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Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases
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Bartol Research Institute, University of Delaware, Newark, Delaware 19716

~Received 12 June 1998; revised manuscript received 24 August 1998!

We perform a mean-field study of the binary Bose-Einstein condensate mixtures as a function of the mutual
repulsive interaction strength. In the phase segregated regime, we find that there are two distinct phases: the
weakly segregated phase characterized by a ‘‘penetration depth’’ and the strongly segregated phase character-
ized by a healing length. In the weakly segregated phase the symmetry of the shape of each condensate will not
take that of the trap because of the finite surface tension, but its total density profile still does. In the strongly
segregated phase even the total density profile takes a different symmetry from that of the trap because of the
mutual exclusion of the condensates. The lower critical condensate-atom number to observe the complete
phase segregation is discussed. A comparison to recent experimental data suggests that the weakly segregated
phase has been observed.@S1050-2947~98!07312-0#

PACS number~s!: 03.75.Fi
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I. INTRODUCTION

Shortly after its first theoretical study@1#, the binary mix-
ture of Bose-Einstein condensates~BEC’s! of alkali-metal
atoms in a trap has been realized experimentally@2# and the
development of this field is now blooming@3–7#. The binary
mixture idea has been extended to trapped boson-ferm
and fermion-fermion systems@4#. This opens the door to
studying the rich physics in new parameter regimes. Th
have been several theoretical studies@5–7#; most of them are
numerical in nature or are from the atomic physics point
view. In the present paper, we perform a mean-field-ty
study based on the nonlinear Schro¨dinger equation, and ob
tain a qualitative and in many cases a quantitative analyt
understanding of a variety of properties of the binary BE
mixtures. Along with results from the competition betwe
the healing length and the ‘‘penetration depth,’’ as well
from the finite trap effect, we have summarized previou
known results in the manner of simplified mean-field so
tions. In this way, we provide a convenient framework f
classifying various excitations in the system, and pave
way for further study of the properties of binary BEC’s, su
as the time evolution of the two condensates during a ph
segregating process.

We start from the Hamiltonian formulation of the bina
BEC’s at zero temperature:

H5E d3xFc1* ~x!S 2\2¹2

2m1
Dc1~x!1c1* ~x!U1~x!c1~x!G

1E d3xFc2* ~x!S 2\2¹2

2m2
Dc2~x!1c2* ~x!U2~x!c2~x!G

1
G11

2 E d3xc1* ~x!c1~x!c1* ~x!c1~x!

1
G22

2 E d3xc2* ~x!c2~x!c2* ~x!c2~x!

1G12E d3xc1* ~x!c1~x!c2* ~x!c2~x!. ~1!

*Permanent address: Department of Theoretical Physics, U˚
University, 901 87, Umea˚, Sweden.
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Here c i , with i 51,2, is the effective wave function of th
i th condensate, with the massmi and the trapping potentia
Ui . The interaction between thei th condensate atoms i
specified byGii , and that between 1 and 2 byG12. In the
present paper allG’s will be taken to be positive. The cor
responding time-independent equation of motion is the w
known nonlinear Schro¨dinger equation@8#, obtained here by
minimization of the energy, Eq.~1!, with fixed condensate-
atom numbers:

2
\2

2m1
¹2c1~x!1@U1~x!2m1#c1~x!1G11uc1~x!u2c1~x!

1G12uc2~x!u2c1~x!50, ~2!

2
\2

2m2
¹2c2~x!1@U2~x!2m2#c2~x!1G22uc2~x!u2c2~x!

1G12uc1~x!u2c2~x!50. ~3!

The Lagrangian multipliers, the chemical potentialsm1 and
m2 , are determined by the relations*d3xuc i(x)u25Ni , i
51,2, with Ni the number of thei th condensate atoms.

Experimentally, the trapping potentials$Ui% are simple
harmonic in nature. For the sake of simplicity and to illu
trate the physics we shall consider a square-well tapping
tentialUi5U: zero inside and large~infinite! outside, unless
otherwise explicitly specified.

