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Measurement-induced quantum fluctuations and bistability of a relativistic electron
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A detailed quantum-mechanical description of an electron in a Penning trap is developed in which nonlinear
relativistic effects as well as stochastic effects arising from radiative damping and the continuous measurement
of the electronic motion are taken into account. A master equation is derived that describes the influence of
these environmental effects on the bistable dynamics of the electron. Manifestations of measurement-induced
fluctuations on the bistable dynamics of individual continuous measurement processes are investigated with the
help of the quantum state diffusion modgb1050-2947®8)04807-Q

PACS numbse(s): 32.80.Pj, 03.65.Bz, 42.50.Lc, 05.30.Ch

I. INTRODUCTION volving cyclotron and axial dissipation is introduced together
with a phase sensitive measurement involving the squeezing
The advances in trapping and cooling techniques withirof the bath. The measurement-induced influence on the cy-
the past decade have led to new experiments that can coflotron motion is investigated by eliminating the axial mo-
tinuously observe individual quantum systems by optical oftion adiabatically. It is found that the bistable nonlinear reso-
electronic means. One of the most elementary quantum sy§ance can be modified by varying one of the squeezing
tems that has been investigated in this context is an electrdpframeters associated with the phase sensitive detection pro-

in a Penning trajp1]. A spectacular application of its experi- C€SS- However, all these investigations are based on simpli-
mental realization has been the measurement of the elefied model systems in which either the dissipative effects or

tronic g-factor with unprecedented accuracy. However, be_the relativistic dynamics _of the eleptronlc degrees of freedom
hat are relevant for typical experiments are not fully taken

sides applications in quantum metrology, this elementar
pp q gy pto account.

guantum system also offers new possibilities for fundamenta Motivated by the recently performed experiments of Gab-
studies on the influence of continuous quantum measuremepl, .o ot g [2—4], in the following a detailed quantum-

processes on the electronic dyn:_;\mlcs. . mechanical description of the relativistic electronic dynamics
In a series of recent experiments, Gabrielse and COp, 4 penning trap is developed. Thereby the main emphasis is
workers have investigated the nonlinear effects that are; on a realistic and consistent quantum-mechanical treat-
caused by the relativistic motion of an electron in a Penningyent of the measurement-induced guantum fluctuations on
trap[2-4]. Based on purely classical considerations, the eXtne relativistically induced hysteresis effects. A master equa-
istence of such nonlinear effects due to relativistic correction is derived in which all relativistic effects as well as all
tions has been predicted theoretically by Kapléh Typi-  dissipative effects, which are dominated by radiative damp-
cally in these experiments the electronic dynamics isng of the cyclotron motion and the continuous quantum
monitored by purely electronic means by detecting the curmeasurement process, are taken into account. In order to ob-
rents that are induced by the axial motion of the electron irtain insight into the resulting time evolution of individual
the end-caps of the electrodes. The axial motion of thejuantum measurement records, this master equation is simu-
trapped electron is coupled to its spin and cyclotron degreelated stochastically with the help of the quantum state diffu-
of freedom by relativistic effects. Thus the continuous obsersion model8,9].
vation of the axial electronic motion through monitoring the  In Sec. Il we develop a detailed theoretical description of
charge-induced currents also yields information about than electron in a Penning trap taking into account relativistic
dynamics of the electronic spin and cyclotron motion. corrections as well as external, electric driving fields and all
A number of recent theoretical studies have considerethe dominant environmental effects. A simplified master
the relativistic dynamics of an electron in a Penning trap. Foequation is derived for the experimentally interesting case of
instance, in[6] this system is suggested as an experimentalarge axial driving and damping in which the axial motion
realization of a quantum nondemolition measurement of thean be eliminated adiabatically. Starting from this master
cyclotron excitation number of the electron. This work ap-equation, the spin and cyclotron motions are investigated in
propriately introduces the dissipation in the axial motion bySecs. Ill and IV. Insight into the time evolution of individual
using the theory of open quantum systems but assumes thabntinuous quantum measurement processes is obtained with
the cyclotron state is projected onto a Fock state withouthe help of the quantum state diffusion model. Section Il
describing how this collapse occurs. Furthermore, it neglectfocuses on the question as to how relativistic effects influ-
other dissipative effects, thus limiting its applicability to a ence the electronic spin motion. In Sec. IV the back action of
short time scale, which is impractical for typical experimen-the continuous measurement process on the bistable dynam-
tal investigations. I[7] a model of electron dynamics in- ics of the electronic cyclotron motion is investigated. It is
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demonstrated that the measurement-induced quantum fluc- 1 ®, s o o
tuations may influence these hysteresis effects significantly. ~ Ao=5Bo(—y&tXg), &= 753(22°=x"=y%), (3

Il. THEORETICAL FRAMEWORK whered characterizes the spatial extension of the trap.
If a classical nonrelativistic particle is subjected to a mag-

We develop in this section a theoretical description of thenetic field, it will evolve along a circular cyclotron orbit with

relativistic dynamics of an electron in a Penning trap. Start?requencyw —eB,/m. In order to confine also the axial
c .

