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lonization of Rydberg atoms by Coriolis forces
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When viewed from a rotating frame the ionization of a hydrogen atom in a circularly polarized microwave
field is largely governed by Coriolis forces. Although simulations show that the ionization mechanism is
chaotic, we find that ionization is governed bylinear resonance. Because the electron is fed into the
resonance by chaotic scattering from the core the overall ionization process, when it occurs, is chaotic.
Suppression of ionization by an applied magnetic field is shown to be possible: it is due to detuning of the
linear resonance by the fielf51050-29478)05112-9

PACS numbe(s): 32.80.Rm, 03.26:i, 05.45+b, 32.60+i

I. INTRODUCTION electric field direction This happens for a hydrogen atom in
a circularly polarized microwave field when a magnetic field
This paper addresses two basic questions concerning the added perpendicular to the plane of polarization. loniza-
ionization of a hydrogen atom interacting with combinationstion, when it occurs, is exclusively along tineagneticfield
of external electric and magnetic fields: when can the atondirection, i.e., it is orthogonal to the plane containing the
ionize and, if it can, what is the mechanism? On the surfacelectric field vector.
the answer to the first question might seem, in principle, While our results are presented in the context of the ion-
obvious. As we will show, however, the issue of how a hy-ization of Rydberg atoms, the Hamiltonian and the resulting
drogen atom will ionize when subjected to certain combina-dynamics are very similar to those for dust particles inhabit-
tions of electric and magnetic fields is quite subtle due to théng planetary rings such as the ethereal rings of Jupiter and
presence of velocity-dependent Coriolisr Coriolis-like) Neptun€g7,8]. There, in addition to gravitational forces, dust
forces. The second question is also complicated and involvegrains are subjected to solar radiation pressure and magnetic
two aspects(i) the mechanism by which an electron entersfields and, after moving to a rotating frame, also to Coriolis
the ionization channel—in general this might involve a tran-forces. In fact, the CPM Hamiltonian is actually identical to
sition to chaos—andii) the process that eventually sweepsone used by Mignard and later Depffl] to study the dy-
the electron out of the atom. While a vast amount of experinamics of orbiting dust subject to solar radiation pressure.
mental and theoretical effort has been directed to studyinghus our findings might prove helpful in understanding the
the nonlinear dynamics of order-chaos transitions in Rydbergscape of dust particles from planetary rings.
atoms[1,2] the ultimate act of ionization itself has been ne-  The Hamiltonians for the crossed-fields problgtf] and
glected. the hydrogen atom in a CPM field in a rotating frame are
Experiments as well as simulations of the hydrogen atonsimilar because they both contain a nonconserved velocity-
(i) in crossed static electric and magnetic fieldhe dependent term: in the former case this term is a paramag-
“crossed-fields problem)’ and (ii) in a circularly polarized netic term which arises from the presence of the magnetic
microwave(CPM) field show clearly that ionization can be field while in the latter it is explicitly a Coriolis term due to
induced by the field§3]. The mechanism is significantly being in a rotating frame. The Coriolis term destroys any
different from ionization in a linearly polarized microwave qualitative similarity with the more familiar static Stark ef-
field [4] and involves a chaotic sequence of collisions befect. Although the CPM problem has been the subject of
tween the electron and either the core or a centrifugal barriesignificant theoretical and experimental efforts, its ionization
that surrounds the coif®]. These findings differ from those dynamics are only partially understog@l]. This reflects the
of Zakrzewskiet al. [6] who concluded that ionization does complexity of the electronic motions involved, and, conse-
not have to proceed through interactions with the core oguently the objective of most recent studies of these systems
nucleus. In Ref[5] we showed that this difference can be has been to relate ionization to transitions to chaibkin the
traced to issues of state preparation. We also find that in thatom [10]. We take an opposite, though complementary
CPM problem the addition of a magnetic field perpendicularview, that is motivated by scattering theory: if one thinks of
to the plane of polarization completely suppresses ionizatioionization as a “half collision,” then it is natural to consider
in the plane of the electric field. This result is quite unex-the asymptotic behavior of the electron. This is the starting
pected because the addition of a magnetic field to the statigoint of our study.
Stark problem(i.e., the crossed-fields problerdestroys the For background we mention previous work related to the
integrability of the system. problems at hand: Raithel al.[11] have done much of the
We will show that in these systems an important ioniza-experimental work in the crossed-fields problem and have
tion channel is one in which the electron ionizes through adentified a class of quasi-Landd@®L) resonances in the
linear resonance. Quite spectacularly, detuning from thisspectra of rubidium Rydberg atoms. Similar to the original
resonance can lead to completely bound motdong the QL resonances observed by Garton and Tomkir#, this
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set of resonances is associated with a rather small number ofir analysis relies on the concept of the rotational potential
planar periodic orbitg13,14]. In the same system, Main and which is better known in celestial mechanics than in atomic
Wunner[15] have demonstrated that the problem exhibitsphysics. Thus we devote some attention to explaining this
the hallmarks of a chaotic scattering system during ionizakey concept. The stability of the Hamiltonians introduced in
tion. Similar conclusions apply to the CPM probl¢s]. The  Sec. Il can conveniently be studied using the cranking model
interaction of Rydberg states with circularly and elliptically ©f nuclear physics which is discussed in Sec. ll. Section IV
polarized fields has also become an active area of researcHPNNects ionization to the presence of a linear resonance and
Gallagher and co-workefd6] and Koch and co-workef@g] ~ conclusions are in Sec. V.

