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We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simu-
lation of stochastic partial differential equations obtained using phase-space representations. We derive evo-
lution equations for a single trapped condensate in both the positased Wigner representations and perform
simulations to compare the predictions of the two methods. The po§itimpproach is found to be highly
susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped
systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from
a variety of choices of initial state for the condensate and compare results to those for single-mode models.
[S1050-294{P8)06612-9

PACS numbg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION idea that processing of quantum noise by nonlinearities leads
to interesting statistical properti¢44,15. It thus becomes
A key focus of the explosion of interest in the dilute important to consider the nature of the condensate beyond
atomic gas Bose-Einstein condensafs3] has been the the coherent state and in particular the influence of quantum
study of the time evolution of condensates from some initialhoise on the coherence of the condensate and any eventual
state. Among many works, there have been theoretical invesiatom laser.” For example, we may ask how different loss
tigations of the way condensates react to a range of pertuprofiles for an output couplef22] might affect the noise
bations, such as “shaking” the trap to excite sound wavestatistics of an atom laser.
[4-6], removing a potential barrier to allow two condensates In fact, there have been a number of studies into intrinsi-
to interfere[7,8], applying electromagnetic fields to transfer cally quantum dynamical effects, in particular the collapse
condensate population into other possibly untrapped statemnd revival of the relative phase between two coupled con-
[9-12], or “stirring” a condensate to excite vorticd43]. densate$23,24 and the robustness of such effects against
All but the last of these effects have already been demonenvironmental decoheren¢25,26. However, these studies
strated experimentally. A common element in the theoreticahave been restricted to one or two modes and assume that the
works on these topics is the description of the condensateondensate wave function is independent of the number of
using the time-dependent Gross-Pitaevskii equal@PE) or  atoms. For large condensates, these approximations are not
coupled GPEs(or their approximate hydrodynamic ver- necessarily valid and a many-mode approach is required. A
siong. The GPE can be derived as an equation for the consingle-mode model may give an estimate for the phase dif-
densate amplitude assuming that the condensate state isfusion time[27], for example, but can never describe spatial
multimode coherent stat®n the concept of coherent states coherence properties or the role of local density and phase
see[14,15). Hence an implicit assumption underlying thesefluctuations. Hence there is a need for technigues to treat the
approaches is that the condensate is adequately describedcasantum dynamics of the condensate using a fully spatially
a coherent state. However, a number of experiments are nodependent field rather than a few-mode approach.
exploring issues such as cohereft&,17] and the diffusion Closely related issues are well known in the field of quan-
of relative phase between two condens&fed]. These con- tum optical solitons and nonlinear quantum optics in general.
cepts are familiar from optical systems, but additional factordn that situation, the propagation of the optical field is gov-
arise in condensate physics such as the dispersion associa@tied by a quantum nonlinear Sctirmger equation that in-
with the nonzero atomic mass and especially the effects ofludes the effects of fiber dispersion and the Kerr nonlinear-
atomic interactions. In particular, several early models fority of the medium[28,29. Such a model leads to the
atom laser§19—21] suggest that coherence properties mayprediction that a soliton pulse injected into the fiber experi-
be strongly influenced by the nonlinear interactions. More-ences squeezin(for general discussions of squeezing see
over, one of the principal themes of quantum optics is thg14,15) in both the electric field amplitudg28,29 and the
photon numbef30,31]. Both types of squeezing have now
) been observed32,33. While estimates for the squeezing
*Present address: Labordto de Qiica Quantica, Instituto de  have also been obtained from single-mode models of the
Fisica, Universidade de 8&Paulo, Caixa Postal 66318, GRaulo, Kerr nonlinearity [15], the presence of fiber dispersion
Sa@ Paulo 05389-970, Brazil. means that accurate results can only be obtained from a mul-
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timode treatment of the full quantum field. The Heisenbergsubject. However, many of these ideas may be new to those
field operator describing a Bose-Einstein condengafeC)  who have come to Bose-Einstein condensation from other
confined in a one-dimensional potential well obeys a strik-disciplines. Therefore we have taken a pedagogic approach
ingly similar equation to that of the fiber soliton system,in deriving the fundamental stochastic equations. Before
differing only by the addition of the trapping potential and treating the full quantum field problem, we review the tech-
the interpretation of the dispersive term that in a condensat@igques in the single-mode approximation for which the
represents the kinetic energy. Thus, given that mummodéﬂamiltpnian corresponds to the anharmon_ic oscillator. The
models have proved essential for the accurate prediction ghalysis for the complete field then follows in a natural way.
quantum soliton properties, it is reasonable to assume thHg€aders already well versed in the stochastic approach to
same may hold true in Bose condensates. In fact, we sd#/antum dynamics may wish to pass over this earlier back-
below that the nonlinearity occurring in the condensate probdreund in Sec. Il C.

lem is typically far larger than for the soliton case and thus '€ Paper is structured as follows. In Sec. Il we provide a
the role of quantum noise should be more important. detailed demonstration of the techniques for propagation of

