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The energy levels of diamagnetic hydrogen as a function of two independent parameters, magnetic field
strengthB, and angular momentum, are examined. Avoided crossings appear between these energy levels as
either parameter is varied while the other is held fixed. These avoided crossings are directly related to degen-
eracies(Fermi resonancéoccurring at zeroth order in perturbation theory. The mathematical basis of these
degeneracies are the square-root branch points that connect the energy levels. It is found that the locations of
avoided crossings in either constd®r constanin spectra can be predicted by visually scanning the loca-
tions of these branch points in the compléglane, wheres=1/(2+ 2|m|) is the perturbation parameter used
in this research[S1050-294®8)07111-X]

PACS numbe(s): 32.80.Bx, 32.60ti, 31.15.Md, 32.30-r

I. INTRODUCTION wave functions describing motion perpendicular to a mag-
netic field, as are found for a free electron in a magnetic

Those wanting a stark contrast between the waidgple  field. Between these two limits d the interplay between
andeasyneed look no further than the diamagnetic hydrogenthe Coulomb and diamagnetic contributions creates a com-
problem. While simple in description, such a problem hasplicated, often highly irregular, energy spectrum. Each en-
defied analytic solutiofl-5]. The system, a hydrogen atom ergy level is perturbed from above and below by adjacent
placed in a constant magnetic fidddoriented along a fixed levels as the system evolves from the hydrogenic to Landau
axis, has numerous applications and analogs in such diverdieits and so the response of the systenBais increased is
fields as astrophysiddl,6] and solid-state physids’]. The  necessarily quite complex. Even for very |@&wthe diamag-
interest in astrophysical applications was prompted by theetic term generates’ mixing in each hydrogenia mani-
discovery of strong magnetic fields in certain white dwarfsfold.
and neutron stars. In solid-state physics excitons behave in The most distinctive feature of the response of the energy
many respects like hydrogenic atoms. Due to the reducesipectrum to adiabatic changes in tBefield is an intricate
effective mass of the electron in such a system, a laboratoryarray of avoided crossingd4], which provide the mecha-
strength magnetic field in practice can mimic the effects of anism for state reordering with ener@yasB is changed. By
much stronger magnetic field on diamagnetic hydrogen. this we mean that, at least in the nonchaotic redi#j, the

Because it is a nonlinear system with two nonintegrablecharacters of the states exchange diabatically as the system is
degrees of freedom, diamagnetic hydrogen is also an impotaken through the avoided crossings by varying the external
tant experimentally accessible test case for studying quantumagnetic field. However, the appearance of avoided cross-
chaos[3,5,8. The Rydberg states of diamagnetic hydrogenings is not restricted merely to variations B In the par-
are particularly interesting4,5,9,10. Many of these states ticular system we have chosen to study, the angular-
play an especially important role in studying quantum chaognomentum quantum numben is a conserved quantity
because their highly excited nature renders them quite suibecause of the separability of the azimuthal degree of free-
able to study with laboratory-strength magnetic fidld$]. = dom. We show that avoided crossings also appear in the
Circular Rydberg states, those with largen| values such energy spectrum as of the system is incremented in value.
thatn=|m|+ 1, are also important because they are experi{Actually, we treaim in this paper as a continuously varying
mentally accessible and relatively long livEL2]. real parameter, interpolated between integer valués.

The coupling between the two degrees of freedom, causedhen B is varied for fixedm, the characters of the states
by the Coulombic and diamagnetic terms, produces a nordiabatically exchange across the avoided crossings winen
separable Hamiltonian, thwarting all attempts to find analytids varied[16].
solutions to the diamagnetic hydrogen problem. This cou- Avoided crossings are not always easy to distinguish.
pling creates a markedly different energy ordering in twoSome are so sharp that energy levels superficially appear to
important extremes oB: For B=0 the energy spectrum is actually cross(Energy levels with the same parity amal
hydrogenic, while at sufficiently larg8 the energy levels cannot cross because of the Wigner—von Neumann noncross-
divide into a series of Landau channdlee[13] for ex- ing rule[17].) On the other hand, some avoided crossings are
ample. These channels are supported by the same radiglo broad that they are not easily discernible. These are
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termed hidden avoided crossinggd18,19. Regardless of the complex parameter-plane. In Sec. Il we formulate the
whether or not they are hidden, the characters of the wavdimensional perturbation theory used in this research. Using
functions still exchange diabatically across the avoidedhe resulting energy series, in Sec. IV we plot energy levels
crossings. Because of this very important physical effect, it i€ts functions of magnetic-field strengths at two different or-
important to have a rationale for the existence of avoidedlers in perturbation theory: harmonizeroth order and
crossings to predict roughly where they occur, hidden or nothigher (28th) order. We show that we can relate the avoided
In this paper we offer such a rationale, which relies on un<rossings appearing in the energy spectrum to energy degen-
derstanding the mathematical structure resulting from degerf2@cies appearing at harmonic order, as expected.
eracies between energy levels. Furthermore, we can use the IN S€C. V we instead fi8 and plot energy levels as the
samemechanism that explains the appearance of avoidegngular momentunjm| is changed. We show that the
crossings in theE-versusB spectrum to understand those avoided crossings appearing in this situation are directly re-
appearing in theE-versustm| spectrum as wellTherefore, 1ated to those appearing in trie-versusB spectrum. As
this mechanism directly relates the response of the energy fd€menstrated in Ref36], this relationship is illuminated by
independent changes in B afrd. examining the anatomy of the brgnch point degeneramgs
To analyze the avoided crossings appearing in the energgPnecting the two energy levels in question. We use this
spectrum of diamagnetic hydrogen we use dimensional pe@natomy in Sec. VI to predict the appearance of avoided
turbation theon[20], which in the system we are consider- C'0SSings in both types of spectra. _
ing is equivalent to angular-momenturfr() perturbation We expect the analysis in Sec. VI to apply to all avoided
theory [21]. However, unlike angular-momentum perturba- Cr0Ssings appearing throughout the energy spediaih
tion theory, this method is applicable to a wider range ofE-VersusB andE-versusm spectra of diamagnetic hydro-

more complex problems. To date, dimensional perturbatio§€n- However, there is one small subset of avoided crossings
theory has been applied to such diverse fields as statisticHlat demands expanded treatment and we consider this sub-

mechanics, nuclear and particle physics, quantum optics, arft Of avoided crossings in Sec. VII. ,
atomic and molecular physi¢20,22—24. In atomic and mo- This paper focuses solely on examining the odd-parity
lecular physics alone dimensional perturbation theory haStates of diamagnetic hydrogen. As we explain in Sec. VIll,
been applied to atomic Zeeman and Stark effE28524,25, all results apply to the even-parity states equally well.

