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High-resolution amplitude and phase gratings in atom optics
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An atom-field geometry is chosen in which an atomic beam traverses a field interaction zone consisting of
three fields, one having frequenfy=2=c/\ propagating in the direction and the other two having frequen-
ciesQ + 8, andQ + 8, propagating in the- z direction. Fom, 8; +n,8,=0 and| 8| T,| 5,| T>1, wheren,; and
n, are positive integers antlis the pulse duration in the atomic rest frame, the atom-field interaction results
in the creation of atom amplitude and phase gratings having pef{@{n,+n,)]. In this manner, one can use
optical fields having wavelengtk to produce atom gratings having periodicity much less than
[S1050-294{@8)04712-X
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I. INTRODUCTION ing. The grating structure is not lost, however. If the atoms
interact with a second standing wave field, the various spatial
Over the past several years, atom interferometry hakarmonics will rephase at different distances following the
emerged as an important new research area in atomic, moteraction with the second field. By a proper choice of op-
lecular, and optical physicfl]. The technology has im- tical field strengths, one can create and isolate atomic density
proved to the point where it is now possible to control thepatterns that correspond very closely to pure, higher-order
center-of-mass motion of atoms using either microfabricatedpatial harmonic§6] . The patterns could be deposited on a
gratings[ 2] or optical field§ 3]. Accompanying the develop- substrate and used as elements in soft x-ray systems.
ments in atom interferometry and atom optics have been at- A resonant, standing wave optical field acts as an ampli-
tempts to produce nanostructures using atom optics eld@ude grating for the incident atomic beam, creating spatially
ments. Probably the most successful method to date employsodulated ground and excited state populati@ismic grat-
standing wave optical fields to focus atoms to a series oings) immediately following the atom-field interaction. In
lines or dots having size on the order of tens of nanometersontrast, a nonresonant, standing wave optical field acts as a
[4]. The period of the structures produced in these focusinghasegrating for the atom$7]. Immediately following the
schemes is\/2, where\ is the wavelength associated with atom-field interaction, all atoms are returned to the ground
the standing wave fields. Spatial features having dimensionstate and the ground state density is uniform; however, the
as small as\/8 have been achieved by exploiting the groundground statewave functionacquires a spatially modulated
state optical potentials for a magnetically degenerate grounghase having period equal Xd2. We shall refer to this wave
state[5], but the period of the entire pattern remains equal tdunction as an “atomic phase grating.” As time evolves fol-
N2, lowing the atom-field interaction, the phase modulation of
We have described previously a method for producingthe Wave_functiop is transformeq into a spatial modulation of
spatially modulated atomic densiti¢§]. When an atomic f[he atomic density. One can think of the nonresonant stf_md-
beam passes through one or more standing wave opticHld wave field as a sequence of lenses that can focus a highly
fields having wavelengti, it is possible to use coherent coll]mated atomic beam to a series of lines haymg spatial
transient techniques to create atomic “gratings” having spaPeriod equal ta\/2. For a beam having angular divergence,
tial period equal ton/(2n), wheren is a positive integer. echo tec_hmques can be used to rephase and isolate the vari-
The atomic gratings arise as a result of the nonlinear inter@Us spatial harmonids,8]. _ _
action between the atoms and the fields. For example, when f the goal of an experiment is to create a pure, higher-
an atomic beam passes through a resonant, standing waQkder spatial harmo_mc, it would be helpful to eliminate the
optical field, the field can create all even spatial harmonics idoWer-order harmonics from the outset. In this paper we de-
the excited and ground state populations. As a result of sporficribe a method in which a single field interaction zone can
taneous emission, the excited state gratings decay back to tR€ used to produce atomic gratings having spatial period
ground state; however, for properly chosen level schemes trRdual tox/(2n) wheren=2 (see Fig. 1 An atomic beam
ground state gratings are not completely “filled in.” As a Passes through an interaction region in which three f|elqs act.
consequence, one has long-lived ground state gratings witBne of the fields has frequendy and propagates in the
which to operate. The fate of these ground state gratingdirection, while two additional fields, each counterpropagat-
depends on the collimation of the atomic beam. ing relative to the first field, have frequenci€s+ §; and
If the angular divergence of the atomic beamdjs the Q-+ 85, respectively. A two-photon process in which a pho-
gratings persist for a distance of ordgy=\/(2n#,) follow- ton of frequencyQ is absorbed and one of frequen€y
ing the atom-field interaction. For distances larger thgn  + &, or Q+ &, is emitted[see Fig. 2a)] produces a contri-
the gratings wash out quickly as a result of Doppler dephasbution to the ground state amplitude varying a&*?,
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FIG. 1. Atom-field geometry. All fields overlap in the interac- E1 Ez
tion region. The detuningss; and &, are chosen such that
| 61| T,|8,|T>1, whereT is the interaction time in the atomic rest 1
frame. V