have studied the dependence of ionization thresholds on the

polarization of the microwave field. In turn, these experi- Il. CLASSICAL HAMILTONIAN

ments have stimulated a number of theoretical studies

[1.7’18’6’5' In a diffgrent context interest ha§ (esurfaQed inHamiltonian for either neutral or chargébody systems in
this problem since it has peen shown that It Is possible Qe cyric and magnetic fields is given in a thorough review by
create nonstationary, nondispersive electronic wave packety,<onet al [28]. For neutral systems the center-of-mass

in Rydberg atoms u_sing CPM f_iel([sg]_ We have de_mon- dynamics may be affected by the relative motigtv) but
strated that an applied magnetic figleD] can dramatically yne converse is not possible. In this paper we concern our-

A good description of the procedure for obtaining the

crossed electric and magnetieX B) fields[23] but in most static electric or CPM fieldfield strengthF and frequency

cases these suggestions have been comphcated by t_he exc'JQ’f) and a perpendicular homogeneous magnetic figld
tence of a velocity-dependent paramagnetic term in the_

S =Be,. For the vector potential we choose the symmetric
Haf_“"ton'a”- One appTOaCh has been_ to negle_ct th_e paramagéugeA= iBXr. The Hamiltonian(in appropriate atomic
netic term altogether in the one-particle Hamiltonian in the 2

symmetric gauge. This is clearly incorrect because the prol—mlts [28) is given by

cedure is gauge dependent and does not reproduc& the
X B drift of the electron (one exception is the one-
dimensional model of an electron bound at a liquid helium
surface for which there is a real outer potential minimum in —A& _ 4 @e 2, \2

crossed electric and magnetic fie[@8] in the direction per- 2 (XPy=y Py 8 (X*+y7)

pendicular to the He surfagd-or highly excited atomic sys- )

tems there exists another possibility considered by Gorkov tF(xcoswittysinwit), @

and Dzyaloshinski[24]: The two-body atomic problem can where w. is the cyclotron frequencythe choice of sign is

be “pseudoseparated” and the Coulomb potential is centeredetermined by the direction of the magnetic fielthd the

far from the origin at which point there is, instead, an oscil-parameterA = (1—68)/(1+ 6) where §=m;/m,. With oy

lator potential. The paramagnetic term can be neglected &0 this reduces to the Hamiltonian for the atomic crossed-
the wave function is concentrated in the oscillator potentiafields system and also can be adapted to describe excitons in
and does not overlap the Coulomb potential from which it iscrossed electric and magnetic fielf9,30. In the CPM
displaced by a large distance. This situation corresponds tproblem the time dependence in Etj) can be eliminated by
two oppositely charged particles performig B drift with- ~ going to a frame that rotates at the constant angular velocity
out mutual interaction. Thus the potential model applies forw;. This leads to the Hamiltonian

1 2+ 2+ 2 1
H® = (p—aa)2+ V(=P 2

2

“ionized” atoms in crossed fields for which it is natural that p2+p2+p2 1 ©

the relative motion takes place in an oscillatory potential, the —k@="*"Y "2~ _ ( wiEA —C) (X Py—Y Py)
extension of which is determined by the heavier particle. 2 r 2

