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High-resolution amplitude and phase gratings in atom optics

P. R. Berman, B. Dubetsky, and J. L. Cohen
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 9 June 1998!

An atom-field geometry is chosen in which an atomic beam traverses a field interaction zone consisting of

three fields, one having frequencyV52pc/l propagating in theẑ direction and the other two having frequen-

ciesV1d1 andV1d2 propagating in the2 ẑ direction. Forn1d11n2d250 andud1uT,ud2uT@1, wheren1 and
n2 are positive integers andT is the pulse duration in the atomic rest frame, the atom-field interaction results
in the creation of atom amplitude and phase gratings having periodl/@2(n11n2)#. In this manner, one can use
optical fields having wavelengthl to produce atom gratings having periodicity much less thanl.
@S1050-2947~98!04712-X#

PACS number~s!: 03.75.Dg
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I. INTRODUCTION

Over the past several years, atom interferometry
emerged as an important new research area in atomic,
lecular, and optical physics@1#. The technology has im
proved to the point where it is now possible to control t
center-of-mass motion of atoms using either microfabrica
gratings@2# or optical fields@3#. Accompanying the develop
ments in atom interferometry and atom optics have been
tempts to produce nanostructures using atom optics
ments. Probably the most successful method to date emp
standing wave optical fields to focus atoms to a series
lines or dots having size on the order of tens of nanome
@4#. The period of the structures produced in these focus
schemes isl/2, wherel is the wavelength associated wi
the standing wave fields. Spatial features having dimens
as small asl/8 have been achieved by exploiting the grou
state optical potentials for a magnetically degenerate gro
state@5#, but the period of the entire pattern remains equa
l/2.

We have described previously a method for produc
spatially modulated atomic densities@6#. When an atomic
beam passes through one or more standing wave op
fields having wavelengthl, it is possible to use coheren
transient techniques to create atomic ‘‘gratings’’ having s
tial period equal tol/(2n), wheren is a positive integer.
The atomic gratings arise as a result of the nonlinear in
action between the atoms and the fields. For example, w
an atomic beam passes through a resonant, standing
optical field, the field can create all even spatial harmonic
the excited and ground state populations. As a result of sp
taneous emission, the excited state gratings decay back t
ground state; however, for properly chosen level schemes
ground state gratings are not completely ‘‘filled in.’’ As
consequence, one has long-lived ground state gratings
which to operate. The fate of these ground state grati
depends on the collimation of the atomic beam.

If the angular divergence of the atomic beam isub , the
gratings persist for a distance of orderLb5l/(2nub) follow-
ing the atom-field interaction. For distances larger thanLb ,
the gratings wash out quickly as a result of Doppler deph
PRA 581050-2947/98/58~6!/4801~10!/$15.00
s
o-

d

t-
e-
ys
f

rs
g

ns

nd
o

g

al

-

r-
en
ve

in
n-
the
he

ith
s

s-

ing. The grating structure is not lost, however. If the ato
interact with a second standing wave field, the various spa
harmonics will rephase at different distances following t
interaction with the second field. By a proper choice of o
tical field strengths, one can create and isolate atomic den
patterns that correspond very closely to pure, higher-or
spatial harmonics@6# . The patterns could be deposited on
substrate and used as elements in soft x-ray systems.

A resonant, standing wave optical field acts as an am
tude grating for the incident atomic beam, creating spatia
modulated ground and excited state populations~atomic grat-
ings! immediately following the atom-field interaction. I
contrast, a nonresonant, standing wave optical field acts
phasegrating for the atoms@7#. Immediately following the
atom-field interaction, all atoms are returned to the grou
state and the ground state density is uniform; however,
ground statewave functionacquires a spatially modulate
phase having period equal tol/2. We shall refer to this wave
function as an ‘‘atomic phase grating.’’ As time evolves fo
lowing the atom-field interaction, the phase modulation
the wave function is transformed into a spatial modulation
the atomic density. One can think of the nonresonant sta
ing wave field as a sequence of lenses that can focus a hi
collimated atomic beam to a series of lines having spa
period equal tol/2. For a beam having angular divergenc
echo techniques can be used to rephase and isolate the
ous spatial harmonics@6,8#.