While we thus have strong motives for seeking the comAuantum fields using phase-space representations. After stat-

plete evolution of the field operator, such a calculation is af"d the complete problem in Sec. 1 B, we simplify to the
first sight a formidable task, if for no other reason than thatc°"résponding one-mode Hamiltonian in Sec. Il C and derive
the Hilbert space for the system is truly vast. The numericaf® €quivalent stochastic equations in the posifiveepre-
calculation of the evolution of just a single operator with S€ntation in detail. We generalize this approach to the full
significant excitation requires a large basis. The problem of€!d in Sec. 1l D and find an approximate but more stable
the field is far worse. Nevertheless, in this paper we intend t"€thod using the Wigner function in Sec. Il E. There is con-
demonstrate how techniques of quantum optics may be use<:dd_erable freerm in the chqce of initial states for our simu-
to provide a complete description of the condensate field@tions. We discuss these issues and present some natural
operator such that we can calculate virtually any desireghoices in _Sgc. . Our numerlcgl results |IIustratn_wg some of
quantum expectation value. The key to our approach is thihe possibilities of the s_tochastlc approach are given in Sec.
representation of the density operator using phase-space qu¥-Peéfore we conclude in Sec. V.
siprobability functions. These functions then lead naturally
to a description in terms aflassicalfields that are subject to Il. TECHNIQUES FOR PROPAGATION
evolution equations similar to the semiclassical time- OF QUANTUM FIELDS
dependent GPE satisfied by the mean field but with the cru-
cial addition of stochastic driving terms. These terms do not
correspond to any physical noise sources, but are defined in There are a number of well-established techniques in
such a way as to recapture exactly the operator character gtiantum optics for the propagation of a complete quantum
the fully quantum-mechanical field. In particular we use twofield. Typically, these ideas involve a generalization of stan-
representations: the positiefunction and the well-known dard procedures for finding the time evolution of averages in
Wigner distribution. While we can perform exact calcula-a system with a single mode or a few moddg,15. In
tions in the positiveP representation, we find the system summary, the procedure is as follows. The system density
rapidly succumbs to the instabilities that have been observedperator is expressed in the coherent state basis using a qua-
previously for that representati¢84,35. Therefore, we also siprobability function such as the, Wigner, or positiveP
consider an approximate but robust method using the Wignatistributions. The master equation describing the evolution
representation. We are then able to extract a large range of the density operator is converted to an equivalent partial
interesting averages. differential equation(PDE) for the distribution. If certain

It is worth noting that in terms more familiar in conven- conditions are satisfiedl4,15, the PDE may then be con-
tional quantum field theory, the stochastic techniques wererted to a set of classical stochastic ordinary differential
present in this paper constitute a method of numericallyequations(Langevin equationsthat yield quantum expecta-
evaluating path-integral representations of quantum field aviion values as ensemble averages of moments of the phase-
erageqsee[36—38). The phase space of the classical fieldsspace variables. This procedure has the significant advantage
is in these terms the space of the Feynman paths, while thaf providing a natural numerical implementation in which
phase-space quasiprobability functions are measures over thee calculate the evolution of a small number of phase-space
respective path integrals. These measures are constructivelgriables rather than that of a very large number of variables
characterized by the corresponding stochastic evolutionescribing the density matrix or a distribution function on a
equations, which allows the path integrals to be calculatedarge complex grid. This advantage becomes essential for
This point highlights the significance of the positiPerep-  systems of several modes for which the Hilbert space is so
resentation. Provided certain boundary conditions are satidarge that a direct numerical simulation would be impossible.
fied[14,15, the positiveP representation is aexactmethod = Now when we consider a quantum field, unless we are for-
for propagating the field in redlas opposed to imagingry tunate enough to have an analytic solution, the problem must
time. While it may blow up in certain cases as timebe treated numerically as a system with a large but finite
progresses, all other exact methods fail at all times. Direchumber of modes and the associated Hilbert space is truly
integration of the Feynman path integrals for example, isvast. One thousand atoms with just 100 modes, for example,
numerically useless due to the oscillatory phase factors. occupy a Hilbert space of dimension 8. The stochastic

The stochastic techniques are well known in quantum optreatment is now vital. One uses essentially the same proce-
tics and may be familiar to readers with a background in thatlure but works withfunctional PDE’s and thus obtains sto-

A. General ideas
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chastic equations for a classical fidl#8,29,39,4Q In the C. One-mode problem
following sections we provide a detailed derivation for the

. . . 1. P representation
case of a Bose condensate in one dimension.

To illustrate the ideas underlying a phase-space approach
B. Trapped Bose-Einstein condensates without the notational baggage of the full many-mode prob-
. . . lem, we begin by treating the single-mode limit of E8g).
" Y]\{e m_Odfl a orr:e-dlme_:nstlonal _f%/sttﬁml by _ta?f“”l“”gd%he atomic field is assumed to be described by a single-
'ghly’ aniSotropic harmonic trap wi € ‘ongiiudinal and 4o operatoa(t) with an associated mode functiafgp

radial trap frequencies«(; and o, respectively satisfying determined by the solution to the time-independent GPE
A=w,/w,<1. Below we use parameters corresponding to A&he single-mode Hamiltonian is '

cigar-shaped trap such as that in Ré¢f511]. With strong
radial confinement, we assume that the nonlinearity plays a

negligible role in the radial direction. The field operator is (1) T ~papan

then assumed to factorize with its transverse dependence H"=wa'a+7a'a’aa, ©)
completely described by a coherent-state occupation of the

lowest mode of the trap. So the Heisenberg picture boson

field operator has the form with o= [ dxyEpKep andx [ 7 .dX| yapl®. The first step
o 5 in our attempt to obtain a stochastic description is to express
‘if(x)= mwr) exp( _ Moy T )(;5(2 t) (1) the density matrix in a diagonal coherent state basis using the
Th 2h e Glauber-Sudarshah function[14,15

Adopting harmonic-oscillator units in the axial direction with

ao=Vhlmw, T=w,t, x=2/ay, and ¢(x,7)=asd(zt), p=f d*a|@){alP(a), ™

the one-dimensional second-quantized Hamiltonian is

where |@) is a coherent state with thenumber complex
A= fm dx K+ EJOO dxt ot i, 2) amplitudec. It is tempting to considelP(«) as a probability
— 2) - distribution for the density matrix over the coherent states.
However, whileP(«) is real, for nonclassical states it may
whereX is the linear operator be highly singular and/or take on negative val(®$,15. It
is proved in Ref[14] that there is a uniqu® function for
every density matrix. The quantum averages of interest are
found as moments of thE distribution that correspond to
normally ordered expectation values

d
dx?