II. CRITERIA AND SYMMETRIES IN SEGREGATED
PHASES

A. Simplified mean-field solutions

With the square-well trapping potential specified in Sec
the coupled nonlinear Schro¨dinger equations have an obv
ous homogeneous solution: inside the trap the conden
densitiesr i5uc i u2, r i5Ni /V, with V the volume of the
square-well potential trap, and the chemical potenti
m15G11r11G12r2 and m25G22r21G12r1 . The corre-
sponding total energy of the system is

Eho5
1

2 FG11

N1
2

V
1G22

N2
2

V
12G12

N1N2

V G . ~4!ea
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For a small enoughG12, any variation on top of this solution
will increase the system energy. This implies that the ex
tations are stable. Therefore in this parameter regime
homogeneous state is the ground state. If the mutual re
sive interactionG12 is strong enough, however, this is n
longer true. We show below in a mean-field manner t
there is an inhomogeneous solution with a lower total sys
energy.

Let us consider the case of the inhomogeneous stat
which the two condensates mutually exclude each other.
the moment we ignore the thickness of the interface and
corresponding extra energy. In this way we temporarily
nore the derivative terms in Eqs.~2! and ~3! in determining
the effective condensate wave functions. We call this sit
tion the simplified mean-field approach, which is a use
one that has already given us a lot of physical insi
@1#. Let Vi be the volume inside the trap occupied by t
condensatei . We haveuc i u25r i05Ni /Vi and the total en-
ergy of the inhomogeneous stateEin5 1

2 ( i 51,2Gii (Ni
2/Vi).

Minimizing Ein with respect toV1 or V2 under the constrain
V11V25V, we obtain the spatial volume occupied by ea
condensate:

V15
1

11AG22/G11~N2 /N1!
V,

V25
1

11AG11/G22~N1 /N2!
V.

The corresponding condensate densities are

r105S 11AG22

G11

N2

N1
D N1

V
, r205AG11

G22
r10, ~5!

and the chemical potentialsm i5Gii r i0 . We note here
m1r105m2r20. The total energy for this inhomogeneou
state is

Ein5
1

2 FG11

N1
2

V
1G22

N2
2

V
12AG11G22

N1N2

V G .
The energy difference from the homogeneous state is th

DE5Ein2Eho52~G122AG11G22!
N1N2

V
. ~6!

This equation reveals that for a large enough mutual re
sive interaction, that is, if

G12.AG11G22, ~7!

the inhomogeneous state has a lower total energy. Hence
inhomogeneous state, the phase segregation state, wi
favored for a large mutual repulsive interactionG12. We
note that this criterion for the mutual repulsive interacti
strength is independent of the condensate-atom numbe
well as of the trap size. We shall return to this point belo
The critical value forG12, Eq. ~7!, has been found using
stability analysis from the excitation spectrum in the hom
geneous state@6#, while it is obtained here from a simpl
energetic consideration.
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B. Interface profile

In the absence of the derivative terms in the determina
of the condensate wave functions studied above, the shap
the boundary between the two condensates in the phase
regated state will take any form. Now, we consider the eff
of the derivative terms. Their inclusion will make the thic
ness of the interface finite and introduce a finite interfa
energy, the surface tension. The presence of the surface
sion will fix the shape of the interface between the two co
densates by minimization of the total surface energy. Fi
we look for the condensate profiles at the interface with
finite thickness. We rescale the effective wave functions
the values deep inside their own condensates:

c i5 f iAr i0.

We shall assume here that condensate 1 occupies the re
in the trap specified byz.0 and condensate 2 occupies t
region specified byz,0. The interface plane isz50.

Deep inside the region of condensate 1, we havef 1→1
and f 2→0. In this region, usingm i5Gii r i0 and only keeping
the leading contributions, the coupled nonlinear Schro¨dinger
equations, Eqs.~2! and ~3!, become

2
\2

2m1
¹2d f 112G11r10d f 11G12r20f 2

250, ~8!

