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Submicron rectangular cylinders as atom guides
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The guiding of atoms by laser light is investigated for atoms inside a long hollow cylinder with a rectangular
cross section of subwavelength dimensi@sb. The cavity modes are quantized, allowing the position-
dependent spontaneous emission rate to be evaluated for an electric dipole inside the cylinder. Useful limits of
the spontaneous rate are derived. In particular, results appropriate for the parallel-plate case are recovered when
sidea of the rectangular cross section becomes large, whiletsidéept fixed. In the limit of the small cross
section, especially when both and b are less tham\ (the atom electric dipole transition wavelengtthe
spontaneous emission process is possible only via a few cavity modes. If a cavity mode is now excited with
sufficient intensity, the atoms become subject to a transverse dipole potential and an axial dissipative force,
both of which vary across the cylinder and are also functions of the atom axial velocity. The dipole potential
is responsible for the transverse trappiagd hence the channelingf atoms at specific regions of the cross
section, while the dissipative force controls the axial motion of the channeled atoms. The conditions facilitating
atom guiding are explored using typical parameters for sodium atoms in rectangular cylinders of subwave-
length dimensiond.S1050-294®8)07212-6

PACS numbses): 32.80.Pj, 32.80.Lg, 42.50.Vk

[. INTRODUCTION oms in well-defined regions of the cross section as they are
guided along the axis. As we emphasized 1, subwave-

In a recent papdrl] we have investigated the dynamics of length atom guides offer the prospect of single mode opera-
atoms between conducting parallel plates in which a cavitgion and of a better control of the effects of spontaneous
mode is excited. We have shown that the characteristics gfmission. In this paper we explore these expectations in
such a system depend on a number of factors, including fielepth for the case of atoms in rectangular cylinders.
intensity, sign and magnitude of the detuning, the dipole ori- The paper is organized as follows. In Sec. Il we outline
entation, and the type of cavity mode excited. When thehe procedure leading to the quantized electromagnetic
cavity dimensions become comparable to a dipole transitiofodes inside a rectangular waveguide. This readily facili-
wavelength\, the physics of such a system becomes signifitates the evaluation of the spontaneous emission rate for an
Canﬂy different from that Of atom gu|d|ng arrangements Con_electric d|p0|e within the rectangular guide and the Variation
sidered to date. The question then arises as to how would tHd this rate with the dimensions of the cross section. The
details of atom guiding be modified in a cylindrical wave- Subwavelength regime is emphasized where only one or two
guide of a cross section that typically has subwavelengtfinodes are responsible for the spontaneous emission. In Sec.
dimensions. Il we illustrate the results by considering the case of sodium

In th|s paper we examine atom gu|d|ng inside Cy”ndrica' atoms in SUbWaVeIength Waveguides. In Sec. IV we Consider
waveguides with rectangular cross sections. We concentraffom guiding and begin by examining the dynamics of atoms
here on this type of cross section for two reasons. First, dewithin the guide and in Sec. V we discuss the effects on the
spite the fact that the electromagnetic modes of a rectangul&Rotion when a cavity mode is excited. Section VI contains
waveguide are well known, it appears that neither the sporcomments and conclusions.
taneous emission rate nor the atom dynamics in this structure
havg been reported before. Second, the rectangular cross sec- IIl. QED IN WAVEGUIDE
tion is a natural extension for the parallel-plate case. In fact,
the parallel-plate system is one of the useful asymptotic lim- The atom guide focused on here is in the form of a rect-
its of the cylinder with a rectangular cross section. As weangular waveguide, as depicted in Fig. 1. As shown in this
show later, this limit provides a useful check of the calcula-
tions. A

The significance of atom guides for the emerging field of
atom optics has been emphasized in our previous gdger

and the reader is referred to the introduction of that article —co~<--a > 0o
for background, especially with regard to different types of

atom guide and the status of theory and experiment to date '\;

[2-8]. The potential application of atom guides in atomic b

AN X

physics research and in lithography are hinged on the ability
to maintain channeling in specific regions of the cross sec- FIG. 1. Schematic drawing of the rectangular waveguide show-
tion and the consequent generation of an atomic beam. Theg®y the orientation of the Cartesian axes, the axis of the cylinder,
requirements depend on the mechanism for confining the atnd the walls.
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figure, a normal cross section is assumed to have the dimeaquantum numbers, m and an axial wave vectd. The rel-

sionsaxXb and is taken to lie in the/-z plane with the evant commutation relations are

cylinder axis along thex direction, coinciding with the

straight liney=b/2; z=a/2. The guide is bounded by walls [an(k,n,m),a;,(k’,n’,m’)]= 8y Ommy Onnr O(K—K").

arising from the intersection of four planesywt0; y=Db (4)

and z=0; z=a, all are assumed to be planar surfaces of

perfect conductors which exclude all electromagnetic field$-inally, F,(k,n,m,x,R, ,t) are the mode functions for

from their interior. The standard electromagnetic boundaryvhich explicit forms are given below. These vector functions

conditions apply such that the tangential components of th&atisfy the wave equation as well as the electromagnetic

electric field vector and the magnetic field vector must vanboundary conditions at the guide walls.

