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Submicron rectangular cylinders as atom guides

S. Al-Awfi and M. Babiker
Department of Physics, University of Essex, Colchester, Essex CO4 3SQ, England

~Received 8 June 1998!

The guiding of atoms by laser light is investigated for atoms inside a long hollow cylinder with a rectangular
cross section of subwavelength dimensionsa3b. The cavity modes are quantized, allowing the position-
dependent spontaneous emission rate to be evaluated for an electric dipole inside the cylinder. Useful limits of
the spontaneous rate are derived. In particular, results appropriate for the parallel-plate case are recovered when
sidea of the rectangular cross section becomes large, while sideb is kept fixed. In the limit of the small cross
section, especially when botha and b are less thanl ~the atom electric dipole transition wavelength!, the
spontaneous emission process is possible only via a few cavity modes. If a cavity mode is now excited with
sufficient intensity, the atoms become subject to a transverse dipole potential and an axial dissipative force,
both of which vary across the cylinder and are also functions of the atom axial velocity. The dipole potential
is responsible for the transverse trapping~and hence the channeling! of atoms at specific regions of the cross
section, while the dissipative force controls the axial motion of the channeled atoms. The conditions facilitating
atom guiding are explored using typical parameters for sodium atoms in rectangular cylinders of subwave-
length dimensions.@S1050-2947~98!07212-6#

PACS number~s!: 32.80.Pj, 32.80.Lg, 42.50.Vk
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I. INTRODUCTION

In a recent paper@1# we have investigated the dynamics
atoms between conducting parallel plates in which a ca
mode is excited. We have shown that the characteristic
such a system depend on a number of factors, including fi
intensity, sign and magnitude of the detuning, the dipole
entation, and the type of cavity mode excited. When
cavity dimensions become comparable to a dipole transi
wavelengthl, the physics of such a system becomes sign
cantly different from that of atom guiding arrangements co
sidered to date. The question then arises as to how would
details of atom guiding be modified in a cylindrical wav
guide of a cross section that typically has subwavelen
dimensions.

In this paper we examine atom guiding inside cylindric
waveguides with rectangular cross sections. We concen
here on this type of cross section for two reasons. First,
spite the fact that the electromagnetic modes of a rectang
waveguide are well known, it appears that neither the sp
taneous emission rate nor the atom dynamics in this struc
have been reported before. Second, the rectangular cross
tion is a natural extension for the parallel-plate case. In f
the parallel-plate system is one of the useful asymptotic l
its of the cylinder with a rectangular cross section. As
show later, this limit provides a useful check of the calcu
tions.

The significance of atom guides for the emerging field
atom optics has been emphasized in our previous pape@1#
and the reader is referred to the introduction of that art
for background, especially with regard to different types
atom guide and the status of theory and experiment to
@2–8#. The potential application of atom guides in atom
physics research and in lithography are hinged on the ab
to maintain channeling in specific regions of the cross s
tion and the consequent generation of an atomic beam. T
requirements depend on the mechanism for confining the
PRA 581050-2947/98/58~6!/4768~11!/$15.00
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oms in well-defined regions of the cross section as they
guided along the axis. As we emphasized in@1#, subwave-
length atom guides offer the prospect of single mode ope
tion and of a better control of the effects of spontaneo
emission. In this paper we explore these expectations
depth for the case of atoms in rectangular cylinders.

The paper is organized as follows. In Sec. II we outli
the procedure leading to the quantized electromagn
modes inside a rectangular waveguide. This readily fac
tates the evaluation of the spontaneous emission rate fo
electric dipole within the rectangular guide and the variat
of this rate with the dimensions of the cross section. T
subwavelength regime is emphasized where only one or
modes are responsible for the spontaneous emission. In
III we illustrate the results by considering the case of sodi
atoms in subwavelength waveguides. In Sec. IV we cons
atom guiding and begin by examining the dynamics of ato
within the guide and in Sec. V we discuss the effects on
motion when a cavity mode is excited. Section VI conta
comments and conclusions.

II. QED IN WAVEGUIDE

The atom guide focused on here is in the form of a re
angular waveguide, as depicted in Fig. 1. As shown in t

FIG. 1. Schematic drawing of the rectangular waveguide sh
ing the orientation of the Cartesian axes, the axis of the cylind
and the walls.
4768 © 1998 The American Physical Society
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PRA 58 4769SUBMICRON RECTANGULAR CYLINDERS AS ATOM GUIDES
figure, a normal cross section is assumed to have the dim
sions a3b and is taken to lie in they-z plane with the
cylinder axis along thex direction, coinciding with the
straight liney5b/2; z5a/2. The guide is bounded by wall
arising from the intersection of four planes aty50; y5b
and z50; z5a, all are assumed to be planar surfaces
perfect conductors which exclude all electromagnetic fie
from their interior. The standard electromagnetic bound
conditions apply such that the tangential components of
electric field vector and the magnetic field vector must v
ish at every point on all guide walls.

The atom of massM is characterized by its electric dipol
momentm of oscillation frequencyv0 interacting with the
electromagnetic modes inside the waveguide. The effec
Hamiltonian can be written as

H5
P2

2M
1U~R!1\v0p†p2m•E~R!1H f , ~1!

whereP andR are the momentum and position vectors of t
atomic center of mass which is assumed to be subject
general potentialU(R). In the two-level approximation the
internal motion of the atom involves only two states:ue&, of
energy Ee , and ug&, of energy Eg , such that Ee2Eg
5\v0 . The operatorsp and p† are lowering and raising
operators for internal atomic states such thatm5^m&eg(p
1p†); E is the electric field operator andH f is the electro-
magnetic field Hamiltonian.

