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Measurement-induced quantum fluctuations and bistability of a relativistic electron
in a Penning trap
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A detailed quantum-mechanical description of an electron in a Penning trap is developed in which nonlinear
relativistic effects as well as stochastic effects arising from radiative damping and the continuous measurement
of the electronic motion are taken into account. A master equation is derived that describes the influence of
these environmental effects on the bistable dynamics of the electron. Manifestations of measurement-induced
fluctuations on the bistable dynamics of individual continuous measurement processes are investigated with the
help of the quantum state diffusion model.@S1050-2947~98!04807-0#

PACS number~s!: 32.80.Pj, 03.65.Bz, 42.50.Lc, 05.30.Ch
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I. INTRODUCTION

The advances in trapping and cooling techniques wit
the past decade have led to new experiments that can
tinuously observe individual quantum systems by optical
electronic means. One of the most elementary quantum
tems that has been investigated in this context is an elec
in a Penning trap@1#. A spectacular application of its exper
mental realization has been the measurement of the e
tronic g-factor with unprecedented accuracy. However,
sides applications in quantum metrology, this element
quantum system also offers new possibilities for fundame
studies on the influence of continuous quantum measurem
processes on the electronic dynamics.

In a series of recent experiments, Gabrielse and
workers have investigated the nonlinear effects that
caused by the relativistic motion of an electron in a Penn
trap @2–4#. Based on purely classical considerations, the
istence of such nonlinear effects due to relativistic corr
tions has been predicted theoretically by Kaplan@5#. Typi-
cally in these experiments the electronic dynamics
monitored by purely electronic means by detecting the c
rents that are induced by the axial motion of the electron
the end-caps of the electrodes. The axial motion of
trapped electron is coupled to its spin and cyclotron degr
of freedom by relativistic effects. Thus the continuous obs
vation of the axial electronic motion through monitoring t
charge-induced currents also yields information about
dynamics of the electronic spin and cyclotron motion.

A number of recent theoretical studies have conside
the relativistic dynamics of an electron in a Penning trap.
instance, in@6# this system is suggested as an experime
realization of a quantum nondemolition measurement of
cyclotron excitation number of the electron. This work a
propriately introduces the dissipation in the axial motion
using the theory of open quantum systems but assumes
the cyclotron state is projected onto a Fock state with
describing how this collapse occurs. Furthermore, it negle
other dissipative effects, thus limiting its applicability to
short time scale, which is impractical for typical experime
tal investigations. In@7# a model of electron dynamics in
PRA 581050-2947/98/58~1!/478~10!/$15.00
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volving cyclotron and axial dissipation is introduced togeth
with a phase sensitive measurement involving the squee
of the bath. The measurement-induced influence on the
clotron motion is investigated by eliminating the axial m
tion adiabatically. It is found that the bistable nonlinear res
nance can be modified by varying one of the squeez
parameters associated with the phase sensitive detection
cess. However, all these investigations are based on sim
fied model systems in which either the dissipative effects
the relativistic dynamics of the electronic degrees of freed
that are relevant for typical experiments are not fully tak
into account.

Motivated by the recently performed experiments of Ga
rielse et al. @2–4#, in the following a detailed quantum
mechanical description of the relativistic electronic dynam
in a Penning trap is developed. Thereby the main emphas
put on a realistic and consistent quantum-mechanical tr
ment of the measurement-induced quantum fluctuations
the relativistically induced hysteresis effects. A master eq
tion is derived in which all relativistic effects as well as a
dissipative effects, which are dominated by radiative dam
ing of the cyclotron motion and the continuous quantu
measurement process, are taken into account. In order to
tain insight into the resulting time evolution of individua
quantum measurement records, this master equation is s
lated stochastically with the help of the quantum state dif
sion model@8,9#.

In Sec. II we develop a detailed theoretical description
an electron in a Penning trap taking into account relativis
corrections as well as external, electric driving fields and
the dominant environmental effects. A simplified mas
equation is derived for the experimentally interesting case
large axial driving and damping in which the axial motio
can be eliminated adiabatically. Starting from this mas
equation, the spin and cyclotron motions are investigated
Secs. III and IV. Insight into the time evolution of individua
continuous quantum measurement processes is obtained
the help of the quantum state diffusion model. Section
focuses on the question as to how relativistic effects in
ence the electronic spin motion. In Sec. IV the back action
the continuous measurement process on the bistable dyn
ics of the electronic cyclotron motion is investigated. It
478 © 1998 The American Physical Society
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demonstrated that the measurement-induced quantum
tuations may influence these hysteresis effects significan

II. THEORETICAL FRAMEWORK

We develop in this section a theoretical description of
relativistic dynamics of an electron in a Penning trap. Sta
ing from the Dirac Hamiltonian in Sec. II A the dominan
relativistic corrections are discussed that lead to anharmo
nonlinear terms in the Hamiltonian. In Sec. II B it is demo
strated that resonant driving of the electron by a period
external electric field may lead to bistable behavior. Rad
tive damping and the continuous measurement of the a
electronic motion are the dominant environmental influenc
Together with the relativistic Hamiltonian, they determi
the master equation of the trapped electron, which is p
sented in Sec. II C. In Sec. II D the axial electronic motion
eliminated adiabatically in the limit of large driving an
damping of the axial motion. Thus a simplified description
the spin and cyclotron degrees of freedom is obtained. T
master equation might be used as a starting point for stoc
tic simulations of individual measurement records. Ba
facts about stochastic simulations are discussed in Sec.
with the help of the quantum state diffusion model.