1 1,
oLt X T )

u is the scaled chemical potential, afid=2a/\a, is the ~tman ~tman 5 wmon
scaled nonlinear constant wittithe swave scattering length. (@'Ma"=Tr{aMa"p}= | d“aa*"a"P(a)  (8)

Our ultimate aim is to calculatémultitime) averages of)

under the evolution induced by the Hamiltoniéd). More ffor integersm,n=0. Arbitrarily ordered averages can always

generally, the system may include damping in the form o ' . .
couplings to atom reservoirs. In this case the system is delge found by first rewriting them in terms of normally ordered

. . ; L . quantities.
scribed by a density matrix satisfying a master equation We now need an equation for the time evolution of Ehe

dp function. Using |a)=exp(—|a’/2)expea’)exp(—a*a)|0)

—=_Lp, (4)  and the definition of thé function, it is not hard to demon-
dr strate the operator correspondences
where the Liouvillian£ is a superoperator that acts to the 9
right in the fashion ap—aP(a), é‘rpH( at— a_) P(a),
o

9
A Ki A~ =« A A
ﬁp=—|[H,p]+; E’(zojpof—o}ojp—pojfoj)

P(a), péT<—> atP(a).

~ Jd
a—| a—
(5) P aa‘*'
and thef)i are operators describing the bath couplings with . . .
strengths ;. While we do not include damping in the We have introduced the unusual notati®h, which for the

present work, it is convenient to work in a density-matrix moment is to be read as the ordinary complex conjugﬁ_te

formalism. We now develop stochastic descriptions of theSubstituting these correspondences in the master equation
dynamics in both th® and Wigner representations, explain- = —i[H®,p], we obtain a Fokker-Planck equation for the
ing the method for th& representation in detail. time evolution ofP(«)
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9P 9 o 9 o the identification 3=a*, we may read Eq(10) as the
= =[ — a—[— i(wa+yata?)]— —[i(wa” Fokker-Planck equation in the positi®erepresentation cor-
T @ da responding to the original master equation. Moreover, by
5 writing P(a,B) as a function of four real variables rather

than two complex variables, one may show that the resulting
4x 4 diffusion matrix is always positive definitgl4,42.
Thus, in the positive? representation, it is always possible

19
+Xaa+2)]+ = —(—i)(az)
2 ga?

1 &7 w2l p + 10 to derive an equivalent Langevin equation description using
ts &a+z('X“ ) Pla,a™). (10 Eq.(12). In the present case, E(L0) leads to the stochastic
system
Note that despite the appearance of this equatioand a™* q
are not to be treated as independent variables as they are i_a: wat va a?)+ i t
complex conjugatefl4,15. dr (wart xa" )+ fixam(t),
Equation(10) is exact and completely equivalent to the (14
master equation. Our motivation in obtaining it is based on da® +2) 4 Tixa*
the fact that any Fokker-Planck equation with a positive- I = ~(wa +yaa ")+ —ixa nyb),

definite diffusion matrix may be exactly rewritten in the lan-
guage of stochastic differential or Langevin equatip#t].  where #;(t) for i=1,2 are s-correlated in time with zero
To be precise, consider a Fokker-Planck equation of the forrmean. Note thate and o™ experience different noise
sources, so that even if they are conjugatea0 they do
_ _2 iA»(x )P not remain so.
T ooxg We emphasize that Eqél4) are completely equivalent to
the master equation. Any expectation value that can be found
i i T _ from the density operator may equally be found by ensemble
> — —[B(x,0BT(x,D]F, (1D . may ¢ ) ;
& OXj IXg averaging over many trajectories using the stochastic equa-
tions. Beingc-number variablesg anda ™ do not satisfy the
in which the diffusion matrixD=BB" is clearly positive commutation properties of the operataranda’. Neverthe-
definite. Then a third equivalent description is given by thejess, through the inclusion of the noise souregsand the

JF
ot

L
2

system of stochastic equations insistence on normal ordering when taking averages, they
d still account for the complete quantum dynamics. This
_X:A(X,t)JrB(X,t)E(t), (12) equivalence of the stochqstic_ and operator apprqache; has
dt been demonstrated explicitly in the context of optical fiber

. solitons in a recent paper of Fiat al.[43]. It is important to
where the real noise sourcés(t) have zero mean and sat- pote that thes; do not correspond to any physical noise
isfy Ej(t)Ex(t')=djko(t—t'). These equationgand all  sources, but are included only to recapture the commutation
other stochastic equations in this papere to be interpreted relations of the operators. In this sense they are quite distinct
in the Ito approach to stochastic calculus. A complete diSCUSrom the operator valued noise sources that appear in “quan-
sion of the techniques of stochastic calculus and the conneggm Langevin equationsf14,15. In fact in the positiveP
tion between the Fokker-Planck and LangeVin deSCfiptionS iﬁepresentation’ Plimadt al. [38] have pointed out that there
provided by Gardinef41]. By making such a transformation js some freedom in the precise form of the noise terms,
we would apparently have achieved our aim of a stochastigyhich can be exploited to improve convergence properties
description of the quantum dynamics and could calculate exdramatically. We also mention a well-known difficulty with
pectation values by taking ensemble averages of moments gie positiveP representation. The independence of the noise

the phase-space variables sources drivinge and a* can in some cases lead to wild
-~ ) trajectories that prevent convergence of the ensemble aver-
2. Positive-P representation ages[34,35,44. This is indeed true in the present case and