A. Quantized fields

The procedure for enumerating the electromagn
modes inside the cylinder begins with the solutions of
wave equation for transverse electromagnetic fields. A
well known, there are two types of normal modes:s polar-
ized ~TE! and p polarized~TM!, both of which satisfy the
electromagnetic boundary conditions at the guide walls. T
total quantized electric and magnetic field operators are w
ten as follows:

E~x,R' ,t !5 (
h5~p,s!

(
n,m

E
2`

`

dk

3$ah~k,n,m!Fh~k,n,m,x,R' ,t !1H.c.%,

~2!

B~x,R' ,t !5 (
h5~p,s!

(
n,m

E
2`

`

dk

3H S 1

iv~n,m,k! Dah~k,n,m!

3“3Fh~k,n,m,x,R' ,t !1H.c.J , ~3!

where H.c. stands for ‘‘Hermitian conjugate’’ and we ha
expressed the position vector in component form by writ
R5(x,R') with x an axial coordinate andR'5(y,z) a two-
dimensional~transverse! position vector in they-z plane.
The operatorah(k,n,m) is the boson operator for the fiel
mode of polarizationh(5p,s), characterized by the intege
n-
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quantum numbersn,m and an axial wave vectork. The rel-
evant commutation relations are

@ah~k,n,m!,ah8
†

~k8,n8,m8!#5dhh8dmm8dnn8d~k2k8!.
~4!

Finally, Fh(k,n,m,x,R' ,t) are the mode functions fo
which explicit forms are given below. These vector functio
satisfy the wave equation as well as the electromagn
boundary conditions at the guide walls.

It is convenient to simplify the notation by introducing
compound mode variableQ which stands for the three mod
variables~k,n,m!. The quantized electric field in Eq.~2! be-
comes

E~x,R' ,t !5 (
h5~p,s!

(
Q

$ah~Q!Fh~Q,x,R' ,t !1H.c.%,

~5!

with a similar equation corresponding to Eq.~3!. The sum
over Q stands for one integration overk plus two integer
sums overn and m. The mode commutation relations a
now given by

@ah~Q!,ah8
†

~Q8!#5dhh8dQQ8 , ~6!

where dQQ8 is interpreted by inspection of the right-han
side of Eq.~4!.

The mode functions for the transverse magnetic~TM!
modes corresponding toh5p ~p-polarized modes! emerge
in the form @9#

Fp~Q,x,R' ,t !5Cp~Q!$ i x̂~km
2 1kn

2!sin~kmy!sin~knz!

1 ŷkmk cos~kmy!sin~knz!

1 ẑknk sin~kmy!cos~knz!%ei @kx2v~Q!t#,

~7!

where carets denote unit vectors;km andkn are given by

km5
mp

b
, kn5

np

a
. ~8!

v(Q) is the mode frequency satisfying the dispersion re
tion

v2~Q!5c2$k21km
2 1kn

2%. ~9!

Finally in Eq. ~7!, Cp is thep-polarized mode normalization
factor given by

Cp~Q!5S 2\c2

ALe0v~Q!@km
2 1kn

2# D
1/2

, ~10!

whereA is the cross-sectional area of the guide andL is its
~large! length.

The second set of electromagnetic modes in the rectan
lar waveguide is the transverse electric~TE! set of modes
corresponding toh5s ~s-polarized modes!. The mode func-
tions for these are given by@9#
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4770 PRA 58S. AL-AWFI AND M. BABIKER
Fs~Q,x,R' ,t !5Cs$2 ŷkncos~kmy!sin~knz!

1 ẑkmsin~kmy!cos~knz!%ei @kx2 iv~Q!t#,

~11!

whereCs is the normalization factor fors-polarized modes

Cs~Q!5S 2\v~Q!

ALe0@km
2 1kn

2# f mn
D 1/2

, ~12!

where f mn is such thatf 015
1
2 5 f 10 and f mn51 for m andn

satisfyingm>1 andn>1.
The total Hamiltonian for the electromagnetic fiel

within the waveguide is

H f5
1

2 E
2`

`

dxE d2R'H e0E2~x,R' ,t !1
1

m0
B2~x,R' ,t !J .

~13!

The factorsCp andCs defined in Eqs.~10! and~12! are fixed
by the usual quantization requirement that the field Ham
tonianH f reduces to the canonical form

H f5
1

2 (
h~5p,s!

(
Q

\v~Q!$ah~Q!ah
†~Q!1ah

†~Q!ah~Q!%.

~14!

B. Spontaneous emission

The spontaneous decay rate for an electric dipolem situ-
ated at an arbitrary pointR5(x,R') within the waveguide is
evaluated using Fermi’s golden rule. By symmetry, this r
cannot depend on the axial coordinatex and we may evaluate
it for a dipole situated at an arbitrary point (0,R'), i.e., at
points within the normal cross section in they-z plane

G~R'!5
2p

\ (
h5~p,s!

(
Q

z^e;$0%u2m•E~0,R'!ug;$Q,h%& z2

3d„Ee2Eg2\v~Q!…. ~15!