van der Waals coefficienf®6], the hydrogen atom in paral-

lel electric and magnetic field27,28, two-electron and |I. ENERGY DEGENERACIES AND AVOIDED CROSSINGS
many-electron atoms, ions, and molecUl26,29, quasista- . ) ) )
tionary states[24,27,30, potential scattering problems To illustrate the relationship between energy degeneracies
[25,31, and density-functional theor82], to name just a and avoided crossings, we use an example much like the one
few. Furthermore, projects are currently under way using thigliscussed by Bender and Orszggy]. Consider the time-
theory to compute the rotational spectra of molectis] independent Schrdinger equation of a simple two-level sys-

and virial coefficients and phase transitions in the electronide™:

structure of atoms and moleculg34]. .
Dimensional perturbation theory not only is a potent HY.=E"¥., (1)

method for calculating energies and other properties of many

quantum-mechanical systeni20,35 but also provides a Wwhere

natural way of examining avoided crossings in diamagnetic

hydrogen energy levels. With this method, the magnetic field b c

and Coulomb potential are both incorporated into the Hamil- H= c d

tonian at zeroth order to such an extent that we can directly

associate avoided crossings appearing in EiwgersusB . o . _
. . g Here we consideb, which is analogous t® or m in this
spectrum with degeneracies arising at zeroth order. There-

fore, this method establishes an orderly means of examiningaper’ as a variable parameter. Equatijrmodels a general

e compicated enrgy spectum of damagnetc ycroger CTTeCh R PIOber 1 ose egore et ooy
Also, all angular-momentum dependence of the problem ; gy 9 '

contained within the perturbation parameter, which we de—f d=—b, then Eq.(l)'models a weII—I_<nowr3 Landau-Zener
note in this paper as. Changingm merely amounts to re- problem[38], whereb is associated with a linearly varying,

summing e cnery sres at a diferent vausainicn s [T SEPETNCT MOTE el satnesses e soing
considerablyeasier than a new calculation required by other 9y y 9

methods. This greatly simplifies examining energy levels a riented perpendicular to the first. The energy eigenvalues as
a functioﬁ of angular momentum unctions ofb are plotted in Fig. 1, which shows an avoided

In this paper we examine the degeneracies of diamagnetff:ross'gg centered gbobtz d. Asb— =0, the energie& "
hydrogen for two characteristic energy-level interactions an nd E a_md the eigenstate¥’, and ¥_ approach thec
from this information we explain the existence and Iocations:0 solutions
of some low-lying avoided crossings appearing in its energy
spectrum. In Sec. Il we consider a simple example in which b= ( 1) @)
a system parameter is varied adiabatically. We then explain 1o
how the resulting avoided crossing in the energy spectrum is

related to square-root branch point degeneracies appearing\wwith energyE;=b and

. (2
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The avoided crossing occurs when the parambtg@asses

Energy,E —

' em 0 closest to where the two eigenenergies are degenerate. Ac-
Pl cording to Egs.(6), in order forE*=E~ the parameteb
must satisfyb®?—2db+4c?+d?=0, that is,

b*=d=2ic. (7)

% ﬂj/ 9
] Note that the degeneracies occur at complex valueb; of

physical (real-valued energies cannot cross hsis held on

0 I H
the real line and swept past the degeneracy poiffike

jii E+ Im(b)
i oo Schwarz reflection principl€39] ensures that degeneracies
..... AL occur atcomplex-conjugatealues ofb.) Rather, as shown in
Fig. 1, we see an avoided crossing centered abeut be-

cause the energies come closest to degeneracy Wwhisn

] 2c+ .

o/ | closest tod.
The analytic solutions for the eigenenergies are

J d b— K
FIG. 1. Energy level€™ (lower leve) and E~ (upper level
arising from Eq.(1), with b treated as a variable parameter. Note
that the characters of the states, defined as eitheor ¢,, ex-
change diabatically as the system progresses through the avoided
crossing. In other words, if wénfinitely slowly) increaseb from J thus we find square-root branch point singularities at the
to K, the state corresponding to tE¢ level would transform from points where the energies are degenef@e@]. In other
¢1 10 ¢, in the avoided crossing region. FOF0 the system be- words, the two square-root branch points provide a signa-
comes separable and so at this limit the energy letslswn by ture fo’r the appearance of avoided crossin(f3ee the inset
dot-dashed lingscross atb=d. The inset shows the square-root in Fig. 1)
branch points lying in the complex-plane that connect the two Agslqu.are root appeared in E@) because we considered
an interaction between only two levels. When three levels
0 interact, one might think that the degeneracies would be
b= l) (4) marked by both cube-root and square-root branch points.
However, as explained by Bender and Orszag, higher-order,
with energyE,=d. Thus, wherb is sufficiently far from the three-state degeneracie; at which _cube—root_ singula_rities can
avoided crossing center the energies and eigenstates are cur are gxtremely 'unl|keI[B7]. Th|s reasoning applles to
proximated by the=0 energies and eigenstates. We tge egeneracies and higher-order singularities involving more
and ¢, to label the character of the finiteeigenstates away tt:ggsﬁ?]rese;}ﬁtgz ?T;Sa\x(ee”ci 'It;hetrhe;or:;?bs a ?ggf;i;g}zrae\fmded
from the avoided crossings. Since the energy ordering of th& b 9 h point t)t/ h yp at frectivel
c=0 eigenstatesh; and ¢, is different from one extreme root branch points no matter how many states etlectively
value ofb to the other, the states must exchange charactérr]tel\lraft[‘lﬁ]' t v d e di tic h
diabatically across the avoided crossing. If the character Oérog;:”v?/it%’ ;Vii;%rl]gox 2p r?npaet:ii egzgilioﬁ t;i:nr?tgzrlflvey_
ine stle efined 12 asaociled Wik DaBPerS09) requre an nfnte dmensional mathe squaton, mied
4 v finite dimensions for practicality. Dimensional perturbation
level ET. However, this ordering of states reverses ffor theory, when formulated in the matrix methd@3] (the
>d and so ““? characters of both energy levels eXChangl%ethoa used for large-order calculations in this papsarto-
across _the avoided crossing. L . ... matically furnishes matrix equations of finite dimension at
In this example the avoided crossing is qlearly V'S'bl.e MNfinite order. However, as we increase the rank of the matrix
gll\(/av;;se:% igigmj{n;t’ 5:2 2;;"{;?:%? h%%\gﬁuas\%izté%héfoggguation it is natural to question what correspondingly hap-
) ; o . . ens to the square-root branch point structure of the system.
ings remains physically important since the character of eaCEhere are at least four possibilitiga7]: (i) The square-root
interacting energy level exchanges when the system PaSSKPanch points stabilize an@) remain.well separated from
through the avoided crossing. Therefore, it is important toeach other ofb) form a sequence that becomes denser and
f@nd a disting_uishing cha_racteristic .of the system that signi—denser towards some limiting pointji) the square-root
g?;‘ ;T;d:;]cat'ons of avoided crossings, whether or not the)()ranch points coalesce to form more complex singularities in
: . .. the limit of infinite-dimensional matricegjii) the square-
From Egs(1) and(2) we can write the secular equation in root branch points move to infinity: an@) a square root
the form branch point present when the matrix equation is of a certain
(E-E*)(E—E")=E?—(E*+E")E+EE~=0, (5 dimensiorlality is not present at othgr dimensiongl_ities. We
are only interested in avoided crossings that stabilize as the
where dimension of the matrix equation is increased and thus we
rule out square-root branch points that behave as in items
(iii) and(iv). As we shall see, for the energy-level interac-

E"+E =b+d, E'E =bd-c2 (6)