Unfortunately, the diffusion matrix in Eq10) is clearly ~ We consider this problem in some detail in later sections. As
not positive definite and the preceding equivalence does ndhe properties of the anharmonic oscillator are well known,
apply. However, Drummond and Gardir?2] have shown Wwe do not present simulations of the one-mode equations
that in such cases, the situation may be rescued by introdu¢14), but proceed directly to the multimode field problem.
ing the “positiveP” function, which represents the density

matrix as an integral over two independent variables D. Multimode problem
la)(B*] By analogy with the single-mode problem, in which
p:f d2ad?p P(a,B). (13 single-mode operators were replaced by classical variables
(B*| ) driven by white-noise sources, we might expect that a com-

plete quantum field can be replaced by classical fields suf-
It can be shown that with this definition the positirefunc-  fering independent noise sources at every point in space.
tion can be chosen positive for any density maffi4,42.  There are a number of ways of proving this claim. A straight-
The crucial step comes here. Referring to Bd)), we now  forward (if notationally cumbersomemethod is to expand
considera anda™ asindependentjuantities and by making the field in a complete set of modes and mode operators and
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proceed by a direct generalization of the method in the preeomplex conjugate equation to E4.9b). We have used the
ceding subsectiofd0]. However, a more concise derivation form shown in order to make a clearer connection to Egs.
is obtained by introducing the functionBl distribution[39] (14).

Although our derivation indicates that E¢49) allow one

PUy.v* b 1 =p@{ 9"} 7). : (15  to calculatesingle-time normally ordereduantum field av-
y—=y erages, it was shown by Drummoid] that they actually
yr—y allow for multitime time-normally ordered averages be

where p® denotes the density operatpt7) antinormally found. In general, an expression for an arpitrary time-
ordered with respect to the field operatgrg)™ in the Schie normaIIonrdered average is obtained by replagjit, t) by
dinger picture. Putting the master equation obtained from the/1(X.t), #(x.t) by ¢(x,t), and the quantum averaging by
Hamiltonian(2) into antinormal order and using the follow- the stochastic one

ing functional analogs of the operator corresponderi@es

S <?&T(X,t) . {Z/T(X’,t’)TlAﬂ(X”,t") . l?/(X”’,t”'))
+— JE—

(w) P¥). = Do) (X (X ) (X ),
(16) (20)

Ip—yP(P), Zﬁ*pH(

S N
to gt _
5¢+) P pyi=y P, Here T and T denote, respectively, direct and reverse time

ordering of the field operators. The upper bar on the right-
one finds the functional Fokker-Planck equation hand side of this relation denotes an averaging over the ran-
dom trajectorieq ¢, ¢}, with the stochastic measure char-
acterized constructively by Eqél9). In other words, this is
apath integralover trajectorie§, , ¥}, with Eqs.(19) pro-
viding the measure over the paths. In quantum field theory,

quantum averages of the form in E§0) appear in the well-
[—iF¢2(x)]] P+c.c. (170 known Keldysh diagram techniqu@46]. They are a subset

of the full set of Keldysh averagesvhich in general also

As anticipated by the results for the single-mode problem ircontaing’s under theT ordering andi™'s under theT or-
Sec. II C, the diffusion matrix of this equation is non- dering. For this subset of quantum averages, Ed$) are
positive-definite and so there is no straightforward mappindully equivalentnot just to the master equation, biat the
onto a single stochastic differential equatfda]. Just as for Heisenberg equations of motion for the quantum figie-
the single-mode case, we move to a posifiveepresenta- Viding a constructive path-integral representations for these

pl?/<—>( Y-

P (= s . 2
E_de = 5a00 {TIKBOO T Tw00 w00 )

52

"2 592 ()

tion and double the phase space with the mapping averages[Moreover, with external sources added to Egs.
(19), they account for the full set of Keldysh averages, thus
Y=Y (x,0), T (X D= P(X,1), (18  becoming fully equivalent to the Heisenberg equations; see

i . [38,47.] In the context of field theory, it is perhaps worth
wherey, (x,t) andy;(x,t) are independent fields. As before, remarking on a helpful simplification that results from the
we are guaranteed a positive-definite diffusion matrix anthonrelativistic nature of the problem. The density matrix at a
finally obtain the pair of Ito stochastic equations time 7= 7, may be mapped directly onto ti& Wigner or

. _ 2 positiveP distributions at the same time. These are then
191X, 1) =Kpa (X, 1)+ DX, )Y, 7) used as distributions for initial conditions in simulations. In

+\iT (X, 7) m1(X, 7), (199 the general case, one must rather match the density matrix to
the distributions at-= —«, subject to the usual assumption
10, 02(X, 7)== Kipo(X,7) = T 01 (X, 7) 5(X, 7) of adiabatic turning on of the interactigBg]. '
The positiveP representation is guaranteed to give exact
+ =i (X, 7) 72(X, 7), (19b) results for as long as the ensemble averages converge. How-