A. The relativistic Hamiltonian of an electron
in a Penning trap

The relativistic Dirac Hamiltonian of a spin-half electro
under the influence of an external electromagnetic field
be reduced to its nonrelativistic limit with the help of th
Foldy-Wouthuysen transformation@10#. In the case of an
electron in a Penning trap, the relevant magnetic fieldB is
time independent and the electric fieldE divergence free,
thus the relativistic corrections~RC! can be further simpli-
fied yielding the HamiltonianH05HNR1HRC. The nonrel-
ativistic ~NR! part of this Hamiltonian is determined by

HNR5
p2

2m
1eF2

gmB

2
s•B ~1!

and the relativistic corrections are given by

HRC52
~p222mmBs•B!2

8m3c2 2~112a!
mB

2mc2 s•E3p

1
amB

2m2c2 s•pB•p. ~2!

Thereby terms up to the order of (1/c2) have been taken into
account. The electron rest mass is denotedm ande andg are
the electronic charge andg-factor with its associated
anomaly a5(g22)/2. The Bohr magnetron is given b
mB5e\/2m ands andp5p2eA are the Pauli spin vecto
and the kinetic momentum operator, respectively. The
energymc2 has been neglected in the HamiltonianHRC.

An electron in a Penning trap is subjected to a spatia
uniform magnetic fieldB5B0ez directed along the trap axi
and a quadrupole electrostatic potentialF @1#. This latter
potential and the vector potentialA0 associated with the
magnetic field, expressed in the Coulomb gauge, are g
by
c-
y.
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A05
1

2
B0~2yex1xey!, F5

F0

4d2 ~2z22x22y2!, ~3!

whered characterizes the spatial extension of the trap.
If a classical nonrelativistic particle is subjected to a ma

netic field, it will evolve along a circular cyclotron orbit with
frequencyvc5eB0 /m. In order to confine also the axia
motion of the electron, an electrostatic quadrupole poten
is superimposed onto the magnetic field. As a conseque
the motion of the particle can be decomposed into an a
harmonic motion of frequencyvz

25eF0 /md2 and a planar
motion itself composed of the fast harmonic cyclotron m
tion at the modified frequencyv15vc2v2 and the much
slower circular magnetron motion with frequencyv2

5vz
2/2v1 . For an electron in a Penning trap these char

teristic frequencies typically differ in scale by three orders
magnitude, i.e.,v2!vz!v1 .

In the quantum case, the particle’s motion is decompo
into normal modes in an analogous way. For this purpo
creation ~annihilation! operatorsaz

† (az), a1
† (a1), and

a2
† (a2) are introduced for the axial, cyclotron, and magn

tron motion@11# to transform the HamiltonianH0 into nor-
mal coordinates. Introducing the spin precession freque
vs5

1
2 gvc , the nonrelativistic part of the Hamiltonian ca

be written in the familiar form@1#

HNR5\v1a1
† a11\vzaz

†az2\v2a2
† a21

1

2
\vssz .

~4!

Under typical experimental conditions the magnetron mot
is metastable with a damping time of the order of years
that it does not produce a relevant instability.

In the normal mode representation of the relativis
HamiltonianHRC use can be made of the previously me
tioned hierarchy of characteristic frequencies to perform
adiabatic approximation. A simplified Hamiltonian that d
scribes properly the dynamics on time scales large comp
to the slowest characteristic time scale in a Penning tr
namely the magnetron time scale (2p)/v2 , is obtained by
neglecting all the terms that oscillate rapidly in time relati
to the magnetron time scale as well as all the negligi
small contributions of order (v2 /v1) and (vz /v1)2. Thus
HRC reduces to@12#

HRC>2
\2v1

2

2mc2 S 11
vz

2v1
1

vc

v1
sz1a1

† a1D
3a1

† a12
\2v1vc

4mc2 S 11
gvz

4v1
Dsz2

\2v1vz

2mc2

3S 1

2
1

g

4

vc

v1
sz1a1

† a1Daz
†az . ~5!

Equation~5! describes the relativistic corrections that are
central interest in the present work, namely, shifts of
trap-eigenfrequencies and nonlinear couplings between
cyclotron, axial, and spin motions. A dynamical conseque
of the Hamiltonian in Eq.~5! is the appearance of a bistab
domain with its associated hysteresis effect in the case
resonant excitation by external electromagnetic fields. F
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thermore, the nonlinear couplings between the different m
tions is an important effect that is exploited for the contin
ous measurement of the electronic cyclotron and s
motion.

B. The influence of periodic, external electric fields

In order to monitor the bistable dynamics of an electron
a Penning trap, typically two additional periodic electr
fields are applied. The first of these two fields is a sinuso
voltage applied between the ring electrode and one end
of the Penning trap@3#. It is oscillating at a frequencyvd
almost resonant with the axial frequency of motionvd
.vz . The associated vector potentialA1 can be expressed i
terms of the amplitudeU0 of this voltage and the minima
distance 2z0 between the end-caps, namely,

A15
U0

2z0vd
cos~vdt !ez . ~6!

