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Vortices in Bose-Einstein-condensed atomic clouds
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The properties of vortex states in a Bose-Einstein-condensed cloud of atoms are considered at zero tem-
perature. Using both analytical and numerical methods, we solve the time-dependent Gross-Pitaevskii equation
for the case when a cloud of atoms containing a vortex is released from a trap. In two dimensions we find the
simple result that the time dependence of the cloud radius is given by (11v2t2)1/2, wherev is the trap
frequency. We calculate and compare the expansion of the vortex core and the cloud radius for different
numbers of particles and interaction strengths, in both two and three dimensions, and discuss the circumstances
under which vortex states may be observed experimentally.@S1050-2947~98!06412-9#
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I. INTRODUCTION

Interest in the properties of atomic clouds was grea
stimulated by the experimental discovery@1–3# of Bose-
Einstein condensation in trapped gases of alkali-metal ato
One of the intriguing features of these condensates tha
mains to be explored experimentally is their behavior un
rotation.

Vortex states in trapped atomic clouds at zero tempera
have been considered theoretically by several authors@4–6#.
From numerical solutions to the Gross-Pitaevskii equat
Dalfovo and Stringari@4# determined the critical angular ve
locity, which is the lowest angular velocity for which it i
favorable for a vortex to enter the cloud. Lundhet al. @5#
obtained for reasonably large clouds approximate analyt
expressions for the critical angular velocity, which agr
closely with the numerical results.

For large clouds the presence of a vortex is difficult
detect experimentally since the size of the vortex core
small compared to the size of the cloud. Consequently,
energy of a state in which a vortex is present is nearly eq
to the energy of the ground state without the vortex. Rat
than measuring the total energy of a trapped cloud it m
therefore be advantageous to investigate the density pr
of the cloud during a free expansion after the trap poten
has been turned off. In this way one may be able to foll
how the ‘‘hole’’ in the middle of the cloud develops as
function of time, thereby allowing one to distinguish the fr
expansion of the vortex state from that of the ground s
without a vortex. In this paper we shall therefore study
free expansion of a cloud containing a vortex, which is i
tially trapped in an anisotropic harmonic-oscillator potent
and subsequently released.

Apart from the difficulties involved in the detection of
vortex state, one also has to consider its experimental g
eration@7#. Due to the energy barriers separating rotating a
nonrotating states it may be advantageous to generate a
tex state by cooling a rotating cloud in its normal state bel
the transition temperature rather than rotating the cloud fr
PRA 581050-2947/98/58~6!/4816~8!/$15.00
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rest at temperatures below the Bose-Einstein condensa
temperature.

There are questions regarding the stability of vortices@6#
and the character of the ground state for a fixed ang
momentum if the angular momentum per particle is no
multiple of \ @8#. However, we shall not address these issu
in this paper, but will consider the case of expansion o
cloud containing a vortex with one quantum of circulation

In the following we shall consider the free expansion o
condensed atomic cloud in the limit when the temperatur
sufficiently low that the influence of the normal compone
is negligible. We assume that the system is dilute in
sense that the scattering length is much less than the in
particle distance. In this case one may neglect the deple
of the condensate and the wave functionc(rW,t) of the con-
densed state in an external potentialV(rW) satisfies the time-
dependent Gross-Pitaevskii equation@9#

i\
]c~rW,t !

]t
5F2

\2

2m
¹21V~rW !1U0uc~rW !u2Gc~rW !. ~1!

The effective two-body interactionU0 is given by U0
54p\2a/m, wherea is the scattering length andm is the
atomic mass. We shall assume the scattering length to
positive, thereby ensuring the stability of the nonrotati
condensed state for any value of the total number of parti
N.