FIG. 2. Elementary processes involving fielels, E,, andE,.

k=2a/\. Such two-photon processes a resonant, how- (a) Two-photon transitions involving fiell, and either of field&

ever, and lead to a vanishingly small second harmonic am" Ez &r not resonarithe diagrams are drawn wil = ). (b) A

plitude if |5J-T|>1 (i=1,2), whereT is the pulse duration four-photon transition is resonant provided tidat — 6,.

in the atomic rest frame. On the other hand, an elementary

four-photonprocess involving the absorption of two photons

of frequency() and the emission of one each of frequencylarge momenta separations, but not pure spatial harmonics.

Q+ 8, andQ+ 8, is resonant, provided, = — 5, [see Fig. Our approach is most closely related to that of Yablonovich

2(b)]. This process is responsible for the creation of theand Vrijen[13], who use different frequency fields to in-

fourth spatial harmonic in the ground state amplitude. Thugrease spatial modulation in two-photon microscopy. Here

the geometry of Fig. @) can be used to produce a ground we extend and expand their ideas to the domain of atom

state amplitude having spatial period4 provided §,=  optics and atom interferometry.

— 8,. With other choices o6, and,, one can suppress an  The paper is organized as follows. In Sec. Il an illustrative

arbitrary number of lower-order harmonics and produce @xample is considered in which the second-order spatial har-

ground state amplitude having periad(2n) wheren>2. monic is suppressed. Methods for creating both amplitude
The suppression of lower-order harmonics has importan@nd phase gratings are discussed, as are the effects of spon-

implications for nanolithography. It is shown below that the taneous decay during the pulse. Both numerical solutions and

field amplitudes and detunings can be chosen such that & approximate analytical solution are considered in this sec-

single, higher-order atomic grating having periad2n) can tion. In Sec. Il numerical solutions are presented for the

be created to a high degree of accuracy. Both amplitude angMppression of harmonics beyond second order. It is shown

phase gratings can be produced. Amplitude gratings repréhat high contrast, atomic amplitude gratings can be created

sent a pure, higher-order spatial harmonic that can be depof@r arbitraryn. A summary of the results is given in Sec. IV,

ited on a substrate or used directly to scatter soft x rays. Fodnd the implications for nanolithography are discussed.

a highly collimated atomic beam, the higher-order atomic

phase gratings evolve in time into an atomic density that

corresponds to focusing of the atoms to lines separated by . ILLUSTRATIVE EXAMPLE

2n)<\/2 for n>1. . . .
M(2n)=<A/2 forn _ Many of the features of harmonic suppression can be il-

Of course, there are other methods for suppressing lowe . : .
order spatial harmonics. A coherent beam splitter can proi-UStrated for. the field geometry of Fig. 1. The atomic beam

duce momenta separation of state amplitudes that are greaf@ioPagates in the direction and the fields propagate along
than 2ik. As long as these momenta components are ndf1€ z axis. The total field can be written ak(r,t)
spatially separated, the atomic beam contains density matrixc E(z,1)f(x,y), wheref(x,y) is a spatial mode function,
elements in which lower-order spatial harmonics are sup-
pressed. Beam splitters based on higher-order Bragg scatter-
ing [9] can lead to ground state densities corresponding very
closely to pure, higher-order spatial harmonics. Adiabatic
rapid passaggl0] can also lead to very nearly pure, higher k2 (0 4+ 8,01
order spatial harmonics, albeit between state amplitudes cor- +Ee' 2H]+c.c., @
responding tadifferentinternal states. Beam splitters based

on triangular optical potentials such as magneto-optical beam

splitters [11] and bichromatic beam splittefd2] produce ki~k,~—ko=—Q/c=—Kk, (2)