Incidentally, these considerations are apropos to two oppo- w2

sitely charged particles in a pure magnetic field when the +F x+ gc(x2+y2). 2

particles each execute cyclotron motions, provided that the
centers of the cyclotron motions are displaced from eachvhere K® is called the Jacobi constafit8]. To avoid a
other by more than the cyclotron radius of the heavier parproliferation of symbols, Hamiltonians in a rotating frame
ticle. This model fails, however, when the particles arewill always be assigned the lett& but no special notation
strongly interacting, since in this case the paramagnetic termwill be attached to coordinate systems. Further, it is also
is no longer conserved, i.e., the model is only appropriate fouseful to scale the coordinates and momenta as follows:
ionized atoms in crossed fields. This paper is a member of & = w?°r,p’ = w ™~ *p [5] where w is the coefficient of the
sequence of papers that have studied in detail the use of tiierm (x p,—y py).
zero-velocity surface in treating Rydberg electrons subjected The ionization dynamics of the CPM problem have been
to Coriolis-like forceq18,20,25-27,22,5]8 extensively studied. Referenfg] provides a comprehensive
The paper is organized as follows. Section Il introducediscussion of the literature as well as a detailed study of the
the classical Hamiltonian for a hydrogen atom subjected talassical dynamics of ionization. Be that as it may, the addi-
various combinations of electric and magnetic fields. Thetion of a magnetic field perpendicular to the plane of polar-
important concepts of theurface of zero velocitgnd the ization has a surprising result. Figure 1 is a typical Poincare
rotational potentialare also introduced in this section. All of surface of section for the CPM/magnetic field system com-
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8T T T T T T T T which relates the rate of change of a vectdm a fixed frame

of reference to that in a frame rotating with angular velocity
w. If r is decomposed into perpendicular and planar compo-
nents

r=zz+p (5)
then
P=m[r+2wzXr— w?p]. (6)

Using the relatiorp-r=p- p and forming the quantity-r
we can calculate the work done in going frohto B,

2

B m , o Mo”5, 5,
WAB:f P'dr:E(UB_UA)__Z (pg=pn), (1)
A

4 P 5 wherev, andvg are the mechanical velocities. For a con-
servative fieldW,g=V(A)—V(B) and so we obtain the re-

X sult

FIG. 1. Combined Poincarsurfaces of section for 50 trajecto- 1 . 1
ries in thex-y plane for a hydrogen atom in circularly polarized K==mr’+V— -mw?p?, 8
microwave and magnetic fields. Scaled atomic units are usgd: 2 2
=w./w ande=F/w*® with £¢=0.6 andw,=0.8.

where the last term is called the rotational poterj@dl. It is

puted in the rotating frame for the planar limi= p,=0) of apparen.t.that the motion in the rotgting frame is governed by
Hamiltonian(2). The chaotic region is generated by repeatedne modifiedpotential energy function
collisions of the electron with the nucle{fs]. However, sets
of Kolmogorov-Arnol'd-Moser(KAM) curves encircle the
giant chaotic sea in the center of the figure, thereby prevent-
ing the escape of the electron to infinity. Note that e
coordinate phase p|ane is being p|otted and the KAM CUI’VEWhiCh for fixed(} is the locus of the surfaces of zero velocity
are, therefore, essentially the bounding surface of an effed31]. In celestial mechanics the surface defined’bik,y, z)
tive potential. This is a slightly unorthodox but still legiti- is often termed theurface of zero relative velocityr simply
mate way of defining a surface of section. This is done fotthezero-velocity surfac€ZVs). It is important to realize that
the important insight it provides into the asymptotics of ion-{ is not a potential even though it may share properties with
ization. In the absence of a magnetic field the chaotic se@ regular potential energy surface. Extensive discussion is
extends to infinity in the planémany examples are provided Pprovided in Refs[18,20,25-27,22,5]8This analysis shows
in [5]). that even when the potential goes to infinity asymptotically

At this point it is useful to introduce the concept of a (in the plang the ZVS need not do so because of the pres-

surface of zero relative velocity to understand the motion ofence of the rotational potential. It is clear that the presence of
the electron in a rotating frame. the rotational potential will modify the dynamics consider-
ably and this is the subject of the rest of the paper.