_ ) ever, we see below in Sec. IV that the trajectories are prone
where the noise sources and 7, are real, Gaussian, amtl o large excursions from the mean that quickly cause the
correlated in time and spacey(x,7)7;(x',7")=6;0(Xx  simulation to blow up. Such problems with the positiRe-

—x")8(7—7"). Note that the mean number of atoms representation are well knowi84,35,44 and occur espe-
cially in systems with strong nonlinearity and we@k van-
<N(T)>:<fx dxf/ﬁ(x,r)fp(x,r)> ishing damping, which is precisely the situation in the
— present case of a trapped interacting Bose condensate. We

believe that this is the first case, however, for which diver-
gent trajectories appear for realistic physical values. As such
it is indication of the likelihood of strongly nonclassical be-
havior outside the description of the GPE. It is important to
is conserved in the ensemble average but fluctuates duringraalize that the failure of the positiie-representation in
single trajectory due to the complex noise. We remark that irsuch cases is not indicative of a genuine “divergence” in the
practice, it is numerically more convenient to work with the sense of quantum electrodynamics but merely represents a

= [ axx st
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rapid (presumably exponentjiagrowth in the width of the left with a single deterministic equation for the classical field
distribution. So while in theory the distribution remains #,, which is just the standard time-dependent GPE
physically correct, in practice it becomes impossible to ac-

curately sample the whole distribution numerically. In fact, 19, w(X, 7) = Kihw(X, 7) + T (X, 7) [P eh(X, 7). (24)
this problem is strongly dependent on the parameter range

chosen. Drummond and Corney have successfully used th&lthough this equation is completely deterministic, it is not
positiveP representation to simulate evaporative cooling ofthe case that we have discarded all effects of quantum noise.
the condensatg18]. The cooling problem is a case in which Noise is still included explicitly in the initial state, which is
the positiveP representation can be expected to be morenow represented as a distribution of functigfg(x,0). (In
robust than in zero-temperature calculations for two reasonsact, even in the positivé representation we would require
The atomic density is much lower, at least initially, and therea random distribution of starting functions unless the initial
is a considerable damping in the form of the rf field used tostate was a coherent stat&/e discuss the choice and repre-

remove the hotter atoms. sentation of initial states in detail in Sec. Ill.
In optical problems, it has been found that the Wigner
E. Truncated Wigner representation approach gives accurate results in the large photon number

limit, when it might be expected that the influence of the
In the absence of exact stable methods, we are forced Cg/ 9 P

. : ; : . ird-order quantum noise is small. In Sec. IV we test the
consider approximate simulation techniques. One approa

that has proved successful in optical problems is the “trun igner predictions against the positiveresults for as long
i 2 . ‘as the latter are stable. Using the Wigner distribution entails
cated Wigner” method44]. In a similar fashion to that of g g

. one further limitation. Typically, the physically most inter-
Sec. Il D, the master equation can be mapped onto a Fokkef.: L S I .
Planck-like equation for the Wigner distributidi4,15, éstlng guantities are time-ordered, normally ordered aver

hich ret trized ati | d ages, as provided directly by thHerepresentationfl4,15.
which returns symmetrized expectation values as opposed jgg i, q Wigner distribution returns symmetrized moments
the normally ordered averages of tAReepresentations. That

is © define the Wi distribution b | .thand we do not know the unequal time commutators for the
IS 1o say, we define the Yvigner distribution by analogy With g operators, we cannot usually find multitime averages

Eq. (15) as with the Wigner method. An exception is the two-time nor-
W({, w*},r)=p(5ym’({fp, &T},T)L , 21) mally ordered correlation function for coherent initial states
e (PP 7))
where p®™ denotes the density operatp(7) §yrhntmetri- = e, )TV PX 7)o (X, 7))
Ret [14] for the connection of this definiion 0 more famil- — st )" (W st )X ) 0 7)
iar expressions for the Wigner functipnUsing the func- =¢GP(X,T)*W, (25)

tional differentiation notation, the operator correspondences

take the form14] which is thus reduced to a single-time expectation value with

no ordering problems. Note that even for coherent initial

- 1 4 N 146 : .
b <—>( g+ = )W, ot ( o= _) states, hlgher-o[der correlations such as
! 2 sy* g 2 5y GO () W) BT (72) #(75):) are unavailable.
(22)
- 16 - 156
— T g+ = — lIl. INITIAL STATES

The question of suitable initial states for simulation is
omewhat involved. Here we wish to use states that can be
ought of as a good representation of the “ground state of
the condensate” in as much as this is possible in a symmetry
broken picture. We consider only zero-temperature states

Using these relations in the master equation, we find th
Wigner function evolution equation

* o0
sz dxi i[,clr,ﬁ_ T(|¢)2—1)y] here. ForT=0, the simplest option is to choose an initial
JT — oy coherent state, that is, precisely that state assumed at all
times in a conventional calculation with the GPE. Our simu-
o SIW( ) +oe. (29 lations then indicate how the actual state evolvei away from
4 2oyt the coherent state. To do so, we set the mean {ig(c,0))

equal to the solution of the time-independent GEER(X)
In this case, there is no second derivative tétine diffusion  (the “ground-state wave function”and assume vacuum
matrix vanishes identicallyand the quantum noise acts via noise in all modes. For the normally ordered positiveep-
third-order derivatives as ‘“cubic noise.” Unfortunately, resentation, vacuum noise is obtained simply by the choice
there is no simple mapping from cubic noise to a stochasti@(x,0)= »(x,0)= ¥ gp(X). In the symmetrically ordered
representationl4] and as we have discussed earlier, a direcWigner representation, the noise must be explicitly included
integration of Eq.(23) is impractical. The simplest approxi- in each mode of a suitable basis. Each trajectory begins with
mation is to truncate Eq23) at second order so that we are a different field of the form
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N1 tonian that are neglected in the Bogoliubov method leads to