ish at every point on all guide walls. It is convenient to simplify the notation by introducing a
The atom of masM is characterized by its electric dipole compound mode variabl® which stands for the three mode

momentu of oscillation frequencyw, interacting with the  variables(k,n,m. The quantized electric field in E¢2) be-

electromagnetic modes inside the waveguide. The effectiveomes

Hamiltonian can be written as

p2 ExR, D= > X {a,(QF,(QxR, t)+H.c},
= oy FUR Fhoor!m—w E(R)+H, (D) 7=(ps) Q )

whereP andR are the momentum and position vectors of thewith a similar equation corresponding to E&). The sum
atomic center of mass which is assumed to be subject to @ver Q stands for one integration ovérplus two integer
genera| potentiaU(R)_ In the two-level approximation the SuUums _overn and m. The mode commutation relations are
internal motion of the atom involves only two statés; of ~ NOW given by

energy E., and |g), of energy E;, such thatE.—E, :

=fiwy. The operatorst and 7' are lowering and raising [a,(Q).a,,(Q")]=05,, dqq" (6)
operators for internal atomic states such tpet (pu)eq(7

+7'); E is the electric field operator artd; is the electro- Where 5o is interpreted by inspection of the right-hand

H

magnetic field Hamiltonian. side of Eq.(4).
The mode functions for the transverse magnéfit/)
A. Quantized fields modes corresponding tg=p (p-polarized modgsemerge

_ _in the form[9]
The procedure for enumerating the electromagnetic

modes |nS|d_e the cylinder begins with the sqlut!ons of th_e Fo(QXR, ,t)=Cp(Q){i>?(Kﬁ1+ Kﬁ)sin(xmy)sin(an)
wave equation for transverse electromagnetic fields. As is _
well known, there are two types of normal modsesolar- +YrmK O kY)Sin( knz)
ized (TE) and p polarized(TM), both of which satisfy the R . i[kx—w(Q)t]
electromagnetic boundary conditions at the guide walls. The +2Knk sin(kmy)cog k)€ :
total quantized electric and magnetic field operators are writ- (7)
ten as follows:

where carets denote unit vectors, and «,, are given by

E(x,R, ,t)= f dk
xRoD= 2 2 | Sz
Km=——, Kp=—. (8
x{a,(k,n,m)F,(k,n,mx,R, ,t)+H.c},
2) o(Q) is the mode frequency satisfying the dispersion rela-

tion
BOGRL = 2 % Lcdk 0?(Q)=c2{k2+ k2 + k). 9)
1 Finally in Eq.(7), C, is thep-polarized mode normalization
X[ To(nmK) a,(k,n,m) factor given by
ZﬁCZ 1/2
XVXF,(knmx,R ,t)+Hc, (3 Cp(Q)= ALEow(Q)[Kan+ Kﬁ] , (10

where H.c. stands for “Hermitian conjugate” and we havewhereA is the cross-sectional area of the guide &nid its
expressed the position vector in component form by writing(large length.

R=(x,R,) with x an axial coordinate ang, =(y,z) a two- The second set of electromagnetic modes in the rectangu-
dimensional(transversg position vector in they-z plane. lar waveguide is the transverse electfiE) set of modes
The operatora,(k,n,m) is the boson operator for the field corresponding ta;=s (s-polarized modes The mode func-
mode of polarizationy(=p,s), characterized by the integer tions for these are given @]
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F(Q.x,Ry 1) =Cs{ — YxnCOL kpny)SIN(knZ)
+ 2K SIN( Ky ) COS k,2) Je! KX 1o
(13)

whereC; is the normalization factor fog-polarized modes

2hw(Q)

12
ALeg[ Kﬁd‘ Kﬁ]fmn) '

Cs(Q)= (12

wheref ., is such thatfy,=3="f,,andf,,,=1 for mandn
satisfyingm=1 andn=1.

The total Hamiltonian for the electromagnetic fields
within the waveguide is

H [ dx | d°R E2(x,R t)+i B2(x,R, ,t)
f 2 Cw 1 60 AR ] o s\, .
13

The factorsC, andC; defined in Eqs(10) and(12) are fixed

by the usual quantization requirement that the field Hamil-

tonianH; reduces to the canonical form

1
HfZE >

7(=p,s

> fhw(Q)a,(Qal(Q)+al(Q)a,(Q)}.
) Q ( )
14

B. Spontaneous emission

The spontaneous decay rate for an electric dipolsitu-
ated at an arbitrary poirR=(x,R, ) within the waveguide is
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FIG. 2. Dispersion curves showing the TM and TE branches of
the guided modes in a cylinder of rectangular cross section with
dimensionsa=0.9\ andb=0.6\ wherex =589 nm.

Since w(k,n,m) depends on the guide dimensioagndb
entering viak, andk, , Eq.(16) conceals the dependence on
the chosen values & andb.