The plan of the paper is as follows. In Sec. II we consid
a two-dimensional vortex state and show that its devel
ment in time is given approximately by a simple, analytic
expression for the cloud radius. We also solve the tim
dependent Gross-Pitaevskii equation numerically and c
pare the resulting density profile to the one obtained ana
cally. In Sec. III we discuss the more realistic thre
dimensional case by an approximate variational method
well as by numerical methods. The expansion of the rotat
cloud of atoms is compared to that obtained for a nonrota
cloud when the trap potential is turned off. Section IV is
brief conclusion.
4816 © 1998 The American Physical Society
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II. VORTICES IN TWO DIMENSIONS

In the following we consider a two-dimensional geom
etry, where the vortex is uniform along its axis, which w
take to be thez axis. The harmonic-oscillator potential
assumed to be isotropic in thexy plane and given by

V5
1

2
mv2r2, ~2!

wherer25x21y2.
In the stationary case the condensate wave function

pends on time only through its phase according to

c~rW,t !5c~rW !e2 imt/\, ~3!

wherem is the chemical potential. In the Thomas-Fermi a
proximation the chemical potential is obtained by insert
Eq. ~3! into Eq. ~1! and neglecting the kinetic-energy term
This results in the following expression for the particle de
sity:

ucu25
1

U0
S m2

1

2
mv2r2D , ~4!

provided r is less thanrmax5(2m/mv2)1/2. For r greater
thanrmax, the density is zero.

The number of particlesn per unit length along thez axis
is

n52pE
0

rmax
drrucu25

pm2

U0mv2
. ~5!

In terms of the dimensionless parameterg, which is defined
by

g5na, ~6!

the chemical potential is then seen to be given by

m52\vg1/2. ~7!

The Thomas-Fermi approximation becomes exact in the l
of largeg. Since the chemical potential is given in terms
the total energy per unit lengthE by the equationm
5]E/]n we conclude thatm53E/2n, and therefore

E5
4

3
n\vg1/2. ~8!

Since we shall use Gaussian trial functions later on
discussing the time evolution of the vortex state, it is instr
tive to compare Eqs.~7! and~8! with the result of calculating
the ground-state energy variationally with a trial function
the form

c~x,y!5Ae2r2/2b2
, ~9!

whereb is a variational parameter. Writingb5aaosc, where
aosc5(\/mv)1/2 is the oscillator length, one finds

E5n\vS 1

2a2
1

1

2
a21

g

a2D . ~10!

This expression has a minimum fora5a05(112g)1/4 and
therefore the variational estimate of the energy of the gro
state is
e-

-

-

it
f

n
-

f

d

E5n\vA2g11. ~11!

In the limit of largeg this variational approximation to the
energy exceeds the asymptotically exact result~8! by only
6%. In the opposite limit, for smallg, it is exact to orderg.

We now consider a vortex state corresponding to o
quantumh/m of circulation around thez axis. The correc-
tions to the Thomas-Fermi energy~8! consist of two terms:
the vortex energy per unit length and the kinetic energy
sociated with the rounding of the density profile in the vici
ity of the surface of the cloud, which is of the same order
magnitude as the vortex energy. For large clouds the vo
energy per unit length is@5#

Ev5puc~0!u2
\2

m
lnS 0.888rmax

j0
D'

n\v

2g1/2
ln~3.55g1/2!,

~12!

where the coherence lengthj0 is defined by

\2

2mj0
2

5U0uc~0!u2. ~13!

Note that the ratio of the coherence length to the cloud rad
in the Thomas-Fermi limit is given by

j0

rmax
5

\v

2m
5

1

4g1/2
. ~14!

The kinetic energy associated with the surface is@5#

Ek5n
\v

4g1/2
ln~2.43g1/3!. ~15!

Summing up the various contributions, the total energy
unit length for the cloud in the vortex state is therefore

E5n\vF4

3
g1/21

1

3g1/2
ln~13.0g!G ~16!

for sufficiently large clouds (g@1). To leading order ing
the energy of the vortex state is thus the same as that o
ground state. We may compare the result~16! for the energy
to the result of using a variational trial function of the for

c~r,f!5Areife2r2/2b2
, ~17!

wheref is the azimuthal angle, yielding

E5n\vA2g14. ~18!

