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Ionization of Rydberg atoms by Coriolis forces
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When viewed from a rotating frame the ionization of a hydrogen atom in a circularly polarized microwave
field is largely governed by Coriolis forces. Although simulations show that the ionization mechanism is
chaotic, we find that ionization is governed by alinear resonance. Because the electron is fed into the
resonance by chaotic scattering from the core the overall ionization process, when it occurs, is chaotic.
Suppression of ionization by an applied magnetic field is shown to be possible: it is due to detuning of the
linear resonance by the field.@S1050-2947~98!05112-9#

PACS number~s!: 32.80.Rm, 03.20.1i, 05.45.1b, 32.60.1i
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I. INTRODUCTION

This paper addresses two basic questions concerning
ionization of a hydrogen atom interacting with combinatio
of external electric and magnetic fields: when can the a
ionize and, if it can, what is the mechanism? On the surf
the answer to the first question might seem, in princip
obvious. As we will show, however, the issue of how a h
drogen atom will ionize when subjected to certain combi
tions of electric and magnetic fields is quite subtle due to
presence of velocity-dependent Coriolis~or Coriolis-like!
forces. The second question is also complicated and invo
two aspects;~i! the mechanism by which an electron ente
the ionization channel—in general this might involve a tra
sition to chaos—and~ii ! the process that eventually swee
the electron out of the atom. While a vast amount of exp
mental and theoretical effort has been directed to study
the nonlinear dynamics of order-chaos transitions in Rydb
atoms@1,2# the ultimate act of ionization itself has been n
glected.

Experiments as well as simulations of the hydrogen at
~i! in crossed static electric and magnetic fields~the
‘‘crossed-fields problem’’! and ~ii ! in a circularly polarized
microwave~CPM! field show clearly that ionization can b
induced by the fields@3#. The mechanism is significantl
different from ionization in a linearly polarized microwav
field @4# and involves a chaotic sequence of collisions b
tween the electron and either the core or a centrifugal ba
that surrounds the core@5#. These findings differ from those
of Zakrzewskiet al. @6# who concluded that ionization doe
not have to proceed through interactions with the core
nucleus. In Ref.@5# we showed that this difference can b
traced to issues of state preparation. We also find that in
CPM problem the addition of a magnetic field perpendicu
to the plane of polarization completely suppresses ioniza
in the plane of the electric field. This result is quite une
pected because the addition of a magnetic field to the s
Stark problem~i.e., the crossed-fields problem! destroys the
integrability of the system.

We will show that in these systems an important ioniz
tion channel is one in which the electron ionizes throug
linear resonance. Quite spectacularly, detuning from t
resonance can lead to completely bound motionalong the
PRA 581050-2947/98/58~6!/4761~7!/$15.00
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electric field direction. This happens for a hydrogen atom
a circularly polarized microwave field when a magnetic fie
is added perpendicular to the plane of polarization. Ioni
tion, when it occurs, is exclusively along themagneticfield
direction, i.e., it is orthogonal to the plane containing t
electric field vector.

While our results are presented in the context of the i
ization of Rydberg atoms, the Hamiltonian and the result
dynamics are very similar to those for dust particles inha
ing planetary rings such as the ethereal rings of Jupiter
Neptune@7,8#. There, in addition to gravitational forces, du
grains are subjected to solar radiation pressure and mag
fields and, after moving to a rotating frame, also to Corio
forces. In fact, the CPM Hamiltonian is actually identical
one used by Mignard and later Deprit@9# to study the dy-
namics of orbiting dust subject to solar radiation pressu
Thus our findings might prove helpful in understanding t
escape of dust particles from planetary rings.

The Hamiltonians for the crossed-fields problem@10# and
the hydrogen atom in a CPM field in a rotating frame a
similar because they both contain a nonconserved veloc
dependent term: in the former case this term is a param
netic term which arises from the presence of the magn
field while in the latter it is explicitly a Coriolis term due t
being in a rotating frame. The Coriolis term destroys a
qualitative similarity with the more familiar static Stark e
fect. Although the CPM problem has been the subject
significant theoretical and experimental efforts, its ionizati
dynamics are only partially understood@3#. This reflects the
complexity of the electronic motions involved, and, cons
quently the objective of most recent studies of these syst
has been to relate ionization to transitions to chaoswithin the
atom @10#. We take an opposite, though complementa
view, that is motivated by scattering theory: if one thinks
ionization as a ‘‘half collision,’’ then it is natural to conside
the asymptotic behavior of the electron. This is the start
point of our study.