E(Z,t) — %9[ Eoei(koz—(lt)+ Elei[klz—((),+ St
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and c.c. stands for complex conjugate. Fields 1 and 2 propaor a smoothly varying pulse having durati®e & 2, the
gate in the—z direction and field 0 in ther z direction. In  integral in Eq.(7b) can be evaluated asymptotically. It fol-
this section, we seE,=E,, takeE; andE, to be real, and 0ws that

set§;=— 8,=46, such that

sino)| 0  xu(zb)*
1. , _ S(Z,t)~exp[ —2i n(5 )( t ! 5 )]
E(z,t)=§ye"m[Eoe'kOZ+ 2E,e'*1?cog 6t)]+c.c. (3) x1(z,t)
0 eikz
In the atomic rest frame these fields appear as a radiation =cog f()]1-i SIr{e(t)]<eikz 0 ) )

pulse and the field amplitudes become functions of time. The

atoms are modeled as having two levels, 1 and 2, separate¢here

in frequency byw. The problem divides into two parts, in-

teraction of the atoms with the fields and free evolution of 6(t) =2x1(t)sin(St)/ 5, (10
the atoms following the field interaction. In the main body of

the paper we consider only the field interaction region. In thel is the unit matrix, and we have used the fact that
field interaction region, all effects associated with quantizax1(z.t)/|x1(z,t)| =exp(-ik2). For smooth pulses, th& ma-
tion of the atoms’ center-of-mass motion, as well as anytrix reduces to the unit matrix as- *, since§(*«)~0.
transverse Doppler shifts, are neglected. In Sec. IV we willAs a consequence, it follows from E¢7a) that a,(= )
discuss the free evolution of the atoms following their inter-=a,(+ ). Combining Eqs(7)—(10), one finds

action with the field.

In the atomic rest frame, the state amplitudgsand a, - A 1 0\. [0 M\
evolve as da/dt=—IECOS{29(t)] 0 -1 a—i M* 0 a
a=—iF(z,t)a—2iG(z,1)a, (4) in26(t N —Aek?)
SRy N w
where
_(al) _( AL2 Xo(z,t)*) where
ay) Fz.t)= xo(zt) —AR2 )’ M = xo(t){coS[ o(t)Je~ 2+ sir?[ o(t)]e3*%}, (129
5
0 1)* =2i i )
G(Z’t):( x1(z,t) )Cowt), N = 2i xo(t)sin(2kz) (12b)
Xl(zlt) 0

Equation(11) can be simplified considerably if

xo(z,t) and x,(z,t) are Rabi frequencies defined by
’ ' 5% xo(t). A xo(DXE(1)/ & (13

xi(zt) = x;(Heki?, o . :
(6) Ip that limit, it is pos&blglto “course-grain” Eq(.ll) on a
Xj(0)=—wE;(0)/2h=[ x;(1)]*=0, time scale greater thad™~ and replace all trigonometric
functions appearing in Eq$11) and(12) by their time aver-
A=Q-w is an atom-field detuningy is a dipole moment ages. Using Bessel function expansions for the trigonometric
matrix elementk; is given in Eq.(2), andE;(t) is a pulse functions, one finds
envelope function in the atomic rest frame. Spontaneous de-

cay during the pulse has been neglected for the moment. — o[ 60 1+Jo[4x1(1)/ 6]
Equation(4) can be solved numerically for any pulse enve- « 2 '
lopesE;(t). The advantage of the choice of parameters con- (14)
sidered in this section is that they allow for a very good — 1-J[4x.(1)/ 5] :

approximate analytical solution that illustrates the relevant B=sir’[6(t)]= — 5 - sin20]=0,

physical concepts.

Since the two matrix elements & have the same time \yhere 3, is a Bessel function and the bar indicates a time
dependence, it is convenient to write a solution to @&g.in average. In this limit, Eq(11) is replaced by
the form ' '

~ ~ A 1 0\.
a(t)=S(z t)a(t), (7a da/dt=—i5Jo[4xl<t>/5]( 0 1) ixo(®)
_ e t , , 0 aefikz_FlBeSikz _
S(z,t)—exp[ 2i f_mG(z,t )dt } (7b) X(aeikz+ﬁe‘3ikz 0 )a. (15)
where the vector(t) satisfies the differential equation Equation(15) admits solutions which represent both ampli-

5 5 tude and phase gratings in the ground state atomic density.
da/dt=—iS'(z,t)F(z,t)S(z,t)a. (8 We examine these cases separately.
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FIG. 3. Elementary processes leading to the resonant excitatior 50

of state 2. The Rabi frequencigg are a shorthand notation for

Xj(z,t) and contain spatial phase factors. In forming the upper state
probability, interference terms lead to a spatial modulation having 0.25
period\/4.