The second applied electric field is typically polarized in t
cyclotron-magnetron plane, and its frequencyvp is tuned
close to the cyclotron frequencyvp.v1 . Such a field can
be applied, for instance, by sending a microwave elec
field through an opening in the Penning trap@2,3#. This pla-
nar driving field can be represented by the vector potent

A252
i

vp
~E0e2 ivpt2E0* eivpt!, ~7!

whereE0 is the amplitude of the electric field polarized
the x-y plane. Thus according to Eqs.~3!, ~6!, and ~7! the
total vector potential acting on the electron in a Penning t
is given byA5A01A11A2 . Introducing the new potentia
vector into the HamiltonianH0 and performing the norma
mode decomposition and adiabatic approximation as
scribed above gives the Hamiltonian term~5! plus an extra
contribution Hdriving that describes the effects originatin
from the driving fields. This latter contribution can be furth
simplified with the help of the rotating wave approximatio
~RWA!, thus yielding

Hdriving5\~ba1
† e2 ivpt1b* a1eivpt!

1\~bzaz
†e2 ivdt1bz* aze

ivdt!. ~8!

The frequencies

b52
eE0

2A2\mv1

and bz52 i
eU0

4z0A2\mvz

~9!

describe the amplitudes of the planar and axial driving fie
respectively.

The frequencyvd of the axial driving is almost in reso
nance with the axial frequency of motion, whereas it
largely detuned from the cyclotron and magnetron frequ
cies. This implies that within the framework of the RW
approximation, its effect on the cyclotron and magnetr
motions is negligible. Therefore, the corresponding contri
tions have been omitted in Eq.~8!. The same argument ap
plies for the planar driving, which will have a noticeab
influence only on the cyclotron motion. As a consequen
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the magnetron operators do not contribute as they are o
lating with a frequency that is smaller by a factor of the ord
of (v2 /v1). The magnetron motion is a simple harmon
motion at frequencyv2 , which is decoupled from all the
other motions so it will no longer be considered explicitly
the subsequent treatment. Thus the Hamiltonian, which
scribes the relativistic electronic cyclotron, axial, and sp
dynamics in the trap in the adiabatic approximation, is fina
given by

H5\V1a1
† a11\Vzaz

†az1
1

2
\Vssz2\v rcNaz

†az

2\v rcS v1

vz
D ~11a1

† a11sz!a1
† a1

1\~ba1
† e2 ivpt1b* a1eivpt!

1\~bzaz
†e2 ivdt1bz* aze

ivdt!. ~10!

In this expression, the first three terms represent the
monic motions with the renormalized trap frequenciesV1

5v12v rc/2, Vz5vz2v rc/2, and Vs5vc2gv rc/4. The
frequency

v rc5
\vzv1

2mc2 ~11!

characterizes the strength of the relativistic effects. The s
ond line describes the nonlinear couplings induced by
relativistic effects. Here we have introduced the cyclotr
and spin number operator

N5a1
† a11

g

4
sz ~12!

and we have takenvc to be equal tov1 as they differ only
by a factor of the order of (vz /v1)2.

C. Environmental effects and master equation
for the relativistic electron

The dominant interactions of the electron with its enviro
ment are the radiative coupling of the cyclotron motion
the thermal radiation field and the coupling of its axial m
tion to the resistor of the electric circuit involving the exte
nal driving voltage with amplitudeU0 @1,11#. The couplings
to these environments can be treated in the Born-Mar
approximation so that the reduced density operator of
electron in the Penning trapr(t) obeys a master equation o
the canonical Lindblad form

ṙ52
i

\
@H,r#1(

j
S L jrL j

†2
1

2
L j

†L jr2
1

2
rL j

†L j D .

~13!

Thus, the deterministic part of the electronic dynamics
characterized by the HamiltonianH of Eq. ~10! and the sto-
chastic part is described by environment operatorsL j .

Due to the hierarchyv1@vz@v2 the coupling of the
cyclotron motion to the thermal radiation field is most dom
nant @1#. Its radiative damping can be described by the t
Lindblad operators@13,14#
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L15A~ n̄11!ka1 and L25An̄ka1
† ~14!

with the spontaneous decay rate of the cyclotron mot
k5e2v1

2 /3p«0mc3 and n̄5@e\V1 /kBT21#21 denoting the
mean number of quanta of the thermal radiation field at te
peratureT.

In typical experiments, the axial electronic motion
monitored continuously by measuring the out-of-phase co
ponent of the current, which is produced by applying a si
soidal driving voltage between the ring electrode and one
the end-caps of the trap. The influence of this external
plied voltage on the axial motion can be modeled by a qu
tum mechanicalL-C-R circuit @1,11#. Thereby the induc-
tance L ind and the capacitanceC are related to the axia
eigenfrequencyvz by vz

251/(L indC). In the quantum-
mechanical description of thisL-C-R circuit the charge op-
eratorQ and the current operatorI are related to the destruc
tion and creation operatorsaz andaz

† by @11,14#

Q5A \

2vzL ind
~az1az

†!,

I 5 iA \vz

2L ind
~az

†2az!. ~15!

The operator measured in typical experiments is the slo
varying component of the out-of-phase component of
current, i.e.@11#,

I out52A \vz

2L ind
Im~aze

ivdt!. ~16!

In the context of quantum optics this continuous measu
ment would correspond formally to a heterodyning detect
of a photocurrent@15#, provided one identifiedaz with the
destruction operator of a photon in a particular mode of
electromagnetic field.

In the rotating wave approximation the dissipative infl
ence of the resistanceR on the electronic axial motion can b
described by the Lindblad operators@14,11#

L35A~ n̄z11!kzaz and L45An̄zkzaz
† ~17!

with the damping rate

kz5
R

L ind
. ~18!

The thermal influence of the resistor that is at temperatureTR
is characterized by the mean thermal quantum number

n̄5@e\vz /kBTR21#21. ~19!