For background we mention previous work related to
problems at hand: Raithelet al. @11# have done much of the
experimental work in the crossed-fields problem and h
identified a class of quasi-Landau~QL! resonances in the
spectra of rubidium Rydberg atoms. Similar to the origin
QL resonances observed by Garton and Tomkins@12#, this
4761 © 1998 The American Physical Society
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set of resonances is associated with a rather small numb
planar periodic orbits@13,14#. In the same system, Main an
Wunner @15# have demonstrated that the problem exhib
the hallmarks of a chaotic scattering system during ioni
tion. Similar conclusions apply to the CPM problem@5#. The
interaction of Rydberg states with circularly and elliptica
polarized fields has also become an active area of rese
Gallagher and co-workers@16# and Koch and co-workers@3#
have studied the dependence of ionization thresholds on
polarization of the microwave field. In turn, these expe
ments have stimulated a number of theoretical stud
@17,18,6,5#. In a different context interest has resurfaced
this problem since it has been shown that it is possible
create nonstationary, nondispersive electronic wave pac
in Rydberg atoms using CPM fields@19#. We have demon-
strated that an applied magnetic field@20# can dramatically
enhance the stabilization of these wave packets@8,21,22# To
this end there have, in fact, been a number of previous
tempts to create outer potential minima in Rydberg atom
crossed electric and magnetic (E3B) fields @23# but in most
cases these suggestions have been complicated by the
tence of a velocity-dependent paramagnetic term in
Hamiltonian. One approach has been to neglect the param
netic term altogether in the one-particle Hamiltonian in t
symmetric gauge. This is clearly incorrect because the p
cedure is gauge dependent and does not reproduce tE
3B drift of the electron ~one exception is the one
dimensional model of an electron bound at a liquid heliu
surface for which there is a real outer potential minimum
crossed electric and magnetic fields@23# in the direction per-
pendicular to the He surface!. For highly excited atomic sys
tems there exists another possibility considered by Gor
and Dzyaloshinskii@24#: The two-body atomic problem ca
be ‘‘pseudoseparated’’ and the Coulomb potential is cente
far from the origin at which point there is, instead, an osc
lator potential. The paramagnetic term can be neglecte
the wave function is concentrated in the oscillator poten
and does not overlap the Coulomb potential from which i
displaced by a large distance. This situation correspond
two oppositely charged particles performingE3B drift with-
out mutual interaction. Thus the potential model applies
‘‘ionized’’ atoms in crossed fields for which it is natural th
the relative motion takes place in an oscillatory potential,
extension of which is determined by the heavier partic
Incidentally, these considerations are apropos to two op
sitely charged particles in a pure magnetic field when
particles each execute cyclotron motions, provided that
centers of the cyclotron motions are displaced from e
other by more than the cyclotron radius of the heavier p
ticle. This model fails, however, when the particles a
strongly interacting, since in this case the paramagnetic t
is no longer conserved, i.e., the model is only appropriate
ionized atoms in crossed fields. This paper is a member
sequence of papers that have studied in detail the use o
zero-velocity surface in treating Rydberg electrons subjec
to Coriolis-like forces@18,20,25–27,22,5,8#.

The paper is organized as follows. Section II introduc
the classical Hamiltonian for a hydrogen atom subjected
various combinations of electric and magnetic fields. T
important concepts of thesurface of zero velocityand the
rotational potentialare also introduced in this section. All o
of
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our analysis relies on the concept of the rotational poten
which is better known in celestial mechanics than in atom
physics. Thus we devote some attention to explaining
key concept. The stability of the Hamiltonians introduced
Sec. II can conveniently be studied using the cranking mo
of nuclear physics which is discussed in Sec. III. Section
connects ionization to the presence of a linear resonance
conclusions are in Sec. V.

II. CLASSICAL HAMILTONIAN

A good description of the procedure for obtaining t
Hamiltonian for either neutral or chargedN-body systems in
electric and magnetic fields is given in a thorough review
Johnsonet al. @28#. For neutral systems the center-of-ma
dynamics may be affected by the relative motion~RM! but
the converse is not possible. In this paper we concern o
selves, therefore, only with the RM for a neutral two-bo
system consisting of an electron~massm1) and a positively
charged particle~massm2) subjected simultaneously to
static electric or CPM field~field strengthF and frequency
v f) and a perpendicular homogeneous magnetic fieldB
5Bez . For the vector potential we choose the symmet
gaugeA5 1

2 B3r . The Hamiltonian~in appropriate atomic
units @28#! is given by

H ~a!5
1

2
~p2qA!21V~r ,t !5

px
21py

21pz
2

2
2

1

r

2D
vc

2
~x py2y px!1

vc
2

8
~x21y2!