0.00
A. Amplitude gratings A=0 0

It is possible to obtain ground and excited state amplitude
gratings having maximum contrast by choosing FIG. 4. Graphs of the upper state probability immediately fol-
A=0 (Q=w). In this limit, Eqg. (15) reduces to lowing the atom-field interaction as a function kaf for excitation
by a rectangular pulse, with;= — §,=94.
_ aefikz_i_ ﬁeSikz _
da/dt= —ix(t) ek 4 ge-dikz 0 a. '
(1)  tain factorse ™2, The overall amplitude for the one-photon
process varies agq,e'“? and as foxixz)e k¥ 6% for the
It will prove useful to look at the perturbative limit of EQ. three-photon processes. TI# factor reflects the fact that
(16). When x,(t)/6<1, the time evolution of state 2 is the two intermediate states in the three-photon processes are
each off resonance by an energy. In taking the square of
the amplitude, one finds a spatial modulation kt.4As seen
in Sec. lll, diagrams of this type can be used to estimate the
17) requ_ired field strengths for suppression of higher-order har-
monics.
The fundamental processes responsible for excitation to state Equation(16) cannot be solved analytically for arbitrary
2 from state 1 are shown schematically in Fig. 3, where, foipulse envelope functions. On the other handait be solved
the sake of generality, fields; andE, are indicated as dis- analytically fora(t) if we assume square pulseg(t) = x;
tinct fields (as noted above, the amplitude modulated fieldfor 0<t<T, and zero otherwise. It is not difficult to show
used in this section can be considered as a sum of two fieldthat Eq. (16) remains valid for square pulses, with initial

E; and E;, having frequencied),;=Q+46; and Q,=Q  ¢ondition a,(0)=1; a,(0)=0. The relationship between
+8,, with 6,=—8,=5 andE,=E,). There can be direct, ) 50431 is still given by Eq.(7), but there is no assur-
resonant exc!tat!on 'go stat'e 2 by fiefith anq three-photon ance that th& matrix approaches the unit matrix s ©, as
resonant excitation involving the absorption of one photo as the case for smooth, adiabatic pulses. For square pulses,

each from field€; andE, and emission of one photon into . ~
field Ey. The threle-phottznn processes are resonant gihce it follows from Egs.(5) and (7) thata,(T) = cog #(T)]a(T)

+ Q,~0=w when Q=w. In these diagrams, the Rabi —iSin&(T)le*%ay(T), with 6(T)=2x,sin(5T)/5. By choos-
frequencyy, is a shorthand notation fgro(z,t) and contains  iNg @ detuning 6T=nw, one guarantees thaa(T)
a factore'? and, similarly, Rabi frequencieg, andy, con-  =a,(T). It then follows from Eq.(16) that

oD x2()]?

da,/dt= —i yo(t)e*a, — 2i X e Ny,

|a2(T)[?=[a(T)[*=sir[ xoT|ae ™+ Be%**| |=si{ xoTV[(1+Jg{4x1/6}) + (1 - I5{4x1/ 8} cos &z]/2}. (18)

It can be seen from Eq(18) [or from Eq.(16)] that the  possible value ofyoT. If Jo[4x1/8]=0, then |ay(T)|?
excited state population immediately after the pulse is a pe= sif] xoT cos(X2)]. This function is plotted as a function of
riodic function ofz having period\/4. The second-order spa- kz in Fig. 4 for several values of,T. For values ofy,T

tial harmonic having period/2 has been suppressed, owing <2, the grating contrast in the excited state population is
to the large detunings: 6 of the fields propagating in the |ess than unity, but the grating is close to pure fourth har-
—z direction. By taking a field strength corresponding to themonic. Fory,T=/2, the grating contrast is always unity,
first zero of the Bessel functiodg[4x./6] (x1~0.66), but harmonics higher than fourth are evident. A choice of
one can optimize the grating contrast for the smallespulse area that leads to high grating contrast while producing
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[Gaussian Pulse yp»n  y,=1,=(12.515% =0 | Xj(t):Xje_(t/T)z/\/;_ 20

From this point onward, we sdt=1 and evaluate all times
in units of T and all frequencies in units of 1. In these
units, the quantity 2; corresponds to the area of puisén
all the examplesé= 3, which, for the Gaussian pul$é20), is
sufficient to guarantee adiabaticity, provided that conditions
(13) are also met.

In Fig. 5 the solutions of the exact equatidis. (4)] for
the upper state probabilitja,(=)|?, immediately following
the atom-field interaction are compared with those of the
coarse-grained equatiofigg. (16)]. Recall that the solutions
of the coarse-grained equations should approach those of the
exact equations as the rat#y, increases. This feature is
seen clearly in Fig. 5. The curve havingjyo=40 corre-