2
\2

2m2
¹2f 22G22r20f 21G12r10f 250. ~9!

Here f 1511d f 1 . These equations may be written in th
following more suggestive form:

2j1
2¹2d f 112d f 11

G12

AG11G22

f 2
250,

2j2
2¹2f 21S G12

AG11G22

21D f 250 ,

with the ‘‘healing lengths’’j i defined as

j i5A \2

2mi

1

Gii r i0
. ~10!

From Eq.~9! we find the density profile of condensate 2
condensate 1 is

f 2~z!5 f 2~0!e2z/L2, ~11!

with the ‘‘penetration depth’’

L25
1

AG12/AG11G2221
j2 , ~12!

which is the length scale for condensate 2 penetrating int
Similarly, for the penetration of condensate 1 into conde
sate 2 in the regionz,0, we havef 1(z)5 f 1(0)ez/L1, with

the penetration depthL15j1 /AG12/AG11G2221. The
healing length scalej here
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describes the ability of a condensate to recover from a
turbance, similar to the same length scale in superfluid
lium 4. The newly introduced length scale here, the pene
tion depthL, describes the degree of the mixing between
two condensates. Obviously, asG12→AG11G22, the penetra-
tion depth goes to infinity, in coincidence with the disappe
ing of the phase segregation.

It is also useful to study the behavior of condensate 1
the regionz.0. Deep inside condensate 1,d f 1 is small. If f 2

2

approaches zero faster thand f 1 , that is, f 2
2,d f 1 , the last

term in Eq.~8! may be dropped, and we have

d f 15d f 1~0!e2&z/j1. ~13!

Here it is the healing lengthj1 of condensate 1, not th
penetration depthL2 , that determines the profile of conde
sate 1. The validity of self-consistency for this solution r
quiresL2,&j1 . In this parameter regime the mutual repu
sive interaction is so strong that condensate 1 stays a
from 2, which is similar to the Meissner state where t
magnetic field is completely excluded outside of a bulk
perconductor. We shall call this parameter regime
strongly segregated phase. In the opposite limit, that
L2.&j1 , d f 1 will be determined byf 2 through Eq.~8!:

d f 152
1

2~122j1
2/L2

2!

G12

AG11G22

f 2
2 , L2.&j1 . ~14!

The only relevant length scale here is the penetration de
which is larger than the healing length. There is still a co
siderable mixing of the two condensates in this param
regime, which we shall call the weakly segregated phase

C. Surface tension

With the inclusion of the gradient terms in the determin
tion of the condensate wave functions, the presence of
interface will cost a finite amount of energy. The surfa
energy per unit area, the surface tension, may be define
s5DEs /S. HereS is the interface area. The energy diffe
enceDEs may be calculated in the following manner: In th
presence of the interface atz50 we first solve the full Eqs.
~2! and ~3! with derivative terms for the condensate wa
functionsc i , calculate the corresponding total energy fro
Eq. ~1!, then subtract from this total energy by the amou
given by Eq.~5!, the total energy of the system in the se
regated phase without the effect of the derivative terms
Eqs.~2! and ~3!. Specifically, the energy differenceDEs is

DEs5E d3xH (
i 51,2

Fr i0f i S 2\2D2

2mi
D f i1

Gii

2
r i0

2 f i
4G

1G12r10r20f 1
2f 2

2J 2 (
i 51,2

Gii

2
r i0Ni .