The master equation~13! for the reduced density operato
r, together with the Hamiltonian~10! and the Lindblad op-
erators~14! and ~17!, is a main result of this section. It de
scribes the dynamics of the electron in a Penning trap inc
ing the relativistic corrections and the domina
environmental effects.
n
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D. Master equation for the spin and cyclotron motion

In order to improve the signal-to-noise ratio, in typic
experiments the resistanceR is made as large as possible@1#.
As a consequence, the axial motion is strongly damped. T
property can be used to simplify further the master equa
~13! by eliminating the axial motion adiabatically. This adi
batic elimination has already been described in detail fo
nonrelativistic electron in a Penning trap@11# and can be
applied to the master equation~13! in an analogous way
Thus the subsequent discussion focuses only on the ge
ideas of this elimination procedure.

When the damping ratekz is large, the axial motion
reaches its equilibrium almost instantaneously relative to
other relevant time scales. If in addition the externally a
plied voltage is large, the stationary state of the axial mot
is close to a highly excited coherent state. This dynam
regime is called the quantum Brownian motion~QBM! limit
@14# and is realized whenl5kz /v rc becomes large, withv rc

and ubzu2v rc /kz
3 being held constant@11#. In this limit the

density operatorr of the cyclotron, spin, and axial motio
factorizes approximately intor5rz^ W1O(l21) @14#,
where rz (W) represents the density operator of the ax
motion ~of the cyclotron and spin motion!, respectively.
Thus by tracing out the strongly driven and damped ax
electronic motion the master equation

Ẇ52
i

\
@H̃,W#1(

j 51

2 S L jWLj
†2

1

2
L j

†L jW2
1

2
WLj

†L j D
2G@N,@N,W## ~20!

is obtained for the reduced density operator of the cyclot
and spin motion@11#. The deterministic part of the reduce
dynamics is described by the Hamiltonian

H̃5\Ṽ1a1
† a11

1

2
\Ṽssz2\v rcS v1

vz
D

3~11a1
† a11sz!a1

† a11\~ba1
†e2 ivpt1b* a1eivpt!

~21!

with the modified frequenciesṼ15V11v rc^nz&0 and
Ṽs5Vs1g/2v rc^nz&0 . The stationary excitation numbe
^nz&0 of the axial motion in the absence of the relativis
coupling to the other degrees of freedom is given

^nz&054ubzu2/kz
21n̄z .

The dissipative part of the dynamics is characterized
the Lindblad operatorsL1 andL2 of Eq. ~14!. The stochastic
influence of the back action of the axial motion on the c
clotron and spin degrees of freedom is described by the H
mitian Lindblad operator

LG5A2GN. ~22!

This Lindblad operator tends to destroy all quantum coh
ences between different eigenstates of the cyclotron and
number operatorN of Eq. ~12! with rate

G5
v rc

2

kz/2

ubzu2

~kz/2!2 ~112n̄z!@11O~l21!#. ~23!
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Thus this Lindblad operator might be interpreted as desc
ing the continuous measurement of the observableN with G
denoting the mean reduction rate.

In order to establish a relationship between the m
value of the measured out-of-phase current^I out& and observ-
ables referring to the cyclotron and spin degrees of freed
one starts from the equation of motion for the mean va

^āz&5^aze
ivdt& using the Hamiltonian~10! and the Lindblad

operatorsL3 andL4 , i.e.,

d^āz&
dt

52 i ~Vz2vd!^āz&2
1

2
kz^āz&2 ibz2 iv rc^Nāz&.

~24!

Factorizing the density operatorr and setting the axial drive
in resonance with the axial frequency, i.e.,Vz5vd , the re-
lation

^I out&522A \vz

2L ind

Im~bz!

~kz!
2 v rc^N& ~25!

is obtained in the stationary limit, i.e., fort@1/kz . This
equation shows that in the QBM limit the measurement
the out-of-phase current^I out& is equivalent to measuremen
of the cyclotron and spin excitation number^N& @11#.

E. Stochastic simulations of individual quantum measurement
processes with the quantum state diffusion model

The master equations~13! and~20! together with Eq.~25!
describe the time evolution of a statistical ensemble of c
tinuous measurements performed on an electron in a Pen
trap. In order to describe the corresponding time evolution
an individual measurement record of^I out& by stochastic
simulation, in principle a detailed analysis of the measu
ment process is required on the basis of the quant
mechanical measurement postulates. So far such an ana
of the continuous measurement of the current^I out&, which
relies on purely electronic means and does not involve
photon counting process, does not exist and its developm
is beyond the scope of the present work. Nevertheless
order to obtain some insight into the time evolution of po
sible individual measurement records of^I out& in the subse-
quent discussions, the quantum state diffusion~QSD! model
of state reduction will be used.

This model of state reduction has been introduced a
general approach to continuous quantum measurement
cesses in which the time evolution of an individual quant
system, i.e., a single member of a statistical ensemble
represented explicitly@8,9#. In this respect the QSD mode
transcends the framework of traditional quantum mecha
and its significance for the quantum-mechanical meas
ment problem still remains an open question. However, st
ing from the quantum optical photon counting theory it h
been demonstrated, for example, that in heterodyning m
surements individual records of photocurrents can be
scribed by stochastic differential equations of the QSD ty
@15#. Thus despite the lack of any systematic derivat
based on first principles, the application of the QSD mode
this context might be motivated by the formal analogy b
tween the continuous measurement of^I out& and quantum
-
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optical heterodyning experiments as mentioned in Sec. I
In the QSD model, the quantum state of an individu

quantum system is represented by a normalized vectoruc&j

in a Hilbert space, which evolves according to the stocha
differential equation

udc&j52
i

\
Huc&jdt2

1

2 (
j

~L j
†L j1^L j

†&c^L j&c

22^L j
†&cL j !uc&jdt1(

j
~L j2^L j&c!uc&jdj j .