As indicated, the transition from the excited internal stateue&
to the ground stateug& is effected by the emission of singl
quanta of waveguide modes with statesu$Q,h%& of fre-
quencyv(Q) and polarizationh. The vacuum state is repre
sented byu$0%&.

It should be noted that the waveguide frequency spect
determined by Eq.~9! comprises two sets of discret
branches, one for each type of polarizationh5(p,s). A fre-
quency branch is labeled by two fixed integersm andn and
within any given branch, the frequency varies only with t
one-dimensional axial wave vectork. The TE and TM fre-
quency branches for a typical rectangular waveguide
shown in Fig. 2.

Depending on the value of the dipole frequencyv0 , con-
tributions to the emission rate arise from all branches sa
fying the condition

v~Q![v~k,n,m!5v0 . ~16!
l-

e

m

re

s-

Sincev(k,n,m) depends on the guide dimensionsa and b
entering viakm andkn , Eq.~16! conceals the dependence o
the chosen values ofa andb.

Assuming thatb5a, the ‘‘zone center’’ (k50) fre-
quency separation between the lowest branch TE01 corre-
sponding tom50, n51 ~or n50, m51! and the adjacen
branchm51, n51 is approximately given by

Dv~11210!5v~0,1,1!2v~0,1,0!'c~&21!
p

a
.

~17!

For a'1.0mm we haveDv(11210)'3.931014 s21. Fre-
quency separations of similar orders of magnitudes are
tainable for higher adjacent branches. These frequency s
rations are therefore quite large for waveguides w
dimensions in the micrometer range. From the special c
illustrated in Fig. 2 (a50.9l, b50.6l, l5589 nm) we see
that if the dipole frequency is less thanv~0,1,1! emission is
possible only via the two TE branches. Inspection of Eq.~11!
further shows that a dipole oscillating at such a frequen
and which is oriented along the axis of the waveguide c
couple neither to the electric field of the TE01 mode nor to
the TE10 mode and will therefore not decay spontaneous
On the other hand, the spontaneous decay of a dipole
frequency greater thanv~0,1,1! will involve both the TE
lowest branches as well as the TE11 and TM11 branches. If, in
addition, this dipole is oriented along the axis, only the TM11
branch provides a decay channel, since the axial dipole c
not couple to the TE modes. These observations which
significant for submicron waveguides are substantiated
ther with the calculations of the spontaneous rate, as we
show.

The procedure for the calculation of the total emissi
rate based on Eq.~15! can be outlined as follows. Contribu
tions from thep ands modes are carried out separately a
then combined to yield the total rate. Typically, after eva
ating the squared matrix element for a given type of mo
use of the dispersion relation, Eq.~9!, facilitates the evalua-
tion of the integral overk involving thed function. We are
then left with two sums over integersm andn and a cutoff
condition, Eq.~16!, to be satisfied for each evaluation.

FIG. 2. Dispersion curves showing the TM and TE branches
the guided modes in a cylinder of rectangular cross section w
dimensionsa50.9l andb50.6l wherel5589 nm.
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C. Contribution of TM modes

Consider first the contribution from the TM modes whi
involves use of the mode functions defined in Eq.~7!. Fol-
lowing the above procedure for the emission rate evalua
for this case culminates in an expression involving sums o
m andn. We have at pointR'5(y,z)

Gp~R'!5(
m

(
n

S 2m2

\e0a2bD H ^mx&
2

m2 Gmn
x ~R'!

1
^my&

2

m2 Gmn
y ~R'!1

^mz&
2

m2 Gmn
z ~R'!J , ~18!

wherem is the magnitude of the dipole matrix element vec
^meg&, with Cartesian components represented by^mx&,
^my&, and ^mz&. The G functions appearing in Eq.~18! are
given by

Gmn
x ~R'!5

p2Hmn

Rmn
sin2S mpy

b D sin2S npz

a D , ~19!

Gmn
y ~R'!5

a2m2Rmn

b2Hmn
cos2S mpy

b D sin2S npz

a D , ~20!

Gmn
z ~R'!5

n2Rmn

Hmn
sin2S mpy

b D cos2S npz

a D , ~21!

where we have definedRmn andHmn by

Rmn5~v0
2a2/c22m2p2a2/b22n2p2!1/2,

Hmn5a2m2/b21n2. ~22!

D. Contribution of TE modes

Similar evaluations leading to the contributions from t
s-polarized modes are based on Eq.~11!. The results can be
written in the form

Gs(R')5(
m

(
n

S 2m2v0
2

\e0c2b fmn
D

3H ^my&
2

m2 Fmn
y (R')1

^mz&
2

m2 Fmn
z (R')J ,

~23!

whereFmn
y andFmn

z are given by

Fmn
y ~R'!5

n2

HmnRmn
cos2S mpy

b D sin2S npz

a D , ~24!

Fmn
z ~R'!5

a2m2

b2HmnRmn
sin2S mpy

b D cos2S npz

a D . ~25!

E. Total spontaneous rate

The results in Eqs.~18! and ~23!, respectively, give the
contributions of the TM and the TE modes to the sponta
ous emission rate for an electric dipole of frequencyv0 in an
arbitrary rectangular waveguide with a cross section of
mensionsa3b.
n
er

r

-

i-

For a given dipole orientation, the spontaneous emiss
rate is given by the sum of contributions from the TM a
TE set of modes. The results can be written in terms ofl, the
free space transition wavelength. For a dipole oriented al
the axis we have

Gx~R'!5G0 (
m50

@2b/l#

(
n50

@2a/l#
3l3

4p2a2b
Gmn

x ~R'! ~26!

and for dipoles oriented transversely along they or z direc-
tion, we have

Gy,z~R'!5G0 (
m50

@2b/l#

(
n50

@2a/l# S 3l

b D
3H 1

f mn
Fmn

y,z~R'!1
l2

4p2a2 Gmn
y,z~R'!J , ~27!