Because of the normalization condition*d3x r i0f i
25Ni ,

from Eqs.~2! and ~3!, we obtain the surface tension as

s5
1

2 E
2`

`

dz (
i 51,2

r i0f i~z!S 2
\2¹2

2mi
D f i~z!. ~15!
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Though Eq.~15! is a general expression for the surface te
sion, to gain a concrete understanding, we consider the
in which the two condensates have an identical set of par
eters:L i5L andj i5j. In the strongly segregated phase
j@L/&, Eq. ~15! gives

s5
j

&
AG11G22r10r20, ~16!

which is independent of the penetration depth and the mu
repulsive interaction. In the weakly segregated phase
j!L/&, Eq. ~15! gives

s5
j2

L
AG11G22r10r20, ~17!

which goes to zero asL→`. We note that this occurs whe
G12→AG11G22, in agreement with our above mean-fie
analysis of the phase segregation. The existence of the fi
surface tension leads to another branch of gapless ex
tions, the interface or surface mode, which we are not go
to discuss here.

D. Finite trap size effect I: Broken-symmetry ground state

Now we consider the effects of finite surface tension a
the finite trap size. For a very large system, it is known t
the minimization of surface energy leads to the minimu
surface area, whose shape is usually spherical in three
mensions~3D! and circular in 2D. For a finite-size trap, on
might expect that the shape of the ground state of the bin
BEC mixture should take the same symmetry of the tr
particularly if it is cylindrically or spherically symmetric. We
show here that this may not be true in a segregated ph
and the condensates may break the cylindrical symmetry
fined by the trap. To demonstrate the essential physics,
consider the case of two condensates in two spatial dim
sions with an identical set of parameters:L i5L, j i5j, and
r i05r0 . Let R be the radius of the square-well potenti
trap. Supposing that condensate 1 occupies a circular
with a radiusR85R/&; the associated surface energy is t
length of the interface 2pR8 times the surface tensions :

Es5&pRs.

On the other hand, supposing that each condensate occ
a half circular shape of the trap, the corresponding surf
energy is

Eb52Rs,

which is much lower than the circular shape with the sa
symmetry as the trap, because the interface length her
shorter than that with the circular symmetry. Therefore, e
condensate will take a different shape than that of the s
metry of the trap. The broken cylindrical symmetry sta
occurs, discovered first numerically@7#.

Though the circular symmetry is broken for each cond
sate, in the weakly segregated phase whereL.&j, the total
densityr11r2 still appears circularly symmetric, and it re
tains the symmetry of the trap. In the strongly segrega
phase whereL,&j, the two condensates tend to avo
each other. In this regime the circular symmetry of the to
density profile is broken. Here we give a heuristic demo
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stration of such different behaviors of the total density pro
in two segregated phases. We first show that there is a d
in the total density profile at the interface in the strong
segregated phase. Following the analysis above, we taz
50 as the interface position. Condensate 1~2! occupies the
z.0 (z,0) region of the trap. In the regionz.0, the con-
densate densities take the formsr1(z)5r0(12b1e2&z/j)
and r2(z)5r0b2e22z/L, consistent with Eqs.~8! and ~9!.
Similarly, in the regionz,0, r1(z)5r0b2e2z/L, andr2(z)
5r0(12b2e&z/j). Hereb1 and b2 are two numerical con-
stants. To determineb1 andb2 , we make use of the fact tha
because Eqs.~2! and ~3! are second-order differential equ
tions, the solutions and their first-order derivatives must
continuous. This immediately gives us two algebraic eq
tions at the interfacez50:

12b15b2 , &b1 /j52b2 /L.

The numerical constants are thenb15&j/(&j1L) and
b25L/(&j1L). Evidently, the total density r1(z)
1r2(z) has its minimum valuer02L/(&j1L) at the in-
terfacez50, which goes to zero asL→0 or, equivalently, as
G12→`. The total density has a ditch at the interface,
indication of broken symmetry in the strongly segrega
phase. For the weakly segregated phase, replacing&j by
2L and following the same procedure, we obtainb15b2
51/2 and find that the total density remains constant in
trap, not affected by the phase segregation. There is no
ken symmetry for the total density in the weakly segrega
phase.

We note that in terms of interactions the weakly seg
gated phase is specified by 1,G12/AG11G22,(111/&),
and the strongly segregated phase byG12/AG11G22.(1
11/&).

