
PHYSICAL REVIEW A DECEMBER 1998VOLUME 58, NUMBER 6
Avoided crossings of diamagnetic hydrogen as functions of magnetic field strength
and angular momentum
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~Received 24 February 1998!

The energy levels of diamagnetic hydrogen as a function of two independent parameters, magnetic field
strengthB, and angular momentumm, are examined. Avoided crossings appear between these energy levels as
either parameter is varied while the other is held fixed. These avoided crossings are directly related to degen-
eracies~Fermi resonances! occurring at zeroth order in perturbation theory. The mathematical basis of these
degeneracies are the square-root branch points that connect the energy levels. It is found that the locations of
avoided crossings in either constant-B or constant-m spectra can be predicted by visually scanning the loca-
tions of these branch points in the complex-d plane, whered51/(212umu) is the perturbation parameter used
in this research.@S1050-2947~98!07111-X#

PACS number~s!: 32.80.Bx, 32.60.1i, 31.15.Md, 32.30.2r
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I. INTRODUCTION

Those wanting a stark contrast between the wordssimple
andeasyneed look no further than the diamagnetic hydrog
problem. While simple in description, such a problem h
defied analytic solution@1–5#. The system, a hydrogen ato
placed in a constant magnetic fieldB oriented along a fixed
axis, has numerous applications and analogs in such div
fields as astrophysics@1,6# and solid-state physics@7#. The
interest in astrophysical applications was prompted by
discovery of strong magnetic fields in certain white dwa
and neutron stars. In solid-state physics excitons behav
many respects like hydrogenic atoms. Due to the redu
effective mass of the electron in such a system, a laborat
strength magnetic field in practice can mimic the effects o
much stronger magnetic field on diamagnetic hydrogen.

Because it is a nonlinear system with two nonintegra
degrees of freedom, diamagnetic hydrogen is also an im
tant experimentally accessible test case for studying quan
chaos@3,5,8#. The Rydberg states of diamagnetic hydrog
are particularly interesting@4,5,9,10#. Many of these states
play an especially important role in studying quantum ch
because their highly excited nature renders them quite s
able to study with laboratory-strength magnetic fields@11#.
Circular Rydberg states, those with largeumu values such
that n5umu11, are also important because they are exp
mentally accessible and relatively long lived@12#.

The coupling between the two degrees of freedom, cau
by the Coulombic and diamagnetic terms, produces a n
separable Hamiltonian, thwarting all attempts to find analy
solutions to the diamagnetic hydrogen problem. This c
pling creates a markedly different energy ordering in t
important extremes ofB: For B50 the energy spectrum i
hydrogenic, while at sufficiently largeB the energy levels
divide into a series of Landau channels~see @13# for ex-
ample!. These channels are supported by the same ra
PRA 581050-2947/98/58~6!/4668~15!/$15.00
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wave functions describing motion perpendicular to a m
netic field, as are found for a free electron in a magne
field. Between these two limits ofB the interplay between
the Coulomb and diamagnetic contributions creates a c
plicated, often highly irregular, energy spectrum. Each
ergy level is perturbed from above and below by adjac
levels as the system evolves from the hydrogenic to Lan
limits and so the response of the system asB is increased is
necessarily quite complex. Even for very lowB the diamag-
netic term generatesl mixing in each hydrogenicn mani-
fold.

The most distinctive feature of the response of the ene
spectrum to adiabatic changes in theB field is an intricate
array of avoided crossings@14#, which provide the mecha
nism for state reordering with energyE asB is changed. By
this we mean that, at least in the nonchaotic region@15#, the
characters of the states exchange diabatically as the syste
taken through the avoided crossings by varying the exte
magnetic field. However, the appearance of avoided cro
ings is not restricted merely to variations inB. In the par-
ticular system we have chosen to study, the angu
momentum quantum numberm is a conserved quantity
because of the separability of the azimuthal degree of fr
dom. We show that avoided crossings also appear in
energy spectrum asm of the system is incremented in valu
~Actually, we treatm in this paper as a continuously varyin
real parameter, interpolated between integer values.! As
when B is varied for fixedm, the characters of the state
diabatically exchange across the avoided crossings whem
is varied@16#.

Avoided crossings are not always easy to distingui
Some are so sharp that energy levels superficially appea
actually cross.~Energy levels with the same parity andm
cannot cross because of the Wigner–von Neumann noncr
ing rule@17#.! On the other hand, some avoided crossings
so broad that they are not easily discernible. These
4668 © 1998 The American Physical Society
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PRA 58 4669AVOIDED CROSSINGS OF DIAMAGNETC HYDROGEN . . .
termed hidden avoided crossings@18,19#. Regardless of
whether or not they are hidden, the characters of the w
functions still exchange diabatically across the avoid
crossings. Because of this very important physical effect,
important to have a rationale for the existence of avoid
crossings to predict roughly where they occur, hidden or n
In this paper we offer such a rationale, which relies on u
derstanding the mathematical structure resulting from deg
eracies between energy levels. Furthermore, we can us
samemechanism that explains the appearance of avoi
crossings in theE-versus-B spectrum to understand thos
appearing in theE-versus-umu spectrum as well.Therefore,
this mechanism directly relates the response of the energ
independent changes in B andumu.

To analyze the avoided crossings appearing in the en
spectrum of diamagnetic hydrogen we use dimensional
turbation theory@20#, which in the system we are conside
ing is equivalent to angular-momentum (umu) perturbation
theory @21#. However, unlike angular-momentum perturb
tion theory, this method is applicable to a wider range
more complex problems. To date, dimensional perturba
theory has been applied to such diverse fields as statis
mechanics, nuclear and particle physics, quantum optics,
atomic and molecular physics@20,22–24#. In atomic and mo-
lecular physics alone dimensional perturbation theory
been applied to atomic Zeeman and Stark effects@20,24,25#,
van der Waals coefficients@26#, the hydrogen atom in paral
lel electric and magnetic fields@27,28#, two-electron and
many-electron atoms, ions, and molecules@20,29#, quasista-
tionary states @24,27,30#, potential scattering problem
@25,31#, and density-functional theory@32#, to name just a
few. Furthermore, projects are currently under way using
theory to compute the rotational spectra of molecules@33#
and virial coefficients and phase transitions in the electro
structure of atoms and molecules@34#.

Dimensional perturbation theory not only is a pote
method for calculating energies and other properties of m
quantum-mechanical systems@20,35# but also provides a
natural way of examining avoided crossings in diamagn
hydrogen energy levels. With this method, the magnetic fi
and Coulomb potential are both incorporated into the Ham
tonian at zeroth order to such an extent that we can dire
associate avoided crossings appearing in theE-versus-B
spectrum with degeneracies arising at zeroth order. Th
fore, this method establishes an orderly means of examin
the complicated energy spectrum of diamagnetic hydrog
Also, all angular-momentum dependence of the problem
contained within the perturbation parameter, which we
note in this paper asd. Changingm merely amounts to re
summing the energy series at a different value ofd, which is
considerablyeasier than a new calculation required by oth
methods. This greatly simplifies examining energy levels
a function of angular momentum.

