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Local and global properties of light-bound atomic lattices investigated by Bragg diffraction

Matthias Weidemu¨ller,* Axel Görlitz, Theodor W. Ha¨nsch, and Andreas Hemmerich†

Sektion Physik, Universita¨t München, Schellingstraße 4/III, D-80799 Mu¨nchen, Germany
and Max-Planck-Institut fu¨r Quantenoptik, D-85748 Garching, Germany

~Received 14 May 1998!

We explore Bragg diffraction from atomic lattices bound by light as a diagnostic tool for studying properties
of optical lattices not accessible so far. A weak laser beam at a wavelength of about half the wavelength of the
lattice field is diffracted from the~100! and ~130! lattice planes of a Rb optical lattice. The observation of
well-defined Bragg spots confirms the long-range order in optical lattices. From the acceptance angle for Bragg
diffraction we deduce the range over which crystalline order is preserved. The comparison of two Bragg spots
diffracted from different lattice planes allows us to directly measure the position spread of the atomic wave
packets oscillating in the light-induced potential wells. By combining conventional probe transmission spec-
troscopy with Bragg diffraction we study the motion of atoms that are deeply bound inside the potential wells.
We show experimentally and theoretically how backaction of the bound atoms on the trapping field influences
the lattice constant. We develop a model for the modification of the refractive index by the highly ordered
atomic medium. Based on first-order scattering theory the model explicitly includes the influence of atomic
localization on the resulting lattice constant. By measuring the change of the Bragg angle, we observe a
decrease of the lattice plane separation for increasing atomic density. We report experimental evidence for the
correction to the refractive index due to the finite position spread of the atoms.@S1050-2947~98!05611-X#

PACS number~s!: 42.25.Fx, 32.80.Pj, 42.65.2k
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I. INTRODUCTION

Atoms subjected to standing light waves with specifica
designed spatial patterns of the intensity and the polariza
differ significantly from conventional samples of lase
cooled atomic gases@1#. The atoms no longer move ballist
cally but are trapped in micropotentials created by the
Stark effect, originating from the interaction of the light fie
with the induced atomic dipole. The potentials form a reg
lar, periodic structure for which, in the ideal case, symme
will be preserved over the entire extension of the light fie
Bound at definite sites the atoms form a highly ordered str
ture called anoptical lattice. Under these circumstances th
quantization of the atomic center-of-mass~c.m.! motion be-
comes important, giving rise to discrete vibrational leve
Sub-Doppler cooling mechanisms prepare a nearly ther
distribution of the atoms among these levels at temperat
of a few tens of microkelvin, where most atoms are trapp
in the lowest few states@2,3#. The lattice constant in optica
lattices is determined by the optical wavelength and thu
three orders of magnitude larger than the lattice constant
crystals. Hence, fundamental phenomena well known fr
solid state and condensed matter physics can be fruitf
studied in a novel regime. Prominent examples are the i
cation of paramagnetic behavior in light-bound atomic l
tices @4#, demonstration of analogies to the photorefract
effect @5#, and the realization of quasiperiodic optical lattic
@6#. By accelerating one-dimensional optical lattices, Blo
waves and Wannier-Stark ladders could be experiment
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studied in a regime unaccessible in condensed matter
tems@7#.

Bragg diffraction in optical lattices has been reported
dependently by two research groups, namely, the group
Phillips at NIST in Gaithersburg@8# and our group@9#. It
became possible to extract direct information on the lo
range order imposed by the lattice field on the ultrac
atomic sample. As schematically shown in Fig. 1, the
quirements for Bragg diffraction in optical lattices diffe
from the ones in the regime of x-ray diffraction crystallo
raphy. Since the lattice constants are on the order of opt
wavelengths, monochromatic laser light can be used

FIG. 1. 2D schematic presentation of Bragg diffraction fro
optical lattices. The atomic lattice is formed in the intersection
six laser beams, with the pair of laser beams perpendicular to
drawing plane not shown here. The lattice constant is determine
the wavelength of the lattice field (lL5 780 nm!. Occupied lattice
sites are represented by filled circles. A laser beam of shorter w
length (lB5 422 nm! is diffracted from the lattice planes when th
Bragg condition is fulfilled.
4647 © 1998 The American Physical Society
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Bragg diffraction. The scattering process responsible for
diffraction is resonant elastic Rayleigh scattering from
bound atoms.