If the goal of an experiment is to create a pure, high
order spatial harmonic, it would be helpful to eliminate t
lower-order harmonics from the outset. In this paper we
scribe a method in which a single field interaction zone c
be used to produce atomic gratings having spatial pe
equal tol/(2n) wheren>2 ~see Fig. 1!. An atomic beam
passes through an interaction region in which three fields
One of the fields has frequencyV and propagates in theẑ
direction, while two additional fields, each counterpropag
ing relative to the first field, have frequenciesV1d1 and
V1d2 , respectively. A two-photon process in which a ph
ton of frequencyV is absorbed and one of frequencyV
1d1 or V1d2 is emitted@see Fig. 2~a!# produces a contri-
bution to the ground state amplitude varying ase2ikz,
4801 © 1998 The American Physical Society
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4802 PRA 58P. R. BERMAN, B. DUBETSKY, AND J. L. COHEN
k52p/l. Such two-photon processes arenot resonant, how-
ever, and lead to a vanishingly small second harmonic
plitude if ud jTu@1 ( j 51,2), whereT is the pulse duration
in the atomic rest frame. On the other hand, an elemen
four-photonprocess involving the absorption of two photo
of frequencyV and the emission of one each of frequen
V1d1 andV1d2 is resonant, providedd152d2 @see Fig.
2~b!#. This process is responsible for the creation of
fourth spatial harmonic in the ground state amplitude. Th
the geometry of Fig. 2~b! can be used to produce a groun
state amplitude having spatial periodl/4 provided d15
2d2 . With other choices ofd1 andd2 , one can suppress a
arbitrary number of lower-order harmonics and produce
ground state amplitude having periodl/(2n) wheren.2.

The suppression of lower-order harmonics has impor
implications for nanolithography. It is shown below that t
field amplitudes and detunings can be chosen such th
single, higher-order atomic grating having periodl/(2n) can
be created to a high degree of accuracy. Both amplitude
phase gratings can be produced. Amplitude gratings re
sent a pure, higher-order spatial harmonic that can be de
ited on a substrate or used directly to scatter soft x rays.
a highly collimated atomic beam, the higher-order atom
phase gratings evolve in time into an atomic density t
corresponds to focusing of the atoms to lines separated
l/(2n)!l/2 for n@1.

Of course, there are other methods for suppressing low
order spatial harmonics. A coherent beam splitter can p
duce momenta separation of state amplitudes that are gr
than 2\k. As long as these momenta components are
spatially separated, the atomic beam contains density ma
elements in which lower-order spatial harmonics are s
pressed. Beam splitters based on higher-order Bragg sca
ing @9# can lead to ground state densities corresponding v
closely to pure, higher-order spatial harmonics. Adiaba
rapid passage@10# can also lead to very nearly pure, high
order spatial harmonics, albeit between state amplitudes
responding todifferent internal states. Beam splitters bas
on triangular optical potentials such as magneto-optical be
splitters @11# and bichromatic beam splitters@12# produce

FIG. 1. Atom-field geometry. All fields overlap in the intera
tion region. The detuningsd1 and d2 are chosen such tha
ud1uT,ud2uT@1, whereT is the interaction time in the atomic res
frame.
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large momenta separations, but not pure spatial harmon
Our approach is most closely related to that of Yablonov
and Vrijen @13#, who use different frequency fields to in
crease spatial modulation in two-photon microscopy. H
we extend and expand their ideas to the domain of a
optics and atom interferometry.

The paper is organized as follows. In Sec. II an illustrat
example is considered in which the second-order spatial
monic is suppressed. Methods for creating both amplitu
and phase gratings are discussed, as are the effects of s
taneous decay during the pulse. Both numerical solutions
an approximate analytical solution are considered in this s
tion. In Sec. III numerical solutions are presented for t
suppression of harmonics beyond second order. It is sh
that high contrast, atomic amplitude gratings can be crea
for arbitraryn. A summary of the results is given in Sec. IV
and the implications for nanolithography are discussed.

II. ILLUSTRATIVE EXAMPLE

Many of the features of harmonic suppression can be
lustrated for the field geometry of Fig. 1. The atomic bea
propagates in thex̂ direction and the fields propagate alon
the z axis. The total field can be written asE(r ,t)
5E(z,t) f (x,y), where f (x,y) is a spatial mode function,

E~z,t !5
1

2
ŷ@E0ei ~k0z2Vt !1E1ei [k1z2~V1d1!t]

1E2ei [k2z2~V1d2!t] #1c.c., ~1!

k1'k2'2k052V/c[2k, ~2!

FIG. 2. Elementary processes involving fieldsE0 , E1 , andE2 .
~a! Two-photon transitions involving fieldE0 and either of fieldsE1

or E2 are not resonant~the diagrams are drawn withV5v). ~b! A
four-photon transition is resonant provided thatd152d2 .
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PRA 58 4803HIGH-RESOLUTION AMPLITUDE AND PHASE . . .
and c.c. stands for complex conjugate. Fields 1 and 2 pro
gate in the2 ẑ direction and field 0 in the1 ẑ direction. In
this section, we setE15E2 , takeE1 andE0 to be real, and
setd152d2[d, such that

E~z,t !5
1

2
ŷe2 iVt@E0eik0z12E1eik1zcos~dt !#1c.c. ~3!