The variational estimate of the vortex energy is obtained
subtracting Eq.~11! from Eq. ~18! and gives the value
n\v3A2/4g1/2, which is to be compared with Eq.~12!. This
shows that the variational calculation gives a poor estim
of the energy of the vortex for strong coupling. The reas
for this is that the trial wave function has only one leng
scale, which determines both the size of the cloud and
size of the vortex core.
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A. Free expansion

We shall now use Gaussian trial functions also for tre
ing the time development of the density when the cloud
released from the trap at a certain instant of timet50. We
assume the solution to be homologous in the sense tha
local velocity is proportional to the distance from the ax
and therefore employ a trial function of the form

c~r,f,t !5Areife2r2/2R2
eibr2/2, ~19!

where A5An/pR22 is the time-dependent normalizatio
constant found from conserving the number of particles
unit length. The radial velocity is given by the derivative
the phase with respect tor. The quantitiesR andb depend
on time. We wish to evaluate the Lagrangian

L5E
0

`

dr2prF i\

2 S c*
]c

]t
2c

]c*

]t D2
\2

2m
u¹cu22

U0

2
ucu4G
~20!

following the method used in Ref.@10#. Performing the inte-
gration overr, we obtain the Lagrangian as a function of t
variablesb andR and their time derivativesḃ and Ṙ:

L52nS \2

mR2
~11b2R4!1n

U0

8pR2
1ḃ\R2D . ~21!

From the Lagrange equations for the two independent v
ablesb andR we obtain

b5
mṘ

\R
~22!

and

ḃ5
\

mR4
2

\b2

m
1

nU0

8p\R4
. ~23!

When Eq.~22! for b is inserted in Eq.~23! we arrive at the
acceleration equation

mR̈52
]U~R!

]R
, ~24!

where

U~R!5
\2

2mR2S 11
g

2D . ~25!

Note that the contributions to the effective potential ene
U from the kinetic term due to the zero point motion and t
interaction energy both scale in the same way as a func
of the size of the cloud. This result is peculiar to two dime
sions. Equation~24! has the solution

R2~ t !5R2~0!1v0
2t2, ~26!

where the velocityv0 is given by
t-
s

he

r

i-

y

n
-

v0
25

\2

m2R~0!2S 11
g

2D . ~27!

Using the result of the minimization in the stationary ca
with the trial function~17!, one finds

R~0!45aosc
4 S 11

g

2D ~28!

and thus

v05aoscvS 11
g

2D 1/4

. ~29!

This implies that the result~26! may be written in the form

R~ t !25R~0!2~11v2t2!. ~30!

This simple result is a consequence of the fact that the ef
tive potential energy varies asR22, which, as we remarked
above, is a special feature of two dimensions.

We note that the root-mean-square~rms! radius r rms is
A2R, so the final value of the rms velocity isv rms5A2v0 .
Figure 1 shows how the final value ofv rms varies withg. For
a nonrotating cloud, the corresponding analysis is easily
ried out with the resultv rms5v05aoscv(112g)1/4. This is
included in Fig. 1. As we shall see from the numerical so
tions presented below, the simple result~30! yields an accu-
rate description of the expanding vortex state.

B. Numerical results

For the numerical study it is convenient to work in term
of scaled quantities and we introduce the variablesf
5c/eif(U0 /m)1/2, r15r/aosc, and m15m/\v. The sta-
tionary Gross-Pitaevskii equation may then be written in
dimensionless form

2
1

2S ]2f

]r1
2

1
1

r1

] f

]r1
2

1

r1
2

f D 1
1

2
r1

2f 1m1f 35m1f .

~31!

The equation for a nonrotating cloud is similar if the scal
wave function is defined byf 5c/(U0 /m)1/2 and the cen-
trifugal term f /2r1

2 ~which comes from the phaseeif of the
wave function in the case of a vortex state! is omitted.

We integrate this equation using the Runge-Kutta meth
to find the wave functionf as a function ofr1 corresponding
to a given dimensionless parameterm1 . The time-
independent wave functions form52.5\v and m510\v
are shown in Fig. 2. From normalization, we find that the
correspond tog50.55 and 23.6, respectively.

