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Bose-Einstein condensation in two dimensions: A quantum Monte Carlo study
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A path-integral quantum Monte Carlo method is used to calculate finite temperature properties of up to 1000
hard-core bosons in a two-dimensional isotropic harmonic-oscillator potential. If the interatomic repulsions are
sufficiently short range, an abrupt increase in the condensate fraction and a hump in the specific heat occur
close to the critical temperature of ideal bosons. The critical temperature and the condensate fraction are in
general lowered by an increase in the hard-core ralilfsa is decreased below a certain level, the condensate
fraction becomes indistinguishable from the corresponding value of the ideal bosons. For up to 1000 particles,
this occurs when Int(1/na?)<0.1, wheren is the average particle densify51050-29478)04812-4

PACS numbgs): 03.75.Fi, 02.70.Lg, 05.30.Jp

Bose-Einstein condensati¢BEC) [1-3] of magnetically  oscillator length scale is characterized hiy=(r?)3?

confined, weakly interacting atomic gases has now been ob=/%/mw. An ideal Bose gas in a 2D harmonic-oscillator
served in several laboratorigd—7]. Those achievements potential has been studied in some ddtail-13,19. Gener-
have provoked considerable theoretical interest, much o4lly speaking, BEC is anticipated when the thermal de Bro-
which has concentrated on bosons trapped in one or twglie wavelength

dimensiong8-13|. It appears that the inclusion of the inter-

actions between particles might have a profound effect on Ar=~2mhImkgT (4)

the BEC transitior]14,15. We therefore study both nonin-

teracting(ideal) bosons and weakly interacting bosons with abecomes comparable with the average spacing between par-
hard core of radius in a two-dimensiona(2D) harmonic- ticles, so that the average particle density A1 2. For ideal
oscillator potential. The emphasis is on the difference andbosons in a harmonic-oscillator potential, the BEC transition
similarity between the ideal and hard-core systems wéhsn  occurs at the critical temperature

varied.
BEC in one and two dimensions was initially ruled out by o V6N 7w
Hohenberg's theorefd6]. Widom[17] later pointed out that Te= - k_B' ®)

this theorem applies specifically to homogeneous systems,

and proved that BEC phase transitions occur in a 2D rotatingyith the average boson density given bY'EZ- Herel,

gas and a one-dimension€lD) gas in the presence of a ~|/NY* s a length scale that characterizes the critical den-
gravitational field. Further examples include an attractivesjty of the ideal bosons in a harmonic-oscillator potential.

d-impurity system in any number of dimensiois3], a gen- In the thermodynamic limit, BEC can occur in 1D and 2D
eral 2D power-law trap, and a 1D power-law trap more consystems only if the particle density somewhere in the system
fining than paraboli¢19]. can increase without bound. Of course this is impossible if

The system that we consider here consistdlgfarticles, interparticle repulsions are present. So strictly speaking,
interacting via a pure hard-core potential of radmisind  there can be no phase transition to a Bose-condensed state
confined to move in a 2D harmonic-oscillator potential. Thefor nonideal bosons in a 2D harmonic-oscillator potential
potential energy of th&l particles is given by [14,15. However, the noncondensed system is said to be-
come unstable at the critical temperature and to make a tran-
sition to some non-BEC state. The possibility of a Kosterlitz-
Thouless transitiori20] has been proposed 4], with the
transition to the superfluid state occurring very close to the
wherer; is the 2D position vector of thih particle, condensation temperature for the ideal gas.