In the atomic rest frame these fields appear as a radia
pulse and the field amplitudes become functions of time. T
atoms are modeled as having two levels, 1 and 2, separ
in frequency byv. The problem divides into two parts, in
teraction of the atoms with the fields and free evolution
the atoms following the field interaction. In the main body
the paper we consider only the field interaction region. In
field interaction region, all effects associated with quanti
tion of the atoms’ center-of-mass motion, as well as a
transverse Doppler shifts, are neglected. In Sec. IV we
discuss the free evolution of the atoms following their int
action with the field.

In the atomic rest frame, the state amplitudesa1 and a2
evolve as

ȧ52 iF~z,t !a22iG~z,t !a, ~4!

where

a5S a1

a2
D , F~z,t !5S D/2 x0~z,t !*

x0~z,t ! 2D/2 D ,

~5!

G~z,t !5S 0 x1~z,t !*

x1~z,t ! 0 D cos~dt !,

x0(z,t) andx1(z,t) are Rabi frequencies defined by

x j~z,t !5x j~ t !eik jz,
~6!

x j~ t !52mEj~ t !/2\5@x j~ t !#* >0,

D5V2v is an atom-field detuning,m is a dipole moment
matrix element,kj is given in Eq.~2!, andEj (t) is a pulse
envelope function in the atomic rest frame. Spontaneous
cay during the pulse has been neglected for the mom
Equation~4! can be solved numerically for any pulse env
lopesEj (t). The advantage of the choice of parameters c
sidered in this section is that they allow for a very go
approximate analytical solution that illustrates the relev
physical concepts.

Since the two matrix elements ofG have the same time
dependence, it is convenient to write a solution to Eq.~4! in
the form

a~ t !5S~z,t !ã~ t !, ~7a!

S~z,t !5expH 22i E
2`

t

G~z,t8!dt8J , ~7b!

where the vectorã(t) satisfies the differential equation

dã/dt52 iS†~z,t !F~z,t…S~z,t…ã. ~8!
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For a smoothly varying pulse having durationT@ d21, the
integral in Eq.~7b! can be evaluated asymptotically. It fo
lows that

S~z,t !;expH 22i
sin~dt !

d S 0 x1~z,t !*

x1~z,t ! 0 D J
5cos@u~ t !#12 i sin@u~ t !#S 0 eikz

e2 ikz 0 D , ~9!

where

u~ t !52x1~ t !sin~dt !/d, ~10!

1 is the unit matrix, and we have used the fact th
x1(z,t)/ux1(z,t)u5exp(2ikz). For smooth pulses, theS ma-
trix reduces to the unit matrix ast;6`, sinceu(6`);0.
As a consequence, it follows from Eq.~7a! that ã2(6`)
5a2(6`). Combining Eqs.~7!–~10!, one finds

dã/dt52 i
D

2
cos@2u~ t !#S 1 0

0 21D ã2 i S 0 M

M* 0 D ã

1
sin@2u~ t !#

2 S N 2Deikz

De2 ikz N* D ã, ~11!

where

M5x0~ t !$cos2@u~ t !#e2 ikz1sin2@u~ t !#e3ikz%, ~12a!

N52ix0~ t !sin~2kz!. ~12b!

Equation~11! can be simplified considerably if

d @x0~ t !,D,x0~ t !x1
2~ t !/d2. ~13!

In that limit, it is possible to ‘‘course-grain’’ Eq.~11! on a
time scale greater thand21 and replace all trigonometric
functions appearing in Eqs.~11! and~12! by their time aver-
ages. Using Bessel function expansions for the trigonome
functions, one finds

a[cos2@u~ t !#5
11J0@4x1~ t !/d#

2
,

~14!

b[sin2@u~ t !#5
12J0@4x1~ t !/d#

2
, sin@2u~ t !#50,

whereJ0 is a Bessel function and the bar indicates a tim
average. In this limit, Eq.~11! is replaced by

dã/dt52 i
D

2
J0@4x1~ t !/d#S 1 0

0 21D ã2 ix0~ t !

3S 0 ae2 ikz1be3ikz

aeikz1be23ikz 0 D ã. ~15!

Equation~15! admits solutions which represent both amp
tude and phase gratings in the ground state atomic den
We examine these cases separately.
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A. Amplitude gratings D50

It is possible to obtain ground and excited state amplitu
gratings having maximum contrast by choosi
D50 (V5v). In this limit, Eq. ~15! reduces to

dã/dt52 ix0~ t !S 0 ae2 ikz1be3ikz

aeikz1be23ikz 0 D ã.