@In Eqs.~26! and ~27! we have used the notation@ # to indi-
cate the integer part of the bracketed quantity. AlsoG0 is the
corresponding spontaneous rate in free space

G05
m2v0

3

3p\e0c3 . ~28!

These results can now be explored for a typical situat
involving a sodium atom in a rectangular waveguide. O
main concern here, however, is with the regime in whicha
andb take values in the micron range.

Before we consider this regime, it is instructive to che
the results using a particularly simple asymptotic limit ar
ing when sidea of the cross section increases to infinity wi
b fixed. As we show next, it is possible to check by expli
calculations that in this limit the contributions from Eqs.~18!
and ~23! give values for the well-known emission rates f
dipoles between parallel plates.

III. SODIUM ATOMS IN MICROGUIDES

For orientation as to orders of magnitude it is instructi
to concentrate now on a typical physical situation. We co
sider the case of a sodium atom and focus on
32s1/2↔32p3/2 transition (l5589 nm). The magnitude o
the dipole matrix element associated with this transition
about m52.6eaB , which is consistent with the measure
free space lifetime oft0'16.3 ns~or G056.133107 s21).

Figure 3 shows the spontaneous emission rate for a
dium atom at the center of the cylinder, i.e., at the po
(0,b/2,a/2), with the atomic dipole oriented in turn along th
three axes (j5x,y,z). The plots show the ratio emission ra
againsta/b with b fixed atb50.6l and for different dipole
orientations. In the axial dipole orientation shown in Fig. 3~i!
there is a ‘‘cutoff’’ value ofa below which there is no spon
taneous emission. In each case the rate oscillates with
creasinga and shows a clear tendency to asymptotically
taining a fixed value at largea.

It is of interest to check that all asymptotic values of t
rectangular case obtained for a fixed value ofb and largea
are consistent with those obtained when the same dipol
the pointy5b/2 is oriented parallel to two plates separat
by a distanceb50.6l. The parallel-plate emission rates a
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4772 PRA 58S. AL-AWFI AND M. BABIKER
well known ~see, for example, Barton@10# and Hinds@11#!.
In terms of our choice of axes the emission rate for a dip
oriented parallel to the plates is

G i~y!5G0 (
n50

@2b/l#
3l

4b H 11S nl

2bD 2J sin2S np

b
yD ~29!

while for a dipole oriented perpendicular to the plates
have

FIG. 3. Total spontaneous emission rate againsta/b with b fixed
at b50.6mm for a sodium atom at the center of the cylinderx
50; y5b/2; z5a/2 when the atomic dipole is oriented along th
~a! x axis, ~b! y axis, and~c! z axis. HereG0 is the free space value
of the spontaneous rate.
e

e

G'~y!5G0F3l

4b
1 (

n51

@2b/l#
3l

2b H 12S nl

2bD 2J cos2S np

b
yD G .

~30!

The values obtained from Eqs.~29! and ~30! are

G i~y5b/2!52.118G0 , G'~y5b/2!51.25G0 . ~31!

The corresponding results emerging from the rectang
guide results in the asymptotic limita→` must be combined
to yield the parallel-plate case. Numerical evaluations in
parallel dipole case confirm that the sumGx

p1Gz
s1Gz

p evalu-
ated at (0,b/2,a/2) for fixedb50.6l in the limit of a becom-
ing large converges to 2.118G0 , while for the normal dipole
case we find that the sumGy

s1Gy
p converges to the value

1.25G0 .
Figure 4 shows the distribution and contour plots for t

spontaneous emission rate when the dipole matrix elem
has various orientations. The evaluations are carried out
points spanning the guide cross section and are based o
expressions given in Eqs.~26! and ~27!. Contributions from
individual types of mode are not shown. As a general ru
however, the spontaneous rate is maximum where field c
ponents parallel to the dipole matrix element have maxim
intensity. It is important to note that, because of the s
wavelength dimensionsa and b chosen for illustration pur-
poses in Fig. 4, the emission rate distributions arise from

FIG. 4. Distribution and contour plots for the spontaneous em
sion rate when the dipole matrix element has different orientati
~a! along thex axis, ~b! along they axis, and~c! along thez axis.
See the text for other assumed parameters.
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most three branches of the mode spectrum for a rectang
guide and two for the square guide. This observation is
nificant for the atom guiding applications to be considered
the next section.

IV. ATOM GUIDING

A. Dynamics

The dynamics of an atom inside the cylinder is modifi
at the onset of the excitation of a waveguide mode wh
induces radiation pressure forces of the kinds encountere
laser cooling and trapping~see, for example, Refs.@12–14#!.
We assume that a mode of the waveguide is excited wi
specific compound quantum numberQ[(k,n,m), polariza-
tion type h, and frequencyv(Q). However, for conve-
nience, we suppress the mode labels in the following out
derivation of the radiation forces acting on the atom due
this mode.