In this paper we examine the degeneracies of diamagn
hydrogen for two characteristic energy-level interactions a
from this information we explain the existence and locatio
of some low-lying avoided crossings appearing in its ene
spectrum. In Sec. II we consider a simple example in wh
a system parameter is varied adiabatically. We then exp
how the resulting avoided crossing in the energy spectrum
related to square-root branch point degeneracies appeari
ve
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the complex parameter-plane. In Sec. III we formulate
dimensional perturbation theory used in this research. Us
the resulting energy series, in Sec. IV we plot energy lev
as functions of magnetic-field strengths at two different
ders in perturbation theory: harmonic~zeroth! order and
higher~28th! order. We show that we can relate the avoid
crossings appearing in the energy spectrum to energy de
eracies appearing at harmonic order, as expected.

In Sec. V we instead fixB and plot energy levels as th
angular momentumumu is changed. We show that th
avoided crossings appearing in this situation are directly
lated to those appearing in theE-versus-B spectrum. As
demonstrated in Ref.@36#, this relationship is illuminated by
examining the anatomy of the branch point degenera
connecting the two energy levels in question. We use
anatomy in Sec. VI to predict the appearance of avoid
crossings in both types of spectra.

We expect the analysis in Sec. VI to apply to all avoid
crossings appearing throughout the energy spectra~both
E-versus-B and E-versus-m spectra! of diamagnetic hydro-
gen. However, there is one small subset of avoided cross
that demands expanded treatment and we consider this
set of avoided crossings in Sec. VII.

This paper focuses solely on examining the odd-pa
states of diamagnetic hydrogen. As we explain in Sec. V
all results apply to the even-parity states equally well.

II. ENERGY DEGENERACIES AND AVOIDED CROSSINGS

To illustrate the relationship between energy degenera
and avoided crossings, we use an example much like the
discussed by Bender and Orszag@37#. Consider the time-
independent Schro¨dinger equation of a simple two-level sys
tem,

HC65E6C6 , ~1!

where

H5S b c

c dD . ~2!

Here we considerb, which is analogous toB or m in this
paper, as a variable parameter. Equation~1! models a genera
quantum-mechanical problem in those regions where o
two states interact strongly enough to warrant considerat
If d52b, then Eq.~1! models a well-known Landau-Zene
problem@38#, whereb is associated with a linearly varying
time-dependent magnetic field andc measures the splitting
between energy levels caused by a constant magnetic
oriented perpendicular to the first. The energy eigenvalue
functions ofb are plotted in Fig. 1, which shows an avoide
crossing centered aboutb5d. As b→6`, the energiesE1

and E2 and the eigenstatesC1 and C2 approach thec
50 solutions

f15S 1
0D ~3!

with energyE15b and
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f25S 0
1D ~4!

with energyE25d. Thus, whenb is sufficiently far from the
avoided crossing center the energies and eigenstates ar
proximated by thec50 energies and eigenstates. We usef1
andf2 to label the character of the finite-b eigenstates away
from the avoided crossings. Since the energy ordering of
c50 eigenstatesf1 and f2 is different from one extreme
value of b to the other, the states must exchange chara
diabatically across the avoided crossing. If the characte
the state defined byf2 is associated with theupperenergy
level E2 whenb!d, thenf1 will associate with thelower
level E1. However, this ordering of states reverses forb
@d and so the characters of both energy levels excha
across the avoided crossing.

In this example the avoided crossing is clearly visible
the energy spectrum, but as we stated previously such is
always the case. Yet the existence of hidden avoided cr
ings remains physically important since the character of e
interacting energy level exchanges when the system pa
through the avoided crossing. Therefore, it is important
find a distinguishing characteristic of the system that sig
fies the locations of avoided crossings, whether or not t
are hidden.

From Eqs.~1! and~2! we can write the secular equation
the form

~E2E1!~E2E2!5E22~E11E2!E1E1E250, ~5!

where

E11E25b1d, E1E25bd2c2. ~6!

FIG. 1. Energy levelsE1 ~lower level! and E2 ~upper level!
arising from Eq.~1!, with b treated as a variable parameter. No
that the characters of the states, defined as eitherf1 or f2 , ex-
change diabatically as the system progresses through the av
crossing. In other words, if we~infinitely slowly! increaseb from J
to K, the state corresponding to theE1 level would transform from
f1 to f2 in the avoided crossing region. Forc50 the system be-
comes separable and so at this limit the energy levels~shown by
dot-dashed lines! cross atb5d. The inset shows the square-ro
branch points lying in the complex-b plane that connect the two
energy levels.
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The avoided crossing occurs when the parameterb passes
closest to where the two eigenenergies are degenerate.
cording to Eqs.~6!, in order for E15E2 the parameterb
must satisfyb222db14c21d250, that is,

b65d62ic. ~7!

Note that the degeneracies occur at complex values ob;
physical~real-valued! energies cannot cross asb is held on
the real line and swept past the degeneracy points.~The
Schwarz reflection principle@39# ensures that degeneracie
occur atcomplex-conjugatevalues ofb.! Rather, as shown in
Fig. 1, we see an avoided crossing centered aboutb5d be-
cause the energies come closest to degeneracy whenb is
closest tod.

The analytic solutions for the eigenenergies are

E65
1

2
@b1d6Ab222db14c21d2#; ~8!

thus we find square-root branch point singularities at
points where the energies are degenerate@40#. In other
words, the two square-root branch points provide a sign
ture for the appearance of avoided crossings. ~See the inset
in Fig. 1.!

A square root appeared in Eq.~8! because we considere
an interaction between only two levels. When three lev
interact, one might think that the degeneracies would
marked by both cube-root and square-root branch poi
However, as explained by Bender and Orszag, higher-or
three-state degeneracies at which cube-root singularities
occur are extremely unlikely@37#. This reasoning applies to
degeneracies and higher-order singularities involving m
than three states as well. Therefore, as a general rule avo
crossings will be marked by the nearby presence ofsquare-
root branch points no matter how many states effectiv
interact@41#.

Naturally, we cannot properly describe diamagnetic h
drogen with a simple 232 matrix equation, but rather we
require an infinite-dimensional matrix equation, limited
finite dimensions for practicality. Dimensional perturbatio
theory, when formulated in the matrix method@23# ~the
method used for large-order calculations in this paper!, auto-
matically furnishes matrix equations of finite dimension
finite order. However, as we increase the rank of the ma
equation it is natural to question what correspondingly h
pens to the square-root branch point structure of the sys
There are at least four possibilities@37#: ~i! The square-root
branch points stabilize and~a! remain well separated from
each other or~b! form a sequence that becomes denser
denser towards some limiting point;~ii ! the square-root
branch points coalesce to form more complex singularitie
the limit of infinite-dimensional matrices;~iii ! the square-
root branch points move to infinity; and~iv! a square root
branch point present when the matrix equation is of a cer
dimensionality is not present at other dimensionalities. W
are only interested in avoided crossings that stabilize as
dimension of the matrix equation is increased and thus
rule out square-root branch points that behave as in ite
~iii ! and ~iv!. As we shall see, for the energy-level intera

ed
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tions considered in this paper the nearby square-root bra
point degeneracies behave as in item~ia!.