~16!

It will prove useful to look at the perturbative limit of Eq
~16!. Whenx1(t)/d!1, the time evolution of state 2 is

dã2/dt52 ix0~ t !eikzã122i
x0~ t !@x1~ t !#2

d2
e23ikzã1 .

~17!

The fundamental processes responsible for excitation to s
2 from state 1 are shown schematically in Fig. 3, where,
the sake of generality, fieldsE1 andE2 are indicated as dis
tinct fields ~as noted above, the amplitude modulated fi
used in this section can be considered as a sum of two fie
E1 and E2 , having frequenciesV15V1d1 and V25V
1d2 , with d152d2[d andE15E2). There can be direct
resonant excitation to state 2 by fieldE0 and three-photon,
resonant excitation involving the absorption of one pho
each from fieldsE1 andE2 and emission of one photon int
field E0 . The three-photon processes are resonant sinceV1
1 V22V5v when V5v. In these diagrams, the Rab
frequencyx0 is a shorthand notation forx0(z,t) and contains
a factoreikz and, similarly, Rabi frequenciesx1 andx2 con-

FIG. 3. Elementary processes leading to the resonant excita
of state 2. The Rabi frequenciesx j are a shorthand notation fo
x j (z,t) and contain spatial phase factors. In forming the upper s
probability, interference terms lead to a spatial modulation hav
periodl/4.
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tain factorse2 ikz. The overall amplitude for the one-photo
process varies asx0eikz and as (x0x1x2)e23ikz/d2 for the
three-photon processes. Thed2 factor reflects the fact tha
the two intermediate states in the three-photon processe
each off resonance by an energy\d. In taking the square of
the amplitude, one finds a spatial modulation at 4kz. As seen
in Sec. III, diagrams of this type can be used to estimate
required field strengths for suppression of higher-order h
monics.

Equation~16! cannot be solved analytically for arbitrar
pulse envelope functions. On the other hand, itcanbe solved
analytically for ã(t) if we assume square pulses,x j (t)5x j
for 0<t<T, and zero otherwise. It is not difficult to show
that Eq. ~16! remains valid for square pulses, with initia
condition ã1(0)51; ã2(0)50. The relationship between
a(t) and ã(t) is still given by Eq.~7!, but there is no assur
ance that theS matrix approaches the unit matrix ast;`, as
was the case for smooth, adiabatic pulses. For square pu
it follows from Eqs.~5! and ~7! that a2(T)5cos@u(T)#ã2(T)
2i sin@u(T)#e2ikzã1(T), with u(T)52x1sin(dT)/d. By choos-
ing a detuning dT5np, one guarantees thata2(T)
5ã2(T). It then follows from Eq.~16! that

on

te
g

FIG. 4. Graphs of the upper state probability immediately f
lowing the atom-field interaction as a function ofkz for excitation
by a rectangular pulse, withd152d2[d.
ua2~T!u25uã2~T!u25sin2@x0Tuae2 ikz1be3ikzu#5sin2$x0TA@~11J0
2$4x1 /d%!1~12J0

2$4x1 /d%!cos 4kz#/2%. ~18!
f

is
ar-
,
of
ing
It can be seen from Eq.~18! @or from Eq. ~16!# that the
excited state population immediately after the pulse is a
riodic function ofz having periodl/4. The second-order spa
tial harmonic having periodl/2 has been suppressed, owin
to the large detunings6d of the fields propagating in the
2 ẑ direction. By taking a field strength corresponding to t
first zero of the Bessel functionJ0@4x1 /d# (x1;0.6d),
one can optimize the grating contrast for the small
e-

t

possible value ofx0T. If J0@4x1 /d#50, then ua2(T)u2

5sin2@x0Tcos(2kz)#. This function is plotted as a function o
kz in Fig. 4 for several values ofx0T. For values ofx0T
!p/2, the grating contrast in the excited state population
less than unity, but the grating is close to pure fourth h
monic. Forx0T>p/2, the grating contrast is always unity
but harmonics higher than fourth are evident. A choice
pulse area that leads to high grating contrast while produc
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PRA 58 4805HIGH-RESOLUTION AMPLITUDE AND PHASE . . .
a spatial distribution very close to pure fourth harmonic
x0T51.3, for which the Bessel function expansion
sin2@x0Tcos(2kz)# yields

ua2~T!u2;@12J0~2.6!1J2~2.6!cos~4kz!

2J4~2.6!cos~8kz!1•••#/2

'@1.110.92 cos~4kz!20.17 cos~8kz!#/2.

~19!