The thermodynamic limit is somewhat removed from

N
V(ry,ra, ... ,rN>=i§1 U(ri>+i§j Vi(ri=rh, (@)

U(r)= Twz(x-2+y-2) @) typical experimental conditions, for which questions of den-
Y2 tea sity divergence never arise. A givedimensional system of
interacting bosons fod=3 is generally expected to exhibit
is the confinement potential on thth particle, and essentially the same behavior as its noninteracting counter-
part as long as the particular diluteness criterion is satisfied.
Vi(r) = ® for r<2a 3 In general, corrections to the behavior of an ideal gas will be
! 0 otherwise small whenna®<1, wheren~ A7 9. In two dimensions, the

condition for diluteness is in fact given by a logarithmic
is the interaction potential between any two particles separelation[14]
rated by a distance In Eq. (2), w is the classical oscillator
frequency andm is the mass of a particle. The harmonic- In"Y(1/na?)<1, (6)
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which is obtained by requiring that the interaction energy is 0.6
negligible compared to the kinetic energy and holds for a
homogeneous gd21] as well as for all types of power-law
confinement, although there is no phase transition in the
ideal limit of the former case. Considering BEC of bosons in
a 2D harmonic-oscillator potential, in which case
~N¥?12, the diluteness condition of E¢) is satisfied only
for extremely small values of the parametaNYI. If
aNY1 is not extremely small, then the diluteness parameter
In"}(1/na?) approaches unity and the correctideT,=T,
—Tg is expected to be significanAT. is expected to be
negative for a hard-core Bose gas in a harmonic-oscillator
potential in both twd 13,14 and three dimension2,23,
and positive for harmonically interacting bosons in a 2D 0.2
harmonic-oscillator potentidR4].

The system that we simulate is strictly 2D. In an experi-
ment, a trap could be made effectively 2D by making,
the confinement frequency in the perpendicular direction,
much greater thamw, the confinement frequency in the other
two directions. More precisely, the requirement is 0.0 I L ! £ 2=
hw>kgT? so thatw,>N?w, whereT? is given by Eq(5). 025 050 075 100 - 125 150 175
Possible experimental configurations for trapping an atomic /T
Bose gas in tV\_IO dimensions are described in RES] and FIG. 1. The condensate fractidd,/N as a function ofT/Tg
more recently in Ref{25]. In the latter case, a method for with hard-core radius/l =0.01. Results are shown fo¢= 10 (tri-

trapping atoms above a magnetic surface using the Zeemapgjes 100 (crossel and 1000(boxes. Lines connecting data
effect is proposed, resulting in a very strong confinemenhgints provide a visual guide only.

perpendicular to the surface.

We apply the path-integral quantum Monte Carlo method
for bosong 26,27, specifically following the formulation of ~already known exact results, we find that the average maxi-
Ref. [27]. The path-integral quantum Monte Carlo schememum length of extended permutation cycles provides a lower
has recently been used to simulate BEC for a hard-sphere ghound close td\N,. Shorter exchanges can contributeNg
in two [13] and three dimensiori23,28. The method relies also, but since for finiteN there is in general significant
on the fact that the partition functioB=Trp of a many- condensation into the first excited single-particle energy
body system can be written in the form of a path integrallevel nearT=T8 [9], inclusion of these is bound to result in
[29] if the density operatop=e AHo*H1) js decomposed an overestimation ol,. Hence, we have calculated the av-

0.4

2
=
2,

according to the Trotter formula erage maximum length of extended permutation cycles in
order to estimate the number of condensate particles in our
e BMHoTHI = |im (@~ AHo/Mg=BHL/IM)M (7)  interacting system.
M — o0 We have carried out simulations for varios(10, 100,
and 1000. In each case, we have obtained precise results by
whereH,= — (%2/2m)2NVZ? andH,;=V(ry,r,, ... ry) are,  ensuring convergence with respect to the Trotter nuniber