1
Etzi[b+di\/b2—2db+4c2+d2]; (8)

energy levels.
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tions considered in this paper the nearby square-root branch 1, 2 92\
point degeneracies behave as in itéa). H==58 =3+ = |+ Verr, (13

Finally, we note that for simple two-level systems Ef). ap* Iz
requires that real-valued branch points must exist at the same 5 =
location on the real axig42]. However, for higher ranking v ~1-46+35° B z 14
matrix equations this requirement no longer applies: Real- eff™ ~2 + 8 ~, ~ (14

. . . . Sp 2+ Z 2
valued branch points can exist at two different points on the p
real line. Note that we introduced the perturbation parameter
lIl. FORMULATION OF THE DIMENSIONAL 1 1
= = 1
PERTURBATION THEORY o= Dr2m -1 (15

The basic steps involved in all dimensional scaling meth- o . .
ods, including dimensional perturbation theory, is to generiNto the Hamiltonian. It is important to note that, as wih
alize the system td® spatial dimensions and subsequently @/l D @ndm dependence is accounted fordn o
scale the physical variables to remove the leadindepen- As k—» (6—0) all derivative terms in the Hamiltonian
dence[20]. In the case of dimensional perturbation theoryVaNish, producing an “electrostatic” problem; the electron
the scaled Schrbinger equation is expanded in a perturba-settles to the minimum of the lig.q Vet(p,2) located at
tion series about a value @ that allows an analytic solu- (p,z)=(pm.zZn=0). We denote the energy in the large-
tion. With diamagnetic hydrogefas for many systemshe  |imit, i.e., lims_o Veri(pm,zmn), by E... Therefore, in the
infinite-dimensional limit serves this purpose well. To find large« limit (largeD and/or }m| limit) the electron of en-

the energy corresponding to the three-dimensional syste ~ . . . ~ i
the perturbation series is simply summed at the v@lue3 r@rg)fx IIS ctonts:rfl |n§d to a hypercircle of radis: pm per
icular to the axis.

because alD dependence is incorporated into the perturbalPenaicular ; .
tion parameter. Using dimensionally scaled displacemerisandx,, the

The generalization of the Schfinger equation describing origin is shifted to this minimum by means of the relations
a hydrogenic atom in a constant magnetic fiBldo D di-

mensions i§20] p=pm+ Y%y, 7=8Y%,. (16)
11 2 P K2—4k+3 B2 Z The Schrdinger equation is then expanded in powers of
“5lozt ozt r—+t————P(p.2) 5",
2\dp° oz 8p 8 r
=E(p,2)®(p,2), 9 E-E + EZi s+l (17)
i=0
k=D +2|m|—1, (10)
where the field strengttB is measured in units of 2.35 H(B,~z)=~Em+i§0 H, (X ,X) 8172 1, (18)

x10° G and the time-independent wave functidt{p,z) is
dimensionally scaled a®(p,z)=p*~ Y2 (p,z). (We omit

the normal Zeeman term since it does not affect the dynam-
ics of the problen). Here p and z are theD-dimensional
generalization of the usual cylindrical coordinates and the
remainingD — 2 angular coordinates have been factored ouBy equating powers of5¥2 we obtain an infinite set of
to yield thep~2 centrifugal potential term. Note th&t and  coupled differential equations

|m| only enter the Schidinger equation througk.

<I><7>,~z>=<bo<x1,x2)+i§l<I>i<x1,x2>5”2. (19)

To obtain a useful infinite-dimensional limit some of the P ~ ~
physical quantities must be dimensionally scaled: JZO (Hj—Ej)®p-j=0, Ez4;=0, p=012....
(20)
=P 3= E—k%E, B=«%B.  (11)
P=2 K2 : ' The general form of; is given in Refs[23,43. Equations

(17)—(20) can then be solved for the expansion coefficients

Note that the conversion betwe&nhandB in three dimen- E; and ®;(x,x,). Of immediate importance is the solution
sions is for zeroth-ordertharmonig¢ wave functions. Whemp=0 in

Eq. (20) we obtain (Ho— Eo)®,=0, where

2.94x10%
T T " (A N T (22)
0T T2 o T ag) T 29T g9 527

For example, 100 scaled units roughly equates to 75 T in

three dimensions whefm|=33. . _ has been put into the same form as a two-dimensional simple
With these scaled quantities the Safiirger equation has  harmonic oscillatofSHO) by defining the so-called Lang-
the formH®=E®, where muir oscillation frequencies
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TABLE |. Fermi resonances and corresponding interacting states appearing in the harmonic-order energy spectrum in Fig. 2, with the
lowest-energy interactions appearing highest in the table.(3t@ed magnetic-field strength at which each resonance appears is given in
parentheses, rounded to the nearest whole number. Each entry corresponds to an individual interaction, many of which involve more than
two states. Any even-parity states that are degenerate to those listed were omitted. Also, some of the higher-lying Fermi resonances in Fig.
2 were omitted for brevity.

8:7 (5) 6:5 (6) 4:3(9) 3:2(13 8:5(16) 2:1(32 8:3(79 3:1(118 4:1 (321
|09),[72) 07),/52) |05),[31) 107),42) 09),52) 03),12) |09),131) 07),[21) |05),|12)
|19),/81) [17),l61) |15),|41) |17),51) |19),/61) |05),|121) |19),|41) |09),123) |07),|]13)
09,53  [07.33 (0943 107,/15),[23),31) 173D [09)/15)21)
2771 (2950  [27)./6D) 09),|17),|25),|33),|41) 119),/33) 117),23)
119,63 [17)[43)  [19)[53) 19),[27),35),43),/51) 27),/41) 19),[25),[32)
52 the E-versusB and E-versustm| spectra in detail. Because
3 2Z B Z
wi=—F——3+ = wi=— (22)  the perturbation parametétin Eq. (15) is especially small
4Pm Pm Pm when|m| is large, dimensional perturbation theory is particu-

larly easy to apply to circular Rydberg sta{&s]. For that
scribes quantum fluctuations about the laxgmit) not only reason, we now apply dimensional perturbation theory to cir-

automatically adapts @ changes but adapts in a way that is cular and near-circular states of~d|amagnet|c hydrdget)
sensitive to the interplay between the Coulombic and dia@nd see how the system enerig¢B,|m|) responds as both
magnetic potentials. Therefore, dimensional perturbatiothe magnetic-field strengt® (Sec. IV) and angular momen-
theory is applicable to the entire range of magnetic-fieldtum |m| (Sec. V) independently change.

strengths, not just to the high- or low-field regions.

