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Amplifying an atomic wave signal using a Bose-Einstein condensate
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We investigate a matter wave amplifier model which is capable of enhancing an external input atomic wave
signal. This amplifier makes use of a cavity QED interaction with a trapped Bose-Einstein condensate. We
examine the atomic wave equations and describe the gain performance.@S1050-2947~98!04412-6#

PACS number~s!: 03.75.Fi
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Bose-Einstein condensation~BEC! of dilute atomic gases
@1–3# has become an important source of macroscopic
coherent matter. Exploring new applications of matter wa
is a timely topic for current research. In this paper we a
dress an interesting question: If information is embedded
the number of atoms in a weak atomic wave, how do
make an amplifier to enhance the signal? The concept o
amplifier can generally be defined by the relation

Nout5GNin1Nn , ~1!

whereNin andNout are the atom numbers of input and outp
waves. The parameterG is the gain coefficient, andNn de-
scribes the possible noise contributions. Although there h
been many investigations of matter wave amplification@4–
6#, most of these studies focus on the buildup of atom
waves in a trap@5# and the output properties@6#. The prob-
lems of achieving Eq.~1! in the context of signal amplifica
tion have not been fully explored@7#.

In this paper we report an interaction in which a BE
coupled with an optical cavity field can realize Eq.~1! as a
matter wave amplifier. Given an input atomic wave as a s
nal, the amplifier can produce an output atomic wave prop
tional to the input number~apart from the noise!. The
scheme of our model is shown in Fig. 1. We conside
Bose-Einstein condensate trapped in an optical cavity. E
atom in the condensate has the same internal stateua& re-
sponsible for the trapping. An input atomic wave with a d
ferent internal stateub& propagates through the condensa
We assume that the stateub& does not interact with the trap
The condensate and the input wave are Raman coupled b
external laser with a frequencyv l , and an optical cavity
field with a frequencyvc @8#. We assume that the extern
laser field is well described by a classical field in the form
a plane wave with a constant amplitude, and we treat
cavity field as a fully quantized field. We note that the qua
tization of the cavity field is not crucial to our treatmen
However, a quantized description allows for a more co
plete analysis in that the effects of quantum noise can
naturally included. In this paper we also assume that
condensate is sufficiently dilute so that effects of collisio
between the input atoms and condensate atoms can b
nored.

As shown in Fig. 1, an atom in the condensate can cha
its internal state fromua& to ub& by absorbing a laser photo
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and emitting a photon into the optical cavity@9#. Using the
second quantized annihilation atomic field operatorsĈa for
the BEC andĈb for the input wave, the Hamiltonian of th
system is given by

H5HBEC1\vcĈ
†Ĉ1E Ĉb

†~xW !F2
\2

2M
¹2G

3Ĉb~xW !d3x1Hint , ~2!

whereHBEC denotes the~bare! Hamiltonian of the conden-
sate in the absence of the optical fields. In writing Eq.~2!, Ĉ

and Ĉ† are annihilation and creation operators of the cav
field, and we have assumed that there is only one ca
mode resonantly involved in the Raman interaction. The
netic energy of the input wave is given by the third term
Eq. ~2! whereM is the atomic mass. The matter fields a
coupled by the photon-atom interactionHint ,

Hint5\ge2 iv l tĈ†E Ĉb
†~xW !Ĉa~xW !u~xW !eikW l•xWd3x1H.c.,

~3!

whereg is the coupling parameter controlled by the amp
tude of the external laser~with wave vectorkW l), andu(xW ) is

FIG. 1. A scheme of the matter wave amplifier. The input ato
are prepared in stateub&, and the BEC atoms are in stateua&. The
atomic transitions are shown at the top of the figure.
4791 © 1998 The American Physical Society



ce
m

a
C
a
t
lo
y
f
ti
ca
a
,
th
e

pl

s

th
-

th
-
th
re

e
te

d
e

en-
i-

e

s a
of

tion
er

the
et
se
all.
t or
ld
ple
e

he

r

4792 PRA 58C. K. LAW AND N. P. BIGELOW
the mode function of the optical cavity. Interaction~3! can be
derived by applying the usual adiabatic elimination pro
dure commonly used in single-atom cavity QED syste
@10#. In this work the frequency~or the ac Stark! shifts terms
are omitted.