Ny frqm_ the Dquc Hamﬂtoman in Sec. IIA the dommam.motion of the electron, an electrostatic quadrupole potential
relativistic corrections are discussed that lead to anharmonlcfS superimposed onto the magnetic field. As a consequence
nonlinear terms in the Hamiltonian. In Sec. Il B it is demon- ' ’

- .. the motion of the particle can be decomposed into an axial
strated that resonant driving of the electron by a periodic P P

external electric field may lead to bistable behavior. Radia_harmon!c motion of frequency;, =edo/md .and a planar
rpotlon itself composed of the fast harmonic cyclotron mo-

tive damping and the continuous measurement of the aXiahon at the modified frequen o and the much
electronic motion are the dominant environmental influences. quUENCY 4 = we = -

Together with the relativistic Hamiltonian, they determine SI°%er circular magnetron motion with frequenay -

the master equation of the trapped electron, which is pre= @z/2®- - For an électron in a Penning trap these charac-
sented in Sec. Il C. In Sec. Il D the axial electronic motion ist€"iStic frequencies typically differ in scale by three orders of

eliminated adiabatically in the limit of large driving and Magnitude, ie.w_<w,<w,. o

damping of the axial motion. Thus a simplified description of, /" the quantum case, the particle’s motion is decomposed
the spin and cyclotron degrees of freedom is obtained. Thil!t© normal modes in an analog?us way. TFor this purpose,
master equation might be used as a starting point for stocha§feation (annihilation operatorsa, (a,), a, (a), and

tic simulations of individual measurement records. Basic@ (a-) are introduced for the axial, cyclotron, and magne-

facts about stochastic simulations are discussed in Sec. Il Fon motion[11] to transform the Hamiltoniakl, into nor-

with the help of the quantum state diffusion model. mal coordinates. Introducing the spin precession frequency
ws=3gw,, the nonrelativistic part of the Hamiltonian can

A. The relativistic Hamiltonian of an electron be written in the familiar fornj1]

in a Penning trap

The relativistic Dirac Hamiltonian of a spin-half electron Hwr=rfow.ala, +hoala,~ho_a'a + Shwso;.
under the influence of an external electromagnetic field can (4)
be reduced to its nonrelativistic limit with the help of the
Foldy-Wouthuysen transformatiofl0]. In the case of an Under typical experimental conditions the magnetron motion
electron in a Penning trap, the relevant magnetic figlss  is metastable with a damping time of the order of years so
time independent and the electric fieltl divergence free, that it does not produce a relevant instability.

thus the relativistic correctiondRC) can be further simpli- In the normal mode representation of the relativistic
fied yielding the HamiltoniatHg=Hyg+Hgc. The nonrel-  HamiltonianHgc use can be made of the previously men-
ativistic (NR) part of this Hamiltonian is determined by tioned hierarchy of characteristic frequencies to perform an
adiabatic approximation. A simplified Hamiltonian that de-

H :i fed— 9up o B 1) scribes properly the dyna_mi_cs on time sca_les large c_ompared

NR™2m 2 to the slowest characteristic time scale in a Penning trap,

o . _ namely the magnetron time scaleffRw_ , is obtained by
and the relativistic corrections are given by neglecting all the terms that oscillate rapidly in time relative

to the magnetron time scale as well as all the negligibly
(7°—2mugo-B)?

HB small contributions of orderd_ /) and (w,/w.)?. Thus
Hre 8m3c? (1+28)5 @ o-BEX7 Hge reduces td12]
aug szwgr 1) 1)
o2 7T @ HRCE—W(1+ﬁ+w—joz+a1a+
Thereby terms up to the order of ¢fJ have been taken into : hlw, o, go, hw, o,
account. The electron rest mass is denoteghde andg are Xaja,— —o |1+ 4o, %7 2md
the electronic charge and)-factor with its associated
anomaly a=(g—2)/2. The Bohr magnetron is given by 1 g o + +
up=eh/2m and o and w=p—eA are the Pauli spin vector X232 w_+02+ a;ay |8;8;. ®)

and the kinetic momentum operator, respectively. The rest
energymc® has been neglected in the Hamiltonidgc. Equation(5) describes the relativistic corrections that are of
An electron in a Penning trap is subjected to a spatiallycentral interest in the present work, namely, shifts of the
uniform magnetic field=Be, directed along the trap axis trap-eigenfrequencies and nonlinear couplings between the
and a quadrupole electrostatic potential[1]. This latter  cyclotron, axial, and spin motions. A dynamical consequence
potential and the vector potenti#dl, associated with the of the Hamiltonian in Eq(5) is the appearance of a bistable
magnetic field, expressed in the Coulomb gauge, are givedomain with its associated hysteresis effect in the case of
by resonant excitation by external electromagnetic fields. Fur-



480 RIGO, ALBER, MOTA-FURTADO, AND O'MAHONY PRA 58

thermore, the nonlinear couplings between the different mothe magnetron operators do not contribute as they are oscil-
tions is an important effect that is exploited for the continu-lating with a frequency that is smaller by a factor of the order
ous measurement of the electronic cyclotron and spif (o_/w,). The magnetron motion is a simple harmonic

motion. motion at frequencyw _, which is decoupled from all the
other motions so it will no longer be considered explicitly in
B. The influence of periodic, external electric fields the subsequent treatment. Thus the Hamiltonian, which de-

scribes the relativistic electronic cyclotron, axial, and spin

In orqler to monitor the bistable dy_n_am|cs of an .elecnon.mdynamics in the trap in the adiabatic approximation, is finally
a Penning trap, typically two additional periodic electric given by

fields are applied. The first of these two fields is a sinusoidal
voltage applied between the ring electrode and one end-cap 1

of the Penning trap3]. It is oscillating at a frequencyy H=#i0 ala,. +%0,ala,+ EﬁQsUz_hwrcNaZaz
almost resonant with the axial frequency of motian