Since Eq.(20) for p=0 is a two-dimensional SHO equa-
tion for ®y(X;,X,), to this harmonic order the energy is V- ENERGY AS A FUNCTION OF MAGNETIC-FIELD

The harmonic zeroth-order wave functieh, (which de-

simply STRENGTH
1 1 The harmonic limit not only is mathematically useful but
E~E.+ 6Eg=E.+6|| v+ = wﬁ( vyt = wy— == |. incorporates many features of the three-dimensional system.
2 2 2pm In fact, the harmonic Hamiltonian incorporates the effects of

(23) B to such an extent that the ordering of states, with respect to
We assign the ket energy, correlates exactly with that in three dimensions in

both the smalB andB— limits. This is a key result be-
|v1v2)=Po(X1,X2) =h,( \/w—lxl)hvz( Joox;) (24 cause if the harmonic energy spectrum has the same basic
structure as the exact spectrum, then we maintain the same
to represent the “unperturbed” harmonic basis, whereithe energy-level ordering as higher-order corrections are incor-
are the quantum numbers of the SHO eigenfunctm,J?G(). porated, making the spectrum easier to examine. This is a
The quantum numbers, and v, are the numbers of nodal Mmajor advantage of dimensional perturbation theory over

lines in thez direction and nodes in the direction, respec- Many tradltlona_ll methods. I .
tively. The basic topology of nodal lines is preserved at finite 1 1€ harmonidzeroth-orderHamiltonian’{, also is com-
« with the provision that states are traced diabatically acrospletely separable ip andz, that is, thep andz degrees of
avoided crossings. Thus we use the quantum numbeasd  freedom are uncoupled. This has important consequences for
v, to label thecharacter of the state corresponding to a the harmonic energy spectrum that results from(&8). The
particular energy level in the same way that the character oPllowing are shown in Fig. Zfor odd-parity statels
the states of the model problem in Sec. Il for a particular (i) The harmonic energy levels do not interact and actu-
value ofb was labeled byp; or ¢,. ally cross.

The system parityr,, which refers to reflection in the (i) The most distinct characteristics of the harmonic spec-
coordinate, is determined by the valueef: Even-parity ~{rum are the numerougermi resonancesdegeneracigs
states correspond ®venvalues ofy, and likewise for odd- [10,45 that appear at certain values®f some of which we

parity states. Although we largely limit the following discus- indicate with vertical lines in the figure. These valuesBof
sion to examining odd-parity states, the response of the sygre determined by the Fermi resonance condition
tem described by Eq9) to adiabatic changes iB, most /w;=kw,, where/ andk are any two integergl8]. For
importantly the energy spectra and branch point trajectorieexample, as highlighted in the figure, tlid) and|05) states

as functions oB, are qualitatively the same no matter which are degenerate at harmonic order nBar320, where the
parity sector we choose to consider. ratio wi/w,=4. Therefore, we say that these two states,
In the next section we discover a one-to-one corresponeven at converged orders, are related through a 4:1 Fermi
dence between the avoided crossings inEReersusB and  resonance. To determine which states coincide with a given
the E-versushm| spectra. To illustrate this relationship, we Fermi resonance, consider two stated) and |cd). The
only need to look at a couple of avoided crossings in each dfiarmonic energy levels of these two states cross akKtlve
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FIG. 2. Harmonidzeroth-orderenergy levels as functions & )
for diamagnetic hydrogen. The vertical axis measures binding en- F!G- 3. Harmonic p=0) and convergent(=28) energy levels
ergy in mRy for|m|=33. The vertical lines denote some prominent °f the Im|=33 |05) and |_11> states related to the 4:1 Fermi reso-
degeneraciegFermi resonancesappearing in the spectrum. The Nance degeneracy highlighted in Fig. 2. Note the shift of the mini-

crossings explicitly discussed the most in this paper are highlightenum energy separation to lowBrin the convergent spectrum.

in bold circles: one associated with a 4:1 Fermi resonancB at . . .

=320.8 and the other with a 2:1 Fermi resonancBa32.1. Only We now turn our attention to the avoided crossings that
appear between two energy levels when we plot the energy

as a function ofangular momentumVe show that not only

is there a clear relationship between tBeersusB and the

Fermi resonance provideda+ Y b=Xc+ Y d. For example, E-versustm| spectra, but we can understand this relationship

the|15) and|41) harmonic levels cross at the 4:3 Fermi reso-by examining the branch points that connect the two energy

nance, since A 1+3Xx5=4x4+3x1. We show more ex- levels.

amples in Table I. In Fig. 2 we highlight energy-level cross-

ings at two particular Fermi resonances: a 2:1 Fermi; ENERGY AS A FUNCTION OF ANGULAR MOMENTUM

resonance ¢, = 2w,) between the03) and|11) states and a B

4:1 Fermi resonancea(; =4w,) between thd05) and|11) In Fig. 4 an avoided crossing in tli&versusB spectrum

states. Although th¢1l) and [03) states are not the only appeared46] atB=138.4 when the angular momentum was

states that interact through a 2:1 Fermi resonance, we Wilixed at |m|=33. From Eq.(12) this corresponds td
consider only these two states when we discuss this particu-

lar Fermi resonance. Along the same lines, we will discuss . —
only the interaction between th&l) and|05) states when we
focus on the 4:1 Fermi resonance.

At finite |m|, terms in the Hamiltonian that couple the

o
andz degrees of freedom are no longer negligible. Therefore
level crossings become forbidden by the Wigner—von Neu-%
mann noncrossing rule and are replaced by avoided cros
ings. The avoided crossing center at finjitg is displaced
from the harmonic crossing because of the dependence
of the energy levels. As an example, in Fig. 3 the 4:1 cross-
ing highlighted in Fig. 2 is displaced frorB=320.8 (the
harmoniclevel crossing to B= 138.4(the avoidedcrossing.

In Fig. 4 we show the avoided crossing in Fig. 3 in more
detail, making the character exchange occurring in the vicin-
ity of the avoided crossing easier to see. We can see thatth >, o0 100
two energy levels do not cross. Despite this shift in location,

we can still associate the avoided crossing with the 4:1 Fermi

resonance because [ms|—« the avoided crossing location  FIG. 4. Detail of the converged 28) energy levels shown in
approaches the 4:1 Fermi resonance degeneracy. Thereforyg. 3. The character of the wave function, which is represented by
even though the spectrum of diamagnetic hydrogen containg, v,), is exchanged diabatically as the magnetic field sweeps past
a complex arrangement of avoided crossings, we can use thige avoided crossing. Note that the avoided crossing center occurs
harmonic energy spectrum to assign each avoided crossing o B=138.4, which is equivalent in this casém(=33) to B

a particular Fermi resonance. =103.4 T(noted in parenthesgs

levels corresponding to the ten lowest hydrogeiiie=Q) shells are
shown.

4:1 Fermi Resonance

138.4(1034T) k

n

Binding Energy.
A

150 200 250
(Scaled) Magnetic Field Strength, B
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Summation Points ¢
ol v R SR, o o o
2 30 40 -.06

-06 -04 -02 0 01 .02 04 06 Re(8)
Angular Momentum, Iml
FIG. 7. Branch point structure of diamagnetic hydrogen relating
FIG. 5. In contrast to Fig. 4, here we plBtas a function ofm|, o a 2:1 Fermi resonance involving titel) and|03) state for field
is centered about| =33 (rounded to the nearest inteyeXote the

. . ) point refer toB. The number in the parentheses refers to the corre-
change in scaling for the vertical axXi48].

sponding value oB in tesla for|m|=33 andD=3. The arrows on
the real axis indicate the direction the branch points move with
=103.4 T. We now considdm| as a continuously varying increasing magnetic-field strength. The arrow closest to the origin
real parameter and see how the system energy respomis aswill reverse direction once that branch point reaches the ofifin
is held fixed at 103.4 T anfin| is changed. B~32.1). The unmarked branch points close to the origin corre-
Consider Fig. 5, which shows the same two energy levelgpond to(from left to righy B=28 andB=30. The summation
for the 4:1 Fermi resonance dm| is changed. WithB  points correspond tdfrom left to right |m|=44, |m|=33, and
=103.4 T, the avoided crossing occurs nean=33, |m|=17 and are referenced in Table Ill. The vertical line|wt
rounded to the nearest integer. Therefore, there is a strong33 is referenced in the text.
correspondence between avoided crossings appearing in the
E-versusB spectra and those appearing in theversustm| ingly, if B is fixed atBy while |m| is swept, an avoided
spectra: If|m| is fixed at|m|=|m|q while B is swept, an crossing appears &tm|,. This correlation between the
avoided crossing appears at some v@aeB,. Correspond- avoided crossings in th&-versusB and theE-versustm|
spectra points to the existence of nearby degeneracies that
cause an avoided crossing whether we sweep |m|. We
discuss this in detail in the next two sections.