Finally, we note that for simple two-level systems Eq.~7!
requires that real-valued branch points must exist at the s
location on the real axis@42#. However, for higher ranking
matrix equations this requirement no longer applies: Re
valued branch points can exist at two different points on
real line.

III. FORMULATION OF THE DIMENSIONAL
PERTURBATION THEORY

The basic steps involved in all dimensional scaling me
ods, including dimensional perturbation theory, is to gen
alize the system toD spatial dimensions and subsequen
scale the physical variables to remove the leadingD depen-
dence@20#. In the case of dimensional perturbation theo
the scaled Schro¨dinger equation is expanded in a perturb
tion series about a value ofD that allows an analytic solu
tion. With diamagnetic hydrogen~as for many systems! the
infinite-dimensional limit serves this purpose well. To fin
the energy corresponding to the three-dimensional sys
the perturbation series is simply summed at the valueD53
because allD dependence is incorporated into the pertur
tion parameter.

The generalization of the Schro¨dinger equation describing
a hydrogenic atom in a constant magnetic fieldB to D di-
mensions is@20#

H 2
1

2 S ]2

]r2 1
]2

]z2D1
k224k13

8r2 1
B2r2

8
2

Z

r J F~r,z!

5E~r,z!F~r,z!, ~9!

k[D12umu21, ~10!

where the field strengthB is measured in units of 2.35
3109 G and the time-independent wave functionC(r,z) is
dimensionally scaled asF(r,z)5r (k21)/2C(r,z). ~We omit
the normal Zeeman term since it does not affect the dyn
ics of the problem.! Here r and z are theD-dimensional
generalization of the usual cylindrical coordinates and
remainingD22 angular coordinates have been factored
to yield ther22 centrifugal potential term. Note thatD and
umu only enter the Schro¨dinger equation throughk.

To obtain a useful infinite-dimensional limit some of th
physical quantities must be dimensionally scaled:

r̃5
r

k2 , z̃5
z

k2 , Ẽ5k2E, B̃5k3B. ~11!

Note that the conversion betweenB and B̃ in three dimen-
sions is

B ~T!.
2.943104

~11umu!3 B̃. ~12!

For example, 100 scaled units roughly equates to 75 T
three dimensions whenumu533.

With these scaled quantities the Schro¨dinger equation has
the formHF5ẼF, where
ch

e

l-
e

-
r-

-

m

-

-

e
t

in

H52
1

2
d2S ]2

]r̃2
1

]2

] z̃2D 1Ṽe f f , ~13!

Ṽe f f5
124d13d2

8r̃2
1

B̃2r̃2

8
2

Z

Ar̃ 21 z̃ 2
. ~14!

Note that we introduced the perturbation parameter

d[
1

k
5

1

D12umu21
~15!

into the Hamiltonian. It is important to note that, as withk,
all D andm dependence is accounted for ind.

As k→` (d→0) all derivative terms in the Hamiltonian
vanish, producing an ‘‘electrostatic’’ problem; the electro
settles to the minimum of the limd→0 Ṽe f f( r̃,z̃) located at
( r̃,z̃)5(rm ,zm50). We denote the energy in the largek

limit, i.e., limd→0 Ṽe f f(rm ,zm), by Ẽ` . Therefore, in the
large-k limit ~large-D and/or -umu limit ! the electron of en-
ergy Ẽ` is constrained to a hypercircle of radiusr̃5rm per-
pendicular to theẑ axis.

Using dimensionally scaled displacementsx1 andx2 , the
origin is shifted to this minimum by means of the relation

r̃5rm1d1/2x1 , z̃5d1/2x2 . ~16!

The Schro¨dinger equation is then expanded in powers
d1/2,

Ẽ5Ẽ`1(
i 50

`

Ẽ2id
i 11, ~17!

H~ r̃,z̃!5Ẽ`1(
i 50

`

Hi~x1 ,x2!d~ i /2! 11, ~18!

F~r̃,z̃!5F0~x1 ,x2!1(
i 51

`

F i~x1 ,x2!d i /2. ~19!

By equating powers ofd1/2 we obtain an infinite set of
coupled differential equations

(
j 50

p

~Hj2Ẽj !Fp2 j50, Ẽ2i 1150, p50,1,2,. . . .

~20!

The general form ofHj is given in Refs.@23,43#. Equations
~17!–~20! can then be solved for the expansion coefficie
Ẽi andF i(x1 ,x2). Of immediate importance is the solutio
for zeroth-order~harmonic! wave functions. Whenp50 in
Eq. ~20! we obtain (H02Ẽ0)F050, where

H052
1

2 S ]2

]x1
2 1

]2

]x2
2D 1

1

2
v1

2x1
21

1

2
v2

2x2
22

1

2rm
2 ~21!

has been put into the same form as a two-dimensional sim
harmonic oscillator~SHO! by defining the so-called Lang
muir oscillation frequencies
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TABLE I. Fermi resonances and corresponding interacting states appearing in the harmonic-order energy spectrum in Fig. 2
lowest-energy interactions appearing highest in the table. The~scaled! magnetic-field strength at which each resonance appears is giv
parentheses, rounded to the nearest whole number. Each entry corresponds to an individual interaction, many of which involve
two states. Any even-parity states that are degenerate to those listed were omitted. Also, some of the higher-lying Fermi resonan
2 were omitted for brevity.

8:7 ~5! 6:5 ~6! 4:3 ~9! 3:2 ~13! 8:5 ~16! 2:1 ~32! 8:3 ~79! 3:1 ~118! 4:1 ~321!

u09&,u71& u07&,u51& u05&,u31& u07&,u41& u09&,u51& u03&,u11& u09&,u31& u07&,u21& u05&,u11&

u19&,u81& u17&,u61& u15&,u41& u17&,u51& u19&,u61& u05&,u21& u19&,u41& u09&,u23& u07&,u13&

u09&,u53& u07&,u33& u09&,u43& u07&,u15&,u23&,u31& u17&,u31& u09&,u15&,u21&

u27&,u71& u25&,u51& u27&,u61& u09&,u17&,u25&,u33&,u41& u19&,u33& u17&,u23&

u19&,u63& u17&,u43& u19&,u53& u19&,u27&,u35&,u43&,u51& u27&,u41& u19&,u25&,u31&
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v1
25

3

4rm
4 2

2Z

rm
3 1

B̃2

4
, v2

25
Z

rm
3 . ~22!

The harmonic zeroth-order wave functionF0 ~which de-
scribes quantum fluctuations about the large-k limit ! not only
automatically adapts asB changes but adapts in a way tha
sensitive to the interplay between the Coulombic and
magnetic potentials. Therefore, dimensional perturba
theory is applicable to the entire range of magnetic-fi
strengths, not just to the high- or low-field regions.

Since Eq.~20! for p50 is a two-dimensional SHO equ
tion for F0(x1 ,x2), to this harmonic order the energy
simply

Ẽ'Ẽ`1dẼ05Ẽ`1dXS n11
1

2Dv11S n21
1

2Dv22
1

2rm
2 C.
~23!

We assign the ket

un1n2&[F0~x1 ,x2!5hn1
~Av1x1!hn2

~Av2x2! ~24!

to represent the ‘‘unperturbed’’ harmonic basis, where thn i
are the quantum numbers of the SHO eigenfunctionshn i

(x).