=w,. The associated vector potenths] can be expressed in o
terms of the amplitudéJ, of this voltage and the minimal —fioy o
distance 2, between the end-caps, namely,

(1+ala,+oyala,

z

y _’_h(lga:efiwpt_i_ﬂ* a+eiwpt)
0 . )
A]_: 220(1)d COS wdt)ez . (6) 4 h(ﬁzazeflwdt_k :8: a.Zel wdt) ) (10)

The second applied electric field is typically polarized in theln this expression, the first three terms represent the har-
cyclotron-magnetron plane, and its frequensy is tuned monic motions with the renormalized trap frequencies
close to the cyclotron frequenay,=w, . Such a field can =@+~ @rf2, ;= 0,~ w2, and Q= w;—guf4. The

be applied, for instance, by sending a microwave electrifréquency
field through an opening in the Penning tf&@p3]. This pla-

o ! . hw,w,
nar driving field can be represented by the vector potential wm:ﬁ_ (12)
i . 4
A,=— —(Ege "' —Eje'“n"), (7) characterizes the strength of the relativistic effects. The sec-
“p ond line describes the nonlinear couplings induced by the

relativistic effects. Here we have introduced the cyclotron

whereE, is the amplitude of the electric field polarized in -
and spin number operator

the x-y plane. Thus according to Eg&3), (6), and (7) the
total vector potential acting on the electron in a Penning trap g

is given byA=Aqy+A;+A,. Introducing the new potential N=a1a++ 272 (12
vector into the HamiltoniaHy and performing the normal

mode decomposition and adiabatic approximation as deznq we have takem. to be equal taw, as they differ only
scribed above gives the Hamiltonian tefB) plus an extra by a factor of the orcder ofdg,/w.)>.

contribution Hying that describes the effects originating 2o
from the driving fields. This latter contribution can be further
simplified with the help of the rotating wave approximation
(RWA), thus yielding

C. Environmental effects and master equation
for the relativistic electron

_ _ The dominant interactions of the electron with its environ-
Hdriving=ﬁ(,8aT+ef"”Pt+B* a,e'“n) ment are the radiative coupling of the cyclotron motion to
the thermal radiation field and the coupling of its axial mo-

—iwgt iwgt
+h(Bae” "+ By ae ). (®) tion to the resistor of the electric circuit involving the exter-
. nal driving voltage with amplitud&, [1,11]. The couplings
The frequencies to these environments can be treated in the Born-Markov
U approximation so that the reduced density operator of the
B=— i and B,=—i _ &% (9) electron in the Penning trgm(t) obeys a master equation of
2\2hme ., ° 4zy\2hmo, the canonical Lindblad form
describe the amplitudes of the planar and axial driving fields, - | v 1oy 1
respectively. p=—gzIH.pl+ §]: LipLi=5LiLip=5pLL )
The frequencywy of the axial driving is almost in reso- (13

nance with the axial frequency of motion, whereas it is

largely detuned from the cyclotron and magnetron frequenThus, the deterministic part of the electronic dynamics is
cies. This implies that within the framework of the RWA characterized by the Hamiltoniath of Eq. (10) and the sto-
approximation, its effect on the cyclotron and magnetronchastic part is described by environment operalgrs
motions is negligible. Therefore, the corresponding contribu- Due to the hierarchyw > w,>w_ the coupling of the
tions have been omitted in E(B). The same argument ap- cyclotron motion to the thermal radiation field is most domi-
plies for the planar driving, which will have a noticeable nant[1]. Its radiative damping can be described by the two
influence only on the cyclotron motion. As a consequencel.indblad operator$13,14]
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L= /(W—i- l)ka, and L,= \/‘H_Ka1 (14) D. Master eguatlon for the s.pln and cyc-lotron r.notlf)n .
In order to improve the signal-to-noise ratio, in typical

with the spontaneous decay rate of the cyclotron motiorexperiments the resistanBeis made as large as possillg.
k=e2w? [3meomc® and n=[e"?+/ksT— 117! denoting the AS & consequence, the axial motion is strongly damped. This
mean number of quanta of the thermal radiation field at temProperty can be used to simplify further the master equation
peratureT. (13) by eliminating the axial motion adiabatically. This adia-
In typical experiments, the axial electronic motion is Patic elimination has already been described in detail for a

monitored continuously by measuring the out-of-phase comPonrelativistic electron in a Penning trgfil] and can be
ponent of the current, which is produced by applying a sinu@Pplied to the master equatigd3) in an analogous way.
soidal driving voltage between the ring electrode and one of NUS the subsequent discussion focuses only on the general
the end-caps of the trap. The influence of this external apideas of this elimination procedure.

plied voltage on the axial motion can be modeled by a quan- When the damping rate, is large, the axial motion
tum mechanical-C-R circuit [1,11]. Thereby the induc- reaches its equilibrium almost instantaneously relative to the

tance L,y and the capacitanc€ are related to the axial other relevant time scales. If in addition the externally ap-

eigenfrénquencyw by w?=1/(L,«C). In the quantum- plied voltage is large, the stationary state of the axial motion
z in . . . . . .