1F~x cosv f t1y sinv f t !, ~1!

wherevc is the cyclotron frequency~the choice of sign is
determined by the direction of the magnetic field! and the
parameterD5(12d)/(11d) where d5m1 /m2 . With v f
50 this reduces to the Hamiltonian for the atomic cross
fields system and also can be adapted to describe excito
crossed electric and magnetic fields@29,30#. In the CPM
problem the time dependence in Eq.~1! can be eliminated by
going to a frame that rotates at the constant angular velo
v f . This leads to the Hamiltonian

K ~a!5
px

21py
21pz

2

2
2

1

r
2S v f6D

vc

2 D ~x py2y px!

1F x1
vc

2

8
~x21y2!. ~2!

where K (a) is called the Jacobi constant@18#. To avoid a
proliferation of symbols, Hamiltonians in a rotating fram
will always be assigned the letterK but no special notation
will be attached to coordinate systems. Further, it is a
useful to scale the coordinates and momenta as follo
r 85v2/3r ,p85v21/3p @5# wherev is the coefficient of the
term (x py2y px).

The ionization dynamics of the CPM problem have be
extensively studied. Reference@5# provides a comprehensiv
discussion of the literature as well as a detailed study of
classical dynamics of ionization. Be that as it may, the ad
tion of a magnetic field perpendicular to the plane of pol
ization has a surprising result. Figure 1 is a typical Poinc´
surface of section for the CPM/magnetic field system co
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PRA 58 4763IONIZATION OF RYDBERG ATOMS BY CORIOLIS FORCES
puted in the rotating frame for the planar limit (z5pz50) of
Hamiltonian~2!. The chaotic region is generated by repea
collisions of the electron with the nucleus@5#. However, sets
of Kolmogorov-Arnol’d-Moser~KAM ! curves encircle the
giant chaotic sea in the center of the figure, thereby prev
ing the escape of the electron to infinity. Note that thexy
coordinate phase plane is being plotted and the KAM cur
are, therefore, essentially the bounding surface of an ef
tive potential. This is a slightly unorthodox but still legit
mate way of defining a surface of section. This is done
the important insight it provides into the asymptotics of io
ization. In the absence of a magnetic field the chaotic
extends to infinity in the plane~many examples are provide
in @5#!.

At this point it is useful to introduce the concept of
surface of zero relative velocity to understand the motion
the electron in a rotating frame.

A. Rotating axes and the zero-velocity surface

A consequence of Newton’s second law is that if a co
servative forceP52¹V acts on a particle then motion wit
respect to axes that are rotating with constant angular ve
ity v about thez axis will be determined by

P5m@ r̈1$2v ẑ3 ṙ %1$v2ẑ3~ ẑ3r !%#, ~3!

where the extra terms~as compared to Newton’s second la
in an inertial frame! in the first and second sets of cur
braces are the Coriolis and centrifugal forces, respectiv
The following relation has been used:

dr

dt
5

]r

]t
1v3r , ~4!

FIG. 1. Combined Poincare´ surfaces of section for 50 trajecto
ries in thex-y plane for a hydrogen atom in circularly polarize
microwave and magnetic fields. Scaled atomic units are usedvs

5vc /v and«5F/v4/3, with «50.6 andvs50.8.
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which relates the rate of change of a vectorr in a fixed frame
of reference to that in a frame rotating with angular veloc
v. If r is decomposed into perpendicular and planar com
nents

r5zẑ1r ~5!

then

P5m@ r̈12v ẑ3 ṙ2v2r#. ~6!