In our experiments the incident probe beam for Bra
diffraction operates near a transition to a higher exci
atomic state at a frequency nearly twice the lattice field f
quency. The interference between the lattice field and
Bragg beam then oscillates so rapidly that it has no effec
the atoms. Otherwise additional undesired four-wave-mix
processes can arise@10,11#, which obscure Bragg diffraction
@12#. Since in the experiments presented here the optical
tice is not perturbed by the Bragg diffraction, the latti
properties can be studiedin situ. An alternative, but destruc
tive method to distinguish Bragg diffraction from four-wav
mixing was successfully demonstrated by Birklet al. @8#
who have used nearly the same frequency for Bragg diffr
tion as for the generation of their optical lattice. In the
experiment, the lattice beams were quickly turned off, a
the Bragg diffracted light was monitored before the latt
had enough time to decay. Observed decay times were o
order of microseconds.

One might wonder if the present low filling factors
optical lattices corresponding to approximately 99% vac
cies do not prevent the observation of Bragg diffraction.
contrast to crystals, vacancies in dilute optical lattices do
distort the lattice geometry, which is to zeroth order det
mined by the lattice field only. The low filling factors o
conventional optical lattices thus do not impede Bragg d
fraction but may lead to additional diffuse scattering. Desp
this diffuse scattering, the power coherently scattered
the Bragg directions exceeds the background incohere
scattered into the same solid angle by orders of magnitu

While spectroscopic techniques~e.g., stimulated Raman
spectroscopy@13# or fluorescence spectroscopy@14#! have
provided much information on the dynamics of each atom
its specific lattice site, our knowledge concerning their c
lective behavior has been quite restricted. Although
atomic densities achieved so far are still too low to exp
much interaction between atoms located at different lat
sites, hopes are raised to reach this goal in the future@15#. In
such strongly populated lattices one could observe collec
interactions and quantum correlations of matter waves
strongly confined system@16#. Our work is inspired by the
desire to explore novel tools that let us study long-ran
order aspects.

As an example for the subtle interplay between the li
field creating the lattice and the atoms acting as a polariz
medium we investigate the change of the lattice plane se
ration as a function of the atomic density. At sufficient
high densities the backaction of the atoms on the lattice fi
becomes significant and influences the lattice geometry
first order, the atoms are characterized by a refractive in
that modifies the spacing of adjacent lattice planes prop
tionally to the atomic density. We will show that this mod
fication is significantly enhanced by the fact that the ato
are strongly localized inside the potential wells.

In this paper we give a detailed description of our rec
work on the application of Bragg diffraction to optical la
tices @9,17#. Special emphasis is posed on the use of Bra
diffraction as a versatile technique for the investigation
important static and dynamic properties of optical lattic
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Section II presents the conceptual basis for the understan
of our experiments. The crystallographic structure of the
tice is discussed in Sec. II A. Coherent and incoherent c
tributions to the Bragg diffracted power are identified, a
the Debye-Waller factor for the optical lattice is introduc
in Sec. II B. Section II C is devoted to a simple model for t
change of the refractive index due to the presence of a hig
ordered sample of localized atoms. Section III describes
portant components of our Bragg diffraction experiment:
magneto-optical trap used to load the lattice, the lattice fi
configuration, the diode-laser–based source generating
light for the Bragg diffraction, and the detection of differe
Bragg peaks. Results of our measurements are present
Sec. IV. The relevance of Bragg diffraction for the study
long-range order is discussed in Sec. IV A. Measurement
the acceptance angle presented in Sec. IV B yield the ra
over which periodic order is preserved. The comparison
Bragg peaks from different lattice planes allows a prec
determination of the extension of the atomic wave pack
bound in the potential wells via the Debye-Waller factor,
shown in Sec. IV C. Using the independently determin
values of the lattice extension and the Debye-Waller fac
the number of atoms actually ordered in the lattice is
duced from the measured absolute diffracted power in S
IV D. A kind of probe spectroscopy is described in Se
IV E, complementing conventional transmission and fluor
cence spectroscopy to study atomic motion in the poten
wells. By precisely mapping out the Bragg condition f
various densities we determine experimentally the chang
the lattice constant and elucidate the importance of
atomic localization on this effect in Sec. IV F. Finally, i
Sec. V the results are discussed in view of future appli
tions.

II. GENERAL CONSIDERATIONS

A. Structure of the lattice

A spin-polarized atomic lattice is created in the interse
tion of three mutually orthogonal standing light waves@Fig.
2~a!#. As will be explained in Sec. III B our experimenta
apparatus allows us to switch between different lattice geo
etries. We will concentrate on the two lattice geometr
shown in Fig. 2, which belong to the groups of simple
tragonal ~st! @Fig. 2~b!# and of body-centered-cubic~bcc!
@Fig. 2~c!# Bravais lattices, respectively@18#.