It is convenient to deal with the fields associated with
excited mode in the classical limit. Hence we may repla
the field operators byc numbers and writea(t)→ae2 ivt,
with a similar expression fora†. In the rotating wave ap-
proximation the interaction Hamiltonian may then be writt
as

H int52m•E~R!52 i\@p̃†f ~R!2H.c.#, ~32!

where we have setp̃5peivt and introduced the function
f (R) by

f ~R!5V~R!eiQ~R!. ~33!

HereV~R! is a Rabi frequency defined by

\V~R!5ua^m&eg•Fu, ~34!

with F the mode vector function, either for ans-polarized
guide mode or ap-polarized one. The forces acting on th
atomic center of mass can be derived using the optical Bl
equations for the atomic density matrix elements once
make the semiclassical approximation which allows
gross motion of the atom to be treated classically, wh
maintaining a quantum treatment for the internal dynam
of the atom. Thus the position and momentum operator
the center of mass may be replaced by their expectation
uesR0 andP0 . The density matrix associated with the inte
nal motion of the atomr(t) evolves with time according to
the well-known relation

dr

dt
52

i

\
@H,r#1Rr, ~35!

whereRr accounts for the relaxation dynamics of the atom
system. By substitution ofH and use of the coupling given i
Eq. ~32!, we obtain the following optical Bloch equations fo
the atomic density matrix elements:

dr22

dt
522Gr222 f ~R0!r̃122 f * ~R0!r̃21, ~36!

dr̃21

dt
52~G2 iD0!r̃211 f ~R0!~r222r11!, ~37!
lar
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where D05v2v0 is the detuning of the field frequenc
from atomic resonance andr̃215^p̃&.

The average radiation force acting on the atom is defi
as the average rate of change of the atomic moment
which yields

^F&52^“H int&. ~38!

Substitution of Eq.~32! into Eq. ~38! and use of Eq.~33!
allows the force to be written as^F&5^Fdiss&1^Fdipole&. Here
^Fdiss& is the dissipative force given by

^Fdiss&52\“Q~R0!$r̃12~ t ! f ~R0!1 r̃21~ t ! f * ~R0!%,
~39!

and ^Fdipole& is the dipole force given by

^Fdipole&5 i\
“V~R0!

V~R0!
$r̃12~ t ! f ~R0!2 r̃21~ t ! f * ~R0!%.

~40!

In the adiabatic approximation, the atomic velocityV
5P0 /M is assumed constant during the time taken for
dipole moment to relax to its steady-state value. The posi
R0 of the atom at timet is then given by

R05R1Vt, ~41!

where we have redefinedR so that it now denotes the~up-
dated! initial position of the atom. Thus we can write

f ~R0!5 f ~R1Vt ! ~42!

. f ~R!ei“Q~R!•Vt, ~43!

where we have assumed that the change in the field am
tude is negligible during the time taken for the dipole m
ment to relax to its steady-state value.

Within the adiabatic approximation, the optical Bloc
equations take the form

dr22

dt
522Gr222 f ~R!r̂122 f * ~R!r21, ~44!

dr̂21

dt
52@G2 iD~R,V!#r̂211 f ~R!~r222r11!, ~45!

where the total detuningD(R,V)5D02“Q(R)•V and r̂21

5 r̃21e
2 i tV•“Q(R). The forces can now be written as

^Fdiss&52\“Q~R!$r̂12~ t ! f ~R!1 r̂21f * ~R!%, ~46!

^Fdipole&5 i\
“V~R!

V~R!
$r̂12~ t ! f ~R!2 r̂21~ t ! f * ~R!%.

~47!

For given initial conditions the solution of the optical Bloc
equations~44! and ~45! leads formally to the determinatio
of the forces by direct substitution in Eqs.~46! and ~47!.

Consider first the dissipative force. SettingR5(x,R')
with R'5(y,z), it is easy to show that in the steady sta
Eqs. ~44!–~46! yield a position-dependent dissipative forc
associated with the light due to the excited waveguide mo
By symmetry, the force can only depend on they,z coordi-
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nates spanning the cross section. This force is also a func
of Vx , the velocity of the atom along the axis of the cylinde
and is always directed along the axis. The explicit form
the dissipative force for a waveguide mode characterized
Q andh is

^Fj
h~Q,R'!&52\Gj~R'!Vj

2~Q,h,R'!

3H kx̂

D2~Q,Vx!12Vj
2~Q,h,R'!1Gj

2~R'!J ,

~48!

wherej indicates the dipole orientation;D(Q,Vx) is the dy-
namic detuning, defined by

D~Q,Vx!5v~Q!2v02kVx5D0~Q!2kVx . ~49!

Vj(Q,h,R') is a position-dependent Rabi frequency asso
ated with the cavity mode when the dipole is oriented alo
the Cartesianj direction and is defined by

\Vj~Q,h,R'!5ua^m&eg•Fh~Q,R'!uj , ~50!

whereFh is eitherp polarized ors polarized, as given in
Eqs.~7! and ~11!.

In the presence of the same mode, the atom also beco
subject to a light-induced force. In the steady state this
obtainable from Eqs.~44!, ~45!, and ~47! and the result is
derivable from the dipole potential associated with the mo
This, too, depends on the dipole orientation as well as
type of cavity mode and can be written as

Uj
h~Q,R'!5

\D~Q,Vx!

2
lnF11

2Vj
2~Q,h,R'!

@D2~Q,Vx!1Gj
2~R'!#

G .
~51!

