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Bose-Einstein condensation in two dimensions: A quantum Monte Carlo study
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~Received 15 June 1998!

A path-integral quantum Monte Carlo method is used to calculate finite temperature properties of up to 1000
hard-core bosons in a two-dimensional isotropic harmonic-oscillator potential. If the interatomic repulsions are
sufficiently short range, an abrupt increase in the condensate fraction and a hump in the specific heat occur
close to the critical temperature of ideal bosons. The critical temperature and the condensate fraction are in
general lowered by an increase in the hard-core radiusa. If a is decreased below a certain level, the condensate
fraction becomes indistinguishable from the corresponding value of the ideal bosons. For up to 1000 particles,
this occurs when ln21(1/na2)&0.1, wheren is the average particle density.@S1050-2947~98!04812-4#

PACS number~s!: 03.75.Fi, 02.70.Lq, 05.30.Jp
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Bose-Einstein condensation~BEC! @1–3# of magnetically
confined, weakly interacting atomic gases has now been
served in several laboratories@4–7#. Those achievement
have provoked considerable theoretical interest, much
which has concentrated on bosons trapped in one or
dimensions@8–13#. It appears that the inclusion of the inte
actions between particles might have a profound effect
the BEC transition@14,15#. We therefore study both nonin
teracting~ideal! bosons and weakly interacting bosons with
hard core of radiusa in a two-dimensional~2D! harmonic-
oscillator potential. The emphasis is on the difference a
similarity between the ideal and hard-core systems whena is
varied.

BEC in one and two dimensions was initially ruled out
Hohenberg’s theorem@16#. Widom @17# later pointed out that
this theorem applies specifically to homogeneous syste
and proved that BEC phase transitions occur in a 2D rota
gas and a one-dimensional~1D! gas in the presence of
gravitational field. Further examples include an attract
d-impurity system in any number of dimensions@18#, a gen-
eral 2D power-law trap, and a 1D power-law trap more co
fining than parabolic@19#.

The system that we consider here consists ofN particles,
interacting via a pure hard-core potential of radiusa and
confined to move in a 2D harmonic-oscillator potential. T
potential energy of theN particles is given by

V~r1 ,r2 , . . . ,rN!5(
i 51

N

U~r i !1(
i , j

VI~ ur i2r j u!, ~1!

wherer i is the 2D position vector of thei th particle,

U~r i !5
m

2
v2~xi

21yi
2! ~2!

is the confinement potential on thei th particle, and

VI~r !5H ` for r ,2a

0 otherwise
~3!

is the interaction potential between any two particles se
rated by a distancer. In Eq. ~2!, v is the classical oscillato
frequency andm is the mass of a particle. The harmoni
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oscillator length scale is characterized byl[^r 2&0
1/2

[A\/mv. An ideal Bose gas in a 2D harmonic-oscillat
potential has been studied in some detail@11–13,19#. Gener-
ally speaking, BEC is anticipated when the thermal de B
glie wavelength

LT5A2p\2/mkBT ~4!

becomes comparable with the average spacing between
ticles, so that the average particle densityn;LT

22 . For ideal
bosons in a harmonic-oscillator potential, the BEC transit
occurs at the critical temperature

Tc
05

A6N

p

\v

kB
, ~5!

with the average boson density given byn; l c
22 . Here l c

; l /N1/4 is a length scale that characterizes the critical d
sity of the ideal bosons in a harmonic-oscillator potential

In the thermodynamic limit, BEC can occur in 1D and 2
systems only if the particle density somewhere in the sys
can increase without bound. Of course this is impossible
interparticle repulsions are present. So strictly speak
there can be no phase transition to a Bose-condensed
for nonideal bosons in a 2D harmonic-oscillator potent
@14,15#. However, the noncondensed system is said to
come unstable at the critical temperature and to make a t
sition to some non-BEC state. The possibility of a Kosterli
Thouless transition@20# has been proposed@14#, with the
transition to the superfluid state occurring very close to
condensation temperature for the ideal gas.