This grating has a fringe contrast of 0.93 and consists pri
rily of fourth harmonic.

The qualitative results do not change when smooth pu
are used. The original differential equation~4! was solved
numerically for Gaussian pulses,

FIG. 5. Graphs of the upper state probability immediately f
lowing the atom-field interaction as a function ofkz for excitation
by a Gaussian pulse, withd152d2[d. In this and subsequen
graphs, all frequencies are in units ofT21. With increasing ratio of
d/x0 , the solution of the exact equations~4! approaches that of the
coarse-grained equations~17!, represented by the solid line in th
plot.

FIG. 6. Graphs of the upper state probability immediately f
lowing the atom-field interaction as a function ofkz for excitation
by a Gaussian pulse, withd152d2[d and d/x051/3. For this
ratio, the ‘‘coarse-graining’’ approximation is no longer valid an
the period of the amplitude grating isl/2 rather thanl/4.
a-

es

x j~ t !5x je
2~ t/T!2

/Ap. ~20!

From this point onward, we setT51 and evaluate all times
in units of T and all frequencies in units ofT21. In these
units, the quantity 2x j corresponds to the area of pulsej. In
all the examples,d>3, which, for the Gaussian pulse~20!, is
sufficient to guarantee adiabaticity, provided that conditio
~13! are also met.

In Fig. 5 the solutions of the exact equations@Eq. ~4!# for
the upper state probability,ua2(`)u2, immediately following
the atom-field interaction are compared with those of
coarse-grained equations@Eq. ~16!#. Recall that the solutions
of the coarse-grained equations should approach those o
exact equations as the ratiod/x0 increases. This feature i
seen clearly in Fig. 5. The curve havingd/x0540 corre-
sponds to the solution of both the exact and coarse-gra
equations—they are not distinguishable for this ratio
d/x0 . Even ford/x055, the results do not differ by much
The coarse grained equations depend only on the param
x0 andd/x1 ; consequently the solutions of the exact equ
tions depend on these two parameters only ford/x0@1. If
d/x0&1, the solution of the exact equations depends in
pendently on the parametersx0 , d, andx1 ; moreover, the
solution has periodl/2 rather thanl/4. Although not evident
from the figure, thed5x0 results differ from purel/4 peri-
odicity by as much as 10%. These differences are more
dent in Fig. 6, drawn ford/x051/3. To assurel/4 periodic-
ity, one must haved/x0*5.

In Fig. 7, the upper state probability is plotted as a fun
tion of kz for fixed x1 /d55/6, and several values ofx0 .
These curves follow the same qualitative behavior as th
shown in Fig. 4 for the square pulse. In Fig. 8, the upper s
probability is plotted as a function ofkz for fixed x05p and
several values ofx1 /d. For x1 /d&0.5, the grating contras
is less than unity, but the grating is very nearly pure fou
harmonic. With increasingx1 /d, the grating contrast ap
proaches unity and harmonics of order (414n), n>1, are
evident.

-

-

FIG. 7. Graphs of the upper state probability immediately f
lowing the atom-field interaction as a function ofkz for excitation
by a Gaussian pulse, withd152d2[d and several values ofx0 .
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B. Phase GratingsD>1

WhenD.1, the elementary processes shown in Fig. 3
no longer resonant. Thus one expects the excited state p
lation following the pulse to be negligible. On the other ha
the resonant, elementary four-photon processes, show
Fig. 9, lead to a modification of thephaseof the ground state
amplitude. To calculate the phase change of the ground s
amplitude, it is convenient to use the semiclassical dres
states associated with Eq.~15!. These states are obtained b
instantaneously diagonalizing Eq.~15!. If

D2J0
2H 4x1~ t !

d J 12x0~ t !2F S 11J0
2H 4x1~ t !

d J D
1S 12J0

2H 4x1~ t !

d J D cos 4kzG@1, ~21!

the system remains in the instantaneous eigenstate
evolves from the ground state as the field is turned on
returns to the ground state following the pulse. The net ph
change is simply the integral of the dressed state energy
vided by\. Explicitly, one finds

a1~`!5e2 if, ~22!

where

FIG. 8. Graphs of the upper state probability immediately f
lowing the atom-field interaction as a function ofkz for excitation
by a Gaussian pulse, withd152d2[d and several values ofx1 .

FIG. 9. Elementary processes leading to a phase grating in
ground state amplitude. The second and third diagrams in the fi
are spatially modulated with periodl/4.
e
pu-
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f5
1

2E2`

`

dtH D2J0
2H 4x1~ t !

d J 12x0~ t !2F S 11J0
2H 4x1~ t !

d J D
1S 12J0

2H 4x1~ t !

d J D cos 4kzG J 1/2

. ~23!