Another interesting feature of the finite surface tension
the floating of the condensate droplet. This may be regar
as a special case of the symmetry broken state. Suppose
condensate, say condensate 2, has a particle number
smaller than that of condensate 1, but still large enough
have a well-defined interface and surface. Then the con
sate 2 may form a droplet inside condensate 1 in a ph
segregated regime. Because of the finite surface tension
droplet may move to and stay at the edge of the trap
reduce the common boundary length in 2D~or area in 3D!
between condensates 1 and 2, to minimize the surface
ergy. This tendency may be called the floating of the c
densate 2 droplet.

E. Finite trap size effect II: Lower critical condensate-atom
number for phase segregation

In the above analysis, we have implicitly assumed that
thickness of the interface is much smaller than the trap s
such that we have a well-developed phase segregation
examine the limitation of this assumption here. According
the above analysis, the penetration of condensate 2 into
determined byL, and the recovery of condensate 1 from t
presence of the interface byj or L in the strongly or weakly
segregated phase. As an estimation, we may have the i
face thicknessl 12 as

l 12;j1L. ~18!
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This implies thatl 12}1/Ar10. When the interface thickness i
larger than the trap size,l 12.R, we do not have a well-
defined phase segregated state. A conclusion inferred f
this is that, if the condensate atom number is too small, th
is no complete phase segregation in the trap even wit
strong mutual repulsive interaction between the condensa

We should point out that the analyses in Secs. II D a
II E are based on the assumption that the two condens
have the same sets of healing length and penetration de
This implies that the surface energy contributions caused
the edge of the square-well trap are the same for both c
densates. Hence we have ignored their effect in the dete
nation of the symmetry of the ground state. In general, t
may not be true, and one has to consider the competi
among four lengths: two healing lengths and two penetra
depths, as well as the surface energy from the trap edge.
will generate an even richer physics than what has been
sented above. We believe our above discussions have
vided the framework for further explorations. One such e
ample will be discussed in Sec. III.

III. NUMERICS AND DISCUSSIONS

In terms of the atomic scattering lengths of condens
atomsaii , the interactions areGii 54p\2aii /mi . The typi-
cal value ofaii for 87Rb is about 50 Å. The typical densit
realized for the binary BEC mixture is aboutr i0
;1014/cm3. Hence the healing length is j

5A(\2/2m)(1/Gii r i0)5A1/(8paii r i0);3000 Å. For the
different hyperfine states of 87Rb, we may take
G12/AG11G2251.04, whose precise value is uncertain a
may be smaller. Then the penetration depth isL

5j/AG12/AG11G2221;1.5 mm. The length scale for the
harmonic trap potential determined by oscillator frequenc
ranges from 1.3 to 4mm, and the condensate occupies
region with a diameter of about 20mm for about 106 atoms,
which is comparable to or larger than the size of the interf
thickness. Hence it is reasonable in practice to apply
mean-field results obtained for a square well potential to
case of a harmonic trapping potential, because on the sca
interface thickness the trapping potential appears smo
The measurement of the penetration depth can be use
determine the mutual repulsive interaction in the87Rb sys-
tem, which is in the weakly segregated phase, becauseG12 is
believed@2# to be slightly larger thanAG11G22.

Now we consider whether or not the ground-state symm
try of the hyperfine states87Rb can be broken. As pointed ou
at the end of Sec. II E, there is a complication arising fro
the trap edge surface energy contribution, due to the dif
ence in healing lengths or interactions. In accordance w
the experimental situation and for the sake of simplicity
analysis, we take two condensates having a equal numb
particles. The differences in interactions are small:$d i
5(Gii 2G12)/G12, i 51,2% are close to zero, and their sum
d11d2;0. A condensate near the edge of the square-w
potential is identical to the strong segregated phase, bec
there is no penetration into the hard wall. The surface tens
at the trap edge can be readily evaluated according to
expression similar to Eq.~15! in the strongly segregate
phase but with only one condensate. The difference in th
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surface tensions is then, up to the first order ind i ,

Ds5s12s25
1

2&
j1G11r10

2 3 1
4 ~d22d1!.