Using the relationr• ṙ5r•ṙ and forming the quantityP• ṙ
we can calculate the work done in going fromA to B,

WAB5E
A

B

P•dr5
m

2
~vB

22vA
2 !2

mv2

2
~rB

22rA
2 !, ~7!

wherevA and vB are the mechanical velocities. For a co
servative fieldWAB5V(A)2V(B) and so we obtain the re
sult

K5
1

2
mṙ21V2

1

2
mv2r2, ~8!

where the last term is called the rotational potential@31#. It is
apparent that the motion in the rotating frame is governed
the modifiedpotential energy function

V~x,y,z!5V2
1

2
mv2~x21y2!, ~9!

which for fixedV is the locus of the surfaces of zero veloci
@31#. In celestial mechanics the surface defined byV(x,y,z)
is often termed thesurface of zero relative velocityor simply
thezero-velocity surface~ZVS!. It is important to realize that
V is not a potential even though it may share properties w
a regular potential energy surface. Extensive discussio
provided in Refs.@18,20,25–27,22,5,8#. This analysis shows
that even when the potential goes to infinity asymptotica
~in the plane! the ZVS need not do so because of the pr
ence of the rotational potential. It is clear that the presenc
the rotational potential will modify the dynamics conside
ably and this is the subject of the rest of the paper.

B. Dynamics in the asymptotic limit r˜`

At this point we examine the effect of the rotational p
tential on the ionization dynamics and so consider the li
r→`. For now we restrict our attention to thex-y plane: it
is easy to see using Hamilton’s equations that if the elect
starts out in the plane with no component of momentum
the z direction then it must forever remain in that plane. O
course, in an experiment, an ensemble of initial conditio
will not, in general, be restricted to this plane. However,
understanding this limit it is possible to glean considera
insight into ionization in the full three-dimensional problem
A critical observation is that while the Coulomb potential
extremely long ranged, in the presence of strong pertur
tions, it may easily be dominated even for relatively mod
r values. Simulations support this expectation rather wel



e
by
in

b
ti

wi
n

s
m
te

h

d
ys
o
m

-
w
ic

f

re

a
ta
in

ss is

e
ll
the
his
-
e

the
ne

pre-
ow
we

tron
in

a
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As discussed in the preceding section, the question
whether the motion is bound or not in ther direction is
somewhat complicated: the argument that the diamagn
part of the potential rises to infinity asymptotically, there
precluding ionization, is countered by the fact that in pr
ciple the nonconserved paramagnetic or Coriolis term can
negative. As noted above, the role of the rotational poten
cannot be ignored. Depending on the particulars, we
show how the magnetic field, by tuning the rotational pote
tial, can allow or prevent ionization in the plane.

To understand these findings we consider the dynamic
the electron in the plane and far from the nucleus: at so
point one might imagine that an ionizing electron penetra
a boundary ‘‘of no return’’ beyond which the 1/r term in Eq.
~2! can be neglected in comparison to the other fields. T
resulting~planar! Hamiltonian in this limit is given by

K ~b!5
px

21py
2

2
2v~x py2y px!1F x1

vc
2

8
~x21y2!,

~10!

with v5v f6Dvc/2. Hamiltonian K (b) is similar to the
cranked harmonic oscillator~CHO! model that has been use
extensively in models of collective rotations in nuclear ph
ics @32#. Our analysis proceeds by studying the stability
this oscillator which governs the asymptotic planar dyna
ics.

III. STABILITY OF THE CRANKED HARMONIC
OSCILLATOR

The first step is to remove the linear term inx in the CHO
by a canonical transformation

x5j1x0 , px5pj , y5h, py5ph1p0 , ~11!

with x054F/(4v22vc
2),p054Fv/(4v22vc

2). Note that
this transformation becomes singular whenv5vc/2 which
occurs, e.g., whenv f50,D51, i.e., the crossed-fields prob
lem. We will return to this singular case shortly but, for no
merely note that this limit is exceptional. Further we restr
our study temporarily toD51. The HamiltonianK (b) is
taken by the transformation~11! into the more usual form o
a cranked~isotropic! oscillator

K̃ ~b!5
pj

21ph
2

2
1

v2

2
~a j21bh2!2v~jph2hpj!, ~12!

with a5b5vc
2/4v2. Because the oscillator frequencies a

equal the angular momentumLz5(jph2hpj) is conserved
and one could, in principle, construct effective potentials
fixed values ofLz . For present purposes the dynamical s
bility of the system can best be understood by diagonaliz
the problem using the canonical transformation

j85Aj1Bph , h85Ah1Bpj ,
~13!

pj85pj1Ch, ph85ph1Cj,

with A2BC51. The transformation coefficientsA, B, andC
turn out to be
of
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A5
@S1v2~b2a!#

2S
,

B5
2v

S
,

C5
@v2~b2a!2S#

4v
,

with S5sgn~Ab2Aa!v2A~b2a!218~b1a!.