Assuming thatb=a, the ‘“zone center” k=0) fre-
quency separation between the lowest branch, Tderre-
sponding tom=0, n=1 (or n=0, m=1) and the adjacent
branchm=1, n=1 is approximately given by

Aw(11-10)= w(0,1,1)— w(0,1,0)~c(v2—1) g
(17)

For a~1.0um we haveAw(11—10)~3.9x 10" s L. Fre-
quency separations of similar orders of magnitudes are ob-

evaluated using Fermi’s golden rule. By symmetry, this rataainable for higher adjacent branches. These frequency sepa-

cannot depend on the axial coordinat@nd we may evaluate
it for a dipole situated at an arbitrary point R,), i.e., at
points within the normal cross section in tiiez plane

2
FR)=2" 3 S Ke{0}— - E(OR,)|g:{Q. 712
i =hs @

X 8(Ee—Eg—fw(Q)). (15
As indicated, the transition from the excited internal state
to the ground statég) is effected by the emission of single
quanta of waveguide modes with statd®,7}) of fre-
guencyw(Q) and polarizationy. The vacuum state is repre-
sented by{0}).

rations are therefore quite large for waveguides with
dimensions in the micrometer range. From the special case
illustrated in Fig. 2 6=0.9\, b=0.6\, A =589 nm) we see
that if the dipole frequency is less thar0,1,1) emission is
possible only via the two TE branches. Inspection of @4)
further shows that a dipole oscillating at such a frequency
and which is oriented along the axis of the waveguide can
couple neither to the electric field of the JjEmode nor to

the TE, mode and will therefore not decay spontaneously.
On the other hand, the spontaneous decay of a dipole of
frequency greater tham(0,1,) will involve both the TE
lowest branches as well as the {fand TM;; branches. If, in
addition, this dipole is oriented along the axis, only the,TM
branch provides a decay channel, since the axial dipole can-

It should be noted that the waveguide frequency spectrumot couple to the TE modes. These observations which are

determined by Eq.(9) comprises two sets of discrete
branches, one for each type of polarizatiga (p,s). A fre-
guency branch is labeled by two fixed integersand n and

within any given branch, the frequency varies only with the

one-dimensional axial wave vect&r The TE and TM fre-

significant for submicron waveguides are substantiated fur-
ther with the calculations of the spontaneous rate, as we now
show.

The procedure for the calculation of the total emission
rate based on Eq15) can be outlined as follows. Contribu-

quency branches for a typical rectangular waveguide ar@ions from thep ands modes are carried out separately and

shown in Fig. 2.
Depending on the value of the dipole frequensy, con-

then combined to yield the total rate. Typically, after evalu-
ating the squared matrix element for a given type of mode,

tributions to the emission rate arise from all branches satisyse of the dispersion relation, E), facilitates the evalua-

fying the condition

w(Q)=w(k,n,m)=w,. (16)

tion of the integral ovek involving the é function. We are
then left with two sums over integems andn and a cutoff
condition, Eq.(16), to be satisfied for each evaluation.
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C. Contribution of TM modes For a given dipole orientation, the spontaneous emission

Consider first the contribution from the TM modes which Fat€ is given by the sum of contributions from the TM and
involves use of the mode functions defined in Efj. Fol- TE set of modes. The results can be written in terms, dfe

lowing the above procedure for the emission rate evaluatioff €€ SPace trﬁnsnmn wavelength. For a dipole oriented along
for this case culminates in an expression involving sums ovel'® @xis we have

m andn. We have at poinR, =(Yy,2) [2b/\] [2a/\]

<)
22\ [{)? TRO=To 2 X 770 GndR) (26
Fp(RL)Zé En: 0D TG%(RL)
, , and for dipoles oriented transversely along yher z direc-
(my) (m2) tion, we have
+ 7 Gh(R)+ 7 GL{(R) |, (18
H [2b/\] [2a/A]
3\
whereu is the magnitude of the dipole matrix element vector Iy 2(R)=To 2:0 nzo (F)
(Meg), with Cartesian components represented (),
{pmy), and{u,). The G functions appearing in Eq18) are 1 A2
givenby X{ = FRAR)+ 727 GHAR) |, (2D)
mn

X mHmn [ May| (N2 [In Egs.(26) and (27) we have used the notatidr to indi-
Ghn(R)= sir? sir? , (19 - ; _
Rmn b a cate the integer part of the bracketed quantity. Algds the
corresponding spontaneous rate in free space

a’m?Rpp 32( mary

G%n(RL)Z—meO . /'szg
I 28
, _ n°Rpy, o[ MY o N2 )
Gmn(RL)= Ho o7 %1 a ) (2) " These results can now be explored for a typical situation
involving a sodium atom in a rectangular waveguide. Our
where we have definel,,,, andH,, by main concern here, however, is with the regime in whach
andb take values in the micron range.
Rmn=(wga?/c*—m?m?a’/b?—n’m?)"2, Before we consider this regime, it is instructive to check
T the results using a particularly simple asymptotic limit aris-
Hmn=a°m/b"+n”. (220 ing when sidea of the cross section increases to infinity with
b fixed. As we show next, it is possible to check by explicit
D. Contribution of TE modes calculations that in this limit the contributions from E¢$8)

and (23) give values for the well-known emission rates for

Similar evaluations leading to the contributions from the”,.
dipoles between parallel plates.

s-polarized modes are based on Effl). The results can be

written in the form
Ill. SODIUM ATOMS IN MICROGUIDES

For orientation as to orders of magnitude it is instructive
to concentrate now on a typical physical situation. We con-
(n >2 ( >2 sider the case of a sodium atom and focus on its