The quantum numbersn1 and n2 are the numbers of noda
lines in theẑ direction and nodes in ther̂ direction, respec
tively. The basic topology of nodal lines is preserved at fin
k with the provision that states are traced diabatically ac
avoided crossings. Thus we use the quantum numbersn1 and
n2 to label thecharacter of the state corresponding to
particular energy level in the same way that the characte
the states of the model problem in Sec. II for a particu
value ofb was labeled byf1 or f2 .

The system paritypz , which refers to reflection in thez
coordinate, is determined by the value ofn2 : Even-parity
states correspond toevenvalues ofn2 and likewise for odd-
parity states. Although we largely limit the following discu
sion to examining odd-parity states, the response of the
tem described by Eq.~9! to adiabatic changes inB̃, most
importantly the energy spectra and branch point trajecto
as functions ofB̃, are qualitatively the same no matter whi
parity sector we choose to consider.

In the next section we discover a one-to-one corresp
dence between the avoided crossings in theE-versus-B and
the E-versus-umu spectra. To illustrate this relationship, w
only need to look at a couple of avoided crossings in eac
-
n
d

e
s

of
r

s-

s

n-

of

the E-versus-B and E-versus-umu spectra in detail. Because
the perturbation parameterd in Eq. ~15! is especially small
whenumu is large, dimensional perturbation theory is partic
larly easy to apply to circular Rydberg states@43#. For that
reason, we now apply dimensional perturbation theory to c
cular and near-circular states of diamagnetic hydrogen@44#

and see how the system energyE(B̃,umu) responds as both
the magnetic-field strengthB̃ ~Sec. IV! and angular momen-
tum umu ~Sec. V! independently change.

IV. ENERGY AS A FUNCTION OF MAGNETIC-FIELD
STRENGTH

The harmonic limit not only is mathematically useful bu
incorporates many features of the three-dimensional syst
In fact, the harmonic Hamiltonian incorporates the effects
B̃ to such an extent that the ordering of states, with respec
energy, correlates exactly with that in three dimensions
both the small-B̃ and B̃→` limits. This is a key result be-
cause if the harmonic energy spectrum has the same b
structure as the exact spectrum, then we maintain the s
energy-level ordering as higher-order corrections are inc
porated, making the spectrum easier to examine. This i
major advantage of dimensional perturbation theory ov
many traditional methods.

The harmonic~zeroth-order! HamiltonianH0 also is com-
pletely separable inr̂ and ẑ, that is, ther̂ and ẑ degrees of
freedom are uncoupled. This has important consequences
the harmonic energy spectrum that results from Eq.~23!. The
following are shown in Fig. 2~for odd-parity states!.

~i! The harmonic energy levels do not interact and ac
ally cross.

~ii ! The most distinct characteristics of the harmonic spe
trum are the numerousFermi resonances~degeneracies!
@10,45# that appear at certain values ofB̃, some of which we
indicate with vertical lines in the figure. These values ofB̃
are determined by the Fermi resonance conditi
l v15kv2 , wherel and k are any two integers@18#. For
example, as highlighted in the figure, theu11& and u05& states
are degenerate at harmonic order nearB̃5320, where the
ratio v1 /v254. Therefore, we say that these two state
even at converged orders, are related through a 4:1 Fe
resonance. To determine which states coincide with a giv
Fermi resonance, consider two statesuab& and ucd&. The
harmonic energy levels of these two states cross at theX:Y



o

s
rm

y
w
tic
us

re
eu
os

s

re
in

t t
on
rm

n
fo

ai

g

hat
rgy

hip
rgy

as

e
nt
e
te

t

o-
ini-

by
past
curs

PRA 58 4673AVOIDED CROSSINGS OF DIAMAGNETC HYDROGEN . . .
Fermi resonance providedXa1Yb5Xc1Yd. For example,
the u15& andu41& harmonic levels cross at the 4:3 Fermi res
nance, since 431133554341331. We show more ex-
amples in Table I. In Fig. 2 we highlight energy-level cros
ings at two particular Fermi resonances: a 2:1 Fe
resonance (v152v2) between theu03& and u11& states and a
4:1 Fermi resonance (v154v2) between theu05& and u11&
states. Although theu11& and u03& states are not the onl
states that interact through a 2:1 Fermi resonance, we
consider only these two states when we discuss this par
lar Fermi resonance. Along the same lines, we will disc
only the interaction between theu11& andu05& states when we
focus on the 4:1 Fermi resonance.

At finite umu, terms in the Hamiltonian that couple ther̂

andẑ degrees of freedom are no longer negligible. Therefo
level crossings become forbidden by the Wigner–von N
mann noncrossing rule and are replaced by avoided cr
ings. The avoided crossing center at finiteumu is displaced
from the harmonic crossing because of theumu dependence
of the energy levels. As an example, in Fig. 3 the 4:1 cro
ing highlighted in Fig. 2 is displaced fromB̃5320.8 ~the
harmoniclevelcrossing! to B̃5138.4~theavoidedcrossing!.
In Fig. 4 we show the avoided crossing in Fig. 3 in mo
detail, making the character exchange occurring in the vic
ity of the avoided crossing easier to see. We can see tha
two energy levels do not cross. Despite this shift in locati
we can still associate the avoided crossing with the 4:1 Fe
resonance because asumu→` the avoided crossing locatio
approaches the 4:1 Fermi resonance degeneracy. There
even though the spectrum of diamagnetic hydrogen cont
a complex arrangement of avoided crossings, we can use
harmonic energy spectrum to assign each avoided crossin
a particular Fermi resonance.

FIG. 2. Harmonic~zeroth-order! energy levels as functions ofB̃
for diamagnetic hydrogen. The vertical axis measures binding
ergy in mRy forumu533. The vertical lines denote some promine
degeneracies~Fermi resonances! appearing in the spectrum. Th
crossings explicitly discussed the most in this paper are highligh

in bold circles: one associated with a 4:1 Fermi resonance aB̃

5320.8 and the other with a 2:1 Fermi resonance atB̃532.1. Only

levels corresponding to the ten lowest hydrogenic (B̃50) shells are
shown.
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We now turn our attention to the avoided crossings t
appear between two energy levels when we plot the ene
as a function ofangular momentum. We show that not only
is there a clear relationship between theE-versus-B and the
E-versus-umu spectra, but we can understand this relations
by examining the branch points that connect the two ene
levels.

V. ENERGY AS A FUNCTION OF ANGULAR MOMENTUM

In Fig. 4 an avoided crossing in theE-versus-B̃ spectrum
appeared@46# at B̃5138.4 when the angular momentum w
fixed at umu533. From Eq. ~12! this corresponds toB

n-

d

FIG. 3. Harmonic (p50) and convergent (p528) energy levels
of the umu533 u05& and u11& states related to the 4:1 Fermi res
nance degeneracy highlighted in Fig. 2. Note the shift of the m

mum energy separation to lowerB̃ in the convergent spectrum.