mechanical description o? this-C-R circuit the charge op- 'S close to a highly excited coherent state. This dynamical

eratorQ and the current operatorare related to the destruc- regime 1S callet_j the quantum Brownian moti@BM) |_|m|t
tion and creation operatoes, anda’. by [11,14 [14] and is realized wheR = «,/ w,. becomes large, with,
2 .

and | B,|?w../ k3 being held constaritL1]. In this limit the
density operatop of the cyclotron, spin, and axial motion
5ol (a,+a)), factorizes approximately intOpr?®W+ o(\"1Y) [14], '

z-ind where p, (W) represents the density operator of the axial
motion (of the cyclotron and spin motign respectively.
Thus by tracing out the strongly driven and damped axial
electronic motion the master equation

Q:

i how,
=i
2Ling

(aj—a,). (15)

The operator measured in typical experiments is the slowly We —
varying component of the out-of-phase component of the "
current, i.e[11],

. 2
[ 1 1

o t t t
g[H,W]-i-JZ::l LWL = SLIL W= SWL]L,

—T'[N,[N,WT]] (20

[ho )
lou=2 2L = Im(aze'“dh). (16)  is obtained for the reduced density operator of the cyclotron
ind and spin motior{11]. The deterministic part of the reduced

In the context of quantum optics this continuous measuregynam'cs Is described by the Hamiltonian

ment would correspond formally to a heterodyning detection

, . - ? -~ 1 .
of a photocurren{15], provided one identified, with the H :ﬁg+a1a++ ~h0.0,~ hog &>
destruction operator of a photon in a particular mode of the 2 Wy
electromagnetic field. t T ta—iopt 1 px it
) S X(l+a,a,toya.a,+ha(Ba,'e'“r+B*a, e'“p
In the rotating wave approximation the dissipative influ- ( 8+t og)asa. h(pa, pra e
ence of the resistand®on the electronic axial motion can be (21)

described by the Lindblad operatdrst, 17 _
with the modified frequencied), =Q, +w,{n,)g and
Ls=V(n,+1)x,a, and L,=\n,«,a) 17 Q=04+9gl2wn,),. The stationary excitation number
(n,)o of the axial motion in the absence of the relativistic

with the damping rate coupling to the other degrees of freedom is given by
<nZ>O:4|BZ|2/K§+ n;.
L 18 The dissipative part of the dynamics is characterized by
Z Ling the Lindblad operatork; andL, of Eq. (14). The stochastic

influence of the back action of the axial motion on the cy-
The thermal influence of the resistor that is at temperalgre clotron and spin degrees of freedom is described by the Her-
is characterized by the mean thermal quantum number  mitian Lindblad operator

F:[eﬁwZ/kBTR_l]fl_ (19) LFZ\/EN. (22

This Lindblad operator tends to destroy all quantum coher-
ences between different eigenstates of the cyclotron and spin
number operatoN of Eq. (12) with rate

The master equatiofl3) for the reduced density operator
p, together with the Hamiltoniafl0) and the Lindblad op-
erators(14) and (17), is a main result of this section. It de-
scribes the dynamics of the electron in a Penning trap includ- > 18,2
ing the relativistic corrections and the dominant _ Yr 2 14+2n1+0(\"1 23
environmental effects. K12 (KZ/Z)Z( 2l ( )] (23
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Thus this Lindblad operator might be interpreted as describeptical heterodyning experiments as mentioned in Sec. Il C.
ing the continuous measurement of the observabiegith I" In the QSD model, the quantum state of an individual
denoting the mean reduction rate. quantum system is represented by a normalized vegtnr

In order to establish a relationship between the meain a Hilbert space, which evolves according to the stochastic
value of the measured out-of-phase curkgpt,y and observ- differential equation
ables referring to the cyclotron and spin degrees of freedom,
one starts from the equation of motion for the mean value
(a,)=(a,e'“d") using the Hamiltoniari10) and the Lindblad
operatord_; andL,, i.e.,

day T 2 kA iy wn(Na,
dt :_l(Qz_wd)<az>_EKZ<az>_|Bz_|wrC<NaZ>'

(29)

[ 1
= gHIWdt=5 2 (LILi+H L)Ly

—2<L?>¢L,->|w>gdt+21 (L= (L)) )dg; .

(26)

Therebyd¢; are complex Wiener processes with zero mean
Factorizing the density operatprand setting the axial drive values, i.e.M(d¢;)=0, whose correlations are given by
in resonance with the axial frequency, i.8,,= wy, the re-

lation d§;dé=0 and dédé = ;dt. (27)
ho, IM(5,) The quantitieL;),= A |L;| ), represent expectation val-
(o) =—21 /—Z—éwm(N) (25) ues of environment operatots with respect to statéi) .
2Ling (k2) andM denotes the mean over the statistical ensemble. The

. . . . o ) dynamical equatiori26) has the property that the time evo-
is obtained in the stationary limit, i.e., fae>1/k,. This Hution of the density operatqr=M (| 1) {#]) of the associ-

equation shows that in the QBM limit the measurement ofyio siatistical ensemble is given by a master equation of the
the out-of-phase currert,,,) is equivalent to measurement ¢ . Eq. (13. For any operatorA, the quantum-

of the cyclotron and spin excitation numbgy) [11]. mechanical mean value is given byA)=Tr(pA)

=M(A),. For a more detailed presentation of the QSD
E. Stochastic simulations of individual quantum measurement  model, we refer to Refd8,9]. A systematic theoretical de-
processes with the quantum state diffusion model scription of the continuous Stern-Gerlach effect within the