The thermodynamic limit is somewhat removed fro
typical experimental conditions, for which questions of de
sity divergence never arise. A givend-dimensional system o
interacting bosons ford>3 is generally expected to exhib
essentially the same behavior as its noninteracting coun
part as long as the particular diluteness criterion is satisfi
In general, corrections to the behavior of an ideal gas will
small whennad!1, wheren;LT

2d . In two dimensions, the
condition for diluteness is in fact given by a logarithm
relation @14#

ln21~1/na2!!1, ~6!
4811 © 1998 The American Physical Society
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which is obtained by requiring that the interaction energy
negligible compared to the kinetic energy and holds fo
homogeneous gas@21# as well as for all types of power-law
confinement, although there is no phase transition in
ideal limit of the former case. Considering BEC of bosons
a 2D harmonic-oscillator potential, in which casen
;N1/2/ l 2, the diluteness condition of Eq.~6! is satisfied only
for extremely small values of the parameteraN1/4/ l . If
aN1/4/ l is not extremely small, then the diluteness parame
ln21(1/na2) approaches unity and the correctionDTc5Tc

2Tc
0 is expected to be significant.DTc is expected to be

negative for a hard-core Bose gas in a harmonic-oscilla
potential in both two@13,14# and three dimensions@22,23#,
and positive for harmonically interacting bosons in a 2
harmonic-oscillator potential@24#.

The system that we simulate is strictly 2D. In an expe
ment, a trap could be made effectively 2D by makingvz ,
the confinement frequency in the perpendicular directi
much greater thanv, the confinement frequency in the oth
two directions. More precisely, the requirement
\vz@kBTc

0 so thatvz@N1/2v, whereTc
0 is given by Eq.~5!.

Possible experimental configurations for trapping an ato
Bose gas in two dimensions are described in Ref.@19# and
more recently in Ref.@25#. In the latter case, a method fo
trapping atoms above a magnetic surface using the Zee
effect is proposed, resulting in a very strong confinem
perpendicular to the surface.

We apply the path-integral quantum Monte Carlo meth
for bosons@26,27#, specifically following the formulation of
Ref. @27#. The path-integral quantum Monte Carlo schem
has recently been used to simulate BEC for a hard-sphere
in two @13# and three dimensions@23,28#. The method relies
on the fact that the partition functionZ5Tr r of a many-
body system can be written in the form of a path integ
@29# if the density operatorr5e2b(H01H1) is decomposed
according to the Trotter formula

e2b~H01H1!5 lim
M→`

~e2bH0 /Me2bH1 /M !M, ~7!

whereH052(\2/2m)( i
N¹ i

2 andH15V(r1 ,r2 , . . . ,rN) are,
respectively, the kinetic and potential energy operators of
system. For bosons, a sum over permutations of all the
ticles is necessary in order to symmetrize the density ma
@26,27#. In practice, this means that the Monte Carlo sim
lation consists of permutation moves as well as coordin
moves.

A simple procedure for treating hard-core interactions i
1D simulation was described in Ref.@30#. In two dimen-
sions, we use a similar, albeit slightly more involved meth
A 2D grid of square cells, each of sideA2a, is defined. We
are thus permitted to reject any move that places a par
into an already occupied cell. In the case that the cel
otherwise vacant, it is only necessary to compute interp
ticle separations between the moved particle and those i
to 20 nearby cells. The move is rejected if any separatio
smaller than 2a.

Particles on the same permutation cycle are in the s
quantum state, so the particle permutations can be use
estimate the condensate fractionN0 /N. By comparing the
results of our Monte Carlo simulations for ideal bosons w
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already known exact results, we find that the average m
mum length of extended permutation cycles provides a lo
bound close toN0 . Shorter exchanges can contribute toN0
also, but since for finiteN there is in general significan
condensation into the first excited single-particle ene
level nearT5Tc

0 @9#, inclusion of these is bound to result i
an overestimation ofN0 . Hence, we have calculated the a
erage maximum length of extended permutation cycles
order to estimate the number of condensate particles in
interacting system.