~26!

Therebydj j are complex Wiener processes with zero me
values, i.e.,M (dj j )50, whose correlations are given by

dj jdjk50 and dj jdjk* 5d i j dt. ~27!

The quantitieŝ L j&c5j^cuL j uc&j represent expectation va
ues of environment operatorsL j with respect to stateuc&j

and M denotes the mean over the statistical ensemble.
dynamical equation~26! has the property that the time evo
lution of the density operatorr5M (uc&jj^cu) of the associ-
ated statistical ensemble is given by a master equation o
form of Eq. ~13!. For any operatorA, the quantum-
mechanical mean value is given bŷA&5Tr(rA)
5M ^A&c . For a more detailed presentation of the QS
model, we refer to Refs.@8,9#. A systematic theoretical de
scription of the continuous Stern-Gerlach effect within t
framework of the QSD model has been developed in R
@11#.

Thus, starting from the master equation~20! for the cy-
clotron and spin motion, individual quantum measurem
processes might be simulated within the framework of
QSD model by interpretinĝN&c as being proportional to the
observed current according to Eq.~25!.

III. DYNAMICS OF THE ELECTRONIC SPIN

In this section the influence of the relativistic correctio
of Secs. II A and II B on the electronic spin is investigate
Starting from the master equation~20! with the Hamiltonian
~21! and the three Lindblad operators of Eqs.~14! and ~22!,
the equation of motion for the expectation value of the ax
spin component̂sz&5Tr(rsz) can be obtained. Assz com-
mutes with the Hamiltonian, the three Lindblad operato
and their adjoints, the expectation value^sz&5sz is a con-
stant of motion, i.e.,

d^sz&
dt

50. ~28!

This also implies that the associated fluctuations of this s
component are time independent, i.e.,

S~2!~sz!5Tr~rsz
2!2„Tr~rsz!…

2512sz
2 . ~29!

Thus the relativistic couplings discussed in Secs. II A a
II B do not affect the ensemble averaged spin motion. B
what happens to the electronic spin in an individual contin
ous measurement process? In order to answer this que
completely, a detailed description of the measurement p
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cess is required, which is a complicated task beyond
main goal of the present investigation. However, some
sight into the mechanism underlying the dynamics of
spin in an individual continuous measurement process ca
obtained on the basis of the quantum state diffusion~QSD!
model. As discussed in Sec. II E, in this model of state
duction the equation for the evolution of the quantum exp
tation value of an individual measurement process^sz&c is
given by

d^sz&c5 (
j 51,2,G

D~sz ,L j !dj j1D~L j ,sz!dj j* . ~30!

D(A,B)5^A†B&c2^A†&c^B&c characterizes the quantum
correlations of the operatorsA andB with respect to the state
uc&j , which is a solution of the QSD equation~26!. Equation
~30! shows that the electron spin fluctuates along an in
vidual quantum trajectory with zero average drift in agre
ment with the average evolution of Eq.~28!. The spin fluc-
tuations depend on the correlations ofsz with the
environment operatorsL j with j 51,2,G. A measure of these
fluctuations is given by the average spin autocorrelation

MD~2!~sz!5M ^sz
2&c2M ~^sz&c

2 !512M ~^sz&c
2 !,

~31!

which reflects properties of the QSD model and which c
not be evaluated from the density operator of Eq.~20!. In
general,MD (2)(sz) is different from autocorrelations suc
asS (2)(sz)5M ^sz

2&c2(M ^sz&c)2, which can be evaluated
from the density operator. As this spin autocorrelation fulfi
the equation

M
dD~2!~sz!

dt
522(

j
M @ uD~sz ,L j !u2#, ~32!

it decreases with time until the quantum correlatio
D(sz ,L j ) between the spin and the Lindblad operators
come vanishingly small. The quantum correlations on
right-hand side of Eq.~32! vanish, if the quantum stateuc&j

can be factorized according touc&j5uf&j ^ usz&j , where
uf&j and usz&j denote a cyclotron state and an eigenstate
sz . From Eq.~32! it can be shown that

M
dD~2!~sz!

dt
<2GM @ uD~2!~sz!u2#, ~33!

which demonstrates that the average spin-autocorrelation
cays exponentially within a time of the order ofG21 or less.
Thus according to the QSD model of state reduction,
mean measurement rateG represents the minimal rate a
which the spin is projected onto an eigenstate ofsz in an
individual measurement process.

Thus the relativistic couplings discussed in Secs. II A a
II B do not affect the average spin dynamics. The spin
pectation valuê sz& is a constant of the motion. Howeve
according to the QSD model these relativistic couplings
fect individual quantum trajectories by projecting the sp
state onto an eigenstate ofsz with a rate that is larger o
equal to the mean measurement rateG of Eq. ~22!. After the
completion of this reduction process, the influence of
electronic spin on the dynamics of the cyclotron motion c
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be described simply by the replacementsz→61 in Eqs.
~21! and ~22! and its influence on the cyclotron motion b
comes trivial. Therefore, in the subsequent discussion of
electronic cyclotron motion it will be assumed that such
spin projection has already taken place.

