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Quantum superposition states in third-harmonic generation
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We investigate numerically the distribution functions of photon number and phase in third-harmonic gen-
eration in the region of instability. It is shown that in this system the quantum superposition states for the third
harmonic and fundamental mode can appE&t.050-2947®8)00910-X]

PACS numbdrs): 42.65.Ky

I. INTRODUCTION tories of an optical system the authors have shown that in the
system a classical mixture of the states is realized, i.e., the
The production and detection of nonclassical light contin-system spends most of its time localized close to one of the
ues to be an important topic in quantum optics. Theclassical solutions.
quantum-mechanical superposition stdfdsare nonclassical In the present paper the dynamics of fluctuations of the
states of light which are of great interest currently. photon number and phases is investigated for the process of
Wolinsky and Carmichael have shown that the quantumthird-harmonic generatiofTHG). With this purpose we
mechanical superposition states can be obtained during tifémulate in the positivé® representation the Langevin equa-
generation of a second subharmonic in the case of a largéons of an optical system. This method was proposed by
nonlinearity[2]. The second subharmonic has two stable staPorfle and Schenzle to calculate the dynamics of the mean
tionary classical solutions above the threshold of generatiofumber of photons and quadrature amplitude of the field in
for the radiation field amplitude. In the region of strong the second-harmonic generatippl]. Various methods of
guantum noiseglarge nonlinearities of interactigrihe sys-  calculations are given in Reff22-26. In the present work
tem is in a coherent state of Superposition of two Compowe show that the fundamental mOde, and the third harmoniC,
nents. In the weak noise regidismall nonlinearities the ~ above the bifurcation point of an optical system at large
superposition state goes to a state which is a classical miimes are in a quantum-mechanical superposition state. We
ture of these components. investigate also joint fluctuations of phases of interacting
The possibility to obtain the superposition states in themodes.
process of two-photon absorption for the coherent parametric
excitation case was shown by Knight and co-work@&is In Il. BASIC EQUATIONS
this paper the dynamics of the Wigner function for this pro- . . . .
cess was investigated. It was shown that the competitive one- We consider a double resonant thlrQ—harmonlc generation
photon absorption process even if it is weak destroys witd? Which three photons of frequenay, in the fundamental
time the superposition state. mode a; can annihilate to produce a photon with the fre-

The quantum-mechanical superposition states were inve§UeNcy @, =3, in the third-harmonic mode,. The fun-
tigated also in Refs[4—12). Recently superposition states damental mode is resonantly driven by an external classical

were observed experimentally with a single laser-cooledi€!d- The interaction of the .funda(lg?ental'mOQe with that of
trapped ion[13] and by excitation of an atomic electron to th€ third harmonic in a nonlinegy**’ medium is described
give a coherent superposition of Rydberg stéfief. by the following Hamiltonian:

In Ref.[15] the dynamics of distribution of the phases of
interacting modes for the process of the second-harmonic
generation was investigated in the positReepresentation _ st 13 ) ot e ot
[16]. The second harmonic, in contrast to the second subhar- Hin= 1% x(a18;—a;"a,) +if(Ee '“Ya; —E*e'“1'ay),
monic, has one classical solution for the field amplitude
which becomes unstable above the bifurcation point of the Hioss=ail 1 +ajl’ +a ') +all,, (1)
optical systen{17,18. The system has in this domain only
guantum solutions and is a macroscopic quantum object. Fd¥ere x is the resulting coupling constant proportional to the
the fundamental mode and second harmonic a superpositidhird-order susceptibility®), E is the amplitude of the driv-
state will be realized at large times. As distinct from theing field at the frequencw,, andI’, I’ (i=1,2) are res-
process of the second subharmonic, the quantum superposirvoir operators for the fundamental and third-harmonic
tion state can be obtained in the case of a small nonlinearitynodes, which will give rise to the cavity damping constants

In Ref. [19], Mlynek and co-workers used the method of y; andy,, respectively.
quantum trajectorief20] to investigate the Wigner function Using standard techniques for the Hamiltonidl), we
for the third subharmonic. The classical treatment gives foobtain the master equation for the density matrix of the sys-
the third subharmonic four steady solutidieme of which is  tem. Furthermore, in the positirepresentation, this equa-
the vacuum staje By demonstration of the quantum trajec- tion is converted to a Fokker-Planck equation for the qua-