X{ 7 Fho(R) + Mzz ann(RL)}, 325, 3%ps, transition (\ =589 nm). The magnitude of
K M the dipole matrix element associated with this transition is
(23)  about u=2.6eag, which is consistent with the measured
free space lifetime ofy~16.3 ns(or I';=6.13x10" s }).
whereF?,, andF7,, are given by Figure 3 shows the spontaneous emission rate for a so-
dium atom at the center of the cylinder, i.e., at the point
mTFY) sinz( ”TFZ> (24) (0,b/2,a/2), with the atomic dipole oriented in turn along the
b a/’ three axes§=x,y,z). The plots show the ratio emission rate
againsta/b with b fixed atb=0.6\ and for different dipole
nwz) (25 orientations. In the axial dipole orientation shown in Fig) 3
a

Z,uzwg
rr)=3 3 (o

2

FY (R,) n s’-(
= Cco
mn + Hmann

’m? mary

b

Fin(R1) = there is a “cutoff” value ofa below which there is no spon-
taneous emission. In each case the rate oscillates with in-
creasinga and shows a clear tendency to asymptotically at-
taining a fixed value at large.

The results in Egs(18) and (23), respectively, give the It is of interest to check that all asymptotic values of the
contributions of the TM and the TE modes to the spontanerectangular case obtained for a fixed valuebaind largea
ous emission rate for an electric dipole of frequengyin an  are consistent with those obtained when the same dipole at
arbitrary rectangular waveguide with a cross section of dithe pointy=b/2 is oriented parallel to two plates separated
mensionsaxb. by a distancéb=0.6\. The parallel-plate emission rates are

sinZ( )cosz

bZHmann

E. Total spontaneous rate
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FIG. 3. Total spontaneous emission rate againhistwith b fixed
at b=0.6 um for a sodium atom at the center of the cylinder
=0; y=Db/2; z=al/2 when the atomic dipole is oriented along the
(&) x axis, (b) y axis, and(c) z axis. Herel'y is the free space value

of the spontaneous rate.

well known (see, for example, Bartdl0] and Hinds[11]).
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FIG. 4. Distribution and contour plots for the spontaneous emis-
sion rate when the dipole matrix element has different orientations
(a) along thex axis, (b) along they axis, and(c) along thez axis.

See the text for other assumed parameters.

. 3>\+[2§:“ 3\ [ (mh 2 o[

(y)= oz 2 2p |t 2B/ (OS] |
(30

The values obtained from Eq&9) and (30) are

[(y=b/2)=2.118,, T, (y=bl2)=1.25,. (31)

The corresponding results emerging from the rectangular
guide results in the asymptotic limat—c must be combined
to yield the parallel-plate case. Numerical evaluations in the
parallel dipole case confirm that the stif+T'5+T? evalu-
ated at ((h/2,a/2) for fixedb=0.6\ in the limit of a becom-
ing large converges to 2.1I§, while for the normal dipole
case we find that the sunﬁ§+ F{f converges to the value
1.297,.

Figure 4 shows the distribution and contour plots for the

In terms of our choice of axes the emission rate for a d'p°|espontaneous emission rate when the dipole matrix element

oriented parallel to the plates is

[2b/\]

Iyy)=r 20 Ty

n=

1+

2
%) ]sinz(n% y) (29

has various orientations. The evaluations are carried out for
points spanning the guide cross section and are based on the
expressions given in Eq§26) and (27). Contributions from
individual types of mode are not shown. As a general rule,
however, the spontaneous rate is maximum where field com-
ponents parallel to the dipole matrix element have maximum
intensity. It is important to note that, because of the sub-

while for a dipole oriented perpendicular to the plates wewavelength dimensiona andb chosen for illustration pur-

have

poses in Fig. 4, the emission rate distributions arise from at
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most three branches of the mode spectrum for a rectangularhere A= w— w is the detuning of the field frequency

guide and two for the square guide. This observation is sigirom atomic resonance affih,= (7).

nificant for the atom guiding applications to be considered in The average radiation force acting on the atom is defined

the next section. as the average rate of change of the atomic momentum,
which yields

IV. ATOM GUIDING (Fy=—(VH;. (38)

A. Dynamics
Substitution of Eq.(32) into Eq. (38) and use of Eq(33)

allows the force to be written &%) = (Fis9 + (Faipole) - Here
Fais9 is the dissipative force given by

The dynamics of an atom inside the cylinder is modified
at the onset of the excitation of a waveguide mode whic
induces radiation pressure forces of the kinds encountered i
laser cooling and trappingee, for example, Refg12—-14). (Faisd =~ VO(R){P1A1) F(Ry) +Por() F* (Ro)},
We assume that a mode of the waveguide is excited with a (39
specific compound quantum numb@e=(k,n,m), polariza-
tion type 7 and frequencyw(Q). However, for conve- and(Fgpe is the dipole force given by
nience, we suppress the mode labels in the following outline
derivation of the radiation forces acting on the atom due to (Faing =i VQ(Ro) (B F(Rg) = Pas(D)F* (Ro)}.
this mode. o Q(Ry)

It is convenient to deal with the fields associated with an (40
excited mode in the classical limit. Hence we may replac
the field operators by numbers and writea(t) — ae™'*!,
with a similar expression foa'. In the rotating wave ap-
proximation the interaction Hamiltonian may then be written
as