respectively, the kinetic and potential energy operators of th@s well as the number of Monte Carlo iterations. The simu-
system. For bosons, a sum over permutations of all the patation of 10 and 100 atoms required relatively little CPU
ticles is necessary in order to symmetrize the density matriime with our available resources, so that in those cases it
[26,27). In practice, this means that the Monte Carlo simu-was possible to practically eliminate random errors from the
lation consists of permutation moves as well as coordinatestimation of thermal averages. TNe= 1000 simulation re-
moves. quired several days per data point to reduce the random er-
A simple procedure for treating hard-core interactions in arors to a reasonable level. We were unable to obtain reliable
1D simulation was described in Rdf30]. In two dimen-  results for higheN within a reasonable amount of comput-
sions, we use a similar, albeit slightly more involved method.ing time. Our initial results are obtained wisiil = 0.01. Tak-
A 2D grid of square cells, each of sid®a, is defined. We ing the case of*Na as one example, that would correspond
are thus permitted to reject any move that places a particleo a confinement frequency ab/2w=>5.1 kHz [31]. The
into an already occupied cell. In the case that the cell igliluteness condition stated above does not appear to be sat-
otherwise vacant, it is only necessary to compute interparisfied by this value o&/I because for eacN, the diluteness
ticle separations between the moved particle and those in uparameter is roughly in(1/na?)~0.1. Of course, the situa-
to 20 nearby cells. The move is rejected if any separation iion would only worsen if we approached the typical experi-
smaller than 2. mental regime of higheN. Nevertheless we find that there is
Particles on the same permutation cycle are in the saman abrupt increase iNy/N just beIoszTS. The curves in
guantum state, so the particle permutations can be used Fig. 1 show phenomena qualitatively similar to the behavior
estimate the condensate fractidly/N. By comparing the of Ny/N for ideal bosons, with the onset of condensation
results of our Monte Carlo simulations for ideal bosons withbecoming quite abrupt fad = 1000.
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= ] ) FIG. 3. Ng/N for various hard-core radi with N=100. The
FIG. 2. The specific heal/Nkg as a function ofT/Tg with ingividual points represena/I =0.02 (diamonds, bottom curye
hard-core radiusa/l =0.01. Results are shown fdd=10 (tri- 0.01 (vertical crosses 0.005 (boxed, 0.0025 (diagonal crossés
angles, 100 (crossep and 1000(boxes. The solid lines represent  ang 0.001 25triangles. Results for the smallest two valuesaére
the exact values for 10owest peak 100, and 100@highest peak  yjrtually identical. Lines connecting data points provide a visual
ideal bosons. guide only.

The specific heat, shown in Fig. 2, approaches the classfuré does not have a significant effect on the ratéh re-
cal value of noninteracting particle€/Nkg=2, for large  SPect to changes ia) that the noninteracting limit is ap-
enoughT. As T is decreased toward the condensation temProached, which is evident fo¢ =100 in Fig. 3. For all three
perature, a hump develops. This result is qualitatively similalyalues oiN studied, the ideal and interacting valuesNg/N
to the case of ideal bosof$1], which is represented by the 0.08
solid lines. However, the hump is considerably more pro-
nounced in that case and develops into a sharp pedk as
approaches infinity. In the present case, the positions of the
peaks are shifted down in temperature with respect to the
ideal case, indicating that the transition temperature is low-  0.06
ered by interactions.

Now we ask whether it is possible to recover the behavior
of the finite system of ideal bosons by decreasing the size of
the hard-core radiua. For 100 bosons, we have studied the =
depletion of the condensate as a functionadff. Figure 3 E
shows that the value dfly/N stops changing whea/l is <
decreased to 1.2510 3. In other words, the condensate
fraction for interacting bosons coincides with the condensate
fraction for ideal bosons wheav/| reaches some small finite 0.02
value. This result seems reasonable because this vaté of
is quite small compared with the average distance between
particles in the trap. Aa is increased from this valu&ly /N
decreases, indicating that the transition temperature de-

0.04

creases with increasing 0.00 S e e
The density increases with the number of particles in our 0.001 0.01 0.1 1

fixed trap, so the required value afthat reaches the nonin- aNY4/l

teracting limit is bound to depend d This is illustrated in

Fig. 4. The graph shows the differenddN,/N=Nq(a=0) FIG. 4. The difference between the values\gf/N for ideal and

—Nog(a#0) between the condensate.fractiﬁ?s for ideal angnteracting bosons, plotted as a functionadf*4/1 (in logarithmic
interacting bosons, plotted as a functioredt™™/I. We show  scalg for temperatureT=0.77T%. Points correspond tdN=10

results for a single temperature below the transition point{diamonds, N=100 (crossey and N=1000 (boxes. Lines con-
T=0.77T2. We have confirmed that the choice of tempera-necting data points provide a visual guide only.
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become almost indistinguishable whaiN'#/| goes below The results presented here have been obtained by simulat-
about 0.01 although all increases, smalleaNY¥| is re-  ing various numbers of atoms in a single fixed trap. We find
quired to reach the noninteracting limit. From this result, thethat the required value od becomes very small abl is
diluteness condition can be approximatéar the values of increased. As long as a lowes was used, condensation