IV. THE ELECTRONIC CYCLOTRON MOTION

In this section the influence of the back action of t
quantum-mechanical measurement process on the elect
cyclotron motion is investigated. In view of the discussion
Sec. III, effects arising from the electronic spin are taken i
account by the replacementsz→61 in Eqs.~21! and ~22!.
Insight into the dynamics of the cyclotron motion in ind
vidual measurement processes is obtained on the basis o
quantum state diffusion model.

Starting from Eq.~21! and performing the transformatio
â15a1eivpt, the electronic cyclotron motion is describe
by the Hamiltonian

Ĥ5\Dvâ1
† â11\~bâ1

† 1b* â1!1\x~ â1
† â1!2. ~34!

The strength of the anharmonicity due to relativistic effe
is characterized by x52v rcv1 /vz . The frequency
Dv5Ṽ1x(11sz)2vp with sz561 refers to the detuning
between the renormalized cyclotron frequencyṼ1 and the
driving frequencyvp of the planar electric field of Eq.~7!.
For the sake of simplicity, the driving strengthb is assumed
to be a real number. The reduced density operator of
electronic cyclotron motion is governed by the master eq
tion ~20!. Thereby dissipative effects due to radiative dam
ing and thermal fluctuations of the cyclotron motion are d

scribed by the Lindblad operatorsL̂15A(n̄11)kâ1 and

L̂25An̄kâ1
† . The Lindblad operatorL̂G5A2Gâ1

† â1 de-
scribes the back action of the continuous measurement
cess on the cyclotron motion.

In the absence of the quantum measurement process
for G50, this model has already been investigated pre
ously @4,16#. This simplified model describes a driven, a
harmonic oscillator interacting with a thermal bath. A cha
acteristic feature of this model is the appearance
bistability and hysteresis effects. The main aim of the sub
quent discussion is to gain an understanding of the mec
nism by which the back action of the quantum-mechani
measurement process on the cyclotron motion influen
these hysteresis effects.

It is apparent from the equation of motion for^â1&, i.e.,

d^â1&
dt

52 i @~Dv1x!^â1&1b12x^â1
† â1

2 &#

2
1

2
~k12G!^â1&, ~35!

that the measurement process tends to increase dissip
according to the replacementk→k12G. In order to obtain
a more detailed understanding of characteristic feature
the quantum measurement process, let us first of all neg
all anharmonic effects.
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A. Harmonic approximation

Neglecting anharmonic effects, i.e., settingx50, simple
analytical expressions are available for̂â1&(t) and

^â1
† â1&(t). In particular, the stationary values are given

^â1&s52b
Dv1 i ~k/21G!

Dv21~k/21G!2 ~36!

and
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to
^â1
† â1&s5n̄1u^â1&su2S 11

2G

k D . ~37!

The time evolution of these quantities is given by

^â1&~ t !5^â1&s1@^â1&~ t50!2^â1&s#e
2 iDvte2~k/21G!t

~38!

and
^â1
† â1& t5^â1

† â1&s1~^â1
† â1& t502^â1

† â1&s!e
2kt12b

Im$~^â1& t502^â1&s!~k/22G1 iDv!%

Dv21~k/22G!2 e2kt

22b
Im$~^â1& t502^â1&s!~k/22G1 iDv!e2 iDvt%

Dv21~k/22G!2 e2~k/21G!t ~39!
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with Im indicating the imaginary part of a complex numbe
In the special caseG5k/2 the time evolution of Eq.~39! is
modified to

^â1
† â1& t5^â1

† â1&s1~^â1
† â1& t502^â1

† â1&s!e
2kt

22bte2kt Im$^â1& t502^â1&s%. ~40!

These analytical results demonstrate that besides incr
ing the radiative damping ratek according to the replace
ment k→k12G, the measurement process may also g
rise to some less obvious effects such as an increase o
stationary excitation number̂â1

† â1&s or a modification of
the exponential decays. The study of this linear model sh
that effects arising from the quantum measurement pro
can be neglected as long asG!k/2. However, as soon as th
measurement rateG exceedsk/2, the back action of the mea
surement process on the cyclotron motion is no longer n
ligible.

B. Anharmonic effects due to relativistic corrections

In order to investigate the influence of the quantu
mechanical measurement process on the hyste
effects originating from the anharmonic couplin
discussed in Secs. II A and II B, let us consider the Q
equation of motion for the expectation valuêâ1&c ,
namely
d^â1&c52 i @~Dv1x!^â1&c1b12x^â1

† â1
2 &c#dt

2
1

2
~k12G!^â1&cdt1A~ n̄11!k@D~ â1

† ,â1!dj1

1D~2!~ â1!dj1* #1An̄k@dj21D~2!~ â1!dj2

1D~ â1
† ,â1!dj2* #1A2G@^â1&cdj3

1D~ â1
† â1 ,â1!~dj31dj3* !#. ~41!

The deterministic part of this equation is identical
.

as-

e
the

s
ss

g-

-
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the ensemble averaged equation of motion~35!. The remain-
ing terms describe the fluctuations originating from radiat
damping, from thermal noise, and from the back action
the measurement process on the cyclotron motion. In
absence of measurement, i.e., forG50, this equation has
already been investigated previously@4,16#. In particular, it
has been shown that dissipation due to radiative damping
thermal noise tends to localize a wave packet in phase sp
In the limit of a perfectly localized state, i.e., a cohere
state, the nonlinear term factorizes according

^â1
† â1

2 &c5u^â1&cu2^â1&c thus reproducing the classica
nonlinearity. On the other hand, according to Eq.~41! the
measurement process tends to project the stateuc&j onto an
energy eigenstate of the unperturbed cyclotron motion.
this state ^â1&c , D(â1

† â1 ,â1), and the nonlinear term

^â1
† â1

2 &c vanish. Thus, intuitively we expect the measur
ment process to produce a quantum correlation, which m
even be able to cancel the nonlinearity and thus to destro
hysteresis effects. In the limit of highly excited cyclotro
states, a simplified description of the measurement-indu
influences can be obtained with the help of the semiclass
decorrelation approximation.