We can identify the interaction Hamiltonian~3! as a form
of parametric down conversion: An atom in the BEC isdown
convertedinto a cavity photon, and an atom with the intern
stateub& @7#. In the language of nonlinear optics, the BE
acts as a pump, the input atomic wave acts as a signal,
the optical cavity field acts as an idler. We emphasize tha
is the coherence feature of BEC that makes such an ana
feasible, as does the coherent pump field in photonic s
tems. However, there are some differences which arise
atomic systems. The most apparent one is that atomic mo
typically occurs on a much longer time scale than opti
time scales. Since our system consists of both photons
atoms, there are well separated time scales. For example
storage time of cavity photons can be much shorter than
atomic transit time. In the following we shall derive th
atomic wave equation and examine the possibility of am
fication.

With Hamiltonian ~2! and the commutation relation

@Ĉm(xW ,t),Ĉn(xW8,t)#50 and @Ĉm(xW ,t),Ĉn
†(xW8,t)#5dmnd(xW

2xW8), the Heisenberg equations of motion forĈb andĈ are
obtained:

i
]Ĉb~xW ,t !

]t
52

\¹2

2M
Ĉb~xW ,t !1gĈ†Ĉa~xW ,t !u~xW !eikW l•xWe2 iv l t,

~4!

i
dĈ

dt
5~vc2 ik!Ĉ1ge2 iv l tE Ĉb

†~xW ,t !

3Ĉa~xW ,t !u~xW !eikW l•xWd3x1 f̂ ~ t !. ~5!

Herek is the decay rate of the optical cavity field, andf̂ (t)
is the Langevin noise operator. In this paper we assume
the correlation functions off̂ (t) are governed by a zero
temperature bath, so that

^ f̂ †~ t ! f̂ ~ t8!&50, ^ f̂ ~ t ! f̂ †~ t8!&52kd~ t2t8!. ~6!

Note that we have not shown the equation of motion for
condensate field operatorĈa . This is because we shall re
strict the system to the weakly interacting regime where
change ofĈa can be neglected. In this regime, we may
placeĈa by its mean-field value

Ĉa~xW ,t !'ANf~xW !e2 imt. ~7!

HereN is the number of atoms in the condensate,f(xW ) is the
condensate wave function determined by the mean-fi
theory, and\m is the mean-field energy of the condensa
including the energy of the internal level. Approximation~7!
is equivalent to the treatment of the pump field as a non
pleted classical coherent field in parametric down conv
sion.
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Given that the input atomic wave has an average mom
tum \kW0 , it is convenient to define the slowly varying var
ables

ĉb~xW ,t ![Ĉb~xW ,t !ei«t, ~8!

ĉ~ t ![Ĉ~ t !eivct, ~9!

where«5\k0
2/2M . By tuning the fields frequencies at th

Raman resonance

vc2v l1«2m50, ~10!

Eqs.~4! and ~5! can be reduced to

i
]ĉb~xW ,t !

]t
52S \¹2

2M
1« D ĉb~xW ,t !1gANĉ†h~xW !, ~11!

i
dĉ

dt
52 ik ĉ1gANE ĉb

†~xW ,t !h~xW !d3x1 f̂ ~ t !eivct.

~12!

Here

h~xW ![f~xW !u~xW !eikW l•xW ~13!

can be regarded as an effective mode function which i
product of the BEC wave function and the mode functions
the optical fields.

The coupled operator equations~11! and ~12! determine
the dynamics of the fields under the nondepleted assump
~7!. It is obvious that ifĉ can be treated as a constant numb
~i.e., if the cavity field is also a constant classical field!, then
atoms can be added to the output mode according to
solution of Eq.~11!. However, this trival case does not me
our goal of signal amplification. This is because in this ca
the gain in the output does not depend on the input at
Atoms are added to the output whether the input is presen
not. In order to achieve signal amplification, the cavity fie
has to be a dynamical variable. Here we consider a sim
situation where the cavity is initially in the vacuum state. W
assume that the cavity decay ratek is the fastest time scale
of the system such thatk@gAN. In this ‘‘bad-cavity’’ limit,
the number of cavity photons is very small. By using t
adiabatic approximation, we have

ĉ~ t !'2 i
gAN

k E ĉb
†~xW ,t !h~xW !d3x2 i

f̂ ~ t !eivct

k
. ~14!

We can eliminateĉ and ĉ† and obtain a wave equation fo
ĉb(xW ,t):

i
]ĉb~xW ,t !

]t
52S \¹2

2M
1« D ĉb~xW ,t !