In this way K̃ (b) is reduced to the separable form

K̃ ~b8!5
1

2mj8

pj8
2

1
1

2
mj8Vj8

2 j821
1

2mh8

ph8
2

1
1

2
mh8Vh8

2 h82, ~14!

where the new masses and frequencies are~taking the ‘‘1 ’’
sign in v)

mj852
vc

v f
, mh85

vc

~vc1v f !
,

~15!

Vj85v f , Vh85vc1v f .

Taking the opposite sign in the definition ofv @Eq. ~10!#
interchanges the two frequencies. Provided thatVj8 andVh8
are real, both the masses are finite, and at least one ma
positive, the motion will be stable@32#: this will be the case
if vcÞ0, i.e., if a magnetic field is present the CHO will b
stable. Asymptotically, this analysis is valid for the fu
Hamiltonian and means that the atom cannot ionize in
plane when a magnetic field is added to the CPM field. T
is the origin of the bounding KAM curves in Fig. 1. Inciden
tally, an alternative way to establish stability is to find th
eigenvalues of the matrixA where ż5Az are Hamilton’s
equations with the vectorz5$j8,h8,pj8 ,ph8%. The four ei-
genvalues are found to be purely imaginary, confirming
result that a magnetic field prevents ionization in the pla
@20,33#.

IV. LINEAR RESONANCE

So far we have established that a magnetic field can
vent ionization in the plane. It remains to understand h
ionization occurs in the absence of a magnetic field. Here
show that a linear resonance comes into play if the elec
undergoes sufficiently large excursions from the nucleus
the r direction.

A. Hydrogen atom in a circularly polarized microwave field

Consider the pure CPM system~i.e., no magnetic field
present! for which the problem cannot be reduced to
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FIG. 2. Plots of~a! r q(t)5Ax(t)21y(t)2 and ~b! r p(t)5Apx(t)
21py(t)

2 for an ionizing electron withv f54, «50.15 in similarly
scaled units to Fig. 1. The insets show thex-y ~prior to ionization! and px-py projections of the orbits. Note how, after the electron
scattered from the nucleus for the last time,r p immediately settles down to a constant, while the amplituder q exhibits the characteristic
behavior of a linear resonance, as predicted by Eq.~16!. Scaled atomic units are used.
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cranked oscillator because no oscillator potential is pres
@setvc50 in Eq.~12!#. It is easy to show that asymptoticall
the dynamics is governed by the set of equations

j̈1v f
2j52v f ph , ḧ1v f

2h522v f pj ,
~16!

p̈j1v f
2pj50, p̈h1v f

2ph50.

Clearly the motion in thepj-ph , and, therefore also in th
px-py phase plane is harmonic@pj(t),ph(t) are periodic
with frequencyv f# and thus the coordinate motion is a line
oscillator driven at its own frequencyv f , i.e., the classic
example of resonance@34#. Ionization in the CPM problem
occurs, therefore, because of an instability caused by a li
resonance that pumps the electron. Figures 2~a! and 2~b! plot
the classical quantitiesr q5Ax21y2 andr p5Apx

21py
2 for an

ionizing electron: as the electron ionizes thepx-py motion
settles down to a circle—this is the signature of ionizat
and the presence of a linear resonance@cf, Eq. ~11!# @35#.
Interestingly, as in the Kepler problem itself, thehodograph
shown in the inset of Fig. 2 is asymptotically a circle~an
interesting account of this phenomenon is given
Gutzwiller @2#!. This is the signature of a linear resonanc
and shows that such a resonance is responsible for the ra
exit of the electron: i.e., it does not just slowly ‘‘drift away’’
but is swept away by the resonance. Of course, the me
nism by which the electron reaches the asymptotic regio
nonlinear~i.e., chaotic! but it is alinear process that quickly
leads to ionization. As shown clearly by Fig. 2~a! the elec-
tron ionizes after undergoing a sequence of chaotic collisi
with the nucleus—for details see@5#. We emphasize that thi
behavior is generic to ionizing trajectories that originate
the chaotic sea. In fact, Fig. 2~a! is quite reminiscent of cha
nt

ar

y

id
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s

otic scattering of atoms from a corrugated surface@36#. The
effect of an applied magnetic field is to detune the line
resonance in the system of equations~16! leading to total
suppression of ionization in the plane even though a cha
sea may still surround the core—see Fig. 1. In this case
~16! now reads~herev5v f1vc/2)

j̈1S v21
vc

2

4 D j52vph ,

ḧ1S v21
vc

2

4 Dh522vpj ,

~17!

p̈j1S v21
vc

2

4 D pj52
1

2
vvc

2h,

p̈h1S v21
vc

2

4 D ph5
1

2
vvc

2j.