9n the adiabatic approximation, the atomic velocity
=P,/M is assumed constant during the time taken for the
dipole moment to relax to its steady-state value. The position
R, of the atom at time is then given by

Hi= — wE(R)= —iA[#f(R)—Hc], (32 Ro=R+VL, (41)
where we have redefiné® so that it now denotes theip-

_ i wt H ;
where we have setr=me'® and introduced the function dated initial position of the atom. Thus we can write

£(R) by
f(R):Q(R)eIQ(R) (33) f(Rg)=f(R+V1) (42)

— iVO(R) -Vt
Here Q)(R) is a Rabi frequency defined by f(Rye ' (43

_ where we have assumed that the change in the field ampli-
RQR)=|a{m)eq F1. (34 tude is negligible during the time taken for the dipole mo-

with  the mode vector function, either for apolarized ~MeNt to relax to its steady-state value.

guide mode or @-polarized one. The forces acting on the Wit_hin the adiabatic approximation, the optical Bloch
atomic center of mass can be derived using the optical Blocfauations take the form

equations for the ato.mic density. mafcrix eIer_nents once we dpy

make the semiclassical approximation which allows the —==—2Tpyr— F(R)p1o— F*(R)p2y, (44)
gross motion of the atom to be treated classically, while dt

maintaining a quantum treatment for the internal dynamics Aoy

of the atom. Thus the position and momentum operators of — i A

the center of mass mayl/obe replaced by their experz:tation val- dt [(T=IARVIIp2t (R (P22~ pan), - (49

uesR,; andP,. The density matrix associated with the inter-
0 y y where the total detuning (R,V)=A,—VO(R)-V andpy

nal motion of the atonp(t) evolves with time according to ™ ZitV-Ve(R) ;
the well-known relation =D,€ . The forces can now be written as

(Fais9 = —AVO(R){p1At) f(R) +pf* (R)},  (46)
VQ(R)

_ _ _ (Faipole) =17 R {P12AF(R) = pn(OF*(R)}.

whereR p accounts for the relaxation dynamics of the atomic
system. By substitution dfl and use of the coupling given in (47)
Eq.(32), we obtain the following optical Bloch equations for rqr given initial conditions the solution of the optical Bloch
the atomic density matrix elements: equations(44) and (45) leads formally to the determination

dpa of the forces by direct substitution in Eqgl6) and (47).

ot = — 2T pop—F(R) P12~ F* (Ro) Pt (36) _ ConsEier flrst_ t_he dissipative force. _Settlrﬁg=(x,Ri)

with R, =(y,2), it is easy to show that in the steady state,

Eqgs. (44)—(46) yield a position-dependent dissipative force
associated with the light due to the excited waveguide mode.
By symmetry, the force can only depend on the coordi-

dp

G Mol R, @9

O
W__(F_lAO)p2l+f(RO)(PZZ_pll)a (37)
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nates spanning the cross section. This force is also a function d’R,
of V,, the velocity of the atom along the axis of the cylinder, a2 | T VUZ(Q,R)). (54
and is always directed along the axis. The explicit form of 13

the dissipative force for a waveguide mode characterized bKIote that the axial force is independentsofind only de-

dni
Qandnis pends onR, as parameter. In fact E¢53) can be written
F2(Q,R,))=24T (R, )OXQ,7,R,) entirely as a first order differential equation\fy(t). On the
(FEQR.D (RIVEQ7R, other handv, appears as a parameter in E§4) due to the
y kX dependence o 7(Q,R,) on A(Q,V,).
A%(Q,V,)+20%(Q, 7R )+T:R,)J’
(48) B. Axial motion

o ) ) ) ) The axial motion follows from the solution of E¢53)
where{ indicates the dipole orientatiok(Q,Vy) is the dy-  which may be written as

namic detuning, defined by
dVv,
AQV)=0(Q)—wo—kV,=Ag(Q)—kV,. (49 M —==240XQ.7R,)

Q4(Q,7n,R,) is a position-dependent Rabi frequency associ- Kk

ated with the cavity mode when the dipole is oriented along X — > 2 2 :

the Cartesiarg direction and is defined by [30(Q) —kVx]"+20:(Q,7.R )+ T¢(R,)
(59

ﬁQg(Qv7LRL):|a<ﬂ>eg'-7:7;(QvRJ_)|§1 (50)

o _ _ _ _ We assume that the mod®, ») is excited at=0 when the
where F, is eitherp polarized ors polarized, as given in  atom is stationaryV,(t=0)=0] at the space point (B, ).
Egs.(7) and(11). The transverse coordinat@ =(y,z) appear on the right-