The classical motion of the center of mass of the atom
determined by the solution of the equation of motion

M S d2R

dt2 D
j

5^Fj
h~Q,R'!&2“Uj

h~Q,R'!. ~52!

We have not included the van der Waals and Casimir-Po
potentials in the above equations of motion. The role of th
potentials for atoms in cavities has been clarified both th
retically @1# and experimentally@15–17#; in particular, they
are known to be effective only at relatively short distanc
from planar surfaces. Here we ignore the influence of the
der Waals potential appropriate for subwavelength dim
sions, since our main concern is with the atom channe
effects that take place in regions of the cylinder cross sec
that are far removed from surfaces, specifically in the vic
ity of the cylinder axis.

Since^Fj
h& can be written aŝFj

h&x̂ ~and so always points
in a direction parallel to the cylinder axis!, the equation of
motion ~52! decouples naturally into two separate equatio
corresponding to the axial and transverse components o
atom position vectorR5(x,R'). We have

M S d2x

dt2 D
j

5^Fj
h~Q,R'!&, ~53!
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M S d2R'

dt2 D
j

52“Uj
h~Q,R'!. ~54!

Note that the axial force is independent ofx and only de-
pends onR' as parameter. In fact Eq.~53! can be written
entirely as a first order differential equation inVx(t). On the
other handVx appears as a parameter in Eq.~54! due to the
dependence ofUj

h(Q,R') on D(Q,Vx).

B. Axial motion

The axial motion follows from the solution of Eq.~53!
which may be written as

M
dVx

dt
52\GjVj

2~Q,h,R'!

3H k

@D0~Q!2kVx#
212Vj

2~Q,h,R'!1Gj
2~R'!J .

~55!

We assume that the mode~Q, h! is excited att50 when the
atom is stationary@Vx(t50)50# at the space point (0,R').
The transverse coordinatesR'5(y,z) appear on the right-
hand side as parameters and, so Eq.~55! can be integrated
straightforwardly. At timet.0 the axial velocity emerges
from the solution of the equation

b1Vx
31b2Vx

21b3Vx5t, ~56!

where theb coefficients are given by

b152
b2k

3D0
5

k2G0M

3F0V2G
, b35

G0M ~D0
212V21G2!

GF0V2 .

~57!

We have suppressed thej, Q, andh labels for convenience
and have introducedF052\kG0 as a suitable scaling forc
for this system.

The axial distancex(t) traveled by the atom at timet
follows straightforwardly after one further integration

x~ t !5E
0

t

Vx~ t !dt. ~58!

With the help of Eq.~56! the above equation yields

x~ t !5 3
4 b1Vx

41 2
3 b2Vx

31 1
2 b3Vx

2. ~59!

ThusVx(t) andx(t) can be determined once the paramet
needed to define theb coefficients are known. The typica
parameters for the axial motion are governed by the tra
verse motion, as we now discuss.

C. Transverse motion

The principal requirement of atom guiding is that the d
pole potential given by Eq.~51! be a trapping potential
which is only possible for negativeD0(Q). The second re-
quirement is that the depth of this potential be sufficient
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provide several vibrational states for the atom. In order
illustrate these points we focus on a typical physical sit
tion.

We consider sodium atoms and the dipole transition
l5589 nm. We assume that a specific waveguide mod
excited by a laser with intensity comparable to that used
Rennet al. @8# in their experimentI'107 W m22. The cor-
responding free space Rabi frequency is

V05S m2I

2\2e0cD 1/2

'8.563109 s21. ~60!

For the dimensions of the rectangular cross section we
values in the subwavelength range as follows:

a50.9l, b50.6l ~61!

and for the detuning we assume the value

D0~Q!5v02v~Q!526.03102G0'236.78 GHz.
~62!

It is easy to check that thisD0 is much smaller than the mod
spacing for the waveguide of dimensionsa andb, as chosen
in Eq. ~61!.

Finally, we make use of two scaling parameters: a sca
force F0 which was encountered earlier@see Eq.~57!# and a
scaling potential energyU0 . With integersm, n known,
D0(Q) defined in Eq.~62!, and with v0 corresponding to
l5589 nm, it is straightforward to deduce the magnitude
the axial wave vectork using Eq.~9!. The scaling paramete
F0 for the cylinder dimensions in Eq.~61! depends onk and
for n515m is given by

F052\kG0'2.33310220 N ~63!

while for the scaling potential energyU0 we write

U05 1
2 \G053.23310227 J'4.9 MHz. ~64!

In the figures below, which are all concerned with the ca
n515m, force is measured in units ofF0 and potential
energy in units ofU0 .

D. Dipole along axis

With the dipole oriented along the axis and with the TM11
mode excited we have a position-dependent Rabi freque
given by

Vx~k,1,1,p,R'!5V0S 2c

v0
D S p2

b2 1
p2

a2 D 1/2

sin
py

b
sin

pz

a
.

~65!