FIG. 4. Detail of the converged (p528) energy levels shown in
Fig. 3. The character of the wave function, which is represented
un1n2&, is exchanged diabatically as the magnetic field sweeps
the avoided crossing. Note that the avoided crossing center oc

at B̃5138.4, which is equivalent in this case (umu533) to B
5103.4 T~noted in parentheses!.
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5103.4 T. We now considerumu as a continuously varying
real parameter and see how the system energy respondsB
is held fixed at 103.4 T andumu is changed.

Consider Fig. 5, which shows the same two energy lev
for the 4:1 Fermi resonance asumu is changed. WithB
5103.4 T, the avoided crossing occurs nearumu533,
rounded to the nearest integer. Therefore, there is a st
correspondence between avoided crossings appearing i
E-versus-B spectra and those appearing in theE-versus-umu
spectra: Ifumu is fixed at umu[umu0 while B is swept, an
avoided crossing appears at some valueB[B0 . Correspond-

FIG. 5. In contrast to Fig. 4, here we plotE as a function ofumu,
not B̃, with B held fixed at 103.4 T. Note that the avoided cross
is centered aboutumu533 ~rounded to the nearest integer!. Note the
change in scaling for the vertical axis@48#.

FIG. 6. Branch point structure of diamagnetic hydrogen in
complex-d plane relating to the 4:1 Fermi resonance involving t
u11& and u05& states@49#. The numbers near each branch point re

to the corresponding value ofB̃. Note that the locations of the

branch points are particular to a given value ofB̃ and that they

move to the left asB̃ increases. Due to the scaling of the axes,
branch points on the negative real axis appear to be located a
same point. They are, however, separated and this separatio

creases for increasingB̃.
s

ls

ng
the
ingly, if B is fixed at B0 while umu is swept, an avoided
crossing appears atumu0 . This correlation between the
avoided crossings in theE-versus-B and theE-versus-umu
spectra points to the existence of nearby degeneracies
cause an avoided crossing whether we sweepB or umu. We
discuss this in detail in the next two sections.

VI. ENERGY-LEVEL CHARACTERIZATION
AND AVOIDED CROSSINGS

In @36# we argue that the behavior of the branch points
functions of B̃ for both the 4:1 and 2:1 Fermi resonanc
indicates that the energy levels of a two-state Fermi re
nance have the analytic form

E6~d,B̃!5Ẽa~d,B̃!6Ẽb~d,B̃!Ad2 d̃1~B̃!Ad2 d̃2~B̃!.
~25!

For the rest of this discussion we must keep in mind that
summation pointd is directly related toumu in three dimen-
sions through the relationd51/(212umu). The branch point
locationsd̃1(B̃) and d̃2(B̃) are solutions of the equation

DE~d,B̃![E1~d,B̃!2E2~d,B̃!

52Eb~d,B̃!Ad2 d̃~B̃!Ad2 d̃~B̃!50 ~26!

for fixed B̃. ~See Sec. II.!
The branch point trajectories in the complex-d plane are

shown for a 4:1 and a 2:1 Fermi resonance in Figs. 6 an

e

r

e
the
in-

FIG. 7. Branch point structure of diamagnetic hydrogen relat
to a 2:1 Fermi resonance involving theu11& and u03& state for field

strengths up toB̃530. As in Fig. 6 the numbers by each bran

point refer toB̃. The number in the parentheses refers to the co
sponding value ofB in tesla forumu533 andD53. The arrows on
the real axis indicate the direction the branch points move w
increasing magnetic-field strength. The arrow closest to the or
will reverse direction once that branch point reaches the origin~at

B̃'32.1!. The unmarked branch points close to the origin cor

spond to~from left to right! B̃528 and B̃530. The summation
points correspond to~from left to right! umu544, umu533, and
umu517 and are referenced in Table III. The vertical line atumu
533 is referenced in the text.
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respectively. Notice that the branch points for the 4:1 Fe
resonance in Fig. 6 are initially complex conjugate and
proach the origin asB̃ increases towards the valueB̃
5320.8.~This is the same value ofB̃ that corresponds to th
4:1 Fermi resonance.! As B̃ increases beyond this value th
branch points form on the negative real axis and head
wards2`, although at slightly different rates.

The branch point structure of the 2:1 Fermi resonance
Fig. 7 looks more complicated. Here the branch points
complex conjugate untilB̃'25.1, at which point they coa
lesce onto the negative real axis. AsB̃ further increases one
of the branch points will head towards2` while the other
will head towards the origin, reaching that point atB̃

'32.1. ~This value ofB̃ corresponds to the 2:1 Fermi res
nance.! From there the latter branch point reverses direct
and both branch points will then be moving towards2`.

As required, whend equals eitherd̃1(B̃) or d̃2(B̃) the
energiesE1 and E2 become equal~degenerate!. Note that
d̃25( d̃1)* unless the branch points lie on the real a
~again, a consequence of the Schwarz reflection princip!.
Thus, whend lies on the real axis~the physically relevant
situation! and the branch points lie off the real axis in th
complex plane. The summation pointd is symmetrically
placed between the complex-conjugate pair of branch po

and the termAd2 d̃1(B̃)Ad2 d̃2(B̃) in Eq. ~25! is just the
distance in the complex plane from the pointd to either of
the two branch points.

In Sec. II we argued that avoided crossings will occ
close to complex-conjugate square-root branch point deg
eracies present in the complex parameter plane. In this
tion we use the energy-level characterization in Eq.~25! to
sharpen our understanding of the relationship between
locations of avoided crossings and the branch point struc
of diamagnetic hydrogen. First we consider in Sec. VI A
avoided crossings asumu is swept while the magnetic-field
strength is fixed. Dimensional perturbation theory is na
rally formulated in terms of the scaled field strengthB̃ and so
automatically provides results for fixedB̃. From an experi-
mental point of view, investigating the response of the s
tem to changes inumu for fixed B̃ would appear to be quite
feasible, although obviouslyumu is limited to integer values
As umu is changed, the unscaled field strength will have to
appropriately altered@see Eq.~12!#. In Sec. VI A 2 we also
consider the case of avoided crossings asumu is swept while
the unscaledfield strengthB is held constant.

A. The 4:1 Fermi resonance:
Avoided crossings aszmz is swept

1. Scaled field strengths held constant

We define the center of the avoided crossingACd̃(B̃) to be
the value ofd whereDE is a minimum. While there is no
reason to believe that theẼb term in Eq.~25! should remain
constant over any appreciable range of angular momen
or magnetic-field strengths, the avoided crossing for the
Fermi resonance is so sharp in both spectra that we can
pectẼb not to vary significantly from one side of the avoide
crossing to the other.~We will see that this assumption fail
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for the broad avoided crossings of the 2:1 Fermi resonan!
Therefore, the center of the avoided crossing occurs w
the distance from the summation pointd to the branch points
is a minimum, that is

ACd̃~B̃!5Re@ d̃6~B̃!#. ~27!

Therefore, as long as the branch point is held fixed~B̃ is held
fixed! andumu is swept, we can make the following assertio
Since Ẽb is roughly constant over the avoided crossing r
gion, the avoided crossing appears whenever the summa

point d reaches the vicinity ofACd(B̃), the real component o
the branch point locations on the complex-d plane.