Pw(X,0) =t go(X) + Z 5 1, %;(X) (26) a finite squeezing. Here we do not perform a full treatment of
=02 the effect of the higher-order terms for the multimode sys-

tem, but take for our third “ground state,” the lowest-energy

where 7; is a complex random variable of zero mean with ~ .’ - . : . ; g
N ) variational state in which each mode in the Bogoliubov basis

nym=0 and7nj 7= 5j . The sum is taken ovéM modes of 5 ingependently in a minimum uncertainty Gaussian state.
a complete basiga;(x)} and N is taken sufficiently large e also briefly remark that the choice of initial state is
that the results are independenthfNatural choices for the closely tied to the manner of state preparation. In many in-
{#(x)} are the discrete position basigh(x)=0(X  stances, the appropriate state need not be the ground state. In
—jAx)/JAx or the harmonic-oscillator basis. The latter hasa recent experiment at JILIL8], a single condensate is sub-
the advantage that il is not too large, the modes do not jected to a shortr/2 pulse creating a second condensate in a
extend to the boundary of the simulation window and there igjifferent internal state. As the pulse length is shorter than the
no risk of noise artificially “wrapping around” the simula- time required for significant nonlinear dynamical effects to
tion. In practice, we have seen no difference in results whegccur, the combined two condensate system might be ex-
using either of these bases. o pected to exhibit binomial statistics. If the trapping potential

However, if one wishes to find a good approximation towere arranged so that the two clouds did not subsequently
the ground state of the many-body system, the coherent staggerlap, we could then model the evolution of one of the two
is certainly not an optimal choice. Of course, as we are usinggndensates assuming a number variansdl)@~N/2. In
a symmetry-breaking approach, no state can be truly statiofact, it may be checked using results in RE§1] that the
ary: there must always be a degree of phase diffusion assgtate in which all the Bogoliubov modes are in the vacuum
ciated with the number superposition implied by the assumphas number statistics for the condensate mode very close to
tion of a nonzero mean field. Nevertheless, there are stat AN)2~N/2. For a slower transfer of population, nonlinear
we might favor over the coherent state. Standard applicationsffects would play a role and a more complex initial state
of Bogoliubov theory at zero temperatur49,50 approxi-  would be appropriat§54]. As an example of a completely
mate the second-quantized Hamiltonian by the diagonal exjjfferent initial condition, the first-principles simulation of

pression evaporative cooling using the positifepresentation that
was mentioned earligé8] begins essentially with a thermal
~ - )
H= K+§O E;bb;, (27)  state for the atom field.
whereK is a Constantf)j is the annihilation operator for the IV. RESULTS

quasiparticle excitation of energl;, and the mean field

satisfies the GPE. Further, the field operator may be written _ _
as The parameters for our simulations are chosen to repre-

sent the following system. We consider a condensath! of
- - . oD =1000 sodium atoms in a cylindrical trap with= w,/w,
’MX)ZJZO [u;C0b; = v} (x)b]1, (28 _0.025 so that the one-dimensional approximation is rea-
sonable. The radial frequency is set at eithet27=800 Hz
where the mode functions; and v; are solutions to the (the “strong trap”) or w,/277=200 Hz (“weak trap”). Tak-
Bogoliubov—de Gennes eigenvalue equatip#8,50. Our ing the scattering length a&=4.9 nm, we obtain for the
second choice for the ground state is thus the vacuum in theonlinear constant’ =Ig;4,g=0.084 or I'=T" 5= 0.042.
Bogoliubov representation The initial-state mean-field solutions were obtained by
\ imaginary-time propagation of the GPE and quasiparticle en-
1 . ergies and mode functions found by standard methods
Pw(X,0) = b gp(X) + .21 5[ Ui ()= 7ivi(X)]. (29 [49,51. The predictions of our simulations were checked by
. ensuring that the results did not change when the time step
However, Lewenstein and Yd%1] have pointed out that in Was decreased or the size of the spatial grid increased. Simu-
a symmetry-breaking Bogoliubov method, the existence of aations in the truncated Wigner representation were per-
zero-energy Goldstone mode requires the inclusion of an eormed with a standard second-order split step mefiddd
tra term in the Hamiltonian involving the condensate “mo- Due to the large nonlinearity of the system and consequently
mentum” P that accounts for the phase diffusion of the meanstrong noise in the positive-simulations, the standard Euler
field. In this case we have split-step algorithm was not able to give results independent
of time step even at a step size @f=0.0005. Hence we
used a strongly convergent semi-implicit methdd], which
gave reliable results with 256 spatial points and a time step
d7=0.001.