4:1 Fermi Resonance
316

10% Im(8)

VI. ENERGY-LEVEL CHARACTERIZATION
AND AVOIDED CROSSINGS

317
318

—
T
)

31 In [36] we argue that the behavior of the branch points as
0 m o B functions of B for both the 4:1 and 2:1 Fermi resonances
indicates that the energy levels of a two-state Fermi reso-
nance have the analytic form

=320.8

E.(6B)=E.(6,B)*E,(6B)Vo—3,(B)Vs—3_(B).
(25

For the rest of this discussion we must keep in mind that the
summation poinis is directly related tgm| in three dimen-
sions through the relatioi= 1/(2+2|m|). The branch point
FIG. 6. Branch point structure of diamagnetic hydrogen in thelocationss. (B) and’s_(B) are solutions of the equation
complexs plane relating to the 4:1 Fermi resonance involving the
|11) and|05) stated49]. The numbers near each branch point refer
to the corresponding value @&. Note that the locations of the
branch points are particular to a given valueBfand that they
move to the left a8 increases. Due to the scaling of the axes, the
branch points on the negative real axis appear to be located at tier fixed B. (See Sec. I).
same point. They are, however, separated and this separation in- The branch point trajectories in the compléxyplane are
creases for increasirig. shown for a 4:1 and a 2:1 Fermi resonance in Figs. 6 and 7,

2k 4
® Branch points
3k g

-1 0 1 2 10*Re(3)

AE(8,B)=E,(8,B)—E_(4,B)

—2E,(5,B)Vo—8(B)Vo—8(B)=0 (26)
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respectively. Notice that the branch points for the 4:1 Fermi N I B
resonance in Fig. 6 are initially complex conjugate and ap-

proach the origin asB increases towards the valu 2T s
=320.8.(This is the same value & that corresponds to the

4:1 Fermi resonanceAs B increases beyond this value the
branch points form on the negative real axis and head to-
wards —«, although at slightly different rates.

The branch point structure of the 2:1 Fermi resonance in ,ﬁ’f)/f// [05)
Fig. 7 looks more complicated. Here the branch points are

complex conjugate untiB~25.1, at which point they coa- 200 |

lesce onto the negative real axis. Bsfurther increases one B =140
of the branch points will head towardsce while the other Ry

will head towards the origin, reaching that point Bt
190 AL

~32.1. (This value ofB corresponds to the 2:1 Fermi reso- 20 25 30 35 40 45 50 55
nance). From there the latter branch point reverses direction
and both branch points will then be moving towardso.

As required, whens equals eitheré+(§) ord._ (E) the FIG. 8. Energy as a function of angular momentum for the 4:1
energiesE, and E_ become equaldegenerate Note that ~ Fermiresonance. Here, instead of fixBgs in Fig. 5, we fixB. As

5_=(5.)* unless the branch points lie on the real axis™ Fig. 5 we rescaled the vertical axis.
(again, a consequence of the Schwarz reflection principle ] ] ]
Thus, whené lies on the real axigthe physically relevant for the broad avoided crossings of the 2:1 Fermi resonance.
situation and the branch points lie off the real axis in the Therefore, the center of the avoided crossing occurs when
complex plane. The summation poidtis symmetrically f[he d|s_tqnce from th_e summation poiito the branch points
placed between the complex-conjugate pair of branch point§ & minimum, that is
and the termy8— 3. (B)Vo—3_(B) in Eq. (25) is just the
distance in the complex plane from the poifto either of ACS(B)=Rg 5. (B)]. (27)
the two branch points.

In Sec. Il we argued that avoided crossings will occur o .
close to complex-conjugate square-root branch point deger-herefore, as long as the branch point is held fit@ds held
eracies present in the complex parameter plane. In this sefixed) and|m| is swept, we can make the following assertion:
tion we use the energy-level characterization in &%) to  Since K is roughly constant over the avoided crossing re-
sharpen our understanding of the relationship between thgion, the avoided crossing appears whenever the summation

locations of avoided crossings and the branch point structurgoint 5 reaches the vicinity f°s(B), the real component of
of diamagnetic hydrogen. First we consider in Sec. VI A 1the branch point locations on the Comp|§)p|ane_
avoided crossings gsn| is swept while the magnetic-field

strength is fixed. Dimensional perturbation theory is natu- _ ———
rally formulated in terms of the scaled field strengtiand so E

automatically provides results for fixe8l. From an experi- C
mental point of view, investigating the response of the sys-

tem to changes ihm| for fixed B would appear to be quite 180
feasible, although obviouslyn| is limited to integer values. 120 1
As |m| is changed, the unscaled field strength will have to be

appropriately alterefisee Eq.(12)]. In Sec. VI A2 we also 0 |m,l§50 Q ,m.:l;
consider the case of avoided crossings$alsis swept while

the unscaledfield strengthB is held constant. i Ini=33 1

I111)

210 |

E(Rescaled)

P Q R

Angular momentum, Iml

4:1 Fermi Resonance

160 140(107.6 T)

g

A. The 4:1 Fermi resonance:
Avoided crossings agm| is swept

Square-Root Branch Points e

1. Scaled field strengths held constant Summation Points  ©
oo I .

We define the center of the avoided crossifig(B) to be 008 010 012 014 016 018 020  Re®
the value ofé where AE is a minimum. While there is no FIG. 9. Another view of the data in Fig. 6, the branch point

reason to believe that tt#, term in Eq.(25) should remain  gicture of the 4:1 Fermi resonance, plotted at lower valud. of
constant over any appreciable range of angular momenturhe values ofm| shown correspond tB =3 and are referenced in

or magnetic-field strengths, the avoided crossing for the 4:¥aple Il and the text. The numbers near each branch point refer to
Fermi resonance is so sharp in both spectra that we can €j;e corresponding values Bt The number in parentheses refers to
pectEy not to vary significantly from one side of the avoided the magnetic-field streng in tesla for|m|=33. The vertical line
crossing to the othefWe will see that this assumption fails at|m|=33 is referred to in the text.
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TABLE II. Avoided crossing locations in thE-versusB spec-  Eq. (29) is just the distance in the complex plane from the
trum for the 4:1 Fermi resonance. The summation points correpoint § to either of the two branch points witd held fixed.
sponding to|m|=26, 33, and 50 are illustrated in Fig. 9. The  Thus assuming thd,(8,B) in Eq. (29) is constant under
Re(s") that corresponds to ea¢m| assume® =3. changes ifm| throughout the region spanning the avoided
crossing, then the center of the avoided crossing occurs when
the distance from the poirtto the branch pointé..(B) is a

