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Vortices in Bose-Einstein-condensed atomic clouds
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The properties of vortex states in a Bose-Einstein-condensed cloud of atoms are considered at zero tem-
perature. Using both analytical and numerical methods, we solve the time-dependent Gross-Pitaevskii equation
for the case when a cloud of atoms containing a vortex is released from a trap. In two dimensions we find the
simple result that the time dependence of the cloud radius is given bywf1?)Y?, wherew is the trap
frequency. We calculate and compare the expansion of the vortex core and the cloud radius for different
numbers of particles and interaction strengths, in both two and three dimensions, and discuss the circumstances
under which vortex states may be observed experimen{&050-294{©8)06412-9

PACS numbe(s): 03.75.Fi, 03.65.Db, 05.30.Jp, 32.80.Pj

[. INTRODUCTION rest at temperatures below the Bose-Einstein condensation
Interest in the properties of atomic clouds was greatlytemperature. ; ; o -

. _ ) There are questions regarding the stability of vortids
stimulated by the experimental discovery—3] of Bose- ;4 the character of the ground state for a fixed angular
Einstein condensation in trapped gases of alkali-metal atoms, ;mentum if the angular momentum per particle is not a
One of the intriguing features of these condensates that "Sultiple of % [8]. However, we shall not address these issues
main.s to be explored experimentally is their behavior undey, this paper, but will consider the case of expansion of a
rotation. cloud containing a vortex with one quantum of circulation.

Vortex states in trapped atomic clouds at zero temperature |n the following we shall consider the free expansion of a
have been considered theoretically by several auff#+§].  condensed atomic cloud in the limit when the temperature is
From numerical solutions to the Gross-Pitaevskii equatiorsufficiently low that the influence of the normal component
Dalfovo and Stringari4] determined the critical angular ve- is negligible. We assume that the system is dilute in the
locity, which is the lowest angular velocity for which it is sense that the scattering length is much less than the inter-
favorable for a vortex to enter the cloud. Lundhal. [5] particle distance. In this case one may neglect the depletion
obtained for reasonably large clouds approximate analyticadf the condensate and the wave functw,t) of the con-

expressions for the critical angular velocity, which agreeyensed state in an external potenti4f) satisfies the time-

closely with the numerical results. o dependent Gross-Pitaevskii equat(®}

For large clouds the presence of a vortex is difficult to R
detect experimentally since the size of the vortex core is o oY(r,t) h? ) - - ol s
small compared to the size of the cloud. Consequently, the 17 ————=| = 5= V=4 V(1) + Ul y(r)[*|¢(r). (1)

energy of a state in which a vortex is present is nearly equal
to the energy of the ground state without the vortex. RathefThe effective two-body interactioid, is given by U,
than measuring the total energy of a trapped cloud it may=4=#2a/m, wherea is the scattering length anu is the
therefore be advantageous to investigate the density profiletomic mass. We shall assume the scattering length to be
of the cloud during a free expansion after the trap potentiapositive, thereby ensuring the stability of the nonrotating
has been turned off. In this way one may be able to followcondensed state for any value of the total number of particles
how the “hole” in the middle of the cloud develops as a N.
function of time, thereby allowing one to distinguish the free  The plan of the paper is as follows. In Sec. Il we consider
expansion of the vortex state from that of the ground state two-dimensional vortex state and show that its develop-
without a vortex. In this paper we shall therefore study thement in time is given approximately by a simple, analytical
free expansion of a cloud containing a vortex, which is ini-expression for the cloud radius. We also solve the time-
tially trapped in an anisotropic harmonic-oscillator potentialdependent Gross-Pitaevskii equation numerically and com-
and subsequently released. pare the resulting density profile to the one obtained analyti-
Apart from the difficulties involved in the detection of a cally. In Sec. Ill we discuss the more realistic three-
vortex state, one also has to consider its experimental gemlimensional case by an approximate variational method as
eration[7]. Due to the energy barriers separating rotating andvell as by numerical methods. The expansion of the rotating
nonrotating states it may be advantageous to generate a vartoud of atoms is compared to that obtained for a nonrotating
tex state by cooling a rotating cloud in its normal state belowcloud when the trap potential is turned off. Section IV is a
the transition temperature rather than rotating the cloud fronbrief conclusion.
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Il. VORTICES IN TWO DIMENSIONS E=vhoy2y+1. (11)