A. Numerical methods

a

H=K+
A=K+

P2+ E;b/b;, (30)
J

with a@=Ndu/oN, P=[_ dxipce(x)(8y+d¢"), and 6y
=¢— (). This Hamiltonian implies an infinite amplitude
squeezing of the condensate that is clearly unphysical. It has We present our results in terms of three general quantities.
been shown elsewhere for one- and two-mode model§o demonstrate the ability to determine two-time correlation
[52,53 that retaining cubic and quartic terms in the Hamil- functions we would like to calculate the quantity

B. Quantities of interest
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< J dxg/"(x,0) (X, 7) e ]
W(7,00= -— . 31 RN -
970 N (31 i
0.8r \'\_\ p
This is straightforward in the positive- representation. -
However, as discussed in Sec. Il E, in the Wigner represen-i© AR dl A
tation we may calculate only unequal-time normally ordered= 96f N % o1 oz 03 os 05 |
correlations for coherent initial states, when from E2p) &
we have
04f N _
dxyrGe(X) (X, 7) 0l "“'-'&\ |
W (7,0= — . 32
(7,0) N (32) P
For other initial states, we can define a nominal “condensate 0 2 4 L, 8 8 10
mode” operator associated with the normalized solution to
the GPE, FIG. 1. Two-time correlation functiog®(7) for the coherent

initial state in the strong trap. The lines denote the posifve-
~ — ~ (solid), Wigner (dotted, single-modgdash-dottegimodels. The in-
ace(t)= fﬁxdx'/’GP(X)‘p(X’t)’ (33 set shows early times with one standard deviation errors for the
Wigner method shown in by the dashed line.

where ygp(X) = ¥ oo X) /I~ . dX[ ¢ go(X)|?. Its mean value

(agp(t)) still monitors the collapse of the wave function, but
is strictly a one-time average and can be calculated in either

2 . B .
representation. We may also calculate the occupation of thWherea=Ndu/dN and (AN)“=N is the variance in atom
number of the initial state. This model is indicated by the
condensate mod@ gp) =(a%Acp)-

dash-dotted curve. The Wigner predictiétotted roughly

Finally, spatial correlations may be analyzed in terms of Follows the Gaussian decay, but shows slow oscillations
spatial squeezing spectrum. We define the localized arnplabout the single-mode curve and in particular exhibits a lin-

tude quadrature operator ear decay at short times. The Wigner method gives a stable
result for arbitrary times. In the inset we show the short-time
(34) behavior, with the inclusion of the positive-prediction in
the solid line. This line stops at just=0.3 at which point
Defining the Fourier transformed operator unstable trajectories appeared. Also just visible are error bars
on the positiveP line denoting one standard deviation
w (OSD) uncertainties. The dashed curves indicate the OSD
g(k = dxe'k"Xg(x 7), (35 errors for the Wigner calculation. The two methods clearly
\/_ ‘°° agree up to the point at which the unstable trajectories arise.

gV (7,0)=exf — a?72(AN)?/2N?], (38)

X (%, 7) = thap X) §1 (X, 7)€+ hop(x) (X, 7)€"

ote that the positivd®? error bars are very small right up
til that point, indicating the sudden rapidity with which the
distribution diverges. In Fig. 2 we show the occupation of

the squeezing spectrum is defined as the normally ordere
expressior{15,28,29,5%

S,(k, 1) =27 X (=KX ,(K)?), 36 the Gross-PitaevskiiGP) mode(ﬁGp) as a function of time
ko) =2 (X~ ROX(K):) 39 with the Wigner result shown as the dotted line and the
which in the Wigner representation becomes positiveP result shown as the solid line. We see oscillations
in the number with an amplitude of around 5% of the starting
S,(k,7)= —1+27§(6(—k)§(9(k). 37) population. Once more while the Wigner result is stable, the

positive simulations fail in a very short time. Note also

The angled for optimum squeezing is in general a function that the enlargement occurs very rapidly: There is very good

of k. Hence a useful quantity is the spectrum of «pest 2greement until just before the fatal moment with OSD er-

squeezing”'S,.(k, 7) that gives the largest possible squeez- rors for both methods being smaller than the thickness of the
a

lines.
ing at each wave-number compondnt .
g P Thus, for the trap parameters considered so far, the

positiveP representation is effectively useless. While insta-
bilities of the positiveP representation are well known, this
We first give some examples of calculations with theis perhaps the first occasion in which they arise in experi-
same parameters using both the posifvand Wigner simu- mentally accessible parameter ranges. Given that the
lations. Figure 1 shows the two-time correlation functionpositiveP fails well before the completion of a single oscil-
g®)(7,0) for 1000 atoms in the strong trap configuration forlation in Fig. 2, we might wonder how closely the truncated
a coherent initial state. Single-mode mod@g,51] predicta  Wigner results approximate the true dynamics. One approach
Gaussian decay is to perform simulations at artificially low scattering lengths

C. Comparison of methods
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FIG. 2. Occupation numbe(n g as a function of time for a FIG. 4.

strong trap. The lines denote the positRefsolid) and Wigner ~ Solid lines
(dotted models.

Mean valug/ngp). The Wigner results are shown as
and the one-mode models the dash-dotted lines.

choice of coherent initial state with the vacuum state in the

for which the nonlinearity is less severe and the posikve-
simulations more robust. In fact, the observation of Feshbac
resonances in an optically trapped “Raondensatd56]