We characterize the lattice structure by a conventio
cubic cell with a basis consisting of two atoms at positio
d15(0,0,0) andd25(lL/2) (1,1,1) for the bcc structure, an
four atoms at d15(0,0,0), d25(lL/2) (1,1,0), d3
5(lL/2) (0,0,1) andd45(lL/2) (1,1,1) for the st structure
lL is the wavelength of the lattice field (lL5780.2 nm in
our case!. The primitive cubic unit cell is spanned by th
vectorsaj5lLej , j 5x,y,z, where theej denote the Carte-
sian unit vectors along three orthogonal lattice beams. A
sis of the reciprocal lattice is then defined by the vectorsbj
5kLej , wherekL52p/lL . As a general property of optica
lattices, the reciprocal-lattice vectorsG can always be ex-
pressed as linear combinations of the wave vectors of
light beams used to form the lattice@19#.

Bragg diffraction occurs when the differenceDk between
the incident and the diffracted wave vector equals a recip
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cal lattice vectorG, i.e.,Dk5G[( imjbj where themj ’s are
integers. This is equivalent to Bragg’s law

2dGcosuG5lB , ~1!

whereuG denotes the angle between the incident wave v
tor and the normal on the lattice plane given byG. The
wavelength of the diffracted light is given bylB , and dG
52p/uGu is the spacing between the lattice planes.

Since the basis of the unit cell consists of two~bcc! and
four ~st! atoms, respectively, the possible combinations
the mj ’s are restricted. For the bcc structure, the condit
for constructive interference requires the sum( jmj to be an
even integer, whereas for the st structure the sum and a
tionally m3 have to be even numbers. Since the incid
beam is monochromatic the number of possible diffract
peaks is limited by the conditionuGu<2kB where kB
52p/lB denotes the wave number of the incident beam
we restrict ourselves to an incident light beam propaga
within the x-y plane ~i.e., m350) we find four possible
Bragg diffraction geometries (lB5421.7 nm in our case!
originating from three families of equivalent lattice plane
While from the ~100! and ~130! planes only second or, re
spectively first order scattering may be observed, first-
second-order scattering is possible from the~110! planes@we
use the Miller indices (mx ,my ,mz) to characterize the lattice
planes@18##. The possible directions for Bragg diffractio
can be determined by Eq.~1!. In the experiments describe
in this paper we concentrate on Bragg diffraction from t
~100! and the~130! lattice planes of the body-centered-cub
lattice. The corresponding geometries are depicted in Fig

FIG. 2. ~a! Field configuration and~b!,~c! unit cells for our
six-beam optical lattice at wavelengthlL for different time phase
differences. The relative time phase difference between the
linearly polarized standing waves in the horizontal plane is deno
by f, while w is the time phase difference of the circularly pola
ized vertical standing wave with respect to the horizontal ones.
size of the dots indicates the depth of the optical potentials.
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B. Bragg diffraction

If the atoms occupy mainly the lowest-lying vibration
levels the optical potential wells are essentially harmon
The potentials considered in this article are isotropic and
thus be characterized by a single vibrational frequencyvvib .
The unit cells of the lattice are assumed to be situated at s
R. From theN lattice sites available onlyN* are actually
occupied by an atom. For the near-resonant optical latt
investigated here,N* /N is typically on the order of 1022.

Consider a linearly polarized plane traveling wave w
intensityI to be incident on the atomic lattice. The scatteri
amplitudeAs for elastic Rayleigh scattering from a sing
atom is given by

As5
p

lB
2
AI sin~j!uau, ~2!

wherej is the angle between the diffracted wave vector a
the polarization vector of the incident beam, anda denotes
the product between the polarizability tensor and the incid
polarization vector.

We assumeN* atoms to be randomly distributed amon
N available lattice sites, whereN equals the number of uni
cells for the cubic Bravais lattice multiplied by the numb
of sites per unit cell. The powerdP scattered into the solid
angleds is then given by@20#

dP

ds
5S N*

N D 2

uAsu2S b2uSu2U(
R

eiDk–RU2

1N~12b2!1
N~N2N* !

N*
D , ~3!

where b denotes the Debye-Waller factor andS
5(nexp(iDk–dn) is the structure factor of the unit cell.