In the following we consider a two-dimensional geom- L ) . . .
etry, where the vortex is uniform along its axis, which we In the limit of large y this variational approximation to the

take to be thez axis. The harmonic-oscillator potential is €nergy exceeds the asymptotically exact reggitby only

assumed to be isotropic in the/ plane and given by 6%. In the opposite limit, for smaly, it is exact to ordety.
We now consider a vortex state corresponding to one
V= }mwz 2 @) quantumh/m of circulation around the axis. The correc-
2 P tions to the Thomas-Fermi enerd$) consist of two terms:

the vortex energy per unit length and the kinetic energy as-
sociated with the rounding of the density profile in the vicin-
E?t'y of the surface of the cloud, which is of the same order of
magnitude as the vortex energy. For large clouds the vortex

wherep?=x2+y?.
In the stationary case the condensate wave function d
pends on time only through its phase according to

P(r,t)=(r)e imih (3  energy per unit length ig5]
whereu is the chemical potential. In the Thomas-Fermi ap- 2ﬁ2 0.88%a Vi "
proximation the chemical potential is obtained by inserting E,=|#(0)| mln ; ~ —In(3.55y™),
Eq. (3) into Eqg. (1) and neglecting the kinetic-energy term. 0 2y 12

This results in the following expression for the particle den-

Sity: where the coherence lengéj is defined by

1 1
|¢|2:U—O(M— imwzpz). 4 72

2me}

=Uol¥(0)|2 (13
provided p is less thanp .= (2u/mw?)*2. For p greater
than p.hax, the density is zero.

The number of particles per unit length along the axis Note that the ratio of the coherence length to the cloud radius

in the Thomas-Fermi limit is given by

is
2
Pmax T & Tfo 1
szwJ d 2= . 5 =—= : (14
0 pelvl Uome? ® Pmax 2M 412
Ln terms of the dimensionless parameterwhich is defined  The kinetic energy associated with the surfacksis
y
= hw
y=ra, ® E=v—03In(2.43). (15)
the chemical potential is then seen to be given by 4y
w=2hwoy" (7) Summing up the various contributions, the total energy per

. L . .__.unit length for the cloud in the vortex state is therefore
The Thomas-Fermi approximation becomes exact in the limit

of large y. Since the chemical potential is given in terms of 4 1
the total energy per unit lengtlie by the equationu E=vho| = y">+ ——In(13.0y) (16
= JdE/dv we conclude thaj.=3E/2v, and therefore 3 3y

for sufficiently large clouds ¥>1). To leading order iny
the energy of the vortex state is thus the same as that of the
_ground state. We may compare the re¢l) for the energy

~Since we shall use Gaussian trial functions later on ing the result of using a variational trial function of the form
discussing the time evolution of the vortex state, it is instruc-

4
E= 3 vhwy'?. (8

tive to compare Eqg7) and(8) with the result of calculating — Apel b p?I2b? 1
the ground-state energy variationally with a trial function of ¥(p.$)=Apee ’ 7
the form where ¢ is the azimuthal angle, yielding
_ A a—p2l20?
plxy)=Ae ' © E=vhwy2y+4. (18
whereb is a variational parameter. Writing= «a,;, where
aos= (A/mw)Y? is the oscillator length, one finds The variational estimate of the vortex energy is obtained by

subtracting Eq.(11) from Eq. (18) and gives the value
vhw32/4y?, which is to be compared with E¢L2). This
shows that the variational calculation gives a poor estimate
of the energy of the vortex for strong coupling. The reason
This expression has a minimum fer= ay=(1+2y)¥*and  for this is that the trial wave function has only one length
therefore the variational estimate of the energy of the groundcale, which determines both the size of the cloud and the
state is size of the vortex core.