In the presence of the same mode, the atom also becomggng side as parameters and, so &%) can be integrated

subject to a light-induced force. In the steady state this i%traightforwardly. At timet>0 the axial velocity emerges
obtainable from Eqs(44), (45), and (47) and the result is  fom the solution of the equation

derivable from the dipole potential associated with the mode.
This, too, depends on the dipole orientation as well as the B3+ BoV2+ BV, =t, (56)
type of cavity mode and can be written as X X

where theg coefficients are given by

ﬁA(Q,V ) ZQZ(QJ%RL)
UZQ.R,)= n| 1+ g . , o
2 [A%(Q,V)+TeR.)] Bk KoM ToM(A§+202+T?)
1)  PTT3a,3R0m Pt TF,02
The classical motion of the center of mass of the atom is (57

determined by the solution of the equation of motion We have suppressed teQ, and » labels for convenience

d2R and have introducelt,=2%KkI' as a suitable scaling force
M(W) =(FZ(Q,R.))—VUX(Q,R,). (52)  for this system.
£ The axial distancex(t) traveled by the atom at time

follows straightforwardly after one further integration
We have not included the van der Waals and Casimir-Polder g y 9

potentials in the above equations of motion. The role of these t

potentials for atoms in cavities has been clarified both theo- x(t)=f V,(t)dt. (58

retically [1] and experimentally15—17; in particular, they 0

are known to be effective only at relatively short distances ] ]

from planar surfaces. Here we ignore the influence of the vaNVith the help of Eq(56) the above equation yields

der Waals potential appropriate for subwavelength dimen- s 4 s - )

sions, since our main concern is with the atom channeling X(1)=32B1Vy+ 3BVt 383V (59

effects that take place in regions of the cylinder cross section

that are far removed from surfaces, specifically in the vicin-ThusV,(t) andx(t) can be determined once the parameters

ity of the cylinder axis. needed to define thg coefficients are known. The typical
Since(F7) can be written agF 7)% (and so always points parameters for the axial mption are governed by the trans-

in a direction parallel to the cylinder ayjsthe equation of ~Vverse motion, as we now discuss.

motion (52) decouples naturally into two separate equations,

corresponding to the axial and transverse components of the C. Transverse motion

atom position vectoR=(x,R,). We have The principal requirement of atom guiding is that the di-

d2x pole potential given by Eq(51) be a trapping potential,
M(—z) =(FZ(Q,R.)), (53)  which is only possible for negativ&y(Q). The second re-
dt £ quirement is that the depth of this potential be sufficient to
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provide several vibrational states for the atom. In order to
illustrate these points we focus on a typical physical situa-
tion. .
We consider sodium atoms and the dipole transition at (%o
A=589 nm. We assume that a specific waveguide mode is
excited by a laser with intensity comparable to that used by
Rennet al.[8] in their experiment~10" W m~2. The cor-
responding free space Rabi frequency is

| FIG. 5. Spatial distribution within a hormal cross section of the
K - uasistatic dissipative force acting on a sodium atom when the
Qo=|57—| ~856x10° s % 60 15SIpa  a { ;
0 (Zﬁzeoc (60) TM4; mode is excited. Here the electric dipole matrix element is
) ) ) axial; see the text in Sec. IV for the parameters used.
For the dimensions of the rectangular cross section we take
values in the subwavelength range as follows:

2 1/2

UR(R,) as potential must exist. In the ground state, the

a=0.9\, b=0.6\ (61)  atomic wave function peaks in the vicinity of the central
minimum associated with the dipole potential. It can be seen
and for the detuning we assume the value from Fig. 6b) that for the parameters assumed above, the
central well depth is approximately 22@~1.034 GHz.
Ag(Q)=wo— w(Q)=—6.0x 10°T' g~ — 36.78 GHz. This is sufficiently deep to allow several quasiharmonic trap-

(62 ping (vibrationa) states. The vibrational frequendgw,; can

It is easy to check that this, is much smaller than the mode be estimated simply using the parabolic approximation. We

spacing for the waveguide of dimensioasindb, as chosen find
in Eq. (61). ) 12
Finally, we make use of two scaling parameters: a scaling Swa=1 = p )
force F, which was encountered earligsee Eq(57)] and a 0117 37 g2 Yx(00/22) e (66)

scaling potential energW,. With integersm, n known,
Ao(Q) defined in Eq.(62), and with wy corresponding t0  \ye have explicitly,
A =589 nm, it is straightforward to deduce the magnitude of
the axial wave vectok using Eq.(9). The scaling parameter
Fo for the cylinder dimensions in E¢61) depends otk and (@)
for n=1=m is given by -

Fo=2/kIl(~2.33x10°%° N (63
while for the scaling potential enerdy, we write

Up=73%T(=3.23x10 %" J~4.9 MHz. (64)

In the figures below, which are all concerned with the case
n=1=m, force is measured in units &, and potential

energy in units olJ,. 0
(b)
D. Dipole along axis 50 |
With the dipole oriented along the axis and with the iM
mode excited we have a position-dependent Rabi frequency -
given by (-@)X‘mo 1
akitpr) =g 2N T T i ™ gin ™ -150 -
x(,,p,L)—owo bzt 5z) Sin sin— 4
(65) 3
-200 - 2
With the dipole oriented along the axis and in a situation ‘ i ‘

corresponding to the above choice of parameters, a dissipa-
tive force field given by Eq(48) is set up with spatial dis- /b
tribution within a cross section of the guide as shown in Fig. y

5. It can be seen from this figure that atoms located at the FIG. 6. (8) The potentials of the sodium atom in the rectangular

center of the guide experience the strongest force along thg,equide under the conditions of Fig. 5 when the dipole is along
axis. The corresponding profile of the dipole potentialihe cylinder axis.(b) Variation of the potential within a central
UR(R,) is depicted in Fig. @). It can be deduced from this cross sectiom=a/2 for a fixedb=0.6\ and increasing values af
figure that, from a quantum-mechanical point of view, solu-The labels 1-4 correspond, respectively, to the vakueD.9\,
tions of the two-dimensional Schiimger equation with 2.1\, 2.9\, and 3.9..