FIG. 8. Energy as a function of angular momentum for the

Fermi resonance. Here, instead of fixingB as in Fig. 5, we fixB̃. As
in Fig. 5 we rescaled the vertical axis.

FIG. 9. Another view of the data in Fig. 6, the branch po

structure of the 4:1 Fermi resonance, plotted at lower values oB̃.
The values ofumu shown correspond toD53 and are referenced in
Table II and the text. The numbers near each branch point refe

the corresponding values ofB̃. The number in parentheses refers
the magnetic-field strengthB in tesla forumu533. The vertical line
at umu533 is referred to in the text.
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We now use this result to predict the locations of avoid
crossings appearing in theE-versus-umu spectrum. In Fig. 8
the energy levels of theu11& and u05& states are plotted a
functions of umu, but this time for fixedB̃, not B. Now
consider the summation pointP in Fig. 9, which corresponds
to umu526 in three dimensions.~Figure 9 is the same as Fig
6, but for lower values ofB̃.! If we sum the energy serie
about this point, we determine the resulting energies by
ferring to the energy levels in Fig. 8 that intersect lineP. In
fact, with the use of Eq.~27! we can understand the entir
dependence ofE on umu by fixing B̃ and sweeping the sum
mation pointd ~therefore sweepingumu! along the real axis
in the complex-d plane. For example, suppose we fixB̃
5140, therefore fixing the branch point locations at pointsC
in Fig. 9, and sweepumu from point P to point R. An
avoided crossing occurs when we reach pointQ because at
that point Re(d̃6) coincides with the summation pointd. We
can verify this result by referring to Fig. 8.

2. Unscaled field strengths held constant

As stated earlier, the locations on the complex-d plane of
the branch points that connect the two energy levels
purely functions ofB̃. However, since the relationship be
tweenB̃ and B in Eq. ~12! involves umu, the branch points
cannot be fixed in location in the complexd plane whileumu
~that is,d! is swept withB constant.

However, it turns out that Eq.~27! also applies when the
unscaledfield strengthB is held fixed, withB̃ replaced byB
in the equation. To see this, Eq.~25! needs to be reexpresse
in terms ofB ~rather thanB̃! and the solutionsd6(B) of the
equation

DE~d,B!50 ~28!

calculated for fixedB @rather thand̃6(B̃), the solutions of
Eq. ~26! for fixed B̃#. This is done in Sec. 1 of the Append
with the result

E6~d,B!5Ea~d,B!6Eb~d,B!Ad2d1~B!Ad2d2~B!.
~29!

Compare this with Eq.~25!. Analogously to Eq.~25!, whend
lies on the real axis and the branch points lie off the real a
in the complex plane, the termAd2d1(B)Ad2d2(B) in

TABLE II. Avoided crossing locations in theE-versus-B spec-
trum for the 4:1 Fermi resonance. The summation points co
sponding toumu526, 33, and 50 are illustrated in Fig. 9. Th
Re(d6) that corresponds to eachumu assumesD53.

4:1 Fermi resonance
umu Re(d6) B̃a B ~T!a

B̃b B ~T!b

26 0.019 120 179 116.7 174.1
33 0.015 140 105 138.4 103.4
50 0.010 180 40 180.0 39.9

aPredicted value from scanning Fig. 6.
bComputed value from Pade´ summing Eq.~17! for the two energy
levels ~see@47#!.
d

e-

re

is

Eq. ~29! is just the distance in the complex plane from t
point d to either of the two branch points withB held fixed.

Thus assuming thatEb(d,B) in Eq. ~29! is constant under
changes inumu throughout the region spanning the avoid
crossing, then the center of the avoided crossing occurs w
the distance from the pointd to the branch pointsd6(B) is a
minimum, that is,

ACd~B!5Re@d6~B!#. ~30!

Therefore, as long as the branch point is held fixed~B is held
fixed! andumu is swept, we can make the following assertio
If Eb is roughly constant, the avoided crossing appe
whenever the summation pointd reaches the vicinity of
ACd(B), the real component of the branch point locations
the complex-d plane.@See Eq.~27!.#

A good approximation for Re@d6(B)#, the real part of the
solutions of Eq.~28! for fixed B, may be obtained from the
positions of the branch points in the complex plane for fix
B̃, the solutionsd̃6(B̃) of Eq. ~26!. In Sec. 2 of the Appen-
dix we show that sinceuRe@d̃6(B̃)#u@uIm@d̃6(B̃)#u, Eq. ~30!
implies the approximate relationship

ACd„$Re@ d̃6~B̃!#%3B̃…'Re@ d̃6~B̃!#. ~31!

Therefore, we can predict the locations of avoided crossi
in theE-versus-umu spectrum for fixedB by merely glancing
at the branch point structure connecting the two energy
els in the complex-d plane for fixedB̃. For example, in Fig.
9 we see that the real part of the branch point locatio
corresponding toB̃5140 is at roughly the same location a
the summation point corresponding toumu533. At these val-
ues of umu and B̃, the physical field strength isB
5107.6 T. Therefore, we would expect an avoided cross
to appear atB5107.6 T whenumu is fixed at 33. This is
close to where the avoided crossing appears in Fig. 5, aB
5103.4 T.

Next we consider avoided crossings as the magnetic-fi
strength, either scaled or unscaled, is swept whileumu is
unchanged.

B. The 4:1 Fermi resonance: Avoided crossings
as the magnetic-field strength is swept

Let us holdumu ~or equivalentlyd! constant on the rea
line and sweepB̃. An avoided crossing appears at that val
of B̃ for which DE(d,B̃) is a minimum. SupposeẼb in Eq.
~25! is constant under changes inB̃ throughout the region
spanning the avoided crossing. Thus, from Eq.~25! the
avoided crossing occurs when the branch point trajectorie
the complex plane pass closest to the summation pointd.

By examining the horizontal and vertical scaling in Fig
6 and 9 we see that the gradient of the branch point tra
tories remains quite small and so to a good approxima
the point of closest approach occurs when

Re@ d̃6~B̃!#5d. ~32!

Therefore, ifẼb is roughly constant over the avoided cros
ing and the slope of the branch point trajectories to the r

-
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line is small, i.e.,uRe@d̃6(B̃)#u@uIm@d̃6(B̃)#u, when the real
part of the branch points Re@d̃6(B̃)# reaches the summatio
point d, the separation between the two energy levels is cl
to a minimum. To a good approximation we can say that
center of the avoided crossing has been reached. For
ample, if we fix umu533 ~point Q in Fig. 9! and sweepB̃,
we should get an avoided crossing nearB̃5140. The cross-
ing actually occurs atB̃5138.7, as we saw in Fig. 4. As see
in Eq. ~11!, any result for whichumu is held fixed equally
applies to either sweepingB̃ or B sinceB and B̃ are then
directly proportional.

In Table II we predict the locations of avoided crossin
for both scaled and physical magnetic-field strengths
three different fixed values ofumu. From this table we see
that the branch point structure of the 4:1 Fermi resona
provides a convenient way of accurately determining s
avoided crossing locations. In conclusion, it is possible
predict the locations of avoided crossings in theE-versus-
umu spectrum for fixedB ~or B̃! and theE-versus-B̃ ~or B!
spectra for fixedumu by merely glancing at the branch poin
structure connecting the two energy levels in the compled
plane for fixedB̃.