To get a feeling for the orders of magnitude, note that
the realistic case of a system with an axial dimension
10aosc and withaosc/a5100, the total number of particles i
;103g. In the experiment performed at JILA@1#, aosc/a
5700,N52000, and the axial dimension of the cloud was
the same order of magnitude asaosc. In the Ioffe-Pritchard
trap at MIT @11#, aosc/a5400,N5106, and the length in the
z direction is;80aosc, giving g;30. The caseg523.6 is
thus quite close to typical experimental conditions.
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FIG. 1. Final root-mean-square velocity for a two-dimensional cloud in a free expansion as a function of the dimensionless
parameterg5na. The full line corresponds to the vortex state in the variational treatment and the dashed line to the ground state. N
solutions to the full time-dependent problem are indicated by crosses~vortex! and squares~ground state!. The inset shows the time evolutio
of the rms radius in unitsaosc for a vortex~full line! and a ground-state cloud~dashed line!, for g52.07.
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When released from the trap, the wave function evol
according to the time-dependent Gross-Pitaevskii equa
~1!, which in dimensionless form is

i
] f

]t1
52

1

2S ]2f

]r1
2

1
1

r1

] f

]r1
2

1

r1
2

f D 1m1f 3, ~32!

wheret15vt. As before, the nonrotating case is obtained
dropping the centrifugal term in Eq.~32!. This equation is
integrated with respect to time using the Crank-Nichols
method@12#, with the initial value given by the stationar
wave functions obtained above. During the expansion,
compute the rms radiusr rms of the system. We find it to
follow Eq. ~30! to a good degree of accuracy. At large tim
s
n

y

n

e

r rms does indeed grow linearly with time, and the final v
locities for a few different values ofg are plotted in Fig. 1.
The inset in Fig. 1 shows the evolution ofr rms for g
52.07, corresponding to the chemical potentialm53.54\v
for the vortex state andm53.07\v for the ground state.

The Crank-Nicholson method generates for each time s
an explicit table of the real and imaginary parts of the wa
function. On comparing the wave function at later times w
the initial one, we have been able to find that the system d
indeed undergo a nearly homologous expansion, i.e.,
wave function does not change its shape, but only flattens
with time. We shall discuss the physical reasons for su
behavior, in both two and three dimensions, at the end
Sec. III.
e
FIG. 2. Radial wave function@solution to the stationary Gross-Pitaevskii equation~31!# for the two-dimensional vortex state. The full lin
is the wave function with chemical potentialm152.5, and the dashed line corresponds tom1510. Note that the units on they axis are such
that the wave functions are normalized to unity, i.e., they are not the same as in Eq.~31!.
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FIG. 3. Aspect ratio for a vortex system in an isotropic harmonic trap, before~dashed line! and after~full line! free expansion. The
crosses and boxes are computed using the seminumerical scheme described in the text. The inset shows the expansion for a v
radial ~full line! and axial~dashed! directions, forNa/aosc520.
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III. VORTICES IN THREE DIMENSIONS

A. Simple variational approach

The clouds studied in experiments do not possess
translational invariance in one direction that was assume
our calculations above. It is therefore of interest to expl
the consequences of motion in the third direction on the
velopment of a vortex state. Our discussion for the case
two dimensions may easily be generalized to three dim
sions by employing the trial function

c~r,f,z,t !5
N1/2

p3/4Z1/2R2
reife2r2/2R2

eibr2/2e2z2/2Z2
eigz2/2,

~33!

which describes a cloud undergoing expansion in both
radial and thez directions. The result is the two couple
equations

R̈5
\2

m2R3
1

NU0

4~2p!3/2m

1

R3Z
~34!

and

Z̈5
\2

m2Z3
1

NU0

2~2p!3/2m

1

R2Z2
. ~35!

The inset in Fig. 3 shows the results for the radial a
axial expansion~in units aosc) for the caseNa/aosc520. For
large times the velocity becomes constant, just as for
two-dimensional case. In Fig. 3 the aspect ratios of a clou
an isotropic trap before and after expansion are shown
function of the coupling parameterNa/aosc. The aspect ratio
A is defined as the ratio between the root-mean-square
tancesA5r rms/A2zrms, where the factor ofA2 takes into
account the fact that there are two coordinates perpendic
to z. With this normalization, the aspect ratio is unity if th
e
in
e
-

of
n-

e

d

e
in

a

is-

lar

rms values ofx, y, andz are equal. For the variational wav
function we employ, one findsr rms5A2R and zrms5Z, so
the aspect ratio is simplyR/Z. An aspect ratio differing from
unity in an isotropic trap would be a clear signal for th
presence of a vortex, but from Fig. 3 we find that there
deviations of the aspect ratio from unity of more than ab
5% only for a number of particles less than 100aosc/a.