We have carried out simulations for variousN ~10, 100,
and 1000!. In each case, we have obtained precise results
ensuring convergence with respect to the Trotter numbeM
as well as the number of Monte Carlo iterations. The sim
lation of 10 and 100 atoms required relatively little CP
time with our available resources, so that in those case
was possible to practically eliminate random errors from
estimation of thermal averages. TheN51000 simulation re-
quired several days per data point to reduce the random
rors to a reasonable level. We were unable to obtain relia
results for higherN within a reasonable amount of compu
ing time. Our initial results are obtained witha/ l 50.01. Tak-
ing the case of23Na as one example, that would correspo
to a confinement frequency ofv/2p55.1 kHz @31#. The
diluteness condition stated above does not appear to be
isfied by this value ofa/ l because for eachN, the diluteness
parameter is roughly ln21(1/na2);0.1. Of course, the situa
tion would only worsen if we approached the typical expe
mental regime of higherN. Nevertheless we find that there
an abrupt increase inN0 /N just belowT5Tc

0 . The curves in
Fig. 1 show phenomena qualitatively similar to the behav
of N0 /N for ideal bosons, with the onset of condensati
becoming quite abrupt forN51000.

FIG. 1. The condensate fractionN0 /N as a function ofT/Tc
0

with hard-core radiusa/ l 50.01. Results are shown forN510 ~tri-
angles!, 100 ~crosses!, and 1000~boxes!. Lines connecting data
points provide a visual guide only.
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The specific heat, shown in Fig. 2, approaches the cla
cal value of noninteracting particles,C/NkB52, for large
enoughT. As T is decreased toward the condensation te
perature, a hump develops. This result is qualitatively sim
to the case of ideal bosons@11#, which is represented by th
solid lines. However, the hump is considerably more p
nounced in that case and develops into a sharp peakN
approaches infinity. In the present case, the positions of
peaks are shifted down in temperature with respect to
ideal case, indicating that the transition temperature is lo
ered by interactions.

Now we ask whether it is possible to recover the behav
of the finite system of ideal bosons by decreasing the siz
the hard-core radiusa. For 100 bosons, we have studied t
depletion of the condensate as a function ofa/ l . Figure 3
shows that the value ofN0 /N stops changing whena/ l is
decreased to 1.2531023. In other words, the condensa
fraction for interacting bosons coincides with the condens
fraction for ideal bosons whena/ l reaches some small finit
value. This result seems reasonable because this value oa/ l
is quite small compared with the average distance betw
particles in the trap. Asa is increased from this value,N0 /N
decreases, indicating that the transition temperature
creases with increasinga.

The density increases with the number of particles in
fixed trap, so the required value ofa that reaches the nonin
teracting limit is bound to depend onN. This is illustrated in
Fig. 4. The graph shows the differenceDN0 /N5N0(a50)
2N0(aÞ0) between the condensate fractions for ideal a
interacting bosons, plotted as a function ofaN1/4/ l . We show
results for a single temperature below the transition po
T50.77Tc

0 . We have confirmed that the choice of tempe

FIG. 2. The specific heatC/NkB as a function ofT/T0
c with

hard-core radiusa/ l 50.01. Results are shown forN510 ~tri-
angles!, 100 ~crosses!, and 1000~boxes!. The solid lines represen
the exact values for 10~lowest peak!, 100, and 1000~highest peak!
ideal bosons.
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ture does not have a significant effect on the rate~with re-
spect to changes ina) that the noninteracting limit is ap
proached, which is evident forN5100 in Fig. 3. For all three
values ofN studied, the ideal and interacting values ofN0 /N

FIG. 3. N0 /N for various hard-core radiia with N5100. The
individual points representa/ l 50.02 ~diamonds, bottom curve!,
0.01 ~vertical crosses!, 0.005 ~boxes!, 0.0025 ~diagonal crosses!,
and 0.001 25~triangles!. Results for the smallest two values ofa are
virtually identical. Lines connecting data points provide a visu
guide only.