4:1 Fermi resonance

|m Re(@) B? B (T)* BP B (T)° minimum, that is,

26 0.019 120 179 116.7 174.1 AC5(B)—Rd 5, (B)] (30
33 0.015 140 105 138.4 103.4 o

50 0.010 180 40 180.0 399 Therefore, as long as the branch point is held fig@ds held

apredicted value from scanning Fig. 6. fixed) and|m| is swept, we can make the following assertion:

bComputed value from Padaimming Eq(17) for the two energy If E, is roughly constant, the avoided crossing appears

levels (see[47)). whenever the summation poird reaches the vicinity of
AC5(B), the real component of the branch point locations on

We now use this result to predict the locations of avoidedh® complexé plane.[See Eq.(27).]

crossings appearing in tHe-versushm| spectrum. In Fig. 8 A good approximation for R@..(B)], the real part of the

the energy levels of thil1) and |05) states are plotted as solutions of Eq(28) for fixed B, may be obtained from the

functions of [m|, but this time for fixedB, not B. Now positions of the branch points in the complex plane for fixed

consider the summation poiRtin Fig. 9, which corresponds B the solutionss..(B) of Eq. (26). In Sec. 2 of the Appen-
to |m| =26 in three dimensiongFigure 9 is the same as Fig. dix we show that sinc¢Re 5. (B)]|>|Im[4.(B)], Eq. (30)
6, but for lower values 0B.) If we sum the energy series MPlies the approximate relationship

about this point, we determine the resulting energies by re- AC N ~ o~

ferring to the energy levels in Fig. 8 that intersect Ilreln o({Re 0.(B)]}"B)~Re 5. (B)]. 3D
fact, with the use of Eq(27) we can understand the entire
dependence dE on|m| by fixing B and sweeping the sum-
mation pointé (therefore sweepingm|) along the real axis
in the complexé plane. For example, suppose we 5%
=140, therefore fixing the branch point locations at pots
in Fig. 9, and sweegm| from point P to point R. An
avoided crossing occurs when we reach p@nbecause at
that point Re§.) coincides with the summation poiat We
can verify this result by referring to Fig. 8.

Therefore, we can predict the locations of avoided crossings
in the E-versustm| spectrum for fixed by merely glancing

at the branch point structure connecting the two energy lev-
els in the complexs plane for fixedB. For example, in Fig.

9 we see that the real part of the branch point locations
corresponding t@= 140 is at roughly the same location as
the summation point corresponding|to] = 33. At these val-
ues of |m| and B, the physical field strength iB
=107.6 T. Therefore, we would expect an avoided crossing

2. Unscaled field strengths held constant to appear aB=107.6 T when|m| is fixed at 33. This is
. . close to where the avoided crossing appears in Fig. B, at
As stated earlier, the locations on the compéeptane of  _ 1034 T.

the branch points that connect the two energy levels are next we consider avoided crossings as the magnetic-field
purely functions ofB. However, since the relationship be- strength, either scaled or unscaled, is swept whifé is
tweenB andB in Eq. (12) involves|m|, the branch points unchanged.
cannot be fixed in location in the compléxplane while|m|
(that is, &) is swept withB constant. B. The 4:1 Fermi resonance: Avoided crossings

However, it turns out that Eq27) also applies when the as the magnetic-field strength is swept
unscaledield strengthB is held fixed, withB replaced byB
in the equation. To see this, E@5) needs to be reexpressed
in terms ofB (rather tharB) and the solutions. (B) of the
equation

Let us hold|m| (or equivalently$) constant on the real
line and sweeB. An avoided crossing appears at that value
of B for which AE(8,B) is a minimum. Supposk,, in Eq.

(25) is constant under changes B throughout the region
AE(6,B)=0 (28) spanning the avoided crossing. Thus, from EZ5) the
avoided crossing occurs when the branch point trajectories in
calculated for fixedB [rather thand. (B), the solutions of the complex plane pass closest to the summation pbint

vod B o ; ; By examining the horizontal and vertical scaling in Figs.
Eq. (26) for fixed B]. This is done in Sec. 1 of the Appendix
wiclh(th)e result ] PP 6 and 9 we see that the gradient of the branch point trajec-

tories remains quite small and so to a good approximation
E.(8,B)=E4(8,B)*Ep(8,B)\o—0,(B)\o—o_(B). the point of closest approach occurs when

29 R{3.(B)]=0. (32
Compare this with Eq(25). Analogously to Eq(25), when§$
lies on the real axis and the branch points lie off the real axi§ herefore, ifE, is roughly constant over the avoided cross-
in the complex plane, the termié— 6, (B)\é—J_(B) in ing and the slope of the branch point trajectories to the real
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2:1 Fermi Resonance
103) ml =33
100
<
>
] 11)
Py g8 B=14.0Tesla
5] 3
= &
€ 5 & 60
;_g
E |11)
- 1 40
103}
ey 18.7(14.0 T) [03) .
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11}
[ 2:1 Fermi Resonance ]
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(Scaled) Magnetic Field Strength, B Angular Momentum Im!
FIG. 10. Detail of the interaction between th@3) and [11) FIG. 11. Same as Fig. 5 except for a 2:1 Fermi resonance. Here

states associated with a 2:1 Fermi resonance. As in Fig. 4 the nunive fix B=14.0 T. The avoided crossing here is closd =34,

ber in parentheses refers to the magnetic-field strength in tesla whegunded to the nearest integer. As in Fig. 5 we rescaled the vertical
|m|=33. axis.

precise as it was for the 4:1 Fermi resonance. We will dis-
cuss this further below.
The repulsion between thid1) and [03) states is quite

line is small, i.e.,|Rg 5. (B)]>|Im[5.(B)]|, when the real
part of the branch points R&.(B)] reaches the summation

point 4, the separation between the two energy levels is Closgy,n136] therefore the avoided crossing is actually spread

to a minimum. To a good approximation we can say that the,;+ gver a large region of magnetic-field strength. Therefore,
center of the avoided crossing has been reached. For ex-

. , B . L ~ We should not expedE,, in Eq. (25) to remain nearly con-
ample, if we f|x|m|—3'3 (p0|ntQ.|n Fig. 9 and sweeB,  gant throughout the avoided crossing region. However, our
we should get an avoided crossing né&ar 140. The Cross-  ,rqyious discussion relied on a roughly consiigt so we
ing actually occurs aB=138.7, as we saw in Fig. 4. As seen now see how our results apply to the 2:1 Fermi resonance.
in Eq. (12), any result for whichim| is held fixed equally
applies to either sweeping or B sinceB and B are then
directly proportional.