Q(x,y,2)=V— ;mwz(x2+y2), 9

A. Rotating axes and the zero-velocity surface o o
B. Dynamics in the asymptotic limit p— o

A consequence of Newton'’s second law is that if a con-
servative forceP= —VV acts on a particle then motion with
respect to axes that are rotating with constant angular velo
ity w about thez axis will be determined by

At this point we examine the effect of the rotational po-

Jential on the ionization dynamics and so consider the limit

p—oo. For now we restrict our attention to thxey plane: it

is easy to see using Hamilton’s equations that if the electron

p= m[F+{2w2><f}+{w22><(2><r)}], 3) starts out ip the plalne with no component_of momentum in
the z direction then it must forever remain in that plane. Of

course, in an experiment, an ensemble of initial conditions

in an inertial frame in the first and second sets of curly will not, in general, be restricted to this plane. However, by

braces are the Coriolis and centrifugal forces, respectiveI)Hn(.jer:ft.a?d'.ng.th'f. "”?'t t':] 'Sf pltl);?bleép glea_n colnS|d§|rabIe
The following relation has been used: insight into ionization in the full three-dimensional problem.

A critical observation is that while the Coulomb potential is
extremely long ranged, in the presence of strong perturba-
dr or tions, it may easily be dominated even for relatively modest
—=—+owXTr, (4) ; : : :

dt ot r values. Simulations support this expectation rather well.

where the extra term@s compared to Newton’s second law
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As discussed in the preceding section, the question of [S+w?(b—a)]
whether the motion is bound or not in the direction is AZT’
somewhat complicated: the argument that the diamagnetic
part of the potential rises to infinity asymptotically, thereby

precluding ionization, is countered by the fact that in prin- B= 2_“)

ciple the nonconserved paramagnetic or Coriolis term can be S’
negative. As noted above, the role of the rotational potential

cannot be ignored. Depending on the particulars, we will [w?(b—a)—S]
show how the magnetic field, by tuning the rotational poten- C= T 40

tial, can allow or prevent ionization in the plane.

To understand these findings we consider the dynamics of .
the electron in the plane and far from the nucleus: at somd”
point one might imagine that an ionizing electron penetrates ) i
a boundary “of no return” beyond which therlferm in Eq. In this wayK® is reduced to the separable form
(2) can be neglected in comparison to the other fields. The
resulting(planay Hamiltonian in this limit is given by

th S=sgn(\b—Va)w?\(b—a)2+8(b+a).

1 1 1
(b _ 2 - 2 £12 2
pi+p; w; : 2m ’p§,+ g Mo et 2m P
K®= 5 —o(XPy=Y PO HF X+ 2= (P42, ¢ 7
10 1 ,
(10 +§m,7,937,1; 2, (14)

with w=w;+Aw /2. Hamiltonian K® is similar to the

cranked harmonic oscillat¢€HO) model that has been used ) )
extensively in models of collective rotations in nuclear phys-Where the new masses and frequencies(taildng the "+
ics [32]. Our analysis proceeds by studying the stability ofSIgn in )

this oscillator which governs the asymptotic planar dynam-

ICS. we we
Mgy =——, m, ,=———,
¢ w5 7 (wct o)
Ill. STABILITY OF THE CRANKED HARMONIC (15)
OSCILLATOR
Qg/zwf, Qn/zwc+wf.

The first step is to remove the linear termxiin the CHO

by a canonical transformation Taking the opposite sign in the definition af [Eq. (10)]

_ _ _ _ interchanges the two frequencies. Provided fhatand()
X=&HXo, Px=Per Y= Py=PytPo, (D) are real, goth the massgs are finite, and at Ie%st one mass is
with x0=4F/(4w2—wg),p0=4Fw/(4w2—w§). Note that PoOsitive, the motion will be stablg82]: this will be the case
if w.#0, i.e., if a magnetic field is present the CHO will be
occurs, e.g., whem;=0A=1, i.e., the crossed-fields prob- stable. Asymptotically, this analysis is valid for the full
; ' : . Hamiltonian and means that the atom cannot ionize in the

lem. We will return to this singular case shortly but, for now, Lo . X
merely note that this limit is exceptional. Further we restrict.plane when a magnetic field is added to the CPM field. This