One may ask whether it is possible to improve the sig
for the presence of a vortex by changing the external po
tial. We have therefore computed the aspect ratio for a s

tem in an anisotropic external potentialV(rW)5 1
2 mv2(r2

1l2z2) as a function of the anisotropy parameterl. An
oblate trap corresponds tol.1 and a prolate one tol,1.

The computation was carried out forNa/āosc5100, where

āosc5(\/mvl1/3)1/2 is the geometrical mean of the oscillato
lengths in the spatial directions. Figure 4 displays the ratio
the aspect ratio of a vortexAv to that of a nonrotating system
An as a function ofl, both in the stationary case and after
long expansion time.

We see that for strong oblate anisotropy, the aspect r
of a cloud expanding in a vortex state is initially close to th
for the nonrotating state, but following expansion they a
significantly different. For clouds expanding from a prola
trap, the ratio of aspect ratios for the vortex and the non
tating state is enhanced both before and after expansion

B. Core structure

In the variational calculations described above, the rad
wave function is described in terms of a single length sc
R, which determines both the size of the cloud and the siz
the vortex core. This is unrealistic when particle interactio
are important since the size of the core is then determined
the coherence lengthj, which is a function of the density o
particles. To study the dynamics of the core we emplo
more general trial wave function
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FIG. 4. Ratio of the aspect ratio for a cloud containing a vortexAv to that for a nonrotating cloudAn in the stationary case~full line! and

after a long time of expansion~dashed line!, plotted as a function of the trap anisotropyl for Na/āosc5100. We see that after expansion th
difference in the aspect ratios is enhanced for a strong anisotropy, compared to an isotropic trap.
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c~r,z,f,t !5AN f~r,t !
1

p1/4Z1/2
e2z2/2Z21 ibz2

eif, ~36!

with the parametersb andZ depending on time. The radia
wave functionf (r,t), which is normalized to unity, is to be
determined variationally.

Minimizing the action obtained from the Lagrangian~20!
with respect toZ, b(t) and f (r,t) yields the coupled set o
equations

b~ t !5
m

2\

Ż

Z
, ~37!

Z̈5
\2

m2Z3
1

NU0

A2pmZ2
^u f u4&, ~38!

i\
] f

]t
52

\2

2mS ]2

]r2
1

1

r

]

]r
2

1

r2D f

1F \2

2mZ2
1

NU0

4A2pZ
^u f u4&G f 1

NU0

A2pZ
u f u2f ,

~39!

where ^u f u4&[*d2ru f (r)u4. These equations may now b
solved numerically, at each time step simultaneously takin
Crank-Nicholson step for Eq.~39! and a Runge-Kutta ste
for Eq. ~38!. To find the initial conditions, we have to con
sider the static case with an external potential. We choos
consider the expansion of a cloud initially confined in
isotropic potential. The relevant equations are obtained fr
Eqs. ~37!–~39! for a potential V(rW)5 1

2 mv2(r21z2), by
adding to the right-hand side of Eq.~39! the term1

2 mv2r2f
a

to

m

and to the left-hand side of Eq.~38! the termv2Z. Note that
when the particle interaction vanishes, the wave function
that of the lowest state with unit angular momentum o
particle in the harmonic-oscillator potential. This corr

sponds to puttingZ5aosc and f (r)5p21/2aosc
22re2r2/2aosc

2
in

our variational trial function. Since the Crank-Nicholso
method preserves the normalization of the wave function
f is to be normalized to unity for any value of the couplin
NU0 , we may produce any stationary wave function of t
system by starting out with this one-particle wave functi
and then integrating the static equations of motion discus
above with respect to time, while adiabatically increasing
coupling constant up to the desired value@13#. The wave
functions we obtain by this method are in good semiqua
tative agreement with those obtained by Dalfovo and St
gari @4# from numerical solutions of the three-dimension
time-independent Gross-Pitaevskii equation.