H=#4 wla1a1+ 3h wlaZaz +Hipt Higsss
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siprobability distribution function P(ay,a5,81,82,t),
wheree; andB; (i=1,2) are the independent complex vari-
ables corresponding @ andaiT, respectively. Using the Ito
rules, from the Fokker-Planck equation, we can obtain the

Langevin stochastic equations for the and B; variables as
[27]

dO[]_: (8 — a1 3kBiO{2)dT+ N 6kB1a2§1( T) \/a'

(1 +P)

+ = 6kasnq( 7)3\/d_7,
dB,=(e* —,81—3ka§,82)d7+ N 6ka1,32§2(7)\/d_7
+3/=6kB,ma(7)Ydr,

)

da,=(—ra,+kad)dr,

dB,=(—rB,+kBd)dr.

. . . FIG. 1. Dynamics of distribution function of phase for the fun-
The variable 7=yt is the scaled time,e=E/y;, K  gamental mode in the case of an initial Gaussian state of both
=xly1, r=y21y1, and&;(7), £2(7), 71(7), n2(7) are the  modes and for following values of parameters: 1, k2=10"°, &
independent Langevin sources of the noise with the follow-=380. The function is calculated with the help of 100 000 indepen-
ing nonzero correlation functions: dent trajectories of Eqs2).

(E)=(&)=1, (n)=(m)=1. ©) dynamics of the distribution function of the fundamental

. ) . mode phase for the Gaussian initial condition of both modes:
The system of equation®) without the noise terms has for

large times stable stationary solutions for the photon num-, —/n _ _ _ o (i
bers and phases, (@(0))=(Bi(0))=0, (Bi(0)a;(0))=25; (i,j=1,2.

(7)

n=aB, & =—In(a/B)2, 4 .
i=aib. ¢ (a;/B))/2 @ Here and below the following values of parameters are used
: R 2__ —9 —
only in the case of weak perturbation fields<e.,, where O calculationsir=1, k*=10"", ¢=380. At these values
e, is the critical value of the perturbatidthe Hopf's point ~ the critical perturbation ig¢~270.

of bifurcation determined by the following formula: _ At 7=0 we have a uniform distribution of phases in the
interval (—#/2,7/2). After some very small period the fun-
o= 316K (L+1)Y4+ 1 (1471)54], (55  damental mode moves, due to the classical perturbation field,

towards the coherent state with very narrow phase distribu-
In the case of a strong perturbatien¢,,, small fluctua- tion. Then the system gradually moves towards the state with
tions of the phases of the fundamental and the third harmonithe two most probable values of the phase. States with two
do not damp in timdthe system loses stability near the sta-components are formed in the system. Hereafter the distribu-
tionary solutions of Eqs(2) without the noise ternjswhile  tion function does not vary.
the semiclassical solutions for the numbers of photons turn An incoherent superpositioielassical mixturgis the lim-

into the auto-oscillation regimg27]. iting case of quantum superposition states where the time of
the localization of the system in component states exceeds
Il. DYNAMICS OF FLUCTUATIONS AND FORMATION greatly the time of transition between th¢B]. Since dur-
OF QUANTUM-MECHANICAL SUPERPOSITION ing the transition it is impossible to determme in wr_nch com-
STATE ponent the system is, the components interfere in the case

where the transition time is of the order of the localization
We proceed with the calculation of the dynamics of thetime. The system becomes a quantum object.
distribution function of the fundamental mode phase. We In Fig. 2 the dynamics of a certain realization of the fun-
calculate this function with the help of the following obvious damental mode phase is shown. The dashed lines correspond

formula: to the two most probable values of the phase. Time of tran-
sition of the system between these states is about the stay
— i Sn(7) time in them. This indicates that in the system a coherent
P(¢1,7)= lim | —5—]. 6 superposition of these states is realized.
N— o . . . . -
Apy—0 The fact that a classical mixture is localized in its compo-