. (10

1 1 0%
= T T
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+ 5.
2

A F i
ree expansion 72 y
(27)

We shall now use Gaussian trial functions also for treat- US:W
ing the time development of the density when the cloud is
released from the trap at a certain instant of timed. We  ysing the result of the minimization in the stationary case
assume the solution to be homologous in the sense that thgh the trial function(17), one finds
local velocity is proportional to the distance from the axis
and therefore employ a trial function of the form %

R(0)*= ag‘sﬂ( 1+ 5) (28)

Wp,d ) =Apelte IR A2, (19
and thus
where A= \/v/7R"? is the time-dependent normalization
constant found from conserving the number of particles per
unit length. The radial velocity is given by the derivative of Vo= Aos
the phase with respect {a The quantitie®R and 8 depend
on time. We wish to evaluate the Lagrangian This implies that the resul26) may be written in the form

1/4

1+ 2

5 (29

° i d aPp*\  h? U R(1)?°=R(0)?(1+ w?t?). (30
- dp2wp[7( - ¢%) 5|Vl flwl“}

0 This simple result is a consequence of the fact that the effec-
tive potential energy varies & 2, which, as we remarked
above, is a special feature of two dimensions.

We note that the root-mean-squdrens) radius p,s iS
V2R, so the final value of the rms velocity igme= \2vo.
Figure 1 shows how the final value of,,s varies withy. For
a nonrotating cloud, the corresponding analysis is easily car-
(21) 'led out with the result me=vo=agsw(1+ 2y)Y4 This is

included in Fig. 1. As we shall see from the numerical solu-
tions presented below, the simple reg3®) yields an accu-
From the Lagrange equations for the two independent varirate description of the expanding vortex state.
ablesB andR we obtain

(20

following the method used in Ref10]. Performing the inte-
gration overp, we obtain the Lagrangian as a function of the

variables andR and their time derivativeg andR:

L=—v " (1+B2RY +v Yo + BhR?
mR 87R

T 2

B. Numerical results

B= mR 22) For the numerical study it is convenient to work in terms

AR of scaled quantities and we introduce the variabfes

=yle'?(Uo/n)Y? pi1=plags, and u;=ulhw. The sta-
and tionary Gross-Pitaevskii equation may then be written in the

dimensionless form
h h B2 vUq 23 )
A mR¢ M 8xiR* 1 ﬂ+ii—if +1p§f+ﬂlf3=ﬂlf.
2\ gp3  p1dp1 p? 2

When Eq.(22) for B is inserted in Eq(23) we arrive at the (3D

acceleration equation . . L
q The equation for a nonrotating cloud is similar if the scaled

) JU(R) wave function is defined by=y/(Uo/ux)*? and the cen-
MmR=— R (24)  trifugal term f/2p? (which comes from the phas#® of the
wave function in the case of a vortex staig omitted.
We integrate this equation using the Runge-Kutta method
to find the wave functioffias a function op, corresponding
to a given dimensionless parametgr;. The time-
1+ Z)_ (25) independent wave functions fquz.&w and .;L:thw
2 are shown in Fig. 2. From normalization, we find that these
correspond toy=0.55 and 23.6, respectively.
Note that the contributions to the effective potential energy To get a feeling for the orders of magnitude, note that for
U from the kinetic term due to the zero point motion and thethe realistic case of a system with an axial dimension of
interaction energy both scale in the same way as a functiofiOa,s. and witha,s./a= 100, the total number of particles is
of the size of the cloud. This result is peculiar to two dimen-~1C®y. In the experiment performed at JILAL], as/a

where

2

2mR?