FIG. 4. The difference between the values ofN0 /N for ideal and
interacting bosons, plotted as a function ofaN1/4/ l ~in logarithmic
scale! for temperatureT50.77Tc

0 . Points correspond toN510
~diamonds!, N5100 ~crosses!, and N51000 ~boxes!. Lines con-
necting data points provide a visual guide only.
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become almost indistinguishable whenaN1/4/ l goes below
about 0.01 although asN increases, smalleraN1/4/ l is re-
quired to reach the noninteracting limit. From this result,
diluteness condition can be approximated~for the values of
N considered here! as ln21(1/na2)&0.1. However, consisten
with the absence of BEC fora.0 in the thermodynamic
limit, the curves in Fig. 4 shift towardsa→0 as N is in-
creased. In other words, asN becomes very large, very sma
values ofa are required to avoid total depletion of the co
densate. AsN→`, aN1/4/ l→0 is required because the pre
ence of interactions prevents the density divergence tha
necessary for BEC to occur. Results for higherN than 1000
would be required to obtain a definite picture of what ha
pens as the thermodynamic limit is approached.

In a recent path-integral quantum Monte Carlo simulat
@13#, the condensate fraction was calculated for 1000 ha
core bosons in the same type of trap. For the values ofa and
T used there, a heavier depletion of the condensate was
tained, compared with the equivalent case studied here
that case, a slightly different approach was used to ext
N0 /N from the simulation data.

Future experiments might use gases of87Rb or 23Na as in
the three-dimensional case. In fact23Na was Bose condense
in three dimensions at a critical temperatureTc;2 mK @6#.
If a 2D gas containing 100023Na atoms were Bose con
densed in a trap whose confinement frequency was ch
such that the critical temperatureTc;2 mK, it is straight-
forward to obtain from Fig. 4 thatDN0 /N;0.02 at T
50.77Tc

0 . Using the fact that the shift in the condensa
fraction is roughly constant over a finite temperature ran
below the critical point, we are also able to estimate the s
in the critical temperature. For the present example
100023Na atoms, we estimate a relative decrease in the c
cal temperature:DTc /Tc

0;20.02. Alternatively, if experi-
mental capabilities were such that the23Na gas could be
cooled to the nanokelvin temperature scale, then a m
smallerv would be used and the diluteness condition co
in principle be satisfied so that the relative shift in the critic
temperature would be practically zero.
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The results presented here have been obtained by sim
ing various numbers of atoms in a single fixed trap. We fi
that the required value ofa becomes very small asN is
increased. As long as a lowerv was used, condensatio
close toTc

0 could presumably be achieved for some values
higherN with a realistic value ofa. A defining characteristic
of BEC is the sudden increase inN0 /N at some finite critical
temperatureTc . In two dimensions, the difference betwee
the N0 /N curves forN51000 andN→` is quite small for
ideal bosons so satisfactory results may be obtained e
without resorting to very largeN.

As demonstrated elsewhere@13#, it appears that the ex
perimental observation of BEC in two dimensions is an
tainable goal. The difference between the results of ideal
hard-core Bose gases virtually disappears if the range o
teractions is small enough. It is anticipated that under typ
experimental conditions, the critical temperature would
slightly lower than the critical temperature for ideal boson

For a given 2D power-law trapU(r i)}r i
h , the magnitude

of DTc depends on the value of the exponenth. For h*1,
this correction to the transition temperature is proportiona
the hth root of the diluteness parameter so it has been p
posed that traps more confining (h.1, for example! than
parabolic could provide the most promising confinement
ometry @14#. On the other hand,Tc

0 depends both onh and
on the average boson densityn @19#. If the trap size is kept
fixed, thenTc

0 will increase rapidly withh for a large enough
N, implying that a highh is favorable. Even so, the dilute
ness condition might be difficult to satisfy—especially f
largeh—in such a high density limit. It should be straigh
forward to evaluate the transition temperature of interact
bosons for differenth with the simulation method used her
Those results would be especially interesting from the
perimental viewpoint.