our study temporarily toA=1. The HamiltonianK® is is the origin of the bounding KAM curves ir.1.Fig'. 1 In.ciden-
taken by the transformatiofd1) into the more usual form of tally, an alternative way to establish stability is to find the

this transformation becomes singular whes w./2 which

a cranked(isotropid oscillator eigenvalues of the matri¥l where {=.A¢ are Hamilton’s
equations with the vect@z{g’,n’,pg, ,p,]/}. The fgur'ei—
B p§+ P2 w2 genvalues are found to be purely imaginary, confirming the
(b)=Tr’+ —(a E+bn?)—w(ép,— 7py), (12) Eesult?ithat a magnetic field prevents ionization in the plane
20,33.

with a=b= w?Z/40?. Because the oscillator frequencies are
equal the angular momentum= (¢p,,— 7p,) is conserved IV. LINEAR RESONANCE

gnd one could, in principle, construct effective pote.ntials at g far we have established that a magnetic field can pre-
fixed values ofl,. For present purposes the dynamical sta~ent jonization in the plane. It remains to understand how
bility of the system can best be understood by diagonalizingynization occurs in the absence of a magnetic field. Here we
the problem using the canonical transformation show that a linear resonance comes into play if the electron
, , undergoes sufficiently large excursions from the nucleus in
§'=Aé+Bp,, 7n'=AntBp;, the p direction.
(13
1= + = +
Per=pet Crm Py =Pyt CE, A. Hydrogen atom in a circularly polarized microwave field
with A—BC=1. The transformation coefficients B, andC Consider the pure CPM systefne., no magnetic field
turn out to be present for which the problem cannot be reduced to a
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FIG. 2. Plots of(a) rq(t)= Wx(t)Z+y(t)? and (b) rp(t)= Vp()Z+ py(t)2 for an ionizing electron withw;=4, £¢=0.15 in similarly
scaled units to Fig. 1. The insets show thg (prior to ionization and p,-p, projections of the orbits. Note how, after the electron is
scattered from the nucleus for the last timg,immediately settles down to a constant, while the amplitygdexhibits the characteristic
behavior of a linear resonance, as predicted by(E6). Scaled atomic units are used.

cranked oscillator because no oscillator potential is preserdtic scattering of atoms from a corrugated surfg@@]. The
[setw.=0 in Eq.(12)]. It is easy to show that asymptotically effect of an applied magnetic field is to detune the linear

the dynamics is governed by the set of equations resonance in the system of equatiqi$) leading to total
B B suppression of ionization in the plane even though a chaotic
&+ w$§=2wfp,7, n+ wfn= —2w¢Pg, sea may still surround the core—see Fig. 1. In this case Eq.

) ) (160  (16) now readsherew= w;+ w/2)
ps+wip,=0, p,+wip,=0. ,

.. w¢
Clearly the motion in the,-p,, and, therefore also in the E+| 0+ 4 §=20p,,
px-Py phase plane is harmoni,(t),p,(t) are periodic

with frequencyw;] and thus the coordinate motion is a linear

oscillator driven at its own frequency;, i.e., the classic n+
example of resonandé&4]. lonization in the CPM problem

occurs, therefore, because of an instability caused by a linear (17)
resonance that pumps the electron. Figur@s &hd Zb) plot

the classical quantities,= W+y? andr,= \/pxz+ py2 for an b§+
ionizing electron: as the electron ionizes thgp, motion

settles down to a circle—this is the signature of ionization

and the presence of a linear resonapefe Eq. (11)] [35]. .
Interestingly, as in the Kepler problem itself, thedograph Pyt
shown in the inset of Fig. 2 is asymptotically a cir¢ln

interesting account of this phenomenon is given bygssentially the motion settles down to a system of normal

Gutzwiller [2]). This is the signature of a linear resonance modes defined by the CHO and shown previously by Eq.
and shows that such a resonance is responsible for the rapigh 4).