Let us discuss the different contributions to the scatte
power in Eq.~3!. The first term represents the coherent sc
tering contribution. It is reduced by the square of the fillin
factor (N* /N)2 as compared to what one would expect fo
completely filled lattice. The sum in this term has to be tak
over all available unit cells. Only ifDk satisfies the Bragg
condition does this term yield a contribution to the scatte
power that scales withN

*
2 as expected for coherent scatte

ing.
The atomic c.m. motion inside the potential wells reduc

the coherent scattering contribution which is described

o
d

e

FIG. 3. Geometries for Bragg diffraction from the~100! ~a! and
~130! ~b! lattice planes.Dk100 andDk130 denote the different scat
tering vectors for Bragg scattering. Angles and lengths of the s
tering vectors are drawn to scale.
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the Debye-Waller factorb5exp(iDk–x… wherex denotes the
actual position of the atom’s c.m. and the bar indicates
average over the distribution ofx @21#. The atomic c.m. wave
function can be characterized by a root-mean-square~rms!

deviation dRl 5@(xl 2Rl ) 2̄#1/2, where l 5X,Y,Z indicate
the axis of an arbitrary Cartesian coordinate system. For
distribution ofx we assume a Gaussian centered at the lat
site. In a harmonic oscillator potential this assumption is f
filled for a thermal energy distribution. In this case, t
Debye-Waller factor can be expressed in the simple formb
5e2W with the exponentW given by

W5
1

2 (
l 5X,Y,Z

~Dkl !2~dRl !2. ~4!

Hence, an increase in temperature, corresponding to an
creasing mean displacement of the atoms from the minim
the potential wells, decreases the scattering amplitude@22#.
When all thedRl are the same~isotropic potentials!, Eq. ~4!
simplifies toW5 1

6 (Dk)2(dR)2 with the rms extensiondR
given bydR[(( l dRl

2 )1/2.
The second term in Eq.~3! is related to the background o

incoherently scattered light. In addition to the reduction
the scattering amplitude, the motion inside the poten
wells gives rise to an incoherent background that scales
N

*
2 /N @20#.
The third term in Eq.~3! describes another incohere

contribution resulting from the random distribution of th
atoms among the lattices sites. If all lattice sites were oc
pied ~i.e., N* 5N) this term would vanish. For the realisti
caseN* !N its contribution is proportional to the number o
irradiated atomsN* and can therefore still be neglected wi
respect to the first term~proportional toN

*
2 ) if N* is suffi-

ciently large.
If no crystalline order is present~i.e., b50), we find that

the total scattered power is completely incoherent and is s
ply given by N* uAsu2. Other sources of additional back
ground, for example, possible contributions from a fract
of nonordered atoms, are not treated here. Since the scat
power associated with such incoherent processes alw
scales with the number of atoms to the first power th
processes will not obscure the appearance of well-defi
Bragg spots. For all practical considerations we can there
neglect the incoherent contributions.

C. Atomic backaction on the lattice field

If one approaches the case where all lattice sites are
cupied by an atom, one certainly may no longer neglect
effect of the atoms on the near-resonant lattice beams an
effect of light-induced mutual interactions. In order of the
appearance with increasing density these interactions
phase effects that distort the lattice field@23#, multiple
photon-scattering processes involving two or more ato
that lead to interatomic forces@24,25#, van der Waals inter-
actions, and finally phenomena of quantum statistical na
when more than one atom is bound inside a potential w
@16#. The highest atomic densities reached in conventio
optical lattices nowadays allow us solely to identify intera
tions of the first kind.
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The trapping and cooling mechanisms that bind the ato
in the lattice sensitively rely on the polarizations of the la
tice beams. These, in turn, depend on the phases accu
lated by the light while passing through the atomic mediu
Thus, we may expect a complex self-organization proc
that involves nonlocal interactions in the sense that the fo
exerted on some atom may depend on the atomic mediu
some distant location@26#. To study the regime where thi
self-formation process develops its full richness is a ch
lenging task: experimentally, because relatively dense ato
samples are required, and theoretically, because of its
treme complexity. However, to lowest order a quite simp
model is applicable, which treats the atoms as an inhomo
neously distributed medium characterized by an index of
fraction. In this simple picture, we only account for first o
der scattering of the lattice beams from the periodica
arranged atoms. We will see that long-range order and lo
ization yield an effective refractive index strongly differin
from the case of a homogeneously distributed gas.

Since the optical lattices treated here operate at nega
detuning with respect to the atomic resonance frequency
index of refraction is larger than one. This results in a
duced effective optical wavelength and thus a contraction
the lattice. The degree of atomic localization as described
the Debye-Waller factor influences the change of the refr
tive index. The better the atoms are localized the m
strongly the lattice contracts.