Here we have used Eq.~5!, thatAG22r205AG11r10. If there
were no symmetry breaking in the ground state, the cond
sate with the lower surface energy at the trap edge, say
condensate 2, would stay close to the trap edge. Conden
1 stays inside. If there is a symmetry breaking such that e
occupies half of the trap as discussed in Sec. II E, then c
densate 1 will get in contact with half of the trap edge. Th
is an increase in total energy as

DEedge5pRDs5
p

8&
Rj1G11r10

2 ~d22d1!. ~19!

For the symmetry breaking to occur, this surface energy c
from the trap edge must be smaller than the interface en
gained, which is

DEinterface5Es2Eb5
p2&

2
Rj1G11r10

2 ~d22d1!. ~20!

Here we have usedj i /L i5(&/4)(d22d1) andd11d250.
One can readily check now that indeedDEinterface.DEedge.
We note that in the case of the harmonic trapping poten
the density of a condensate is smaller near the edge, w
gives an even smaller edge surface energy contribut
Therefore the symmetry breaking will occur in the system
hyperfine states of87Rb according to the present analys
We believe this is precisely what was observed in a v
recent experiment@3#. Furthermore, since it is in the weakl
segregated phase, one should also expect that the symm
break occurs only for the density of each individual cond
sate, not for the total density. Again, this is what was
ported in Ref.@3#.
.

n,

ys
s.
.

n-
he
ate
ch
n-
e

st
gy

l,
ch
n.
f
.
y

try
-
-

Given the size of the trap to be on the order of 20mm, the
interface thickness must be smaller than this length to ha
well-defined segregated phase. For the different hyper
states of87Rb, this implies that, according to Eq.~18!, a
lower critical number Nc of condensate atomsNC

51/(G12AG11G2221)V1/3/(8paii );4000. We should point
out that the precise value of the lower critical atom numb
depends on details of a realistic trapping potential, such
the oscillator frequency and the anisotropy ratio. For
condensate-atom number of less than this value, there i
complete phase segregation.

IV. CONCLUSION

From the mean-field analysis, by tuning the strength
the mutual repulsive interaction we have found that there
two segregated phases: The interface profile is determine
the penetration depth in the weakly segregated phase, an
the healing length in the strongly segregated phase. The
ken cylindrical symmetry state starts to appear in the wea
segregated phase for each condensate, and persists int
strongly segregated phase. For the total condensate den
the cylindrical symmetry is maintained in the weakly seg
gated phase, and disappears in the strongly segregated p
We have also found that a condensate droplet inside ano
condensate in a segregated phase tends to move to a
stay at the trap boundary, and that if the condensate a
number is smaller than a critical value, there is no we
developed phase segregation. A comparison between
present results and a recent experiment has suggeste
weakly segregated phase has been observed in87Rb conden-
sates.
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Rev. A 57, 1272~1998!; H. Pu and N. P. Bigelow, Phys. Rev
.

Lett. 80, 1134 ~1998!; D. Gordon and C. M. Savage, e-prin
cond-mat/9802247~unpublished!.

@6# C. K. Law, H. Pu, N. P. Bigelow, and J. H. Eberly, Phys. Re
Lett. 79, 3105~1997!.

@7# S. T. Chui, B. Tanatar, and P. Ao, Phys. Rev. A~to be pub-
lished!.

@8# O. Penrose, Philos. Mag.42, 1373 ~1951!; E. P. Gross, Lett.
Nuovo Cimento20, 454 ~1961!; L. P. Pitaevskii, Sov. Phys
JETP13, 451 ~1961!; E. Demircan, P. Ao, and Q. Niu, Phys
Rev. B54, 10 027~1996!.