FIG. 5. Graphs of the upper state probability immediately fol- . .
lowing the atom-field interaction as a function kaf for excitation sponds to the solution of both the exact and coarse-grained

by a Gaussian pulse, with,=— 8,=5. In this and subsequent equations—they are not distinguishable fgr this ratio of
graphs, all frequencies are in unitsBf L. With increasing ratio of 9/ Xo- Even foré/x,=5, the results do not differ by much.
5l xo. the solution of the exact equatiof® approaches that of the The coarse grained equations depend only on the parameters
coarse-grained equatioii$7), represented by the solid line in the xo and é/x;; consequently the solutions of the exact equa-
plot. tions depend on these two parameters only doyo>1. If

ol xo=1, the solution of the exact equations depends inde-
a spatial distribution very close to pure fourth harmonic ispendently on the parametexg, &, andy;; moreover, the
xoT=1.3, for which the Bessel function expansion of solution has period/2 rather thar\/4. Although not evident

sirf xoT cos(X2)] yields from the figure, thed= x, results differ from purex/4 peri-
odicity by as much as 10%. These differences are more evi-
|az(T)[?~[1-Jo(2.6) + J5(2.6)cog 4k 2) dent in Fig. 6, drawn fob/ x,= 1/3. To assura /4 periodic-

ity, one must haves/ y,=5.
~J4(2.6)cog8k2) + - - - ]/2 In Fig. 7, the upper state probability is plotted as a func-
~[1.1+0.92 co$4kz) — 0.17 co$8kz) ]/2. tion of kz for fixed y,/6=>5/6, and several values ofy.
These curves follow the same qualitative behavior as those
(19) shown in Fig. 4 for the square pulse. In Fig. 8, the upper state
probability is plotted as a function &z for fixed yo= 7 and
%everal values of1/6. For x1/6=0.5, the grating contrast
is less than unity, but the grating is very nearly pure fourth
®Rarmonic. With increasingy, /4, the grating contrast ap-
proaches unity and harmonics of orderf{4n), n=1, are

This grating has a fringe contrast of 0.93 and consists prim
rily of fourth harmonic.

The qualitative results do not change when smooth puls
are used. The original differential equatif) was solved
numerically for Gaussian pulses,

evident.
1.00 |Gaussian Pulse y,=3n x,=x,=8=r A=0
Gaussian Pulse y,=x,=25 8=30 A=0
1.00
075
o 0.75 |
o
S 050
o
o~
S 050
025
025
000 L 1 il L 1 J
0 w2 h
kz 0.00

FIG. 6. Graphs of the upper state probability immediately fol-
lowing the atom-field interaction as a function kaf for excitation
by a Gaussian pulse, with;=— 8,=6 and 6/ xyo=1/3. For this FIG. 7. Graphs of the upper state probability immediately fol-
ratio, the “coarse-graining” approximation is no longer valid and lowing the atom-field interaction as a function ko for excitation
the period of the amplitude grating A2 rather tharm\ /4. by a Gaussian pulse, with, = — §,= 5 and several values ¢f .
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[Gaussian Pulse x=n  x-x, 8=15 A=0] [ caussian Puise =%,
i ™\ 115, 7,80,
=100, A=10
exact
4+ A dressed state
%o=7-7, %,=20,
o o ;L =25, A=5
N ]
(u m R
— L
a
2|
o 2e=15.%,=50, \)
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0 ‘ ‘ .
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FIG. 8. Graphs of the upper state probability immediately fol- ~ FIG. 10. Graphs of the ground state phase immediately follow-
lowing the atom-field interaction as a function ki for excitation ~ ing the atom-field interaction as a functionla for excitation by a

by a Gaussian pulse, with, = — 5,= & and several values of; . Gaussian pulse, with; = — §,= 6. The solid lines are a solution of
the exact equations while the dashed lines are obtained from the

B. Phase GratingsA>1 coarse-grained, dressed state equations.

WhenA>1, the elementary processes shown in Fig. 3 are " Ay (1) Ay (1)
no longer resonant. Thus one expects the excited state popug=— dt(Ang[ X1 +2x0(1)? (1+J(2) X1 ])
lation following the pulse to be negligible. On the other hand —e g 9
the resonant, elementary four-photon processes, shown in Ay () U2
Fig. 9, lead to a modification of thehaseof the ground state + 1_JS{L] ) cos &Kz ] ) (23
amplitude. To calculate the phase change of the ground state 3

amplitude, it is convenient to use the semiclassical dressed
states associated with E(5). These states are obtained by For Gaussian pulsé€g0), the phasep is plotted as a function

instantaneously diagonalizing EA.5). If of kz in Fig. 10 for several values 0fy, x1, 6, andA.
The solid line represents solutions of the exact equatiagns
2 2] 4xa(t) 2 2| 4xa(D) and the dotted line the values given by E83), with the
A23Z +2x0(1)? | 1+35 et
S S phase arbitrarily taken equal to zerokat=0. The results