VII. THE 2:1 FERMI RESONANCE

Having established the relationship between avoid
crossings and branch point structure by focusing on the
Fermi resonance, we now direct our attention to the
Fermi resonance. By examining Figs. 10 and 11 we can
that the same correspondence between the two spectra
exists for the 4:1 Fermi resonance applies to the 2:1 Fe
resonance as well.~i! An avoided crossing appears atB
514.0 T for umu fixed at umu533. ~ii ! With B fixed at B
514.0 T an avoided crossing appears atumu534. Notice
that since the avoided crossing appears atumu534 and not
umu533, the correspondence between the two plots is no

FIG. 10. Detail of the interaction between theu03& and u11&
states associated with a 2:1 Fermi resonance. As in Fig. 4 the n
ber in parentheses refers to the magnetic-field strength in tesla w
umu533.
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precise as it was for the 4:1 Fermi resonance. We will d
cuss this further below.

The repulsion between theu11& and u03& states is quite
strong@36#, therefore the avoided crossing is actually spre
out over a large region of magnetic-field strength. Therefo
we should not expectẼb in Eq. ~25! to remain nearly con-
stant throughout the avoided crossing region. However,
previous discussion relied on a roughly constantẼb , so we
now see how our results apply to the 2:1 Fermi resonan

A. Avoided crossings aszmz is swept

1. Scaled field strengths held constant

In Fig. 12 energy is plotted as a function ofumu, with the
scaled magnetic-field strength fixed toB̃515. According to
the argument in Sec. VI, an avoided crossing should app
when the summation point reaches the real part of the bra
points corresponding toB̃515. According to Fig. 7, this
should be nearumu533 ~note the vertical line that runs
through theumu533 summation point and the branch poi
corresponding toB̃515!. However, Fig. 12 shows that th
avoided crossing appears atumu519.0. The only approxima-
tion that went into Eq.~27! was thatẼb was nearly constant
so at this point we can conclude that for the 2:1 Fermi re
nance Ẽb changes significantly over the region of th
avoided crossing. This means that the first term

]~DE!

]d
52

]Ẽb

]d
Ad22~d11d2!d1d1d2

1
Ẽb@2d2~d11d2!#

Ad22~d11d2!d1d1d2

~33!

in the derivative of Eq.~26! is appreciable in comparison t
the second.

m-
en

FIG. 11. Same as Fig. 5 except for a 2:1 Fermi resonance. H
we fix B514.0 T. The avoided crossing here is close toumu534,
rounded to the nearest integer. As in Fig. 5 we rescaled the ver
axis.
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For B̃515 the fact thatẼb varies significantly over the
avoided crossing region is easily shown. From a plot ofẼb as
a function ofd ~that is,umu! over the avoided crossing regio
~see Fig. 13! we see thatẼb roughly has the form

Ẽb52C1d1C2 , ~34!

whereC1'344 andC2'65.3. Substituting this expressio
into Eq. ~33! and noting thatd6'0.014760.0393 for B̃
515, we find that the ratio of the first term to the seco
term in Eq.~33! lies roughly anywhere between 0.25 and 1
from one end of the avoided crossing to the other. Theref

FIG. 12. Energy levels corresponding to a 2:1 Fermi resona

asumu is swept. Here we hold the scaled magnetic fieldB̃ fixed. The
dashed line is the difference between the two energies, scaled
on the same plot. The minimum~avoided crossing! occurs atumu
519.0. All energies have been rescaled.

FIG. 13. TheẼb term in Eq.~25! plotted as a function ofd over
the range of the avoided crossing in Fig. 12. The correspond
values ofumu are shown for reference (D53). The extreme left of
the plot corresponds toumu550, whereas the extreme right corr
sponds toumu510.
e,

the first term in Eq.~33! containing]Ẽb /]d cannot be ig-

nored, so Ẽb is not sufficiently constant throughout th
avoided crossing region.

With the linear approximation of Eq.~34!, from Eq. ~33!
](DE)/]d50 places the avoided crossing center atumu
'19.3, which is very close to the exact value ofumu519.0
~see Fig. 12!. Therefore, by merely taking into account th
next term of the Taylor series expansion ofẼb with respect
to d, we accurately obtain the position of the avoided cro
ing at the 2:1 Fermi resonance.

2. Unscaled field strengths held constant

In Sec. VI A 2 we found that the same relationship f
predicting the appearance of avoided crossings for fi
scaled field strength also applied to fixedunscaledfield
strength because the approximationuRe@d̃6(B̃)#u
@uIm@d̃6(B̃)#u applied. In Fig. 7 we can see that such
approximation does not apply to the 2:1 Fermi resonanc

B. Avoided crossings as the magnetic-field strength is swept

When sweeping the magnetic-field strength~scaled or un-
scaled! for the 4:1 Fermi resonance we simplified the pred
tions of avoided crossings by noting that the trajectories
the branch points were nearly parallel to the real axis. The
fore, for the 4:1 interaction the closest distance between
branch point and the summation point simply coincided w
the summation point located at the real part of the bra
point. A glance at Fig. 7 shows that this simplification w
not hold for the 2:1 Fermi resonance. However, finding
branch point that is closest to the summation point from
plot of the branch point trajectory is not too difficult as lon
as the real and imaginary axes are scaled the same, as i
figure. Here we can see that forumu533 the branch point
coinciding with B̃'23 is closest to the summation point, s
we expect to find an avoided crossing at roughlyB̃523 if we
fix umu533. However, Fig. 10 shows that the avoided cro

e

fit

g
FIG. 14. TheẼb term in Eq.~25! plotted as a function ofB̃ over

the range of the avoided crossing in Fig. 10. ClearlyẼb is not
constant over this range of field strengths.
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ing actually appears atB̃518.7. By plottingẼb as a function
of B̃ in Fig. 14 and noting thatẼb increases by roughly a
factor of 4 over the range of the avoided crossing, we
verify that Ẽb varies considerably over the region of th
avoided crossing for this interaction, so such a discrepanc
not unexpected.

Just as for the 4:1 Fermi resonance between theu11& and
u05& states, we summarize in Table III comparisons betw
expected and calculated results corresponding to those
mation points shown in Fig. 7, the branch point structure
the 2:1 Fermi resonance between theu11& and u03& states.
Despite the discrepancy in assuming a constantẼb , the pre-
dicted values are still fairly close to those found by compu
calculation for a wide range ofumu.

VIII. EVEN-PARITY STATES

All calculations in this paper focused on odd-parity stat
However, even-parity energy levels and branch point tra
tories are essentially the same as for odd-parity states
examples we show theeven-paritybranch point structure o
4:1 and 2:1 Fermi resonances in Figs. 15 and 16. Compa
these figures to Figs. 6 and 7 it appears that, except for s
shifts in locations, the branch point structures are essent
the same. Therefore, the energy-level characterization in

FIG. 15. Same as Fig. 6 except this time we show theeven-
parity branch point structure involving theu10& and u04& states.