1 i
ugu2N

k
h~xW !E ĉb~xW8,t !h* ~xW8!d3x8

1 i
gAN

k
f̂ †~ t !e2 ivcth~xW !. ~15!
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We point out that apart from the noise part~the third term!,
the same equation~15! can also be derived for weak classic
~but dynamical! cavity fields. Our quantized field treatme
allows us to include quantum noises in the wave equa
naturally.

Equation~15! is the basic equation describing an atom
wave propagating through a BEC under the cavity-assis
Raman interaction. The integral term in the wave equat
~15! indicates a ‘‘nonlocal’’ dependence. This is because
have assumed that there is only one cavity mode effectiv
involved in the interaction, and therefore the effects of lig
propagation through the sample are neglected.

The general solution of the wave equation~15! can be
obtained by solving the propagatorU(xW ,t;xW8,0), which is
defined by

i
]U~xW ,t;xW8,0!

]t
52S \¹2

2M
1« DU~xW ,t;xW8,0!

1 i
ugu2N

k
h~xW !E h* ~xW9!U~xW9,t,x8,0!d3x9,

~16!

and the conditionU(xW ,0;xW8,0)5d(xW2xW8). Given an initial
field ĉb(xW ,0), thefield operatorĉb(xW ,t) at a later timet is
given by

ĉb~xW ,t !5ĉb
~s!~xW ,t !1ĉb

~n!~xW ,t !, ~17!

whereĉb
(s)(xW ,t) is the signal part andĉb

(n)(xW ,t) is the noise
part:

ĉb
~s!~xW ,t !5E U~xW ,t;xW8,0!ĉb~xW8,0!d3x8, ~18!

ĉb
~n!~xW ,t !5

gAN

k E
0

t

dt8 f̂ †~ t8!e2 ivct8

3E d3x8U~xW ,t2t8;xW8,0!h~xW8!. ~19!

Such a separation allows us to distinguish the contribution
noise which does not depend on the inputĉb(xW ,0).

Let us now consider that the input wave is initially in th
form of a wave packet. We write

ĉb~xW ,0!5b̂sw~xW ,0!1 ĵ~xW ,0!, ~20!

wherew(xW ,0) is the initial wave-packet wave function,b̂s is
the corresponding annihilation operator, andĵ(xW ,0) describes
the contributions of modes that are orthogonal tow(xW ,0).
Since input atoms are already assumed to be in the w
packet, we havê ĵ†(xW ,0)ĵ(xW ,0)&50 and ^bs

†ĵ(xW ,0)&50.

Henceĵ(xW ,0) does not make contributions for normally o
dered observables. To show the amplifying action, we lo
at the number of atoms in the signal part:

n~s!~ t ![E d3x^ĉb
~s!†~xW ,t !ĉb

~s!~xW ,t !&. ~21!
n

d
n
e
ly
t

f

ve

k

It can be shown that the rate of change ofn(s) is always
non-negative,

dn~s!

dt
5

2ugu2Nnb
~s!~0!

k
U E h* ~xW !w~xW ,t !d3xU2

>0, ~22!

i.e., amplification occurs. Heren(s)(0)[^b̂s
†b̂s& is the initial

number of atoms andw(xW ,t) is the wave packet at the timet
defined by

w~xW ,t !5E U~xW ,t;xW8,0!w~xW8,0!d3x8. ~23!

The fact thatns(t) is proportional tonb
(s)(0) is indeed what

we demand for the amplifier@see Eq.~1!#. The gain coeffi-
cient G is given by

G511
2ugu2N

k E dtU E h* ~xW !w~xW ,t !d3xU2

. ~24!

According to Eq.~18!, those atoms generated in the sign
part propagate in the form ofw(xW ,t). The integral in Eq.~22!
can be interpreted as a Frank-Condon factor because it m
sures the effective overlap between the wave packet and
condensate. Once the wave packet leaves the condensat
integral vanishes and the rateṅ(s) becomes zero. For the
atoms created in the noise part@Eq. ~19!#, the number density
is given by

^ĉb
~n!†~xW ,t !ĉb

~n!~xW ,t !&5
2g2N

k E
0

t

dt8uh~xW ,t2t8!u2,

~25!

where

FIG. 2. An illustration of the amplification of wave packets in
one-dimensional system. The condensate is located atx50, which
has a width of 10mm. The input atomic wave packet is initially
located atx52100 mm, with a width 10mm. We show the shape
of the wave packet when it reachesx51100 mm. The dotted line
is the number density due to the noise part. The average veloci
the input atom is 1.6 cm s21, and we use sodium atomic mass f
this calculation.
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h~xW ,t ![E U~xW ,t;xW8,0!h~xW8!d3x8 ~26!

represents a wave function propagated from the effec
modeh(xW8) through the propagatorU(xW ,t;xW8,0).