Ao (t agree when condition®1) and(13) are satisfied. Foy,/d6
+(1_J%(L()]>Cos4<z >1, (21) =0.6, there are times during the atom-field interaction for
3 which Jo{4 x,(t)/ 5}=0. As a consequence, conditi¢l) is
violated nearkz=w/4 and 3r/4. This explains the small

the system remains in the instantaneous eigenstate th@viations between the exact and approximate solutions for
evolves from the ground state as the field is turned on anéhese values okz. For all cases showrja,(=)|~1. It is

returns to the ground state following the pulse. The net phaséeen that significant phase modulation of the ground state
change is simply the integral of the dressed state energy dfan be achieved with suppression of the second spatial har-

vided by#. Explicitly, one finds monic. . o . .
A necessary condition for significant spatial modulation

of the phase isyox2/8°=1. If A2J3[4x,1(t)/ 8} <xo(t)?,

—e i
ay(e)=e 7 (22 then the effective pulse area for the creation of the phase
grating is of ordery,, while it is of order X(Z)/A for
where A235{4x1(8)] 8= xo(t)?.
2 y ﬂ A C. Role of spontaneous emission
x % So far we have neglected the role of spontaneous emis-
%o % % % hes sion during the excitation pulse. To investigate the role of
a1~ + %o + M 2 spontaneous emission during the pulse, we adopighly
simplifieddecay scheme in which state 2 decays to a state
1 —— outside the two-state manifold with ratey2 As a result,
V population leaks out of the two-level manifold. Clearly, any

excited state amplitude grating will be diminished by decay.
FIG. 9. Elementary processes leading to a phase grating in thé also turns out that phase gratings are destroyed by sponta-

ground state amplitude. The second and third diagrams in the figureeous decay since the excited state populatiaring the

are spatially modulated with period/4. pulse is not negligible under conditions favoring a significant
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spatially modulated phase grating. Spontaneous emissiogasily understood. To have strong spatial modulation of
breaks the adiabatic following that would return the atom toatomic amplitude or phase gratings, there is always a signifi-

its ground state in the absence of such dgdaj). cant excited state populatioturing the pulse; any decay
Within the context of this model, spontaneous emissiorresults in a loss of population from the system in our simple
can be included in Eq4) by the addition of a term decay scheme.
We have also carried out density matrix calculations using
_ 0 0 various decay schemes. It appears that one must require
Y 0 1 a =0.5 to retain reasonable grating contrast.

This decay term results in an addition to Efj5) of the form lIl. SUPPRESSION OF HIGHER-ORDER HARMONICS

1= Jo[ 4xa(V)/ 5] 0 One can generalize the previous results to allow for the
2 ~ suppression of harmonics higher than second order. The ap-

- 1+ Jo[Ax1(1)/ 5] a propriate field geometry is shown in Fig. 1. Spontaneous
0 T — emission during the atom-pulse interaction is neglected. For

the field(1), the state amplitudes evolve as

For any nonvanishing field strengpy,, both dressed state _

amplitudesa; anda, decay. For the field strength giving rise a=—iF(z,;t)a—iH(zt)a, (29
to maximum spatial modulatiodg[ 4 x4(t)/ 5]~0, spontane-

ous emission destroys grating formation wher1. Thisis  whereF(z,t) is defined in Eq(5),

0 x1(Z,)* €1+ x,(Z,t)* €02

H(z )= x1(z,)e 1ty (z,t)e %2t 0

: (29

andy;(zt) (j=1,2) is given by Eq(6). SinceH(z,t) can- terms representing the interference of the two diagrams
not be factored as a constant matrix times a function thffe ~ shown in the figure. The resonance condition for the second
method used in Sec. Il is not applicable. On the other hand itiagram is
is not difficult to obtain numerical solutions of E(R4).
Diagrams similar to those shown in Figs. 3 and 9 can help Ni6;+n,6,=0, (28
us to estimate the field strengths needed to obtain both am-
plitude and phase gratings. Before considering such diayhen A=0 and the integersi;> n, contain no common
grams, we note that the lowest-order ac Stark shift, factors. The lowest-order nonvanishing harmonic varies as
) ) cog2(n;+ny)kz]. The amplitude associated with this har-
§=(x1/ 61+ x5l 82), (26 monic is of order

no longer vanishes automatically as it does for an amplitude ng+n, Ny n,

modulated field f;=x,; 6,=—655). To suppress the A(ny,n ):XO X1 X2 (29)
higher-order harmonics, it is necessary thafand|s,| be LT satnyeng—1)

large compared with all characteristic frequencies in the

problems, in.cl'uding the ac St?rkzshifts.zlnzorder to havewhere 5 is of order|8;| or |8,|. To obtain good grating
|81],1 62| > ¢, itis necessary thagi/ 67<1, x5/65,<1,unless contrast, one requires that