0.00 0.25 0.50 0.75 1.00
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FIG. 7. Spatial distribution in a normal cross section of the
quasistatic dissipative force acting on a sodium atom when the

TM4; mode is excited. Here the electric dipole matrix element is 0] / ;
oriented(transverselyalong they axis. See the text in Sec. IV for
the parameters used. -10 A b
p (b) 2
a4t WZQZA 1/2 -20 -
00117 | (A71202)a2M ybrarz (7 (L) 30|
: o)y
It is not difficult to check that with the above parameter 40 | 3
values for sodium in the Th4 mode within the rectangular
waveguide system described above we have 50 -
4
Swi~3.54x 10" s L (69) 60
The precise details of the vibrational energy levels can be 000 025 050 075 1.00
obtained straightforwardly by the numerical solution of the y/b

two-dimensional Schdinger equation involving the full
UP(R, ,V,) potential. FIG. 8. (a) Potential of the sodium atom in the rectangular guide
The relatively deep potential well in the case of a rectantnder the conditions of Fig. 7 for dipole along thelirection; (b)
gular cylinder arises from the tight confinement in two spa-change in the potential depth and profile for a fixed 0.6\ and
tial directions. If one of the dimensiorisidea) is gradually ~ varyinga The labels 1 to 4 correspond, respectively, to the values
increased while the otheiside b) is kept fixed we should 2=0-9. 2.\, 2.9, and 3.9.
approach the parallel-plate limit. That this is indeed the case
is shown in Fig. @) where the reduction in the depth of the and the corresponding potential profllé/’(Rl) is depicted
well for a fixedb= 0.6\ is achieved by a successive increasein Fig. 8a). The case of a dipole oriented transversely along
in the value of sidea. In the limit of largea we expect the the z axis yields very similar resultéwith interchange of
results to converge to those appropriate for the parallel-plataxes. In contrast to the case of axial dipole orientation, the
case[1]. dipole potential for the transverse case has no minimum at
the center of the guide. It, in fact, tends to attract the atoms
towards the walls of the cylinder. Clearly, the solutions of
the Schrdinger equation witHJ? as potential will always
have the atomic vibrational ground state distribution peaking
in the vicinity of the guide walls. As we argue below, from
the point of view of atom guiding, such a dipole orientation
will not result in efficient atom guiding by the T mode
with positive detuning.

E. Dipole transverse to axis

With the dipole vector in a plane parallel to the normal
cross section, i.e., transverse to the axis and thg,;Tivbde
excited, the relevant dipole orientation is either alongythe
axis or along thez axis. The corresponding Rabi frequencies
are given by

2ckw\ [ 72 72\ @2 Figure 8b) is the analog of Fig. @®) exhibiting the varia-
Qy(k,l,lp,RiFQo( bo )(FWL =2 tions of the potential for fixed sidb=0.6\ and increasing
0 sidea. In this case the depth of the potential in the vicinity of
Ty | Wz the walls increases with increasiagIn the limit of largea
XCOSF sin 2 (69 the results should converge to the parallel-plate case.
2ckm\ (w2 g2\ A2
Q,(k1,1p,R,)=0, 2o (Bf+ = N V. DYN-AMIC POTENTIAL - |
The principal requirement of an atom guide is to effi-
™ Tz ciently confine the atoms in the axial region of the cylinder
Xsin ™ cos—-. (70 ey ! I X g i

b

while they are acted on axially by the dissipative force. Con-
finement depends on the depth of the quantum well associ-

The quasistatic dissipative force corresponding to the samated with the dipole potential due to the excited mode. We
choice of parameters as in the preceding subsection is showrave so far examined the quasistatic features of this potential

in Fig. 7 for a dipole orientedtransverselyalong they axis

and we must now turn to the question of how these features
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FIG. 9. Dipole along the cylinder axi® dynamic dipole po-
tential at the center of the guide as a function of tirfi®;variation
of the potential akk=0, z=a/2 with the coordinate for different
values of the axial velocity. The labels 0-5 stand¥qr=0.0, 0.1,
0.25, 0.5, 1.0, and 2:010* ms™1.

0.00 1.00

change with the axial motion of the atoms.

In Fig. 9a) we display the variation of the axial potential
UP(0y,a/2t) with time (measured from the instant the
mode is excitegd From Fig. 9b) it can be seen that the depth
of the potential well diminishes with increasing axial veloc-
ity, ultimately becoming too shallow to trap the atoms. Fig-
ure 10 displays the dipole potentia(/’(o,y,alz,t) for differ-

ent values of axial velocity when the dipole is transverse to
the cylinder axis. It can be seen that the potential well be-

comes shallower with increasing, , with the region of rel-

evant variations near the cylinder walls. Figure 11 exhibits \
the variation of the axial dissipative force and the corre-
sponding axial velocity when the dipole is along the axis. It
can be seen that the axial dissipative force asymptotically
approaches small values, while the axial velocity tends to a

constant value.