The positive increasing rate@Eq. ~22!# can be understood
by the fact that the number of photons in the optical cavity
always very small. It is unlikely that an input atom can
absorbed by the condensate, because that requires an ab
tion of a cavity photon. On the other hand, the condens
can always convert its atoms into the output mode beca
photons are emitted~instead of being absorbed! during the
atomic transition. This explains why we have a positive ga
and also why a cavity with a large leaking rate is useful he
We remark that the similar gain effect should also be
pected in the free space. However, the use of an optical
ity provides control of the mode function, the instrins
atom-field coupling strength, and the leaking rate. For
ample, a strong atom-field coupling can be achieved a
cavity QED systems@11#. In addition, since photons ar
emitted into the cavity mode, one can efficiently monitor t
presence of input atoms by detecting the transmitted phot

To illustrate the dynamics we solve Eq.~15! numerically
for the number densitŷĉb

†(x,t)ĉb(x,t)&. Since the propa-
gation of the input and output atomic waves is essenti
one dimensional, we consider a one-dimensional sys
in which the function h(x) is modeled by h(x)
5p21/4s21/2e2(x2/2s2) sinkcx, wherekc is wave number as
sociated with the standing-wave cavity mode. We choose
width s510 mm, g51 KHz, k5100 MHz, and the num-
ber of atoms in the condensate is 23104. The incident signal
is a single atom Gaussian wave packet with\k05\kl
1\kc which matches the momentum conservation. In Fig
we show the wave packet before and after passing thro
the BEC. The amplification is apparent because of the la
size of the output wavepacket. The number density of
noise part is also shown~dotted line!. We see that the wave
packet can be significantly higher than the noise level
there are no input atoms, the noise part is the only contr
tion. The total number of atoms in the signal part is plotted
Fig. 3 as a function of time. In this example the final numb
of atoms is about 1.8, which is about twice the initial nu

FIG. 3. The number of signal atoms as a function of time. Sa
parameters and initial conditions as in Fig. 2.
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ber. We point out that the amplifier is not limited to singl
atom input, coherent sources such as atom lasers can be
In fact a much better signal-to-noise ratio can be achie
when the number of atoms in the input; wave packet is m
than one.

As indicated in Eq.~22!, the gain of atoms is governed b
a Frank-Condon factor. Therefore, amplification can only
significant for those input waves that match the moment
conservation. Since the condensate considered here has
nite size, gain can be expected even if there are uncertain
in the momentum of input wave packet. This is more p
cisely measured by the Fourier spectrum ofh(xW ):

h̃~pW ![E h~xW !eipW •xW /\d3x. ~27!

The width ofh̃(pW ) determines the range of input momentu
that can be amplified efficiently. We illustrate this by lookin
at the case when the input wave packet consists of a br
band momentum spectrum~i.e., a narrow wave packet in
position space!. In Fig. 4 we show the momentum distribu
tions of the input and output wave packets. We see that
distributions are basically the same except for a finite ra
of momentum where the output shows a sharp peak sig
cantly above the input distribution. We note that the width
the peak is the same as the width ofh̃(pW ), which is not
surprising given that the areas under the curves represen
numbers of atoms. In other words, Fig. 3 demonstrates
only those input momenta within the width ofh̃(pW ) ~which
can be interpreted as the bandwidth of the amplifier! interact
with the condensate and are amplified.

In conclusion, we have described a matter wave ampli
which makes use of cavity-assisted Raman interaction wi
trapped Bose-Einstein condensate. We have derived a w
equation in the bad cavity limit, and discussed the basic
equations. In particular, we have considered the case o
input wave packet, and have shown that the input and ou
numbers follow a linear gain relationship. The questi

e

FIG. 4. Momentum distribution of the output wave packet~solid
line! and input wave packet~dotted line!. The parameters are th
same as in Fig. 2, except that the input wave packet has a widt
2 mm. The areas under the curves represent the numbers of at
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about the coherence properties of the output field is an
portant subject for further investigations. This work appl
cavity QED technique to BEC systems, and more intrigu
ideas should be expected in this interesting area@12,13#.
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