In Table Il we predict the locations of avoided crossings 1. Scaled field strengths held constant
for both scaled and physical magnetic-field strengths for

three different fixed values din|. From this table we see o = .
that the branch point structure of the 4:1 Fermi resonanc&c@led magnetic-field strength fixed Be-15. According to

provides a convenient way of accurately determining such'® &rgument in Sec. VI, an avoided crossing should appear

avoided crossing locations. In conclusion, it is possible toVhen the summation point reaches the real part of the branch

predict the locations of avoided crossings in fBeversus-  Points corresponding t@=15. According to Fig. 7, this
Im| spectrum for fixed (or B) and theE-versusB (or B) should be neaim|=33 (note the vertical line that runs
spectra for fixedm| by merely glancing at the branch point through the|m|=~33 summation point and the branch point
structure connecting the two energy levels in the complex- corresponding td3=15). However, Fig. 12 shows that the
plane for fixedB. avoided crossing appears|at|=19.0. The only approxima-
tion that went into Eq(27) was thatE, was nearly constant,
so at this point we can conclude that for the 2:1 Fermi reso-

VII. THE 2:1 FERMI RESONANCE nance E, changes significantly over the region of the

Having established the relationship between avoidedavoIdeOI crossing. This means that the first term
crossings and branch point structure by focusing on the 4:1

A. Avoided crossings agm| is swept

In Fig. 12 energy is plotted as a function |of|, with the

Fermi resonance, we now direct our attention to the 2:1 J(AE) 9By >

Fermi resonance. By examining Figs. 10 and 11 we can see 5 255 V' —(8,+6-)6+58,6-

that the same correspondence between the two spectra that

exists for the 4:1 Fermi resonance applies to the 2:1 Fermi Eb[zg_(5++ 5)]

resonance as welli) An avoided crossing appears Bt > 33
—14.0 T for |m| fixed at|m|=33. (ii) With B fixed atB Vo' (8, +6.)5+5.5

=14.0 T an avoided crossing appears|@af=34. Notice
that since the avoided crossing appear$ndt=34 and not in the derivative of Eq(26) is appreciable in comparison to
|m| =33, the correspondence between the two plots is not ahe second.
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8 T ' ' the first term in Eq.(33) containingdE,/dé cannot be ig-

nored, soE, is not sufficiently constant throughout the
avoided crossing region.

With the linear approximation of Ed34), from Eq.(33)
d(AE)/36=0 places the avoided crossing center |a
~19.3, which is very close to the exact value|of=19.0
(see Fig. 12 Therefore, by merely taking into account the
next term of the Taylor series expansionﬁnj with respect

to 8, we accurately obtain the position of the avoided cross-
ing at the 2:1 Fermi resonance.

36

E(Rescaled)
(5%
i

[
5]

30
2. Unscaled field strengths held constant

In Sec. VI A2 we found that the same relationship for
B : T ” o s predicting the appearance of avoided crossings for fixed
scaled field strength also applied to fixednscaledfield

strength  because the approximation|Re . (B)]|

FIG. 12. Energy levels corresponding to a 2:1 Fermi resonanc&“m[?si(ﬁ)ﬂ applied. In Fig. 7 we can see that such an
as|m| is swept. Here we hold the scaled magnetic figlfixed. The approximation does not apply to the 2:1 Fermi resonance.
dashed line is the difference between the two energies, scaled to fit
on the same plot. The minimurtavoided crossingoccurs atjm|
=19.0. All energies have been rescaled. B. Avoided crossings as the magnetic-field strength is swept

Angular Momentum, Iml

_ ~ When sweeping the magnetic-field stren¢gbaled or un-

For B=15 the fact that,, varies significantly over the scaled for the 4:1 Fermi resonance we simplified the predic-
avoided crossing region is easily shown. From a pldphs  tions of avoided crossings by noting that the trajectories of
a function of§ (that is,|m|) over the avoided crossing region the branch points were nearly parallel to the real axis. There-
(see Fig. 13we see thaE, roughly has the form fore, for th_e 4:1 interaction th_e clos_est c_ilstance_be_tween _the

branch point and the summation point simply coincided with
the summation point located at the real part of the branch
E,=—C,6+C,, (34 point. A glance at Fig. 7 shows that this simplification will
not hold for the 2:1 Fermi resonance. However, finding the
o ) ~branch point that is closest to the summation point from a
where C;~344 andC,~65.3. Substituting this expression piot of the branch point trajectory is not too difficult as long
into Eqg. (33) and noting thats..~0.01470.0393 for B as the real and imaginary axes are scaled the same, as in the
=15, we find that the ratio of the first term to the secondfigure. Here we can see that fgm|=33 the branch point

term in Eq.(33) lies roughly anywhere between 0.25 and 1.0¢inciding withB~23 is closest to the summation point, so

from one end of the avoided crossing to the other. ThereforgNe expect to find an avoided crossing at roudily 23 if we

o fix |m|=33. However, Fig. 10 shows that the avoided cross-

60 | 2:1 Fermi Resonance

58

10} 2:1 Fermi Resonance

E, 54 . 08
b E,
~ 0.7
52 B=15
06
50 | N
Iml=40 1ml=30 lml=20 lml=15 lml=12 05 F
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Angular Momentum, |ml 0.3 L 1 L L 1 L 1
15 20 25 30 35 40 45 50
FIG. 13. The~Eb term in Eq.(25) plotted as a function of over (Scaled) Magnetic Field Strength, B
the range of the avoided crossing in Fig. 12. The corresponding _ ' L
values of/m| are shown for referenceD(=3). The extreme left of FIG. 14. Theky, term in Eq.(25) plotted as a function a8 over

the plot corresponds thm|=50, whereas the extreme right corre- the range of the avoided crossing in Fig. 10. Cledtly is not
sponds tdm|=10. constant over this range of field strengths.
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TABLE Ill. Avoided crossing locations in thE-versusB spec- ' ' i ' i ' ' i

trum for the 2:1 Fermi resonance. The summation points corre- % 18
sponding to|m|=17, 33, and 44 are illustrated in Fig. 7. The |, 2 |
Re(5*) that corresponds to ea¢n| assume® = 3. 2
24

2:1 Fermi resonance 0.02 - 2 .

|m Re@) B BT B B(T)° orem e
30 28 28 /
17 0.028 19 96 13.0 65.5 0 :
33 0.015 23 17 18.7 14.0 '
44 0.011 25 8 21.6 7.0 o2 b 1
8Predicted value from visually scanning Fig. 7.
®Computed value from Padaimming Eq.(17) for the two energy ~04 5.1 Fermi Resonance 7
levels.
-.06 . ' . . . . . .
-0.06 -0.04 -0.02 0 0.02 Re(8)

ing actually appears &=18.7. By plottingE;, as a function

of B in Fig. 14 and noting thaE, increases by roughly a  FIG. 16. Same as Fig. 7, except this time we show efen-
factor of 4 over the range of the avoided crossing, we camarity branch point structure involving tH&0) and|02) states. The

verify that 'Eb varies considerably over the region of the branch points close to the origirland Iying~0n the negative real axis
avoided crossing for this interaction, so such a discrepancy igorrespond tdfrom left to righy B=28 andB=30.
not unexpected.