From the illustrations discussed above, it is clear that the
desirable guiding action not only depends on the system pa-
rameters, but also on the dipole orientation. In order to main-
tain a transverse trapping capability for atoms with axial di-

pole orientation, the system parameters should be adjusted
such a manner resulting in a sufficient central well depth
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FIG. 10. Dipole transverse to the axialongy axis): spatial
distribution of the potential at=0, z=a/2 againsty for different
values of the axial velocity. The labels 0-5 stand ¥@r=0.0, 0.1,
0.25, 0.5, 1.0, and 2:010* ms™%.

0.00 0.25 1.00

well when the dipole is oriented transverse to the cylinder
axis, and the atoms tend to be channeled in the vicinity of
guide walls.

VI. COMMENTS AND CONCLUSIONS

In conclusion we have examined in detail the properties
of atoms in waveguides with rectangular cross sections. The
cavity modes are first quantized, allowing the spontaneous
emission rate to be evaluated for an electric dipole located at
an arbitrary point. Useful limits of the spontaneous rate have
been derived. In particular, we have been able to recover the
results appropriate for the parallel-plate case when gide
the rectangular cross section becomes large, while lside
kept fixed. We have shown that in the limit of small cross
section, especially when bothandb are less than a transi-
tion wavelength, spontaneous emission is possible only via

2.0 0.8
x 10* |
151 \
-I-t \\\ I 06
0 \
g 1.0 (FE)
S \\ 0/x
> “
o - 0.4
0.5 -
0.0 ‘ . . ! 0.2
, 0 20 40 60 80 100
In Lot x 104

especially at large axial velocities. With the same system FiG. 11. Dipole along the cylinder axis: time evolution of the
parameters, we have shown that the excitation of the samial velocity (full curve) and the dissipative force acting on the
waveguide mode does not result in a central dipole potentiadtom (dashed curve
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one or two cavity modes. With a cavity mode excited, wewalls of the waveguide are taken to be perfect conductors.
have shown that the atoms become subject to a transverga obvious line of extension of this work should consider
dipole potential and an axial dissipative force, both of whichcylindrical perfect conductor atom guides with circular cross
vary across the cylinder and are also functions of the atonsections also of subwavelength dimensions. Although the
axial velocity. The dipole potential is responsible for the spontaneous emission rate in circular cylinders has been in-
transverse trappingand hence the channelingf atoms at vestigated in the recent work by Rippin and Kni¢h8], the
specific regions of the cross section, depending on the atometails of atom dynamics along the lines discussed in this
axial velocity and the dipole orientation, while the dissipa-paper have not yet been reported. It is well known that the
tive force controls the axial motion of the channeled atomselectromagnetic modes of circular cylindrical guides have
The conditions facilitating atom guiding have been exploredazimuthal components, but the significance of this property
using typical parameters for sodium atoms in rectangulafor the motion of atoms in the guide is yet to be determined.
cylinders of subwavelength dimensions. The angular momentum features associated with the mode
The most striking feature of a rectangular guide in thephase should involve a light-induced torg{&3] and the
subwavelength regime is the depth of the well that can beonsequent helical motion of atoms trapped in potential rings
achieved in comparison with that for the parallel-plate caseand guided through the structure. Atom dynamics in cylin-
For the same set of parameters we have segf]ithat the drical guides with circular cross sections of submicron di-
depth is of the order 211.5 MHz, while here the depthmensions is currently under investigation. A related problem
reaches 1.034 GHz, which is almost five times that of thehat we are currently addressing is that of cylindrical atom
parallel-plate well depth. Cylindrical atom guides confine at-guides with guide walls made of dielectrics characterized by
oms transversely in two directions and so have the ability talispersive dielectric functions which could also exhibit loss.
eliminate the problems of transverse diffusion that are maniA theory focusing on such features can, additionally, accom-
fest in the parallel-plate case. Additionally we have now seemodate the first type of atom guide discussed in our previous
that they are much more efficient atom guides on account gbaper[1], namely, the evanescent mode guides which can
the depth of the central well. now have the new feature of the submicron dimensions. Cold
We emphasize the principal property of subwavelengttatom guiding introduces new aspects which stem from two
atom guides by contrasting this with the case of larger cylinphysical effects associated with slow atoms. First the
drical atom guides with dimensions of order &fh. For such  quantum-mechanical nature of the vibrational states is ex-
large dimensions the waveguide is multimode, the mode frepected to play a role in the dynamics and secondly the dipole
guency separation is at least one order of magnitude smallemoment of a slow atom within the guide should have suffi-
and, so, spontaneous emission is effectively that in freeient time to adjust to the mode polarization. These matters
space. This has been held to lead to the loss of guided beawill not be discussed any further here.
coherencd5]. By contrast atom guides with subwavelength
dimensions are capable of single mode operation. Also in
such guides spontaneous decay occurs by emission into one
or two decay channels. Experimental work on single mode We are grateful to E. A. Hinds and M. G. Boshier for
guides has been reported recently bydtal. [7]. useful discussions, and to M. Bow@eh for his help with the
We have focused here only on cylindrical atom guidescomputational aspects of this work. S. Al-Awfi wishes to
characterized by two distinct features. First the guide is asacknowledge financial support from the Saudi Arabian gov-
sumed to have a rectangular cross section and second, teenment.
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