TABLE III. Avoided crossing locations in theE-versus-B spec-
trum for the 2:1 Fermi resonance. The summation points co
sponding toumu517, 33, and 44 are illustrated in Fig. 7. Th
Re(d6) that corresponds to eachumu assumesD53.

2:1 Fermi resonance
umu Re(d6) B̃a B~T!a

B̃b B~T!b

17 0.028 19 96 13.0 65.5
33 0.015 23 17 18.7 14.0
44 0.011 25 8 21.6 7.0

aPredicted value from visually scanning Fig. 7.
bComputed value from Pade´ summing Eq.~17! for the two energy
levels.
n
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n
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~25! applies to both even- and odd-parity states.
This is not surprising since dimensional perturbati

theory shows that at harmonic order the location of the Fe
resonances, which determines the location of degenerac
higher order and thus the location of branch points, is
same for either parity.~Watsonet al. @29# include a plot of
the harmonic-order even-parity energy levels as a function
B̃, although at a different value ofumu.) Because of this
similarity in the harmonic-order spectra between the t
parities, the even-parity energy levels share the same q
tative features as their odd-parity counterparts. Some
amples of even-parity counterparts to the odd-pa
E-versus-B spectra are shown by Watsonet al., again for a
different value ofumu.

IX. CONCLUSIONS AND SUMMARY

In this paper we examined two types of spectra. In one
angular momentumumu was held constant while themag-
netic field Bchanged adiabatically and in the other the ma
netic field was held constant while theangular momentum
changed adiabatically. We found that the locations of
avoided crossings appearing in theE-versus-B spectra are
directly related to the locations of those appearing in
E-versus-umu spectra and that this correspondence points
degeneracy in the energy levels that provides the mechan
for the appearance of avoided crossings in both spectra.

The branch points that connect the energy levels are
mathematical basis of such a mechanism@51# and by under-
standing this basis we have found it possible to predict
locations of avoided crossings in both spectra. By succe
fully characterizing the energy levels in terms of the
branch points through Eq.~25!, a simple relationship tha
merely requires visually examining the branch point traje
tories of the system as functions ofB was found that could
be used for predicting the locations of avoided crossings
both spectra.

Although we have only explicitly analyzed the situatio

FIG. 16. Same as Fig. 7, except this time we show theeven-
parity branch point structure involving theu10& and u02& states. The
branch points close to the origin and lying on the negative real a

correspond to~from left to right! B̃528 andB̃530.
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involving two strongly interacting states~two-state Fermi
resonances!, Table I shows that three and more strongly
teracting states~three- and more-state Fermi resonances! are
common in the eigenvalue spectrum of diamagnetic hyd
gen. Heiss and Steeb@52# have studied the analytic chara
terization of branch points of the eigenvalues associated
avoided crossings of three and more strongly interac
states in finite-dimensional matrix eigenvalue problem
They find that in this case Eq.~25! correctly characterizes th
branch point structure of the eigenvalues in the neighb
hoods of the branch points. Thus, although infini
dimensional matrix equations can in principle involve mo
complex branch point characterizations@36# involving states
with complex energies~resonances! @53#, we expect that Eq
~25! will still correctly parametrize the energy involvin
three and more strongly interacting states in the neighb
hood of branch points that will produce avoided crossin
Therefore, the analysis performed in this paper should ap
to all avoided crossings of diamagnetic hydrogen.

The ability to predict and understand the appearance
avoided crossings is aided by the assumption that theẼb
term in Eq. ~25! is constant over the range of the avoid
crossing. The avoided crossing pertaining to the 4:1 Fe
resonance was sufficiently sharp to satisfy this assumpt
but we saw that because of the broad avoided crossing in
2:1 Fermi resonance this condition failed. Therefore, pred
ing the positions of the avoided crossings for the 2:1 Fe
resonance is more involved. However, the broadness of
2:1 Fermi resonance is the exception rather than the
@50#. Therefore, the ability to predict the locations of avoid
crossings based only on examining the positions of
branch points that connect the two levels should have br
applicability throughout the spectra of diamagnetic hyd
gen.
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APPENDIX: DETAILS OF AVOIDED CROSSINGS AS zmz
IS SWEPT WHILE THE UNSCALED FIELD

STRENGTH B IS HELD CONSTANT

1. Rewriting the energy-level characterization of Eqs.„25… and
„26… in terms of the unscaled field strength and the

solutions of Eq. „26… for fixed B

When reexpressed in terms ofB andd, the d̃6(B̃) of Eqs.
~25! and ~26! are functions of bothB and d @see Eq.~11!#,
that is,d̃6(B,d). Consider expandingd̃6(B,d) about a point
dc while B is held fixed, wheredc is a solution of Eq.~28!
for fixed B. Then
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d̃6~B,d!5 d̃6~B,dc!1
dd̃6~B,d!

dd
U

d5dc

~d2dc!

1~higher order terms ind2dc!. ~A1!

Now d̃6(B,dc)5 d̃6(B̃c) is the solution ofDE(d,B̃c)50
5DE(d,B) @see Eqs.~26! and ~28!#, that is, d̃6(B,dc)
5dc , wherec56. Therefore,

d̃6~B,d!5d61
dd̃6~B,d!

dd
U

d5dc

~d2d6!

1~higher order terms ind2d6!. ~A2!

This means that

Ad2 d̃6~B̃!5AA~B,d!@d2d6~B!#, ~A3!

whereA(B,d) is finite atd5d6(B), and Eq.~25! becomes

E6~d,B!5Ea~d,B!6Eb~d,B!Ad2d1~B!Ad2d2~B!

@see, for example, Eq.~25!#, where thed6(B) are solutions
of Eq. ~28!.

2. Derivation of the approximate relationship
of Eq. „31… from Eq. „28…

A good approximation for Re@d6(B)#, the real part of the
solutions of Eq.~28! for fixed B, may be obtained from the
positions of the branch points in the complex plane for fix
B̃, the solutionsd̃6(B̃) of Eq. ~26!. Equation ~27! deter-
mines where an avoided crossing will be found asB̃ is held
fixed. According to Eq.~11!, this corresponds to an unscale
magnetic fieldB5$Re@d̃6(B̃)#%3B̃. By using this value ofB
in Eq. ~28! we obtain the positions of the branch points in t
complex-d plane for this value ofB. Therefore, from Eq.
~30! we obtain the position of the avoided crossings asB is
held to this value. However, the value ofB at d̃6(B̃), the
branch point position withB̃ held fixed, is not$Re@d̃6(B̃)#%3B̃

but rather@ d̃6(B̃)#3B̃. Thus thed̃6(B̃) are the solutions of
Eq. ~28! with B5@ d̃6(B̃)#3B̃. Nevertheless, these are clo
to $Re@d̃6(B̃)#%3B̃ sinceuRe@d̃6(B̃)#u@uIm@d̃6(B̃)#u. Therefore,
assuming that the solutions of Eq.~28! are not extremely
sensitive to the precise value ofB,

d6„$Re@ d̃6~B̃!#%3B̃…'d̃6~B̃!. ~A4!

Therefore, from Eq.~30!

ACdc„$Re@ d̃6~B̃!#%3B̃…'Re@ d̃6~B̃!#.
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