61 and &, have opposite signs and the field strengths are

chosen such that A(ng,ny)~1. (30
(x3/ 81+ x5! 3,) =0. 27
\
In this case it is possible to havg,~&; and still have 2 A
| 61],| 85| > €. Since it is necessary to haye~ &, for signifi- 0\ X2 X
cant spatial modulation in the state populations, it is impor- 32 ~ Xo + X1 X2 +

tant to choose the Rabi frequencies such that @d) is
satisfied. Higher-order contributions to the ac Stark effect

may still play a role. From the numerical solutions, it appears 1
that one must choosg; and x, less than or of order FIG. 11. Elementary processes leading to the resonant excitation
|61],] 65|, to obtain the desired periodicity. of state 2 and suppression of spatial harmonics higher than fourth.

The elementary processes giving rise to an amplitudghe detunings are chosen such thas; +n,8,=0, leading to an
grating are illustrated in Fig. 11. The grating is formed by amplitude grating having perios/[2(n;+n,)].
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FIG. 12. Graphs of the upper state probability immediately fol-. - 14. Graphs of the ground state phase immediately follow-
] S ; 5 - ing the atom-field interaction as a functionka for excitation by a
lowing the atom-field interaction as a function kaf for excitation

by a Gaussian pulse, with; 6, +n,5,=0. Graphs are shown for Gaussian pulse, witm, 9, +1,9,=0. Graphs are shown fom(

(n;=2, n,=1) (sixth harmoni¢ and (1;=3, n,=2) (tenth har- ;cz)rl]igzzj.) (sixth harmoni¢ and (=3, n,=2) (tenth har-
monic). '

. o L2t duce phase gratings having reasonable contrast with the sup-
Condition (30) can be satisfied ifyo~ 6>~ 2" ") put, to pression of lower-order harmonics.

suppress lower harmonics, it is also necessaryyh&ts. As
(nytn,) increasesg and yo must be taken larger and larger
to simultaneously satisfy these conditions.

In Fig. 12 the upper state population is plotted as a func- It has been shown that atom-field interactions can be used
tion of kz for (n;=2, n,=1) (sixth harmoni¢ and for (1;  to create high contrast amplitude gratings for atomic state
=3, n,=2) (tenth harmonig The field strengths are chosen populations and phase gratings for atomic ground state am-
such thaty,=+/n;/n,x; according to Eqs(27) and (28), plitudes. If counterpropagating fields having wavelenyth
and y, is taken to be of orded; . It is seen that amplitude are used, it is possible to choose atom-field detunings such
gratings having periods as small as10 can be produced that the lowest spatial harmonic component in the gratings
with contrast of order unity. For sufficiently largg an ar-  has period\/2n, wheren is an integer. For the sake of defi-
bitrary number of lower-order harmonics can be suppressedhiteness, we will refer to the harmonic having perio@n as

The conditions for producing phase gratings are similarthe (2n)th harmonic. The gratings produced are not pure in
but a little more severe, than those for producing amplitudehe sense that they contain all integer multiples of the) {2
gratings, provided one takes>1, but x> A. The elemen- harmonic, but the field strengths can be chosen in such a
tary processes giving rise to a phase grating are illustrated imanner as to maximize the contribution from thea}th har-

Fig. 13. The highest contrast phase gratings are produceadonic. Once the gratings are created, the question remains as

when A(ny,n,)~A, which can be satisfied ify, to how to image the gratings at some distahc&éom the

~ 2t AV N2) - Along with the requirement that atom-field interaction zone. One can probe the gratings by

Xo0<<4, this condition implies that large values éfand x, applying counterpropagating fields having frequen€leasnd

are needed to produce large phase gratingmas ,) in- 1+ §; to generate a signal with frequen€y+ &, ; alterna-

creases. The phase of the ground state amplitude is shown tigely, one can deposit the atomic density grating on a sub-

a function ofkz in Fig. 14 for (n;=2, n;=1) (sixth har-  strate. The situation is different for amplitude and phase grat-

monic and for (h;=3, n,=2) (tenth harmonig In all ings.

cases showna,(«)|~1. Clearly it is also possible to pro- In the case of amplitude gratings, one has the option of
working with distanced. that correspond to either classical
or quantum-mechanical scattering for the atomd. # L,

2 f\ where the so-called Talbot lengthy is defined byL+
=2(N2n)%/Ngg (N\gg is the atomic de Broglie wavelength
o\ X2 x2| \xG the atomic center-of-mass motion for the atoms must be
+ Xl ane + e