UR)=

sions. Equatior{24) has the solution =700,N= 2000, and the axial dimension of the cloud was of
the same order of magnitude ag. In the loffe-Pritchard
R?(t)=R?(0)+v3t?, (26)  trap at MIT[11], a,s/a=400,N=1C°, and the length in the

z direction is ~80a,., giving y~30. The casey=23.6 is
where the velocity is given by thus quite close to typical experimental conditions.
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FIG. 1. Final root-mean-square velocity for a two-dimensional cloud in a free expansion as a function of the dimensionless coupling
parametery=va. The full line corresponds to the vortex state in the variational treatment and the dashed line to the ground state. Numerical
solutions to the full time-dependent problem are indicated by crdsse®x and squareground statg The inset shows the time evolution
of the rms radius in unitg,e. for a vortex(full line) and a ground-state cloudashed ling for y=2.07.

When released from the trap, the wave function evolveg,,s does indeed grow linearly with time, and the final ve-
according to the time-dependent Gross-Pitaevskii equatiolocities for a few different values of are plotted in Fig. 1.
(1), which in dimensionless form is The inset in Fig. 1 shows the evolution @fs for y
=2.07, corresponding to the chemical potenjiat 3.54i w
(32 for the vortex state angg=3.07% w for the ground state.
The Crank-Nicholson method generates for each time step
an explicit table of the real and imaginary parts of the wave
wheret; = wt. As before, the nonrotating case is obtained byfunction. On comparing the wave function at later times with
dropping the centrifugal term in Eq32). This equation is the initial one, we have been able to find that the system does
integrated with respect to time using the Crank-Nicholsonndeed undergo a nearly homologous expansion, i.e., the
method[12], with the initial value given by the stationary wave function does not change its shape, but only flattens out
wave functions obtained above. During the expansion, wavith time. We shall discuss the physical reasons for such
compute the rms radiug,,s of the system. We find it to behavior, in both two and three dimensions, at the end of
follow Eq. (30) to a good degree of accuracy. At large timesSec. Ill.
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FIG. 2. Radial wave functiofsolution to the stationary Gross-Pitaevskii equafi®b ] for the two-dimensional vortex state. The full line
is the wave function with chemical potentijal =2.5, and the dashed line correspondg.te=10. Note that the units on theaxis are such
that the wave functions are normalized to unity, i.e., they are not the same as (81Eq.
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FIG. 3. Aspect ratio for a vortex system in an isotropic harmonic trap, bettashed ling and after(full line) free expansion. The
crosses and boxes are computed using the seminumerical scheme described in the text. The inset shows the expansion for a vortex in the
radial (full line) and axial(dashed directions, forNa/a s~ 20.

Ill. VORTICES IN THREE DIMENSIONS rms values ok, y, andz are equal. For the variational wave
function we employ, one findg,ms= 2R and z,,<=Z, so

the aspect ratio is simpl/Z. An aspect ratio differing from

The clouds studied in experiments do not possess thgnity in an isotropic trap would be a clear signal for the
translational invariance in one direction that was assumed i resence of a vortex, but from Fig. 3 we find that there are

our calculations above. It_ IS t_herefore_ of interest to explor deviations of the aspect ratio from unity of more than about
the consequences of motion in the third direction on the degz, .

: . % only for a number of particles less than &gQ/a.
velopment of a vortex state. Our discussion for the case 0? One mav ask whether it is possible to improve the sianal
two dimensions may easily be generalized to three dimenf— th y ¢ ‘ bp hanai thp ; | gt
sions by employing the trial function or the presence of a vortex by changing the external poten-

tial. We have therefore computed the aspect ratio for a sys-

N2 . B . tem in an anisotropic external potenti®|(r)= imw?(p?

— —p“I2R 12— 24/2Z 12 . .
W(p,b,z,t)= =T pel b P IR glbrizgm 12 gy 2, +\27%) as a function of the anisotropy parameter An
(33) oblate trap corresponds to>1 and a prolate one th<<1.
The computation was carried out fdta/a,,= 100, where

whi_ch describes a cIo_ud undergoing e_xpansion in both thgosc:(ﬁ/mw)\llg)m is the geometrical mean of the oscillator
radial and thez directions. The result is the two coupled |engths in the spatial directions. Figure 4 displays the ratio of
equations the aspect ratio of a vorteX, to that of a nonrotating system
52 NU 1 A,asa func.tion pf\, both in the stationary case and after a
R= i o - (34) long expansion time.
m’R®  4(27)%m R3z We see that for strong oblate anisotropy, the aspect ratio
of a cloud expanding in a vortex state is initially close to that
and for the nonrotating state, but following expansion they are
significantly different. For clouds expanding from a prolate
72 NUq 1 trap, the ratio of aspect ratios for the vortex and the nonro-

Z= m2z3 + 2(27)%¥2m R2Z2 (35 tating state is enhanced both before and after expansion.