nents is a consequence of the damping of fluctuations in an
HereP(¢1,7) is the density of phase distribution at the mo- optical system. When a damping arises in a quantum super-
ment of timer, Sy(7) is the number of those realizations of position state, the interference between the components is
Egs. (2) which at the moment of time are in the phase destroyed and the system decays into the classical mixture of
elementA ¢, with the point¢, inside. Figure 1 shows the the componentg3]. For the process of THG in the instability
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""""""""""""""""""""""""""""""""""""""" FIG. 4. Dynamics of phase distribution for the third harmonic in
the case of an initial Gaussian state of both modes and for values of
parameters of Fig. 1. 100 000 trajectories.
-1 . .
o » T % , ,
P(Re ¢1) =N{F“(¢o+Re ¢1) +F*(po—Re ¢1)
FIG. 2. Realization of a phase for the fundamental mode. The +2co F +Re F —Re )
dashed lines lead to the two most probable values of the phase. The $)F (o $F (o 2%
function is calculated for the case of parameters of Fig. 1. (8)

, ) . ) Here the first two terms determine the components of the
region, small fluct_uat|ons of phases of mteractl_ng modes d%ystem state with a positive or negative value of the phase,
not damp[27] which means quantum-mechanical interfer- ihe third term is determining the interference between these
ence between state components of the modes exists. componentsN is the normalization factor, 2 cag is the

In Fig. 3[curve (1)] the density of phase distribution of factor of interference between the two states, and
the fundamental mode is shown at the moment of time

=9.5. It is approximated by the following function: a

a—-1,—bo t 0
Fp={T@ & & ©

0 at ¢<0

is the density ofl" distribution [28]. In the approximation
used the above quantities are equaldtg~0.67, 2 cos{)

0 ~1.57,a~1.10,b~2.03. In this case a strong superposition
state 2 cosf)>1 will be realized in the system.

Dynamics of the phase distribution of the third harmonic
is shown in Fig. 4. Here, as well as in the case of the funda-
mental mode, the quantum-mechanical superposition state

10r will be formed in the system at large times. At the moment
of time 7=9.5 the quantities of approximation of the phase
distribution function of the third harmonic entering the for-
mula (8) are equal topy~1.51, 2 cos§)~0.11,a~1.42,b
~1.18. In this case a strong superposition state 2)esl
05| will be realized in the system.
The densities of the joint distribution of photon numbers
2 and phases of the fundamental mode and the third harmonic
are shown in Figs.®) and 3b), respectively. Both distribu-
tions are symmetric with respect to the zero phase. For each
mode in the state with a negative phase and in the state with
00 y ' 5 ' p ' a positive phase the values of photon numbers are the same.
Re(s,) The maximum yalue of the pho_ton number in the fundamen-
tal mode is realized together with the most probable value of
FIG. 3. Phase distribution function for the fundamental mode atthe phase for this mode. The zero value of the phase is real-
the moment of timer=9.5 (curve 1 and for values of parameters ized with the minimum value of the photon number. For the
of Fig. 1. 100 000 trajectories of Eqé2). Curve (2) represents third harmonic the maximum and minimum values of photon
approximation of this function with the help of formul@). Accu-  number can be realized when this mode accepts the zero
racy of the approximation is 7%. value of the phase.

P (Re($,,t=9.5))
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FIG. 5. Density of joint distribution of photon number and phase
for the fundamental mod@) and third harmonig¢b) at the moment

of time r=9.5 and for values of parameters of Fig. 1. 100 000 (b)
trajectories.

FIG. 6. Dynamics of distribution function of a phase for the
fundamental modé€a) and third harmonidb) in the case of coher-
ent initial state of both modes. 100 000 trajectories.

IV. NONSTATIONARY SUPERPOSITION STATES

We now proceed with the calculation of the dynamics ofsponding to the point®, the system is in the state with a
the fundamental mode phase distribution function in the caspositive value of the phase. Thus the superposition states are
of coherent initial states in both modes: destroyed with time and formed again in the system. A simi-

lar temporal behavior also exhibits the fundamental mode.
aj(0)=1+i, B;(0)=1-i (i,j=1,2. (10