The master equatior(¢3) and(20) together with Eq(25) framework of the QSD model has been developed in Ref.
describe the time evolution of a statistical ensemble of conl11] ) )
tinuous measurements performed on an electron in a Pennin? Thus, starting from the master equati@0) for the cy-
trap. In order to describe the corresponding time evolution off0tron and spin motion, individual quantum measurement
an individual measurement record of,,) by stochastic Processes mlght be swpulated W|th|.n the fram.ework of the
simulation, in principle a detailed analysis of the measure QSD model by interpretingN),, as being proportional to the
ment process is required on the basis of the guantur@PServed current according to E@S).
mechanical measurement postulates. So far such an analysis
of the continuous measurement of the currénty, which IIl. DYNAMICS OF THE ELECTRONIC SPIN

relies on purely electronic means and does not involve any In this section the influence of the relativistic corrections

photon counting process, does not exist and its developme.r& Secs. Il A and Il B on the electronic spin is investigated.

is beyond th? Scope .Of .the present \{vork. Nevgrtheless, Igtarting from the master equati¢20) with the Hamiltonian
order to obtain some insight into the time evolution of pos-(21) and the three Lindblad operators of E¢s4) and (22)
sible |n(_j|V|dqu measurement records(d;lf,m) In the subse- the equation of motion for the expectation value of the axial
guent discussions, the quantum state diffugiQ®D) model spin componenta,)=Tr(po,) can be obtained. As, com-

of state reduction will be used. mutes with the Hamiltonian, the three Lindblad operators,

This model of state reduction has been introduced as 8.4 iheir adjoints, the expectation val(ie,)=s, is a con-
general approach to continuous quantum measurement prg ' v

. . . ) o tant of motion, i.e.,
cesses in which the time evolution of an individual quantum
system, i.e., a single member of a statistical ensemble, is d(o,)
represented explicitly8,9]. In this respect the QSD model =

o : dt

transcends the framework of traditional quantum mechanics
and its significance for the quantum-mechanical measurerpjs giso implies that the associated fluctuations of this spin
ment problem still remains an open questlor_L However., Start(‘;omponent are time independent, i.e.,
ing from the quantum optical photon counting theory it has
been demonstrgted, for example, that in heterodyning mea- 2(2>(UZ):Tr(pU§)_(Tr(pgz))Zzl_sg. (29)
surements individual records of photocurrents can be de-
scribed by stochastic differential equations of the QSD typeThus the relativistic couplings discussed in Secs. Il A and
[15]. Thus despite the lack of any systematic derivationll B do not affect the ensemble averaged spin motion. But
based on first principles, the application of the QSD model invhat happens to the electronic spin in an individual continu-
this context might be motivated by the formal analogy be-ous measurement process? In order to answer this question
tween the continuous measurement({bf,) and quantum completely, a detailed description of the measurement pro-

0. (29)
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cess is required, which is a complicated task beyond thée described simply by the replacement— *+1 in Eqgs.
main goal of the present investigation. However, some in{21) and(22) and its influence on the cyclotron motion be-
sight into the mechanism underlying the dynamics of thecomes trivial. Therefore, in the subsequent discussion of the
spin in an individual continuous measurement process can balectronic cyclotron motion it will be assumed that such a
obtained on the basis of the quantum state diffu§i@8D)  spin projection has already taken place.

model. As discussed in Sec. Il E, in this model of state re-

duption the equatio_n fp( the evolution of the quantum expec- IV. THE ELECTRONIC CYCLOTRON MOTION
tation value of an individual measurement procéss), is
given by In this section the influence of the back action of the

guantum-mechanical measurement process on the electronic
_ % cyclotron motion is investigated. In view of the discussion in
d<az>*”_j=§1;2r Ao Lj)dg ALy o)déf . (30 oo Il effects arising from the electronic spin are taken into
account by the replacement— =1 in Egs.(21) and (22).
A(A,B)=(A'B),—(A")(B), characterizes the quantum Insight into the dynamics of the cyclotron motion in indi-
correlations of the operatorsandB with respect to the state vidual measurement processes is obtained on the basis of the
| )¢, which is a solution of the QSD equati¢®6). Equation  quantum state diffusion model.
(30) shows that the electron spin fluctuates along an indi- Starting from Eq{(21) and performing the transformation
vidual quantum trajectory with zero average drift in agree-3, — 5 elest; the electronic cyclotron motion is described
ment with the average evolution of E(8). The spin fluc- by the Hamiltonian
tuations depend on the correlations ef, with the
environment operatotls; with j=1,2I". A measure of these

op ot 5 2t 1 x4 ata )2
fluctuations is given by the average spin autocorrelation H=fAwa,a,+h(pa, +F*a.)+hx(a.a,)® (34

MA@ (g,)= M<U§>¢_ M(<Uz>2¢): 1— M((”z)ﬁ), The strength of the anharmonicity due to relativistic effects
(31) is characterized byy=-w.w./w,. The frequency