With the dipole oriented along the axis and in a situat
corresponding to the above choice of parameters, a diss
tive force field given by Eq.~48! is set up with spatial dis-
tribution within a cross section of the guide as shown in F
5. It can be seen from this figure that atoms located at
center of the guide experience the strongest force along
axis. The corresponding profile of the dipole potent
Ux

p(R') is depicted in Fig. 6~a!. It can be deduced from thi
figure that, from a quantum-mechanical point of view, so
tions of the two-dimensional Schro¨dinger equation with
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Ux
p(R') as potential must exist. In the ground state, t

atomic wave function peaks in the vicinity of the centr
minimum associated with the dipole potential. It can be se
from Fig. 6~b! that for the parameters assumed above,
central well depth is approximately 220U0'1.034 GHz.
This is sufficiently deep to allow several quasiharmonic tra
ping ~vibrational! states. The vibrational frequencydv11 can
be estimated simply using the parabolic approximation.
find

dv115H 2

M

d2

dz2 Ux
p~0,b/2,z!J

z5a/2

1/2

. ~66!

We have explicitly,

FIG. 5. Spatial distribution within a normal cross section of t
quasistatic dissipative force acting on a sodium atom when
TM11 mode is excited. Here the electric dipole matrix element
axial; see the text in Sec. IV for the parameters used.

FIG. 6. ~a! The potentials of the sodium atom in the rectangu
waveguide under the conditions of Fig. 5 when the dipole is alo
the cylinder axis.~b! Variation of the potential within a centra
cross sectionz5a/2 for a fixedb50.6l and increasing values ofa.
The labels 1–4 correspond, respectively, to the valuesa50.9l,
2.1l, 2.9l, and 3.9l.
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dv115S 4\p2V2D

~D212V2!a2M D
y5b/2,z5a/2

1/2

. ~67!

It is not difficult to check that with the above paramet
values for sodium in the TM11 mode within the rectangula
waveguide system described above we have

dv11'3.543107 s21. ~68!

The precise details of the vibrational energy levels can
obtained straightforwardly by the numerical solution of t
two-dimensional Schro¨dinger equation involving the ful
Ux

p(R' ,Vx) potential.
The relatively deep potential well in the case of a rect

gular cylinder arises from the tight confinement in two sp
tial directions. If one of the dimensions~sidea! is gradually
increased while the other~side b! is kept fixed we should
approach the parallel-plate limit. That this is indeed the c
is shown in Fig. 6~b! where the reduction in the depth of th
well for a fixedb50.6l is achieved by a successive increa
in the value of sidea. In the limit of largea we expect the
results to converge to those appropriate for the parallel-p
case@1#.

E. Dipole transverse to axis

With the dipole vector in a plane parallel to the norm
cross section, i.e., transverse to the axis and the TM11 mode
excited, the relevant dipole orientation is either along thy
axis or along thez axis. The corresponding Rabi frequenci
are given by

Vy~k,1,1,p,R'!5V0S 2ckp

bv0
D S p2

b2 1
p2

a2 D 2~1/2!

3cos
py

b
sin

pz

a
, ~69!

Vz~k,1,1,p,R'!5V0S 2ckp

av0
D S p2

b2 1
p2

a2 D 2~1/2!

3sin
py

b
cos

pz

a
. ~70!

The quasistatic dissipative force corresponding to the s
choice of parameters as in the preceding subsection is sh
in Fig. 7 for a dipole oriented~transversely! along they axis

FIG. 7. Spatial distribution in a normal cross section of t
quasistatic dissipative force acting on a sodium atom when
TM11 mode is excited. Here the electric dipole matrix elemen
oriented~transversely! along they axis. See the text in Sec. IV fo
the parameters used.
e
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and the corresponding potential profileUy
p(R') is depicted

in Fig. 8~a!. The case of a dipole oriented transversely alo
the z axis yields very similar results~with interchange of
axes!. In contrast to the case of axial dipole orientation, t
dipole potential for the transverse case has no minimum
the center of the guide. It, in fact, tends to attract the ato
towards the walls of the cylinder. Clearly, the solutions
the Schro¨dinger equation withU'

p as potential will always
have the atomic vibrational ground state distribution peak
in the vicinity of the guide walls. As we argue below, fro
the point of view of atom guiding, such a dipole orientatio
will not result in efficient atom guiding by the TM11 mode
with positive detuning.

Figure 8~b! is the analog of Fig. 6~b! exhibiting the varia-
tions of the potential for fixed sideb50.6l and increasing
sidea. In this case the depth of the potential in the vicinity
the walls increases with increasinga. In the limit of largea
the results should converge to the parallel-plate case.

V. DYNAMIC POTENTIAL

The principal requirement of an atom guide is to ef
ciently confine the atoms in the axial region of the cylind
while they are acted on axially by the dissipative force. Co
finement depends on the depth of the quantum well ass
ated with the dipole potential due to the excited mode. W
have so far examined the quasistatic features of this pote
and we must now turn to the question of how these featu

e
s

FIG. 8. ~a! Potential of the sodium atom in the rectangular gui
under the conditions of Fig. 7 for dipole along they direction; ~b!
change in the potential depth and profile for a fixedb50.6l and
varying a. The labels 1 to 4 correspond, respectively, to the val
a50.9l, 2.1l, 2.9l, and 3.9l.
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change with the axial motion of the atoms.
In Fig. 9~a! we display the variation of the axial potenti

Ux
p(0,y,a/2,t) with time ~measured from the instant th

mode is excited!. From Fig. 9~b! it can be seen that the dep
of the potential well diminishes with increasing axial velo
ity, ultimately becoming too shallow to trap the atoms. F
ure 10 displays the dipole potentialUy

p(0,y,a/2,t) for differ-
ent values of axial velocity when the dipole is transverse
the cylinder axis. It can be seen that the potential well
comes shallower with increasingVx , with the region of rel-
evant variations near the cylinder walls. Figure 11 exhib
the variation of the axial dissipative force and the cor
sponding axial velocity when the dipole is along the axis
can be seen that the axial dissipative force asymptotic
approaches small values, while the axial velocity tends t
constant value.