Regarding the time development of the outer radius of
cloud, we find that the results of the seminumerical sche
closely follow those found using the simpler approach, E
~34! and ~35!, especially for weak coupling, as the da
points in Fig. 3 show. We have also considered the ti
dependence of the core size, which we characterize by
radiusr i at which the particle density first reachese21 times
its maximum value. Results forr i /r rms as a function of time
are shown in Fig. 5. If the radial wave function were of t
form of the first excited oscillator state;re2ar2

, wherea is
a constant, the ratior i /r rms would be approximately 0.282
This is indeed what we find forNa/aosc&1. For larger values
of Na/aosc the inner radius is a smaller fraction ofr rms ini-
tially, but the ratio increases with time. The qualitative b
havior of the ratior i /r rms with time for Na/aosc@1 may be
understood in terms of two sorts of processes. Initially
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FIG. 5. Evolution in time of the ratio of the vortex core radius to the total system radius forNa/aosc55 ~full line!, 10 ~dashed line!, 20
~dotted line!, and 30~dot-dashed line!, respectively. The straight line shows the valuer i /r rms50.282, corresponding to the free-particle lim
Na/aosc50.
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characteristic time for adjustment of the core size of the v
tex tad;\/nU0 is small compared to the expansion tim
tex;R/vs , wherevs is the sound velocity of the cloud att
50. Under those conditions the core of the vortex can ad
essentially instantaneously to the local density and thus
expects r i to scale as the coherence lengthr i}j0
}(R3/Na)1/2 or j0;R(R/Na)1/2. We take the densityn to
beN/R(t)3 since any anisotropy is quite unimportant here
long it is of order unity. This behavior ceases at a decoup
time td at whichtad5tex. In three dimensions, this means

R~ t !;R~0!3/4~Na!1/4,

which gives us

vtd;~Na/aosc!
1/5.

Here we have assumed thatR(t).vst, which holds when
vt@1. A more careful treatment would result in a somewh
larger decoupling time. In two dimensions,tad5tex implies
that

R~ t !

R~0!
;~na!1/2.

Since R(t)5R(0)vt for vt large, the decoupling time is
given by

vtd;~na!1/2

in two dimensions. At larger times the potential energy w
play essentially no role and the evolution of the cloud will
the same as for free particles. To the extent that the clou
expanding homologously at the decoupling time, we exp
thatr i /r rms will remain constant and equal to its value at t
decoupling time. The results of the numerical calculatio
exhibited in Fig. 5 are consistent with the assumption
homologous expansion at larger times. We conclude tha
two dimensions the expansion is homologous to a good
r-

st
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s
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t
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ct

s
f
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proximation during all of the expansion, while in three d
mensions, the relative size of the core grows until the dec
pling time, whereafter it approaches a constant value.

Our results indicate that by allowing a cloud containing
vortex to expand freely, the structure will increase in s
more rapidly than the size of the cloud. In this way one m
thus facilitate optical detection of the structure associa
with the vortex core.

IV. CONCLUSIONS

In summary, we have described the time evolution o
freely expanding Bose-Einstein-condensed atomic clo
with a singly quantized vortex in two and three dimensio
using both analytical approximations and direct numeri
calculation. We have found that simple variational estima
describe very well the time evolution of the radius of t
cloud.

In the limit of weak coupling, the aspect ratio of the clou
with a vortex differs from that of the nonrotating groun
state both before and after expansion. This effect may
enhanced by using an anisotropic trapping potential.

In two dimensions, the cloud is seen to undergo a nea
homologous expansion, while in three dimensions, the vo
core expands faster than the size of the cloud during
initial stage of expansion, thus making it easier to det
experimentally. After a decoupling timetd , estimated to be
td5v21(Na/aosc)

1/5 for expansion in three dimensions, th
size of the core will increase linearly with time.

We conclude that a vortex is most easily observed exp
mentally in the weak coupling regime, i.e., for small valu
of the parameterNa/aosc, which is attained either for smal
numbers of particles or for shallow traps since the relat
importance of the vortex to the energy, system size, and
locity of expansion is larger in this case.
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