exit of the electroni.e., it does not just slowly “drift away”

but is swept away by the resonance. Of course, the mecha-
nism by which the electron reaches the asymptotic region is
nonlinear(i.e., chaoti¢ but it is alinear process that quickly We now turn to the crossed-fields problem itself for
leads to ionization. As shown clearly by Figiathe elec- which w¢=0 in Eq. (1). First of all consider the case of a
tron ionizes after undergoing a sequence of chaotic collisionfnite nuclear mass, i.eA<1 when it is easy to show that
with the nucleus—for details s¢B]. We emphasize that this the Hamiltonian is equivalent t&§® with w=Aw/2 and,
behavior is generic to ionizing trajectories that originate intherefore, ionization is impossible in the plane, a fact that has
the chaotic sea. In fact, Fig(&@ is quite reminiscent of cha- been noted beforg30]. Explicitly the Hamiltonian is

77=—2wp§,

1

w 2
pe=— 5 00l7,

2
0t —
4

2
wC
w’+ T p”=§ww§§.

B. The crossed-fields problem in a rotating frame
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p§+ pf, 1 we wi along thez direction to a greater or lesser extent. As it does
H= 5 _F+A7(X Py—y P +F x+ ?(x2+y2), this, the Coriolis forcegarising from being in a rotating

(18) frame will deflect the electron, causing it to spiral around

the z axis. If there is no confinement perpendicular to this

with the ZVS being given by direction then the electron will eventually escape. This oc-
curs after a chaotic series of collisions with the core. The last
1 (1-A)2w? such collision is the one that propels the particle into the

O=— T +F x+ c (X%+y?). (19 linear resonance. A similar picture holds in the crossed-fields

problem where the paramagnetic term replaces the Coriolis

Note how simply the ZVS shows that,Af< 1, the motion in  {&rm. o _
the plane is bounded by curves of zero velocity which pre- !f, on the other hand, the motion is bounded asymptoti-
vent ionization. Such an example is seen in celestial mechaf@lly in the plane, then ionization, if it occurs, will be along
ics where asteroidéor test particleslying beyond Jupiter, thez direction. This will be possible only if
despite having chaotic orbits, may be blocked from colliding
with Jupiter by curves of zero velocif7].

The situation is slightly more complicated £=1 be-
cause then the transformatighl) is singular. To handle this

8

1
K>V(X,y;z—%)— sz(x2+y2)

oi(0i* wc)

case we move to a new rotating frame so as to eliminate the —F x— (x2+y?). (22)
Coriolis term in Eq(1): the price paid is that we end up with 8

an explicitly time-dependent Hamiltonidafter dropping the o . . o .
1 term The ionization threshold is determined by finding the mini-

mum of the right hand side of E¢22) which only exists if

2, 2 2 the minus sign is taken and.> w;. We obtain
(d) px py w 2 2 .
K\W=—r—=+ —(x°+y°)+ F(X COSwt + Yy Sinwt),

2 2 FZ
20 on=s———.

29 Kion 20i(wf— ) @3
where, now,w= w /2. The advantage is that the Newtonian
equations of motion can be written in an elegant and physi-

cally transparent form,

If K<K;,n<O then the electron cannot ionize at all.

V. CONCLUSIONS

X+ w?x=—F coswt, py+ w’py=Fo sinwt, We have identified a linear resonance in the ionization of
(21)  Rydberg electrons for several systems that are of consider-
y+ w?y=—F sinwt by+ wzpy: —Fw cosot. able current interest in both quantum physics and nonlinear

dynamics. In the absence of a magnetic field in the CPM
These transformations make it obvious that the asymptotisystem ionization occurs when the electron is scattered into a
dynamics consists of a set of uncoupled harmonic oscillatornear resonance by collisions with the nucleus. The addition
each of which is being driven at its own frequency, leadingof a magnetic field perpendicular to the polarization plane
to instability and ionization: again by a linear resonance. Thestops ionization in the plane. Similarly, in the crossed-fields
system of equationé21) generates a spirqB8] which cor-  problem a linear resonance was also shown to be responsible

responds to a trochoid in the nonrotating frame. for ionization. It is rather surprising that the ionization dy-
namics of these strongly chaotic systef®§ occurs ulti-
C. lonization in three dimensions mately through the simplest physical example of resonance:

. . ., _a pumpedinear oscillator.
Now we discuss the relevance of the preceding consider- pump

ations to ionization in the full three-dimensional problem.
First consider a case where ionization is possible: the CPM
problem. Unless the electron is rigorously confined to the Support of this research by the National Science Founda-
plane then, as it seeks its egress from the atom, it will moveion is gratefully acknowledged.
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