A. Simple variational approach

The inset in Fig. 3 shows the results for the radial and
axial expansior{in unitsa,s) for the caseNa/a, ;= 20. For
large times the velocity becomes constant, just as for the In the variational calculations described above, the radial
two-dimensional case. In Fig. 3 the aspect ratios of a cloud invave function is described in terms of a single length scale
an isotropic trap before and after expansion are shown as R, which determines both the size of the cloud and the size of
function of the coupling paramet®ta/a,s.. The aspect ratio the vortex core. This is unrealistic when particle interactions
A is defined as the ratio between the root-mean-square digwe important since the size of the core is then determined by
tancesA = p,ms/ \2Zms, Where the factor of/2 takes into the coherence length which is a function of the density of
account the fact that there are two coordinates perpendiculgarticles. To study the dynamics of the core we employ a
to z. With this normalization, the aspect ratio is unity if the more general trial wave function

B. Core structure
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FIG. 4. Ratio of the aspect ratio for a cloud containing a voAgso that for a nonrotating cloud,, in the stationary casgull line) and

after a long time of expansioidashed ling plotted as a function of the trap anisotrapyor Na/goscz 100. We see that after expansion the
difference in the aspect ratios is enhanced for a strong anisotropy, compared to an isotropic trap.

1 .
W(p,z,,t)= /Nf(Pyt)me_zzlzzz+'ﬁzze'¢, (36)
™

with the parameterg and Z depending on time. The radial
wave functionf(p,t), which is normalized to unity, is to be
determined variationally.

Minimizing the action obtained from the Lagrangié0)
with respect taz, B(t) andf(p,t) yields the coupled set of
equations

mZ
B(t)=ﬂzy (37
ﬁ2 NU
v = (1), (38)
af B2l 9% 140 1
9t 2m (;_pz ;%_}
2 0
2 <| |4>‘| 2f'
2mZ 4\/_2 \/2_2
(39

and to the left-hand side of E(B8) the termw?Z. Note that
when the particle interaction vanishes, the wave function is
that of the lowest state with unit angular momentum of a
particle in the harmonic-oscillator potential. This corre-

sponds to putting =a,s. and f(p) =7 2a 2pe " 21285 in

our variational trial function. Since the Crank-Nicholson
method preserves the normalization of the wave function and
f is to be normalized to unity for any value of the coupling
NUy, we may produce any stationary wave function of the
system by starting out with this one-particle wave function
and then integrating the static equations of motion discussed
above with respect to time, while adiabatically increasing the
coupling constant up to the desired vallkS]. The wave
functions we obtain by this method are in good semiquanti-
tative agreement with those obtained by Dalfovo and Strin-
gari [4] from numerical solutions of the three-dimensional
time-independent Gross-Pitaevskii equation.

Regarding the time development of the outer radius of the
cloud, we find that the results of the seminumerical scheme
closely follow those found using the simpler approach, Egs.
(34) and (35), especially for weak coupling, as the data
points in Fig. 3 show. We have also considered the time
dependence of the core size, which we characterize by the
radiusp; at which the particle density first reaches! times

where (|f|*)=[d?p|f(p)|*. These equations may now be its maximum value. Results fgr; / p,ns as a function of time
solved numerically, at each time step simultaneously taking are shown in Fig. 5. If the radial wave function were of the