1. Semiclassical decorrelation approximation

A simplified description of the cyclotron motion can b
obtained in the semiclassical limit of a large driving amp
tude b. In this limit, quantum expectation values can
decorrelated according to the relation^â1

† â1&c

→^â1
† &c^â1&c . Formally this semiclassical limit is obtaine

from Eq. ~41! by applying the scaling transformation

t85t, k85k, G85G, Dv85Dv, b85mb,

x85
1

m2 x, and n̄85m2n̄ ~42!

with the scaling factorm→`. Scaling transformations o
this type have already been discussed previously in con
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tion with the quantum-classical transition in systems wh
classical dynamics are chaotic@17#. Applying this scaling
transformation to the QSD equation of motion~41! yields

da52 i ~Dva1b12xuau2a!dt2
1

2
~k12G!adt

1An̄kdj21A2Gadj3 ~43!

with a5^â1&c /m. The semiclassical QSD equation~43! is
invariant under the scaling transformation~42! and in the
absence of measurement, i.e., forG50, it reduces to the
classical stochastic differential equation for a driven anh
monic oscillator interacting with a thermal bath. Equati
~43! contains two noise terms. The first one proportional
An̄k represents thermal fluctuations while the second
proportional toA2G is a homogeneous noise induced by t
quantum measurement process. Both the thermal and
measurement-induced fluctuations transform the stable e
librium points, which correspond to the stationary solutio
of the deterministic part of Eq.~43!, into metastable equilib-
ria. In particular, the measurement process can hide bist
ity by inducing spontaneous transitions between both m
stable equilibrium points. Alternatively, the measurem
process can also suppress bistability by displacing equ
rium points out of the bistable domain. This latter point
illustrated in Fig. 1. Each point of Fig. 1 represents a syst
described by the semiclassical Eq.~43! in the absence o
noise, i.e., fordj25dj350. The location (x,y) of the sys-
tem is specified by its parameters wherex5(k/21G)/Dv
and y5(k/21G)3/b2x. Bistable behavior is only possibl
for points located inside the full curve@16#. If, starting from
an arbitrary point, we keep all parameters fixed and vary
measurement rateG, the point will follow a cubic curve of
the formy5ax3 with a5Dv3/b2x. The dots in Fig. 1 rep-
resent locations of the system for different values of the m
surement rateG. The trajectory formed by these points dem
onstrates that with increasing measurement rateG, systems
that are bistable in the absence of measurement, i.e.
G50, eventually become monostable as soon as they c

FIG. 1. The border of the bistable domain~full curve! is shown
and the location of the system for different values of the meas
ment rate G ~dotted curve! with the parameter choice
a5Dv3/b2x5230.0.
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the border line~full curve!. In this latter case all associate
hysteresis effects are destroyed.

2. Bistability and measurement-induced fluctuations

Returning to the full QSD equations, we investigate t
influence of thermal and measurement-induced fluctuati
on bistability in Fig. 2, where the time evolution of the a
erage excitation numberM ^â1

† â1&c is depicted for different
values of the measurement rateG. The parameters in Fig. 2
are chosen so that in the absence of quantum measurem
i.e., for G50, the system starts in the bistable domain. T
initial state is assumed to be a coherent state centered a
of the two possible metastable equilibrium points. Two d
ferent values of the measurement rate have been use
compute the time evolution, which is compared with the tim
evolution in the absence of measurement. ForG50 the ef-
fective decay time of the excitation number is much larg
than the radiative damping time 1/k. This reflects the fact
that, in the absence of measurement in the bistable reg
the noise-induced transition time between the two poss
metastable states is usually much larger than the inv
characteristic radiative damping time 1/k @16#. This transi-
tion time depends mainly on the magnitude of the therm
fluctuations. With increasing measurement rateG the effec-
tive decay time of the excitation number decreases rap
and finally approaches the radiative damping time 1/k in the
limit when all effects arising from the nonlinear term

^â1
† â1

2 &c have become insignificant. This demonstrates
profound influence of the quantum measurement proces
bistability. The quantum measurement process tends
project the quantum state of the electronic cyclotron mot
onto an energy eigenstate that is delocalized spatially and
which the nonlinearity of Eq.~41! vanishes. This removal o
the nonlinearity leads to a suppression of bistability, which
exemplified by the rapid change of the effective decay ti
in Fig. 2.