IV. DISCUSSION

treated quantum mechanically; far<L, this motion can
be treated classically. Typically,t is of order of a few cm
1 for a thermal beam. We restrict our discussion to the classi-
cal scattering limit. For classical scattering, tio¢al atomic
FIG. 13. Elementary processes leading to a ground state pha§t€nsity is not modulated, as long as no state-selective
grating and suppression of spatial harmonics higher than fourtimechanism removes atoms from the system. In other words,
The detunings are chosen such tha®;+n,8,=0, leading to a the excited and ground state population can be modulated
phase grating having period[2(n;+n,)]. following interaction with the fields, but theum of these

a1~
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populations is not modified. If the excited state populationto free-induction decayFID) in coherent transient spectros-
decays to the ground state following interaction with thecopy. All harmonics in the beam are superimposed, and the
field, the grating structure disappears. There are severgirating begins to wash out as a result of the transverse Dop-
methods to maintain the gratings following the atom-fieldpler effect at distances,=A/(2n6,), where 6, is the
interaction. The most direct method is to use optical transiatomic beam divergence. To avoid overlap of the different
tions, such as those in Ca, Mg, or Yb, with lifetimes ap-harmonic components, echo techniques can be [i56{
proaching a microsecond or longer. One can then probe the/ith two interaction zones separated by a distabge dif-
populationdifferencegrating following the atom-field inter- ferent harmonics are focused at different distances following
action or selectively ionize excited state atoms to leave a neghe second interaction zone. For example, one can optimize
atomic density grating that could be deposited on a substratéhe (2n)th harmonic at=2L,, the (4n)th harmonic at_

For shorter-lived atomic transitions, there are several al=3L,/2, the (6)th harmonic at. =4L /3, etc. In this man-
ternatives. One possibility is to ionize some of the excitedner one is able to isolate and focus harmonics higher timan 2
state atomsiuring the atom-field interaction, which would which were created in the first field interaction zg6¢ For
leave a net atomic density grating. Another possibility is toexample, one could create fourth harmonic in the first inter-
use atoms whose ground state consists of a manifold of sulaction zone and 16th harmonic in the second interaction zone
states. When the excited state decays,tthal ground state to optimize the 12th harmonic at=4L 4/3.
density is not modulated, but that of specific substates may Atomic phase gratings result from the ac Stark shift po-
be modulated. By selectively ionizing some of the groundtential associated with the off-resonant laser fields. The ac
state sublevels, one again achieves a net atomic density gratark shift potential acts as a spatially modulated index of
ing. Still another alternative is to use a beam of metastableefraction for the atoms and produces an atomic phase grat-
atoms and drive transitions between the metastable state airy immediately following the atom-field interaction. For a
an excited state that can decay back to the ground[st8fe  highly collimated atomic beam 6<nAY“\y4z/\), the
Following the atom-field interaction, there will be a grating atomic phase grating evolves into a sequence of focused
of metastable atoms that can be detected selectively. lines at a distance of orddr;/A from the field interaction

In the case of shorter-lived excited states, one can run intgegion, whereA is some effective pulse area in the problem
problems related to the effective pulse interaction tifie associated with the creation of then)2h harmonic. In this
which corresponds to the transit time of the atoms throughmanner, one can focus an atomic beam to a series of(ames
the field interaction zone. Recall that all frequencies are meadots if a two-dimensional geometry is utilizebaving spac-
sured in units ofT ~*. For appreciable gratings, it is neces- ing \/2n. For atomic beams having a larger angular diver-
sary thatyT=0.5. If the fields are focused to a spot size of gence, FID and echo techniques can be igéd
10 um and the longitudinal atomic speed 30" cm/s, In summary, we have outlined methods for generating and
then T~20 ns. For these parameters, one must use atonietecting spatially modulated atomic density amplitude or
whose excited state lifetime exceeds 20 ns. It is also possibighase gratings having periad2n using optical fields having
to limit the atom-field interaction time by using pulsed fields. wavelength\. All harmonics having larger periods are sup-
For transit times of order 20 ns, the detunings and Rabi fielghressed by a proper choice of atom-field detunings.
strengths considered in this paper correspond to frequencies
in the MHz to GHz range. Such values do not pose any
serious experimental difficulties.

Assuming that we can produce a density grating, many This work was supported by the U.S. Office of Army
methods are available for imaging the gratings. Perhaps thResearch under Grant No. DAAG55-97-0113, and the Na-
most direct method is to detect the grating immediately fol-tional Science Foundation under Grant Nos. PHY-9414020
lowing the atom-field interaction. This scheme is analogousand PHY-9800981.
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