Essentially the motion settles down to a system of norm
modes defined by the CHO and shown previously by E
~14!.

B. The crossed-fields problem in a rotating frame

We now turn to the crossed-fields problem itself f
which v f50 in Eq. ~1!. First of all consider the case of
finite nuclear mass, i.e.,D,1 when it is easy to show tha
the Hamiltonian is equivalent toK (b) with v5Dvc/2 and,
therefore, ionization is impossible in the plane, a fact that
been noted before@30#. Explicitly the Hamiltonian is
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H5
px

21py
2

2
2

1

r
1D

vc

2
~x py2y px!1F x1

vc
2

8
~x21y2!,

~18!

with the ZVS being given by

V52
1

r
1F x1

~12D!2vc
2

8
~x21y2!. ~19!

Note how simply the ZVS shows that, ifD,1, the motion in
the plane is bounded by curves of zero velocity which p
vent ionization. Such an example is seen in celestial mech
ics where asteroids~or test particles! lying beyond Jupiter,
despite having chaotic orbits, may be blocked from collidi
with Jupiter by curves of zero velocity@37#.

The situation is slightly more complicated ifD51 be-
cause then the transformation~11! is singular. To handle this
case we move to a new rotating frame so as to eliminate
Coriolis term in Eq.~1!: the price paid is that we end up wit
an explicitly time-dependent Hamiltonian~after dropping the
1/r term!

K ~d!5
px

21py
2

2
1

v2

2
~x21y2!1F~x cosvt1y sinvt !,

~20!

where, now,v5vc/2. The advantage is that the Newtonia
equations of motion can be written in an elegant and ph
cally transparent form,

ẍ1v2x52F cosvt, p̈x1v2px5Fv sinvt,
~21!

ÿ1v2y52F sinvt, p̈y1v2py52Fv cosvt.

These transformations make it obvious that the asympt
dynamics consists of a set of uncoupled harmonic oscilla
each of which is being driven at its own frequency, lead
to instability and ionization: again by a linear resonance. T
system of equations~21! generates a spiral@38# which cor-
responds to a trochoid in the nonrotating frame.

C. Ionization in three dimensions

Now we discuss the relevance of the preceding consi
ations to ionization in the full three-dimensional proble
First consider a case where ionization is possible: the C
problem. Unless the electron is rigorously confined to
plane then, as it seeks its egress from the atom, it will m
,

cs

i-
-
n-

e

i-

ic
rs
g
e

r-
.
M
e
e

along thez direction to a greater or lesser extent. As it do
this, the Coriolis forces~arising from being in a rotating
frame! will deflect the electron, causing it to spiral aroun
the z axis. If there is no confinement perpendicular to th
direction then the electron will eventually escape. This o
curs after a chaotic series of collisions with the core. The
such collision is the one that propels the particle into
linear resonance. A similar picture holds in the crossed-fie
problem where the paramagnetic term replaces the Cor
term.

If, on the other hand, the motion is bounded asympto
cally in the plane, then ionization, if it occurs, will be alon
the z direction. This will be possible only if

K.V~x,y;z→`!2
1

2
v2~x21y2!

5F x2
v f~v f6vc!

8
~x21y2!. ~22!

The ionization threshold is determined by finding the mi
mum of the right hand side of Eq.~22! which only exists if
the minus sign is taken andvc.v f . We obtain

K ion5
F2

2v f~v f2vc!
. ~23!

If K,K ion,0 then the electron cannot ionize at all.

V. CONCLUSIONS

We have identified a linear resonance in the ionization
Rydberg electrons for several systems that are of consi
able current interest in both quantum physics and nonlin
dynamics. In the absence of a magnetic field in the CP
system ionization occurs when the electron is scattered in
linear resonance by collisions with the nucleus. The addit
of a magnetic field perpendicular to the polarization pla
stops ionization in the plane. Similarly, in the crossed-fie
problem a linear resonance was also shown to be respon
for ionization. It is rather surprising that the ionization d
namics of these strongly chaotic systems@5# occurs ulti-
mately through the simplest physical example of resonan
a pumpedlinear oscillator.
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