For Gaussian pulses~20!, the phasef is plotted as a function
of kz in Fig. 10 for several values ofx0 , x1 , d , andD.
The solid line represents solutions of the exact equations~ 4!
and the dotted line the values given by Eq.~23!, with the
phase arbitrarily taken equal to zero atkz50. The results
agree when conditions~21! and ~13! are satisfied. Forx1 /d
>0.6, there are times during the atom-field interaction
which J0$4x1(t)/d%50. As a consequence, condition~21! is
violated nearkz5p/4 and 3p/4. This explains the smal
deviations between the exact and approximate solutions
these values ofkz. For all cases shown,ua1(`)u;1. It is
seen that significant phase modulation of the ground s
can be achieved with suppression of the second spatial
monic.

A necessary condition for significant spatial modulati
of the phase isx0x1

2/d2>1. If D2J0
2$4x1(t)/d%!x0(t)2,

then the effective pulse area for the creation of the ph
grating is of orderx0 , while it is of order x0

2/D for
D2J0

2$4x1(t)/d%@x0(t)2.

C. Role of spontaneous emission

So far we have neglected the role of spontaneous em
sion during the excitation pulse. To investigate the role
spontaneous emission during the pulse, we adopt ahighly
simplifieddecay scheme in which state 2 decays to a s
outside the two-state manifold with rate 2g. As a result,
population leaks out of the two-level manifold. Clearly, a
excited state amplitude grating will be diminished by dec
It also turns out that phase gratings are destroyed by spo
neous decay since the excited state populationduring the
pulse is not negligible under conditions favoring a significa

-

he
re

FIG. 10. Graphs of the ground state phase immediately follo
ing the atom-field interaction as a function ofkz for excitation by a
Gaussian pulse, withd152d2[d. The solid lines are a solution o
the exact equations while the dashed lines are obtained from
coarse-grained, dressed state equations.
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spatially modulated phase grating. Spontaneous emis
breaks the adiabatic following that would return the atom
its ground state in the absence of such decay@14#.

Within the context of this model, spontaneous emiss
can be included in Eq.~4! by the addition of a term

2gS 0 0

0 1D a.

This decay term results in an addition to Eq.~15! of the form

2gS 12J0@4x1~ t !/d#

2
0

0
11J0@4x1~ t !/d#

2

D ã.

For any nonvanishing field strengthx1 , both dressed state
amplitudesã1 andã2 decay. For the field strength giving ris
to maximum spatial modulation,J0@4x1(t)/d#;0, spontane-
ous emission destroys grating formation wheng*1. This is
d

e
a
di

ud

th
v

ar

or

ec
ar

ud
by
on
o

n

easily understood. To have strong spatial modulation
atomic amplitude or phase gratings, there is always a sig
cant excited state populationduring the pulse; any decay
results in a loss of population from the system in our sim
decay scheme.

We have also carried out density matrix calculations us
various decay schemes. It appears that one must requig
&0.5 to retain reasonable grating contrast.

III. SUPPRESSION OF HIGHER-ORDER HARMONICS

One can generalize the previous results to allow for
suppression of harmonics higher than second order. The
propriate field geometry is shown in Fig. 1. Spontaneo
emission during the atom-pulse interaction is neglected.
the field ~1!, the state amplitudes evolve as

ȧ52 iF~z,t !a2 iH~z,t…a, ~24!

whereF(z,t) is defined in Eq.~5!,
H~z,t !5S 0 x1~z,t !* eid1t1x2~z,t !* eid2t

x1~z,t !e2 id1t1x2~z,t !e2 id2t 0 D , ~25!
ms
ond

as
r-

tion
rth.
andx j (z,t) ( j 51,2) is given by Eq.~6!. SinceH(z,t) can-
not be factored as a constant matrix times a function oft, the
method used in Sec. II is not applicable. On the other han
is not difficult to obtain numerical solutions of Eq.~24!.

Diagrams similar to those shown in Figs. 3 and 9 can h
us to estimate the field strengths needed to obtain both
plitude and phase gratings. Before considering such
grams, we note that the lowest-order ac Stark shift,

j5~x1
2/d11x2

2/d2!, ~26!

no longer vanishes automatically as it does for an amplit
modulated field (x15x2 ; d152d2). To suppress the
higher-order harmonics, it is necessary thatud1uand ud2u be
large compared with all characteristic frequencies in
problems, including the ac Stark shifts. In order to ha
ud1u,ud2u.j, it is necessary thatx1

2/d1
2!1, x2

2/d2
2!1, unless

d1 and d2 have opposite signs and the field strengths
chosen such that

~x1
2/d11x2

2/d2!50. ~27!