From the illustrations discussed above, it is clear that
desirable guiding action not only depends on the system
rameters, but also on the dipole orientation. In order to ma
tain a transverse trapping capability for atoms with axial
pole orientation, the system parameters should be adjuste
such a manner resulting in a sufficient central well dep
especially at large axial velocities. With the same syst
parameters, we have shown that the excitation of the s
waveguide mode does not result in a central dipole poten

FIG. 9. Dipole along the cylinder axis~a! dynamic dipole po-
tential at the center of the guide as a function of time;~b! variation
of the potential atx50, z5a/2 with the coordinatey for different
values of the axial velocity. The labels 0–5 stand forVx50.0, 0.1,
0.25, 0.5, 1.0, and 2.03104 ms21.
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well when the dipole is oriented transverse to the cylinder
axis, and the atoms tend to be channeled in the vicinity o
guide walls.

VI. COMMENTS AND CONCLUSIONS

In conclusion we have examined in detail the properties
of atoms in waveguides with rectangular cross sections. Th
cavity modes are first quantized, allowing the spontaneou
emission rate to be evaluated for an electric dipole located a
an arbitrary point. Useful limits of the spontaneous rate have
been derived. In particular, we have been able to recover th
results appropriate for the parallel-plate case when sidea of
the rectangular cross section becomes large, while sideb is
kept fixed. We have shown that in the limit of small cross
section, especially when botha andb are less than a transi-
tion wavelength, spontaneous emission is possible only vi

FIG. 10. Dipole transverse to the axis~along y axis!: spatial
distribution of the potential atx50, z5a/2 againsty for different
values of the axial velocity. The labels 0–5 stand forVx50.0, 0.1,
0.25, 0.5, 1.0, and 2.03104 ms21.

FIG. 11. Dipole along the cylinder axis: time evolution of the
axial velocity ~full curve! and the dissipative force acting on the
atom ~dashed curve!.
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one or two cavity modes. With a cavity mode excited,
have shown that the atoms become subject to a transv
dipole potential and an axial dissipative force, both of wh
vary across the cylinder and are also functions of the a
axial velocity. The dipole potential is responsible for t
transverse trapping~and hence the channeling! of atoms at
specific regions of the cross section, depending on the a
axial velocity and the dipole orientation, while the dissip
tive force controls the axial motion of the channeled atom
The conditions facilitating atom guiding have been explo
using typical parameters for sodium atoms in rectangu
cylinders of subwavelength dimensions.

The most striking feature of a rectangular guide in t
subwavelength regime is the depth of the well that can
achieved in comparison with that for the parallel-plate ca
For the same set of parameters we have seen in@1# that the
depth is of the order 211.5 MHz, while here the dep
reaches 1.034 GHz, which is almost five times that of
parallel-plate well depth. Cylindrical atom guides confine
oms transversely in two directions and so have the ability
eliminate the problems of transverse diffusion that are ma
fest in the parallel-plate case. Additionally we have now se
that they are much more efficient atom guides on accoun
the depth of the central well.

We emphasize the principal property of subwavelen
atom guides by contrasting this with the case of larger cy
drical atom guides with dimensions of order 10mm. For such
large dimensions the waveguide is multimode, the mode
quency separation is at least one order of magnitude sma
and, so, spontaneous emission is effectively that in f
space. This has been held to lead to the loss of guided b
coherence@5#. By contrast atom guides with subwaveleng
dimensions are capable of single mode operation. Also
such guides spontaneous decay occurs by emission into
or two decay channels. Experimental work on single mo
guides has been reported recently by Itoet al. @7#.

We have focused here only on cylindrical atom guid
characterized by two distinct features. First the guide is
sumed to have a rectangular cross section and second
pt
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walls of the waveguide are taken to be perfect conduct
An obvious line of extension of this work should consid
cylindrical perfect conductor atom guides with circular cro
sections also of subwavelength dimensions. Although
spontaneous emission rate in circular cylinders has been
vestigated in the recent work by Rippin and Knight@18#, the
details of atom dynamics along the lines discussed in
paper have not yet been reported. It is well known that
electromagnetic modes of circular cylindrical guides ha
azimuthal components, but the significance of this prope
for the motion of atoms in the guide is yet to be determin
The angular momentum features associated with the m
phase should involve a light-induced torque@13# and the
consequent helical motion of atoms trapped in potential ri
and guided through the structure. Atom dynamics in cyl
drical guides with circular cross sections of submicron
mensions is currently under investigation. A related probl
that we are currently addressing is that of cylindrical ato
guides with guide walls made of dielectrics characterized
dispersive dielectric functions which could also exhibit los
A theory focusing on such features can, additionally, acco
modate the first type of atom guide discussed in our previ
paper @1#, namely, the evanescent mode guides which
now have the new feature of the submicron dimensions. C
atom guiding introduces new aspects which stem from t
physical effects associated with slow atoms. First
quantum-mechanical nature of the vibrational states is
pected to play a role in the dynamics and secondly the dip
moment of a slow atom within the guide should have su
cient time to adjust to the mode polarization. These mat
will not be discussed any further here.
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