ﬁogoliubov representation and the Gaussian state with inde-
pendent squeezing in each Bogoliubov mode. Figure 4 shows

demonstrates that reduced scattering lengths are now attaiffle mean amplitude in the GP modegs(7)) with Wigner
able in the presence of a sufficiently strong magnetic fieldresults shown by the solid lines and the single-mode esti-
Figure 3 shows the GP mode occupation as a function ofmates based on the initial number variance shown by the
time for 1000 atoms in a coherent initial state, with the re-dash-dotted lines. The mean amplitude is apparently de-
duced interactionl’ =I"g,,d10. The lines have the same scribed relatively well by the single-mode model. The differ-
meaning as in Fig. 2. The positie-trajectories are now ences between the curves is largely accounted for by the
stable for much longer and it is seen that both methods pradifference in number variance in the three cases, which had
duce oscillations that are in agreement within the error limthe values AN)?/N= 1, 0.5, and 0.12 in the coherent state,
its. Note that the error limits grow in time for the positite- Bogoliubov vacuum and squeezed Bogoliubov vacuum
representation but remain approximately constant for theases, respectively. Figures 5-7 give the spectra of best
Wigner, corresponding to the fact that no new noise is addegdqueezing for the three initial states plotted as the function
after the initial condition for the Wigner method. We can |n[1+ S5, .(k,7)]. For the coherent state in Fig. 5, there is of
thus now have some confidence that the Wigner calculationgoyrse initially no squeezing. For a short time, there is sig-
give results that are reasonably accurate for relatively larggijficant squeezing at low wave numbers. However, at large
condensates. times the phase diffusion causes the long-wavelength fluc-
tuations to grow without limif51] and the squeezing is de-

D. Comparison of initial states

stroyed. The other two initial states shown in Figs. 6 and 7

We now examine the behavior exhibited by different ini- show similar trends at large, but are clearly different at
tial states. As explained in Sec. lll, we compare the standardarly times when the statistics of the initial state have not
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Maximum squeezing spectrum plotted 44.41S,,,] for

positiveP (solid) and Wigner(dotted models. weak trap parameters with a coherent initial state.
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FIG. 6. Maximum squeezing spectrum plotted §4rS,,,,] for
weak trap parameters with a Bogoliubov vacuum initial state.
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FIG. 8. Maximum squeezing spectrug,,, for a system with

attractive interactions with scattering length.;= —0.049 nm and

N=1000 atoms.

been swamped by the phase diffusion. This suggests that the ) .
squeezing spectrum may be a useful way of characterizingith strong antisqueezing for wave numbers nleas3, cor-

different quantum states of the condensate. Note that EESponding to a length scale of the condensate or “soliton”

change for the squeezing at different wave numbers.

E. Negative scattering lengths

of best squeezing for a fiber soliton with a Kerr law nonlin-
earity[28,29. This is not surprising. With a strong negative

nonlinearity in a one-dimensional trap, the condensate be-
comes strongly localized at the bottom of the trap. The non-

_Finally, we briefly examine the dynamics for a single casejinearity dominates over the trapping potential and the
with a negative scattering length. In this case, the attractioground-state wave function is well approximated by the fiber
between the atoms leads to a high density at the center of thgyjiton expressions(x) = Nsech¢/NI'x), with a slight ad-
trap and consequently the nonlinear terms play a strong&jitional confinement due to the potential. Then as the propa-
role than in the positive scattering length case. To avoid thgyation equations for the two systems differ only by the in-

need of extremely fine spatial and temporal grids, we thereg|ysion of the potential for the condensate, we can expect
fore use the parameters of the weak trap, with the scatteringirtyally identical spectra.

length set aB,eg= —ans/10, givingl'= —0.0042. The two-
time correlation functiong®(7,0) and occupation(n gp)

V. CONCLUSION

display similar behavior to that seen earlier for the positive . ) .
scattering length. Here we concentrate on the squeezin?1 In this paper we have applied phase-space techniques for

spectrum that is shown in Fig. 8. This figure shows a struct

e propagation of a complete quantum field to the problem

ture that is quite different from the earlier squeezing spectr&f @ one-dimensional trapped Bose-Einstein condensate. As

In[1 + Siax

FIG. 7. Maximum squeezing spectrum plotted d4nS,,,,] for

such systems are highly nonlinear and weakly damped, the
exact approach using the positiferepresentation is useful
only for short times compared to the trap period and we are
forced to use the approximate truncated Wigner method. For
parameter ranges in which both methods work, we find
agreement between the two. The Wigner method is stable
and allows the calculation of one-time averages and certain
conditional multitime averages over long periods. Dynamics
may be calculated for virtually any initial state with a rea-
sonably well-localized Wigner function.

It is interesting to compare our approach here with an-
other set of tools for discussing quantum statistical properties
of condensates: the rapidly growing field of quantum kinetic
theory (QKT), which has been developed in particular by
Gardiner and Zoller and their co-workdrs7,58. In QKT,
the system is divided into two distinct parts: the “condensate
region,” consisting of the condensate itself and a consider-
able number of the low-lying excitations, and the “thermal
region,” which is essentially everything else and acts as a

weak trap parameters with a squeezed Bogoliubov vacuum initialeservoir for the condensate region. One may then obtain

state.

master equations for the condensate region of varying com-
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plexity based on assumptions about the exchange of atoms Finally, we point out some of the systems to which this
between the condensate and reservoir. In our own approactheory could be easily applied. As mentioned earlier, the
there is no distinction at all into condensate and thermatoherence properties of the output beams of atom lasers are
atoms and thus no approximations required in order to implecertain to be of central importance in the near future. Calcu-
ment such a distinction. The condensate itself plays no priVifation of two-time correlations and Squeezing spectra for
leged role within the model and we work simply with one yarious laser designs is a natural application. The phase dif-
complete quantum field. The special properties normally asfysjon between coupled condensates is also beginning to at-

sociated with condensates are manifested just as differefact interest and has currently only being studied theoreti-
correlations of the quantum field. The stochastic method decajly within the context of Bogoliubov theor26,59.

scribed here thus may also serve to provide comparisons

with the predictions of QKT from a rather different vantage

point. Indeed, Drummond and Corney’s simulations of ACKNOWLEDGMENTS
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