In Fig. 3, numerical simulations of individual experimen
for measuring hysteresis effects are presented. It is assu

e-
FIG. 2. Time evolution, in arbitrary units, of the ensemble a

erage excitation number using 100 trajectories. The parameters

arek51.5, b527.0, n̄50, x50.04, andDv525.0. The initial
state is a coherent state centered at a metastable position. The
curve is forG50, the lower forG50.1, and the middle one fo
G50.01.



in

fr
be
re
ai
t
-

b
im
ith

a
ne

fo
p

es

is
r

l
, i.e.,
e
of
-
to

ef-

ess
ate
it is

g
s ef-
a-

g
ller
ea-

ve

ady
itions
ber

in

iv-
een
as
the

ve
e-
e-
us

red
of

the
tum
trap.
as
adia-
e
-

and

ar

es
re
ss

486 PRA 58RIGO, ALBER, MOTA-FURTADO, AND O’MAHONY
that the dynamics of a single electron is measured cont
ously in cases in which its corresponding classical motion
bistable in the absence of measurement. The driving
quencyvp of the external electronic field is assumed to
varied step by step from low to high frequencies and
versed, thus spanning twice the classically bistable dom
For each value of the driving frequencyvp it is assumed tha
the experimenter waits a timetm , i.e., the measurement de
lay, and records the excitation number^a1

† a1&c before
changingvp again. The measurement delay is assumed to
much larger than the characteristic radiative damping t
1/k. Thus the driving frequency is swept adiabatically w
respect to the radiative damping time 1/k.

According to the QSD model of state reduction, such
experiment is described theoretically by curves like the o
shown in Fig. 3. The measured excitation number^a1

† a1&c

fluctuates around one of the two classical steady states
while and then jumps to the other value. The two jum
@indicated by vertical arrows in Fig. 3~a!# occurring when the
driving frequency is ramped from low to high frequenci

FIG. 3. Numerical simulations of hysteresis experiments, in
bitrary units, using the QSD model with parametersk51.5,

b527.0, n̄50, x50.05 and for two different measurement rat
~a! G50.3, ~b! G50.8. The detuning step is 0.1 and the measu
ment delay time istm550. The dashed curves represent the cla
cal steady-state excitation numbers withG50 ~curve extending to
the far left! and ~a! G50.3, ~b! G50.8.
u-
is
e-

-
n.

e
e

n
s

r a
s

and reversed allows one to define a detuning widthDV as the
size of the bistable region in an individual realization. Th
detuning widthDV is a random variable and is different fo
each realization of an experiment.

As has already been discussed previously@16#, in general
the statistical properties of this detuning widthDV depend
on the ratio between the measurement delay timetm and the
mean stochastic transition timet between the classica
steady states. In the absence of quantum measurement
for G50, this latter time is typically much larger than th
radiative damping time 1/k and depends on the magnitude
the thermal fluctuations@16#. Two limiting cases can be dis
tinguished.~i! If the measurement delay is small relative
the stochastic transition time, i.e.,t@tm , then in generalDV
has a finite value thus exhibiting bistability.~ii ! At the oppo-
site extreme, i.e., fort!tm , the detuning widthDV is equal
to zero, thus indicating the disappearance of hysteresis
fects.

The back action of the continuous measurement proc
on the electronic cyclotron motion tends to project the st
onto a spatially delocalized energy eigenstate. Therefore
expected that with increasing measurement rateG the mean
stochastic transition timet decreases, thus eventually leadin
to a measurement-induced disappearance of hysteresi
fects. This behavior is exemplified by the individual realiz
tions depicted in Figs. 3~a! and 3~b!. In Fig. 3~a! the mean
measurement rateG is of the order of the radiative dampin
ratek. As a consequence, the detuning width is much sma
than the classically expected value in the absence of m
surement~dashed curve extending to the far left!. However,
hysteresis effects are still apparent. In Fig. 3~b! the measure-
ment rateG is already so large that all hysteresis effects ha
disappeared even in the classical limit~dashed curve! due to
the fast stochastic transitions between the classical ste
states. As a consequence these rapid stochastic trans
give rise to fluctuations of the measured excitation num
^a1

† a1&c that are much larger than in the case depicted
Fig. 3~a!.

V. CONCLUSION

A detailed quantum-mechanical description of the relat
istic dynamics of a single electron in a Penning trap has b
developed in which interaction with the environment h
been taken into account. To this end we have retained
radiative damping of the cyclotron motion and dissipati
effects of the axial motion originating from the readout r
sistor. The relativistic effects lead to nonlinear couplings b
tween the electronic cyclotron, spin, and axial motion. Th
the electronic cyclotron and spin motion can be monito
continuously by measuring the charge-induced currents
the axial motion.

A master equation has been derived that describes
dynamics of a statistical ensemble of continuous quan
measurements performed on an electron in the Penning
The electronic axial motion, which might be considered
part of the measurement apparatus, has been eliminated
batically in the limit of rapid axial dissipation, i.e., in th
quantum Brownian motion limit. In this limit the measure
ment apparatus is sensitive to the electronic cyclotron
spin quantum number and the mean rate of reductionG can
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be varied over many orders of magnitude by altering
external driving of the axial motion, similar to the harmon
case presented earlier in Ref.@11#. It has been shown tha
this measurement process tends to project the electronic
along the axial direction. After the completion of this proje
tion process, the relativistic effects do not give rise to a
further spin flips.

It has been demonstrated that the continuous quan
measurement process has a profound influence on the c
tron motion and its bistable behavior. The QSD model p
vides an intuitively appealing description of the competiti
between dissipative effects originating from radiative dam
ing of the cyclotron motion and thermal noise, which tend
localize the cyclotron state into a coherent state, and
measurement-induced effects, which tend to project the
s

e

pin

y

m
lo-
-

-

e
y-

clotron state into a spatially delocalized energy eigenstat
the unperturbed cyclotron motion. The relative strength
these two competing stochastic processes depends on th
tio between the measurement rateG and the radiative damp
ing ratek of the cyclotron motion.
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