Aw=0_x(1+s,)— w, with s,= + 1 refers to the detunin
which reflects properties of the QSD model and which can: . X(1FS) —wp z g

not be evaluated from the density operator of E20). In between the renormalized cyclotron frequeri¢y and the

general, MA®)(¢,) is different from autocorrelations such grc;\r”tnhgefgzcl](léec:‘cgi%p Ici);':hetﬁtlaagﬁ\r/iﬁleg';:gngzl]?sCgsglj(h:)éd
as3 (o)) =M(a?2),— (M(o,),)? which can be evaluated picty, J

from the density operator. As this spin autocorrelation fulfillst0 be a real number. The reduced density operator of the
the equation yop ' P electronic cyclotron motion is governed by the master equa-

tion (20). Thereby dissipative effects due to radiative damp-

dA® (o)) ing and thermal fluctuations of the cyclotron motion are de-
M T:—ZEJ_: M[|A(a,,L))I?], (32 scribed by the Lindblad operatofs;= v(n+1)xa, and

[,=\nxa' . The Lindblad operatof =+2Ta’a, de-
it decreases with time until the quantum correlationsscribes the back action of the continuous measurement pro-
A(o,,L;) between the spin and the Lindblad operators becess on the cyclotron motion.
come vanishingly small. The guantum correlations on the In the absence of the quantum measurement process, i.e.,
right-hand side of Eq(32) vanish, if the quantum statey),  for =0, this model has already been investigated previ-
can be factorized according to)).=|¢):®|s,);, where ously[4,16]. This simplified model describes a driven, an-
|#)¢ and|s,), denote a cyclotron state and an eigenstate oharmonic oscillator interacting with a thermal bath. A char-
o,. From EQq.(32) it can be shown that acteristic feature of this model is the appearance of
bistability and hysteresis effects. The main aim of the subse-
quent discussion is to gain an understanding of the mecha-
nism by which the back action of the quantum-mechanical

. . ] measurement process on the cyclotron motion influences
which demonstrates that the average spin-autocorrelation dghese hysteresis effects.

cays exponentially within a time of the order Bf * or less.
Thus according to the QSD model of state reduction, the
mean measurement rafé represents the minimal rate at d(é >
which the spin is projected onto an eigenstateogfin an t_ 2 At a2
individual measurement process. dt I[(Aotx)(a)+a+2x(@ias)]

Thus the relativistic couplings discussed in Secs. Il A and 1
Il B do not affect the average spin dynamics. The spin ex- _- 2
pectation valug o) is a constant of the motion. However, 2(K+2F)<a+>' (35
according to the QSD model these relativistic couplings af-
fect individual quantum trajectories by projecting the spinthat the measurement process tends to increase dissipation
state onto an eigenstate of, with a rate that is larger or according to the replacemert— «+2I". In order to obtain
equal to the mean measurement ratef Eq. (22). After the  a more detailed understanding of characteristic features of
completion of this reduction process, the influence of thehe quantum measurement process, let us first of all neglect
electronic spin on the dynamics of the cyclotron motion carall anharmonic effects.

A2
ST MA@

It is apparent from the equation of motion f(ﬁ+), ie.,
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A. Harmonic approximation o . ) 2T
Neglecting anharmonic effects, i.e., settiger 0, simple (@iac)s=n+|(a.)*| 1+ k| 37)
analytical expressions are available fq@a,)(t) and _ _ o
(a' a.)(t). In particular, the stationary values are given by 1he time evolution of these quantities is given by
A Aw+i(x/2+T) <é+>(t)=<é+>s+[<é+>(t=0)_<a+>s]efiAwtef(K/2+F)t
(@4)s= =B X073 (w2 T) 39 (38)
and and
atn atn atn ot n » IM{((a;)i-0—(a1)s)(k2-T+idw)}
<a1a+>t:<aia+>s+(<a1a+>t=0_<a1‘ra+>s)e t+2:8 Aw2+(K72_F)2 !
A _ /A _ i —iAwt
_ Blm{(<a+>t=0 <a;r>s)(K/2 F—Z{_IAw)e }e*(K/2+F)t (39)
Aw+(kl2-T)

with Im indicating the imaginary part of a complex number. the ensemble averaged equation of moti@h. The remain-

In the special cas€ = /2 the time evolution of Eq(39) is  ing terms describe the fluctuations originating from radiative

modified to damping, from thermal noise, and from the back action of
the measurement process on the cyclotron motion. In the
absence of measurement, i.e., 00, this equation has

(ala,)=(ala )+ ((ala,)_o—(ala,))e already been investigated previou$h;16]. In particular, it
ot . . has been shown that dissipation due to radiative damping and
—2pte” " Im{(a; )i—o—(a+)s- (40 thermal noise tends to localize a wave packet in phase space.

These analytical results demonstrate that besides increalsn- the limit of a perfectly localized state, i.e., a coherent

ing the radiative damping rate according to the replace- sEa}rt?,z the - nonllnAear term factorlzgs accordlng_ to
ment k— «+ 2T, the measurement process may also givel@+a+)y=[(a+)y/*(@+), thus reproducing the classical
rise to some less obvious effects such as an increase of th@nlinearity. On the other hand, according to E4j) the
stationary excitation numbe’ a, )s or a modification of measurement process tends to project the $igtgonto an

the exponential decays. The study of this linear model Showgr?ergy e|g?nstate OfATthAe uAnperturbed cyclotrgn motion. In
that effects arising from the quantum measurement proced§is statea.),, A(a.a,,a.), and the nonlinear term
can be neglected as long Bs< /2. However, as soon as the (aﬂai}w vanish. Thus, intuitively we expect the measure-
measurement raflé exceeds¢/2, the back action of the mea- ment process to produce a quantum correlation, which might
surement process on the cyclotron motion is no longer negeven be able to cancel the nonlinearity and thus to destroy all

ligible. hysteresis effects. In the limit of highly excited cyclotron
states, a simplified description of the measurement-induced
B. Anharmonic effects due to relativistic corrections influences can be obtained with the help of the semiclassical