This work was supported in part by the NSF under t
Cooperative Agreement OSR-9353227, the U.S. DOE un
the EPSCoR Program, and the W. M. Keck Foundation.
. A
@1# S. N. Bose, Z. Phys.26, 178 ~1924!.
@2# A. Einstein, Sitzungsber. K. Preuss. Akad. Wiss., Phys. Ma

Kl. 22, 261 ~1924!; 3, 18 ~1925!.
@3# For a recent account, see articles inBose-Einstein Condensa

tion, edited by A. Griffin, D. W. Snoke, and S. Stringari~Cam-
bridge University Press, Cambridge, England, 1995!.

@4# M. H. Anderson, J. R. Ensher, M. R. Matthews, C.
Wiemann, and E. A. Cornell, Science269, 198 ~1995!.

@5# C. C. Bradley, C. A. Sackett, J. J. Tollet, and R. G. Hul
Phys. Rev. Lett.75, 1787~1995!.

@6# K. B. Davies, M.-O. Mewes, M. R. Andrews, N. J. van Drute
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Le
75, 3969~1995!.

@7# J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wiemann, a
E. A. Cornell, Phys. Rev. Lett.77, 4984~1996!.

@8# F. Brosens, J.T. Devresse, and L. F. Lemmens, Solid S
Commun.100, 123 ~1996!.
.

,

d

te

@9# W. Ketterle and N. J. van Druten, Phys. Rev. A54, 656
~1996!.

@10# N. J. van Druten and W. Ketterle, Phys. Rev. Lett.79, 549
~1997!.

@11# T. Haugset, H. Haugerud, and J. O. Anderson, Phys. Rev
55, 2922~1997!.

@12# W. J. Mullin, J. Low Temp. Phys.106, 615 ~1997!.
@13# S. Heinrichs and W. J. Mullin, J. Low Temp. Phys.~to be

published!.
@14# S. I. Shevchenko, Zh. E´ ksp. Teor. Fiz.100, 1824~1991! @Sov.

Phys. JETP73, 1009~1991!#.
@15# W. J. Mullin, J. Low Temp. Phys.110, 167 ~1998!.
@16# P. C. Hohenberg, Phys. Rev.158, 383 ~1967!.
@17# A. Widom, Phys. Rev.176, 254 ~1968!.
@18# L. C. Ioriatti, Jr., S. G. Rosa, Jr., and O. Hipo´lito, Am. J. Phys.

44, 744 ~1976!.
@19# V. Bagnato and D. Kleppner, Phys. Rev. A44, 7439~1991!.



tt
g

o

PRA 58 4815BOSE-EINSTEIN CONDENSATION IN TWO . . .
@20# J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
@21# D. S. Fisher and P. C. Hohenberg, Phys. Rev. B37, 4936

~1988!.
@22# S. Giorgini, L. Pitaevskii, and S. Stringari, Phys. Rev. A54,

R4633~1996!.
@23# W. Krauth, Phys. Rev. Lett.77, 3695~1996!.
@24# J. Tempere and J. T. Devreese, Solid State Commun.101, 657

~1997!.
@25# E. A. Hinds, M. G. Boshier, and I. G. Hughes, Phys. Rev. Le

80, 645 ~1998!.
@26# E. L. Pollock and D. M. Ceperley, Phys. Rev. B30, 2555

~1984!.
.

@27# M. Takahashi and M. Imada, J. Phys. Soc. Jpn.53, 963~1984!.
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