In this case it is possible to havex1;d1 and still have
ud1u,ud2u.j. Since it is necessary to havex1;d1 for signifi-
cant spatial modulation in the state populations, it is imp
tant to choose the Rabi frequencies such that Eq.~27! is
satisfied. Higher-order contributions to the ac Stark eff
may still play a role. From the numerical solutions, it appe
that one must choosex1 and x2 less than or of order
ud1u,ud2u, to obtain the desired periodicity.

The elementary processes giving rise to an amplit
grating are illustrated in Fig. 11. The grating is formed
it

lp
m-
a-

e

e
e

e

-

t
s

e

terms representing the interference of the two diagra
shown in the figure. The resonance condition for the sec
diagram is

n1d11n2d250, ~28!

when D50 and the integersn1. n2 contain no common
factors. The lowest-order nonvanishing harmonic varies
cos@2(n11n2)kz#. The amplitude associated with this ha
monic is of order

A~n1 ,n2!5
x0

n11n2x1
n1x2

n2

d2~n11n221!
, ~29!

where d is of order ud1u or ud2u. To obtain good grating
contrast, one requires that

A~n1 ,n2!;1. ~30!

FIG. 11. Elementary processes leading to the resonant excita
of state 2 and suppression of spatial harmonics higher than fou
The detunings are chosen such thatn1d11n2d250, leading to an
amplitude grating having periodl/@2(n11n2)#.
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Condition ~30! can be satisfied ifx0;d122/(n11n2), but, to
suppress lower harmonics, it is also necessary thatx0!d. As
(n11n2) increases,d andx0 must be taken larger and large
to simultaneously satisfy these conditions.

In Fig. 12 the upper state population is plotted as a fu
tion of kz for (n152, n251) ~sixth harmonic! and for (n1
53, n252) ~tenth harmonic!. The field strengths are chose
such thatx25An1 /n2x1 according to Eqs.~27! and ~28!,
andx1 is taken to be of orderd1 . It is seen that amplitude
gratings having periods as small asl/10 can be produced
with contrast of order unity. For sufficiently larged, an ar-
bitrary number of lower-order harmonics can be suppres

The conditions for producing phase gratings are simi
but a little more severe, than those for producing amplitu
gratings, provided one takesD.1, butx0@D. The elemen-
tary processes giving rise to a phase grating are illustrate
Fig. 13. The highest contrast phase gratings are produ
when A(n1 ,n2);D, which can be satisfied if x0

;d122/(n11n2)D1/(n11n2). Along with the requirement tha
x0!d, this condition implies that large values ofd andx0
are needed to produce large phase gratings as (n11n2) in-
creases. The phase of the ground state amplitude is show
a function ofkz in Fig. 14 for (n152, n151) ~sixth har-
monic! and for (n153, n252) ~tenth harmonic!. In all
cases shown,ua1(`)u;1. Clearly it is also possible to pro

FIG. 12. Graphs of the upper state probability immediately f
lowing the atom-field interaction as a function ofkz for excitation
by a Gaussian pulse, withn1d11n2d250. Graphs are shown fo
(n152, n251) ~sixth harmonic! and (n153, n252) ~tenth har-
monic!.

FIG. 13. Elementary processes leading to a ground state p
grating and suppression of spatial harmonics higher than fou
The detunings are chosen such thatn1d11n2d250, leading to a
phase grating having periodl/@2(n11n2)#.
-

d.
r,
e

in
ed

as

duce phase gratings having reasonable contrast with the
pression of lower-order harmonics.

IV. DISCUSSION

It has been shown that atom-field interactions can be u
to create high contrast amplitude gratings for atomic st
populations and phase gratings for atomic ground state
plitudes. If counterpropagating fields having wavelengthl
are used, it is possible to choose atom-field detunings s
that the lowest spatial harmonic component in the grati
has periodl/2n, wheren is an integer. For the sake of defi
niteness, we will refer to the harmonic having periodl/2n as
the (2n)th harmonic. The gratings produced are not pure
the sense that they contain all integer multiples of the (2n)th
harmonic, but the field strengths can be chosen in suc
manner as to maximize the contribution from the (2n)th har-
monic. Once the gratings are created, the question remain
to how to image the gratings at some distanceL from the
atom-field interaction zone. One can probe the gratings
applying counterpropagating fields having frequenciesV and
V1d1 to generate a signal with frequencyV1d2 ; alterna-
tively, one can deposit the atomic density grating on a s
strate. The situation is different for amplitude and phase g
ings.