Crank-Nicholson step for Eq39) and a Runge-Kutta step

form of the first excited oscillator statepe™ ‘”’2, wherea is

for Eq. (38). To find the initial conditions, we have to con- g constant, the ratip; / p,ms Would be approximately 0.282.
sider the static case with an external potential. We choose tphis is indeed what we find fd¥a/a,s= 1. For larger values
consider the expanS|0n of a cloud |n|t|a"y confined in anof Na/aosc the inner radius is a smaller fraction pifms ini-
isotropic potential. The relevant equations are obtained fronajly, but the ratio increases with time. The qualitative be-

Egs. (37)—(39) for a potent|aIV(r)——mwz(p2+zz) by
adding to the right-hand side of E(9) the termimw?p?f

havior of the ratiop; / p;ms With time for Na/a 1 may be
understood in terms of two sorts of processes. Initially the
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FIG. 5. Evolution in time of the ratio of the vortex core radius to the total system radidédta,,.=5 (full line), 10 (dashed ling 20
(dotted ling, and 30(dot-dashed ling respectively. The straight line shows the vatyép,,,s=0.282, corresponding to the free-particle limit
Na/ays=0.

characteristic time for adjustment of the core size of the vorproximation during all of the expansion, while in three di-
tex 1,~#h/nU, is small compared to the expansion time mensions, the relative size of the core grows until the decou-
Tex~ RV, Wherevg is the sound velocity of the cloud at  pling time, whereafter it approaches a constant value.

=0. Under those conditions the core of the vortex can adjust Our results indicate that by allowing a cloud containing a
essentially instantaneously to the local density and thus onéortex to expand freely, the structure will increase in size

expects p; to scale as the coherence lengiho &, more rapidly than the size of the cloud. In this way one may
«(R¥Na)¥2 or ¢&;~R(R/Na)*2. We take the density to thus facilitate optical detection of the structure associated

be N/R(t)? since any anisotropy is quite unimportant here ag/Vith the vortex core.
long it is of order unity. This behavior ceases at a decoupling IV. CONCLUSIONS
time ty at which 7,4= 7. In three dimensions, this means
In summary, we have described the time evolution of a
R(t)~R(0)¥4Na)*4, freely expanding Bose-Einstein-condensed atomic cloud
with a singly quantized vortex in two and three dimensions
which gives us using both analytical approximations and direct numerical
calculation. We have found that simple variational estimates
wtg~(Na/ag)". describe very well the time evolution of the radius of the
cloud.
Here we have assumed thB{t)=vt, which holds when In the limit of weak coupling, the aspect ratio of the cloud

ot>1. A more careful treatment would result in a somewhat,iip, a vortex differs from that of the nonrotating ground
larger decoupling time. In two dimensions,s= 7ex implies  state both before and after expansion. This effect may be

that enhanced by using an anisotropic trapping potential.
R() In two dimension:_:,, the c_Iou_d is seen to un_dergo a nearly
—~ _(va)?2, homologous expansion, while in three dimensions, the vortex
R(0) core expands faster than the size of the cloud during the

initial stage of expansion, thus making it easier to detect
experimentally. After a decoupling tintg, estimated to be
ty=w Y(Na/ay)*® for expansion in three dimensions, the
size of the core will increase linearly with time.

We conclude that a vortex is most easily observed experi-
mentally in the weak coupling regime, i.e., for small values
of the parameteNa/a,., which is attained either for small
igumbers of particles or for shallow traps since the relative
cfmportance of the vortex to the energy, system size, and ve-
ocity of expansion is larger in this case.

Since R(t) =R(0)wt for wt large, the decoupling time is
given by

wty~(va)?

in two dimensions. At larger times the potential energy will
play essentially no role and the evolution of the cloud will be
the same as for free particles. To the extent that the cloud
expanding homologously at the decoupling time, we expe
that p; / p;ms Will remain constant and equal to its value at the
decoupling time. The results of the numerical calculations
exhibited in Fig. 5 are consistent with the assumption of
homologous expansion at larger times. We conclude that in One of us(E. L.) wishes to thank Nordita for their hospi-
two dimensions the expansion is homologous to a good apality.
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