In order to investigate the influence of the quantum-decormkjltlon approximation.

mechanical measurement process on the hysteresis
effects originating from the anharmonic couplings o o _
discussed in Secs. I A and 11 B, let us consider the QSD A simplified description of the cyclotron motion can be
equation of motion for the expectation vaIL(é ) obtained in the semiclassical limit of a large driving ampli-
namely e tude B. In this limit, quantum expectation values can be
d(é+>¢= —i[(Aw+X)<é+>¢+ B+ 2X<éiéi>¢]dt decE)rreIa:ced according to the relation(a1a+)l/,
—>(a1>¢<a+)¢,. Formally this semiclassical limit is obtained

_ %(K+2F)<é+>¢dt+ /(HJF 1)K[A(é1 ,?i+)d§1 from Eg. (41) by applying the scaling transformation
t'=t, k'=«, I''=T, Aw'=Aw, B'=upB,

1. Semiclassical decorrelation approximation

+AP(A,)de |+ Vnr[dé+ AP, )dé,

~p ~ 1 — _
+A(al,a,)dés]+2l (8, ) dés X'="zx. andn'=p’n (42
+A(ala, ,a,)(dé;+dés)]. (42)

with the scaling factoru—oc. Scaling transformations of
The deterministic part of this equation is identical to this type have already been discussed previously in connec-
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FIG. 1. The border of the bistable domafull curve) is shown FIG. 2. Time evolution, in arbitrary units, of the ensemble av-
and the location of the system for different values of the measuregrage excitation number using 100 trajectories. The parameters used
ment rate I (dotted curvge with the parameter choice arek=1.5, = —7.0,n=0, y=0.04, andAw=—5.0. The initial

— 3/p2,, —
a=Aw’/f"x=-300. state is a coherent state centered at a metastable position. The upper

. . . o curve is forI'=0, the lower for'=0.1, and the middle one for
tion with the quantum-classical transition in systems whos§-_ 57

classical dynamics are chaoti¢7]. Applying this scaling
transformation to the QSD equation of motiGtl) yields the border lineg(full curve). In this latter case all associated
hysteresis effects are destroyed.

) 1
da=—i(Awa+B+2x|al?e)dt— E(K+ 2I') adt 2. Bistability and measurement-induced fluctuations

Returning to the full QSD equations, we investigate the
+Vnkdé,+ 2 adé; (43 influence of thermal and measurement-induced fluctuations
on bistability in Fig. 2, where the time evolution of the av-

with a=(a,),/u. The semiclassical QSD equatioh3) is  erage excitation numbed(a a. ), is depicted for different
invariant under the scaling transformatié#2) and in the values of the measurement rdie The parameters in Fig. 2
absence of measurement, i.e., 100, it reduces to the are chosen so that in the absence of quantum measurement,
classical stochastic differential equation for a driven anhari.e., forI'=0, the system starts in the bistable domain. The
monic oscillator interacting with a thermal bath. Equationinitial state is assumed to be a coherent state centered at one
(43 contains two noise terms. The first one proportional toof the two possible metastable equilibrium points. Two dif-
Jnk represents thermal fluctuations while the second onéerent values of the measurement rate have been used to
proportional toy2T is a homogeneous noise induced by thecompute the time evolution, which is compared with the time
guantum measurement process. Both the thermal and ttvolution in the absence of measurement. Fer0 the ef-
measurement-induced fluctuations transform the stable equiective decay time of the excitation number is much larger
librium points, which correspond to the stationary solutionsthan the radiative damping time &/ This reflects the fact

of the deterministic part of Eq43), into metastable equilib- that, in the absence of measurement in the bistable regime,
ria. In particular, the measurement process can hide bistabithe noise-induced transition time between the two possible
ity by inducing spontaneous transitions between both metametastable states is usually much larger than the inverse
stable equilibrium points. Alternatively, the measurementcharacteristic radiative damping timex1{16]. This transi-
process can also suppress bistability by displacing equilibtion time depends mainly on the magnitude of the thermal
rium points out of the bistable domain. This latter point isfluctuations. With increasing measurement ritéhe effec-
illustrated in Fig. 1. Each point of Fig. 1 represents a systentive decay time of the excitation number decreases rapidly
described by the semiclassical E@3) in the absence of and finally approaches the radiative damping time itv the
noise, i.e., fordé,=dé&;=0. The location X,y) of the sys- limit when all effects arising from the nonlinear term
tem is specified by its parameters where (x/2+T')/Aw (é’ﬂréiw have become insignificant. This demonstrates the
andy=(«/2+T)3/ B2x. Bistable behavior is only possible profound influence of the quantum measurement process on
for points located inside the full curj@6]. If, starting from  bistability. The quantum measurement process tends to
an arbitrary point, we keep all parameters fixed and vary th@roject the quantum state of the electronic cyclotron motion
measurement ratk, the point will follow a cubic curve of onto an energy eigenstate that is delocalized spatially and for
the formy=ax® with a=A > 8%x. The dots in Fig. 1 rep- which the nonlinearity of Eqi41) vanishes. This removal of
resent locations of the system for different values of the meathe nonlinearity leads to a suppression of bistability, which is
surement raté’. The trajectory formed by these points dem- exemplified by the rapid change of the effective decay time
onstrates that with increasing measurement fgteystems in Fig. 2.