In the case of amplitude gratings, one has the option
working with distancesL that correspond to either classic
or quantum-mechanical scattering for the atoms. IfL*LT ,
where the so-called Talbot lengthLT is defined by LT
52(l/2n)2/ldB (ldB is the atomic de Broglie wavelength!,
the atomic center-of-mass motion for the atoms must
treated quantum mechanically; forL!LT , this motion can
be treated classically. Typically,LT is of order of a few cm
for a thermal beam. We restrict our discussion to the cla
cal scattering limit. For classical scattering, thetotal atomic
density is not modulated, as long as no state-selec
mechanism removes atoms from the system. In other wo
the excited and ground state population can be modula
following interaction with the fields, but thesum of these

-

se
h.

FIG. 14. Graphs of the ground state phase immediately follo
ing the atom-field interaction as a function ofkz for excitation by a
Gaussian pulse, withn1d11n2d250. Graphs are shown for (n1

52, n251) ~sixth harmonic! and (n153, n252) ~tenth har-
monic!.
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populations is not modified. If the excited state populat
decays to the ground state following interaction with t
field, the grating structure disappears. There are sev
methods to maintain the gratings following the atom-fie
interaction. The most direct method is to use optical tran
tions, such as those in Ca, Mg, or Yb, with lifetimes a
proaching a microsecond or longer. One can then probe
populationdifferencegrating following the atom-field inter-
action or selectively ionize excited state atoms to leave a
atomic density grating that could be deposited on a subst

For shorter-lived atomic transitions, there are several
ternatives. One possibility is to ionize some of the exci
state atomsduring the atom-field interaction, which would
leave a net atomic density grating. Another possibility is
use atoms whose ground state consists of a manifold of
states. When the excited state decays, thetotal ground state
density is not modulated, but that of specific substates m
be modulated. By selectively ionizing some of the grou
state sublevels, one again achieves a net atomic density
ing. Still another alternative is to use a beam of metasta
atoms and drive transitions between the metastable state
an excited state that can decay back to the ground state@15#.
Following the atom-field interaction, there will be a gratin
of metastable atoms that can be detected selectively.

In the case of shorter-lived excited states, one can run
problems related to the effective pulse interaction timeT
which corresponds to the transit time of the atoms throu
the field interaction zone. Recall that all frequencies are m
sured in units ofT21. For appreciable gratings, it is nece
sary thatgT&0.5. If the fields are focused to a spot size
10 mm and the longitudinal atomic speed is 53104 cm/s,
then T'20 ns. For these parameters, one must use at
whose excited state lifetime exceeds 20 ns. It is also poss
to limit the atom-field interaction time by using pulsed field
For transit times of order 20 ns, the detunings and Rabi fi
strengths considered in this paper correspond to frequen
in the MHz to GHz range. Such values do not pose a
serious experimental difficulties.

Assuming that we can produce a density grating, ma
methods are available for imaging the gratings. Perhaps
most direct method is to detect the grating immediately f
lowing the atom-field interaction. This scheme is analogo
,
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to free-induction decay~FID! in coherent transient spectros
copy. All harmonics in the beam are superimposed, and
grating begins to wash out as a result of the transverse D
pler effect at distancesLb5l/(2nub), where ub is the
atomic beam divergence. To avoid overlap of the differe
harmonic components, echo techniques can be used@16#.
With two interaction zones separated by a distanceL0 , dif-
ferent harmonics are focused at different distances follow
the second interaction zone. For example, one can optim
the (2n)th harmonic atL52L0 , the (4n)th harmonic atL
53L0/2, the (6n)th harmonic atL54L0/3, etc. In this man-
ner one is able to isolate and focus harmonics higher thann
which were created in the first field interaction zone@6#. For
example, one could create fourth harmonic in the first int
action zone and 16th harmonic in the second interaction z
to optimize the 12th harmonic atL54L0/3.

Atomic phase gratings result from the ac Stark shift p
tential associated with the off-resonant laser fields. The
Stark shift potential acts as a spatially modulated index
refraction for the atoms and produces an atomic phase g
ing immediately following the atom-field interaction. For
highly collimated atomic beam (ub!nA1/4ldB /l), the
atomic phase grating evolves into a sequence of focu
lines at a distance of orderLT /A from the field interaction
region, whereA is some effective pulse area in the proble
associated with the creation of the (2n)th harmonic. In this
manner, one can focus an atomic beam to a series of line~or
dots if a two-dimensional geometry is utilized! having spac-
ing l/2n. For atomic beams having a larger angular div
gence, FID and echo techniques can be used@8#.

In summary, we have outlined methods for generating a
detecting spatially modulated atomic density amplitude
phase gratings having periodl/2n using optical fields having
wavelengthl. All harmonics having larger periods are su
pressed by a proper choice of atom-field detunings.
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