N considered hejeas In*(1/na”)<0.1. However, consistent close toT? could presumably be achieved for some values of
with the absence of BEC foa>0 in the thermodynamic higherN with a realistic value of.. A defining characteristic
limit, the curves in Fig. 4 shift towarda—0 asNis in- o BEC is the sudden increasefy /N at some finite critical
creased. In other words, sbecomes very large, very small (o mperaturer, . In two dimensions, the difference between
values ofa are required to avoid total depletion of the con- the No/N curves forN=1000 andN— is quite small for

1/4 ; ; _
densate..A:N—w?, aN"1-0 is requweq beqause the pres ideal bosons so satisfactory results may be obtained even
ence of interactions prevents the density divergence that is

necessary for BEC to occur. Results for highethan 1000 Wltzzu;éi;sgr:g?r%t? dvglgeﬂ]%?@] it appears that the ex-
would be required to obtain a definite picture of what hap- ' tal ob i f BEG = ¢ pg. . ) ¢
pens as the thermodynamic limit is approached. permental observation o In two dimensions 1S an at-

In a recent path-integral quantum Monte Carlo simulationtdinable goal. The difference between the results of ideal and

[13], the condensate fraction was calculated for 1000 hardh@rd-core Bose gases virtually disappears if the range of in-
core bosons in the same type of trap. For the valuesafd teract!ons is small gpough. Itis gntlupated that under typical
T used there, a heavier depletion of the condensate was oBXPerimental conditions, the critical temperature would be
tained, compared with the equivalent case studied here. [glightly lower than the critical temperature for ideal bosons.
that case, a slightly different approach was used to extract For a given 2D power-law trap (r;)=r;?, the magnitude
Ng/N from the simulation data. of AT, depends on the value of the exponentFor =1,
Future experiments might use gase$tb or 2Na as in  this correction to the transition temperature is proportional to
the three-dimensional case. In f&éNa was Bose condensed the #th root of the diluteness parameter so it has been pro-
in three dimensions at a critical temperatiie-2 uK [6]. posed that traps more confiningy€1, for example than
If a 2D gas containing 1008'Na atoms were Bose con- parabolic could provide the most promising confinement ge-
densed in a trap whose confinement frequency was ChOSQﬂnetry[14]. On the other handT(c) depends both om and
such that the critical temperatuie~2 K, it is straight-  on the average boson density19]. If the trap size is kept
forward to obtain from Fig. 4 thatlNo/N~0.02 atT  fiyeq thenT? will increase rapidly withy for a large enough

_ 0 . O,
—0.771'0_. Using the fact that the S.hl.ft in the condensateN, implying that a high is favorable. Even so, the dilute-
fraction is roughly constant over a finite temperature range ass condition might be difficult to satisfy—especially for

_below the_(_:rmcal point, we are also able to estimate the shif arge 7—in such a high density limit. It should be straight-
in the critical temperature. For the present example o

23 . ) . ..forward to evaluate the transition temperature of interacting
1000-°Na atoms, we estimate a relative decrease in the criti: . ) . .
) 0 . . .~ bosons for different; with the simulation method used here.
cal temperatureAT./T .~ —0.02. Alternatively, if experi-

mental capabilities were such that tR&Na gas could be Thqse result_s WOL_JId be especially interesting from the ex-
; erimental viewpoint.

cooled to the nanokelvin temperature scale, then a much

smallerw would be used and the diluteness condition could This work was supported in part by the NSF under the

in principle be satisfied so that the relative shift in the criticalCooperative Agreement OSR-9353227, the U.S. DOE under

temperature would be practically zero. the EPSCoR Program, and the W. M. Keck Foundation.
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