Dynamics of this function is shown in Fig(&. In this
case the distribution function in the domain of large times A
has no stationary solution. The distribution function turns %"“
into the auto-oscillation regime. A similar behavior exhibits
also the distribution function of the third-harmonic phase
[see Fig. @)]. For a brighter illustration of behavior of an
optical system in the case of a coherent initial state the dy-
namics of the average phase of third harmonic is shown in
Fig. 7. At the moments of time corresponding to the points
C, the system is in superposition states. The density of the
joint distribution of photon numbers and phases in these N UnN
points coincides with the function presented in Fi¢)5At
the moments of time corresponding to the poiNighe sys- -1
tem moves towards the single peak state with the negative 0 5 10
most probable value of the phase. The density of the joint '

distribution of photon numbers and phases at these moments FIG. 7. Dynamics of the average phase for the third harmonic.
of time is shown in Fig. 8. At the moments of time corre- 50 000 trajectories.
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FIG. 8. Density of joint distribution of photon humber and phase 1 ' 0 ' h
for the third harmonic at the moment=9.43 and in the case of Reg,
coherent initial state of both modes. 100 000 trajectories.

FIG. 10. A trajectory of optical system in the phase space
(Re ¢,,Re¢,). The trajectory is shown in the time interval
=0-55. Density of points is proportional to the stay time of the
optical system in this area of phase space. A temporal interval be-
In this section the function of the joint distribution of

tween neighboring points i&7=0.01.
phases of the fundamental mode and third harmonic is inves-

tigated. This function at the moment=9.5 and in the case quantum system approaches the bifurcation point from the
of a Gaussian initial state in both mod@3 is shown in Fig.  right (e —¢,) the above-stated domain decreases and in the
9. The distribution density is calculated for the values ofcritical point we obtain a sharp peak at the value ¢Rre
parameters as in Fig. 1. The function has two peaks whick=0, Re¢,=0) instead of a dip around this value. The system
determine two states of the optical system. In either of thesbecomes a classical object.

states the third harmonic and the fundamental mode accept In Fig. 10 one trajectory of an optical system is shown in
identical signs of phases concerned with the phase of pertuthe phase space (Rf,Red,). In a certain very short time

V. PHASE MATCHING IN THIRD-HARMONIC
GENERATION

bation fields.

7<1 after the interaction begins a classical matching of
Such a state of an optical system has no classical analoghases of interacting modes occurs in the cavity volume. A

so this system is a quantum object. This state of the systemense congestion of points around the values $Re0,

can be termed a two-mode superposition state. The events Re ¢,=0) corresponds to this matching. The density of
some domain surrounding the point (Re=0, Re¢,=0) points is proportional to a time of stay of the optical system
(this point determines the phase matching of modes in clagn this domain of the phase space. After this the system tran-
sical solutiong have zero probability of realization. As the sits to a state which has no classical analog. Two congestions

of phase points determine the two states of the optical sys-
tem.

P(Re¢1a Re(t)z, 1=9 43)

FIG. 9. Density of joint distribution of phases for the fundamen-

tal mode and third harmonic at the moment 9.5 and in the case FIG. 11. Density of joint distribution of phases for the funda-
of initial Gaussian state of both modes. The function is calculatednental mode and third harmonic at the moment9.43 and in the

for values of parameters of Fig. 1. 100 000 trajectories. case of coherent initial state of both modes. 100 000 trajectories.
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In the case of a coherent initial state of both modes, Eq=<<1. For the large time intervals>10 jumps are appearing
(10), the distribution function turns at large times into the on the photon number trajectory leading to nonphysical
auto-oscillation regime. At the moments of time correspondpeaks arising for the mean values of photon numbers.
ing to the pointC in Fig. 7 the distribution density coincides
with the function of Fig. 9. For moments of time which
correspond to the points, this function is shown in Fig. 11.
Here the system is located in one peak state where both The author thanks Professor R. Graham and Professor V.
phases accept negative values. At moments of time whiclhaltykyan for useful discussions, and also A. Mirzakhanyan
correspond to the pointB, the system is located in a state and H. Hayrian for technical help. The work was supported
with positive values of phases of both modes. by Grant No. 96-775 “Effect of Quantum Noises on Optical

Equations(2) for large timesr>1 can be solved numeri- Instabilities” from the Ministry of Education and Science of
cally in instability region only for small nonlinearitiek?  Armenia.
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