that are bistable in the absence of measurement, i.e., for In Fig. 3, numerical simulations of individual experiments
I'=0, eventually become monostable as soon as they cro$sr measuring hysteresis effects are presented. It is assumed
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100 - - - - - and reversed allows one to define a detuning wixithas the
size of the bistable region in an individual realization. This
detuning widthA() is a random variable and is different for
each realization of an experiment.
As has already been discussed previo(i$gl, in general
the statistical properties of this detuning widiif) depend
on the ratio between the measurement delay tignand the
mean stochastic transition time between the classical
steady states. In the absence of quantum measurement, i.e.,
for I'=0, this latter time is typically much larger than the
radiative damping time &/and depends on the magnitude of
the thermal fluctuationgl6]. Two limiting cases can be dis-
tinguished.(i) If the measurement delay is small relative to
the stochastic transition time, i.e>t,,, then in generah()
has a finite value thus exhibiting bistabilitji) At the oppo-
site extreme, i.e., for<t,,, the detuning widthAQ is equal
to zero, thus indicating the disappearance of hysteresis ef-
fects.
The back action of the continuous measurement process
80 . on the electronic cyclotron motion tends to project the state
N onto a spatially delocalized energy eigenstate. Therefore it is
expected that with increasing measurement fathe mean
60 $ o 7 stochastic transition timedecreases, thus eventually leading
to a measurement-induced disappearance of hysteresis ef-
fects. This behavior is exemplified by the individual realiza-
tions depicted in Figs. (@) and 3b). In Fig. Ja) the mean
measurement rate is of the order of the radiative damping
ratex. As a consequence, the detuning width is much smaller
than the classically expected value in the absence of mea-
‘ surementdashed curve extending to the far Jetdowever,
samaaaasinds hysteresis effects are still apparent. In Figo)3he measure-
-10 -8 6 -4 - ; .
Detuning ment ratel” is already so large that all hysteresis effects have
disappeared even in the classical lifdashed curvedue to
FIG. 3. Numerical simulations of hysteresis experiments, in arthe fast stochastic transitions between the classical steady
bitrary units, using the QSD model with parametets=1.5,  states. As a consequence these rapid stochastic transitions
B=-7.0,n=0, xy=0.05 and for two different measurement rates give rise to fluctuations of the measured excitation number
(@ I'=0.3, (b) I'=0.8. The detuning step is 0.1 and the measure<a’ a, ), that are much larger than in the case depicted in
ment delay time is,=50. The dashed curves represent the classitig. 3(a).
cal steady-state excitation numbers with-0 (curve extending to
the far lefy and(a) I'=0.3, (b) I'=0.8.
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100 T T T T T

40
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V. CONCLUSION

that the dynamics of a single electron is measured continu- A detailed quantum-mechanical description of the relativ-
ously in cases in which its corresponding classical motion igstic dynamics of a single electron in a Penning trap has been
bistable in the absence of measurement. The driving fregeveloped in which interaction with the environment has
quencyw, of the external electronic field is assumed to bepeen taken into account. To this end we have retained the
varied step by step from low to high frequencies and reyagdiative damping of the cyclotron motion and dissipative
versed, thus spanning twice the classically bistable domaireffects of the axial motion originating from the readout re-
For each value of the driving frequenay, it is assumed that  sjstor. The relativistic effects lead to nonlinear couplings be-
the experimenter waits a tintg,, i.e., the measurement de- tween the electronic cyclotron, spin, and axial motion. Thus
lay, and records the excitation numbéa'a.), before the electronic cyclotron and spin motion can be monitored
changingw, again. The measurement delay is assumed to beontinuously by measuring the charge-induced currents of
much larger than the characteristic radiative damping timehe axial motion.
1/k. Thus the driving frequency is swept adiabatically with A master equation has been derived that describes the
respect to the radiative damping timec1/ dynamics of a statistical ensemble of continuous quantum
According to the QSD model of state reduction, such anmeasurements performed on an electron in the Penning trap.
experiment is described theoretically by curves like the oneJhe electronic axial motion, which might be considered as
shown in Fig. 3. The measured excitation num{m};a+>¢, part of the measurement apparatus, has been eliminated adia-
fluctuates around one of the two classical steady states forlzatically in the limit of rapid axial dissipation, i.e., in the
while and then jumps to the other value. The two jumpsquantum Brownian motion limit. In this limit the measure-
[indicated by vertical arrows in Fig(8] occurring when the ment apparatus is sensitive to the electronic cyclotron and
driving frequency is ramped from low to high frequenciesspin quantum number and the mean rate of redudii@an
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be varied over many orders of magnitude by altering theclotron state into a spatially delocalized energy eigenstate of
external driving of the axial motion, similar to the harmonic the unperturbed cyclotron motion. The relative strength of
case presented earlier in R¢L1]. It has been shown that these two competing stochastic processes depends on the ra-
this measurement process tends to project the electronic spiio between the measurement rétend the radiative damp-
along the axial direction. After the completion of this projec- ing rate « of the cyclotron motion.
tion process, the relativistic effects do not give rise to any
further spin flips. _ ACKNOWLEDGMENTS
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