the phase matching of modes in c
sical solutions! have zero probability of realization. As th

FIG. 8. Density of joint distribution of photon number and pha
for the third harmonic at the momentt59.43 and in the case o
coherent initial state of both modes. 100 000 trajectories.

FIG. 9. Density of joint distribution of phases for the fundame
tal mode and third harmonic at the momentt59.5 and in the case
of initial Gaussian state of both modes. The function is calcula
for values of parameters of Fig. 1. 100 000 trajectories.
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quantum system approaches the bifurcation point from
right («→«cr) the above-stated domain decreases and in
critical point we obtain a sharp peak at the value (Ref1
50, Ref250! instead of a dip around this value. The syste
becomes a classical object.

In Fig. 10 one trajectory of an optical system is shown
the phase space (Ref1,Ref2). In a certain very short time
t!1 after the interaction begins a classical matching
phases of interacting modes occurs in the cavity volume
dense congestion of points around the values (Ref150,
Ref250! corresponds to this matching. The density
points is proportional to a time of stay of the optical syste
in this domain of the phase space. After this the system tr
sits to a state which has no classical analog. Two congest
of phase points determine the two states of the optical s
tem.

-

d

FIG. 10. A trajectory of optical system in the phase spa
(Ref1,Ref2). The trajectory is shown in the time intervalt
50 – 55. Density of points is proportional to the stay time of t
optical system in this area of phase space. A temporal interval
tween neighboring points isDt50.01.

FIG. 11. Density of joint distribution of phases for the fund
mental mode and third harmonic at the momentt59.43 and in the
case of coherent initial state of both modes. 100 000 trajectorie
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In the case of a coherent initial state of both modes,
~10!, the distribution function turns at large times into th
auto-oscillation regime. At the moments of time correspo
ing to the pointsC in Fig. 7 the distribution density coincide
with the function of Fig. 9. For moments of time whic
correspond to the pointsN, this function is shown in Fig. 11
Here the system is located in one peak state where
phases accept negative values. At moments of time wh
correspond to the pointsP, the system is located in a sta
with positive values of phases of both modes.

Equations~2! for large timest@1 can be solved numeri
cally in instability region only for small nonlinearitiesk2
N.

d,
.

-

th
h

!1. For the large time intervalst.10 jumps are appearing
on the photon number trajectory leading to nonphysi
peaks arising for the mean values of photon numbers.
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