Just as for the 4:1 Fermi resonance betweer theand
|05) states, we summarize in Table Il comparisons betweefi25) applies to both even- and odd-parity states.
expected and calculated results corresponding to those sum- This is not surprising since dimensional perturbation
mation points shown in Fig. 7, the branch point structure oftheory shows that at harmonic order the location of the Fermi
the 2:1 Fermi resonance between {ié¢) and |03) states. resonances, which determines the location of degeneracy at

Despite the discrepancy in assuming a consiantthe pre- higher order and thus the location of branch points, is the

dicted values are still fairly close to those found by computerS@me for either paritWatsonet al. [29] include a plot of
calculation for a wide range dfn|. the harmonic-order even-parity energy levels as a function of

B, although at a different value dfn|.) Because of this
VIIl. EVEN-PARITY STATES similarity in the harmonic-order spectra between the two
parities, the even-parity energy levels share the same quali-
All calculations in this paper focused on odd-parity statestative features as their odd-parity counterparts. Some ex-
However, even-parity energy levels and branch point trajecamples of even-parity counterparts to the odd-parity
tories are essentially the same as for odd-parity states. As-versusB spectra are shown by Watsen al., again for a
examples we show theven-paritybranch point structure of different value ofim|.
4:1 and 2:1 Fermi resonances in Figs. 15 and 16. Comparing
these figures to Figs. 6 and 7 it appears that, except for slight
shifts in locations, the branch point structures are essentially IX. CONCLUSIONS AND SUMMARY

the same. Therefore, the energy'level characterization in Eq In this paper we examined two types of Spectra' In one the
angular momentunim| was held constant while theag-

& [ ' ' ' ' ' ' ] netic field Bchanged adiabatically and in the other the mag-
ﬁ netic field was held constant while tlagular momentum
E 317 changed adiabatically. We found that the locations of the
I 1 avoided crossings appearing in tBeversusB spectra are
318 directly related to the locations of those appearing in the

—_
T
!

E-versustm| spectra and that this correspondence points to a
220 degeneracy in the energy levels that provides the mechanism
o 2% 21 for the appearance of avoided crossings in both spectra.
The branch points that connect the energy levels are the
mathematical basis of such a mechan[&] and by under-
standing this basis we have found it possible to predict the
locations of avoided crossings in both spectra. By success-
2 . fully characterizing the energy levels in terms of these
branch points through Eq25), a simple relationship that
3l 4:1 Fermi Resonance | merely requires visually examining the branch point trajec-
B ' o ' ! ' 5 1'0_4Re(5) tories of the system as functions Bfwas found that could
be used for predicting the locations of avoided crossings in
FIG. 15. Same as Fig. 6 except this time we show e¢hen-  both spectra.
parity branch point structure involving th&0) and|04) states. Although we have only explicitly analyzed the situation

319

=320,8
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involving two strongly interacting stategwo-state Fermi 5 5 d5. (B, o)

resonances Table | shows that three and more strongly in- 0.(B,d)= 5i(B’5C)+T (6—6c)
teracting stategthree- and more-state Fermi resonances 5=35,

common in the eigenvalue spectrum of diamagnetic hydro- . _

gen. Heiss and StedB2] have studied the analytic charac- +(higher order terms in6—4&c). (A1)

terization of branch points of the eigenvalues associated with ~ ~ o~ ) ~
avoided crossings of three and more strongly interactingoW 6=(B,&c)=4-(Bc) is the solution ofAE(4,Bc)=0
states in finite-dimensional matrix eigenvalue problems=AE(5,B) [see Egs.(26) and (28)], that is, 6.(B,d;)
They find that in this case ER5) correctly characterizes the = J., wherec=*. Therefore,

branch point structure of the eigenvalues in the neighbor-

hoods of the branch points. Thus, although infinite- - d3.(B,9)
dimensional matrix equations can in principle involve more 6:(B,9) =0+ —3=— (6—02)
complex branch point characterizatidi®6] involving states 6=14;

with complex energiegresonanceq 53], we expect that Eq.

(25 will still correctly parametrize the energy involving

three and more strongly interacting states in the neighborryis means that
hood of branch points that will produce avoided crossings.

Therefore, the analysis performed in this paper should apply —=—=_

to all avoided crossings of diamagnetic hydrogen. 6—5.(B)=JA(B,0)[6—6-(B)], (A3)

The ability Fo pre_d|ct_ and understand the_appearzince O\}cvhereA(B,(S) is finite at 6= 5. (B), and Eq.(25) becomes
avoided crossings is aided by the assumption thatBhe

term in Eq.(25) is constant over the range of the avoided _ N — —

crossing. The avoided crossing pertaining to the 4:1 Fermi E.(8,8)=E4(8,B) *Ey(8,8)V5—5.(B)5-5-(B)
resonance was sufficiently sharp to satisfy this assumptionigee, for example, Eq25)], where thes. (B) are solutions
but we saw that because of the broad avoided crossing in thg gq. (28).

2:1 Fermi resonance this condition failed. Therefore, predict-
ing the positions of the avoided crossings for the 2:1 Fermi
resonance is more involved. However, the broadness of the
2:1 Fermi resonance is the exception rather than the rule
[50]. Therefore, the ability to predict the locations of avoided A good approximation for H&..(B)], the real part of the
crossings based only on examining the positions of theolutions of Eq(28) for fixed B, may be obtained from the
branch points that connect the two levels should have broagositions of the branch points in the complex plane for fixed
applicability throughout the spectra of diamagnetic hydro-B, the solutionsd. (B) of Eq. (26). Equation(27) deter-

gen. mines where an avoided crossing will be foundBais held
fixed. According to Eq(11), this corresponds to an unscaled
ACKNOWLEDGMENTS magnetic fieldB={Rg5.(B)]°B. By using this value oB
This work was supported by a grant from the Office ofin EQ.(28) we obtain the positions of the branch points in the
Naval ResearckiGrant No. NO00014-94-1-0998The work ~ complex< plane for this value oB. Therefore, from Eq.
at LANL was carried out under the auspices of the U.S.30) we obtain the position of the avoided crossingsBais
Department of Energy. held to this value. However, the value Bfat 4. (B), the
branch point position witB held fixed, is no{Re5. (B)]°B
APPENDIX: DETAILS OF AVOIDED CROSSINGS AS |m| but rather["Si("B)P"B. Thus the?i(ﬁ) are the solutions of

IS SWEPT WHILE THE UNSCALED FIELD Eq. (28) with B=[5.(B)]°B. Nevertheless, these are close

STRENGTH B IS HELD CONSTANT L ~ ~
to {R€ 4. (B)]}°B since|Rd 6.(B)]|>|Im[ 5. (B)]. Therefore,

1. Rewriting the energy-level characterization of Eqs(25) and  assuming that the solutions of E(R8) are not extremely
(26) in terms of the unscaled field strength and the sensitive to the precise value Bf

solutions of Eq. (26) for fixed B

+ (higher order terms in6—6.). (A2)

2. Derivation of the approximate relationship
of Eq. (31) from Eq. (28

When reexpressed in terms Bfand 8, the'5.. (B) of Egs. 6. ({Rd4.(B)]}°B)~4.(B). (A4)
(25 and(26) are functions of botlB and § [see Eq.(11)],
that is, 3. (B, 8). Consider expanding- (B, 8) about a point 1 herefore, from Eq(30)
S; while B is held fixed, wherej; is a solution of Eq(28)

for fixed B. Then ACs.({Rd5.(B)]}°B)~Rd 5. (B)].
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