In the following we will derive an expression for the la
tice contraction. For this purpose we calculate the refrac
index experienced by the lattice beams. Knowing the refr
tive index we can then determine the change of the lat
constant due to the presence of the atoms. A refractive in
n larger ~smaller! than one will lead to a smaller~larger!
spacing between lattice planesdeff,G52p/(nuGu). This can
readily be measured by a change of the Bragg scatte
angle, since the deviationDuG from the Bragg angleuG as
defined by Eq.~1! is given by

DuG.2~n21!cot uG ~5!

and is thus proportional to the atomic density.
Generally, the optical lattice is formed byM traveling

light beams Em(r )5 êmEmexp(ikm–r )1c.c., where 1<m

<M . Here,êm is a complex normalized polarization vecto
Em denotes the spatially constant complex field amplitude
the beamm, and ukmu[kL52p/lL . We wish to calculate
the total fieldEa,scatt(r ) scattered into the directionka with
polarizationêa by taking only first-order scattering into ac
count. This assumption certainly holds in the case of spar
populated optical lattices. Since the wave vectorskm consti-
tute Bravais vectors of the reciprocal lattice we expect c
tributions from other lattice beamsm5” a arising from coher-
ent scattering of the beamm into the beama in addition to
the usual forward-scattering contribution resulting fromEa .

For simplicity, we assume in the following that the lattic
provides only a single type of lattice site and posseses c
plete periodic order with respect to all wave vectorskm that
represent a basis of the reciprocal lattice. This is fulfilled
all spin-polarized four- and six-beam geometries. As an
plication of this assumption the polarizability tensoraJR is
the same at all lattice sitesR. In order to derive the first-
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order scattering contribution from themth beam we conside
all atomic dipoles induced byEm and arranged on theQ
contributing lattice planesL am

(q) , 1<q<Q, perpendicular to
the reciprocal lattice vectorka2km , and calculate the plan
wave emitted into theka direction @27# ~see Fig. 4!.

In the optical lattice the atoms are arranged such tha
dipoles contribute coherently since the condition for Bra
scattering from one trapping beam into the other is autom
cally fulfilled. Therefore, the spatial phase of the emitt
plane wave depends only on the position of a single lat
site x(q), which represents the entire lattice plane. The sc
tered amplitude scales with the atomic area densityham of
the lattice planeLam divided by the cosine of half the sca
tering angleuam . The termhamcosuam/2 is equal to the
atomic area densityha of the lattice planeLa perpendicular
to ka . We choose the same lattice site at positionx(q) as a
representative for all different kinds of lattice planesLam
connected with different values ofm and take the sum ove
all corresponding scattering contributions. We then have
take the sum over all contributing lattice planes along
directionka , thus finding that the total scattered field is

Ea,scatt~r !5
i

2
Ea~r !«0kLha(

m

Em

Ea

3(
q

~ êa* aJx
~q!êm!ei ~km2ka!–x~q!

, ~6!

where«0 is the dielectric constant in vacuum.
We account for the imperfect localization of the atoms

assuming that the position vectors in the second sum of
~6! can be written asx(q)5R1dR whereR denotes a rea
lattice site†exp@(km2ka)–R#51‡ anddR is a small random
deviation that follows a Gaussian distribution. Similar to t

FIG. 4. Scheme for the enhancement of the refractive index
to scattering from an ordered ensemble of localized atoms.
refractive index as seen by the incoming waveEa is enhanced by
scattering of the waveEm into the direction ofEa . The scattered
waveEa,scatt is thus formed by components from forward scatteri
of Ea at the planesLa as for a dilute sample and from 90° scatte
ing of Em at the planesLam.
ll
g
ti-

e
t-

to
e

q.

derivation of Eq.~4!, we then express the average of the su
over q by the productQbam . As in Sec. II B the exponen
Wam of the Debye-Waller factorbam5e2Wam corresponding
to the lattice plane Lam is given by Wam5 1

6 (km
2ka)2(dR)2 for isotropic potentials.

We assume that the density%5Qha /lL is sufficiently
low such that the refractive indexna experienced by the
lattice beam alongka is close to unity. Using Eq.~6! we
derive the refractive index by calculating the phase accum
lated by the beama. This procedure gives the expression

na215
1

2
«0%(

m

Em

Ea
~ êa* aJ ~R!êm!bam . ~7!

For a homogeneously distributed gas without atomic
calization ~i.e., bam5dam with d denoting the Kronecker
function! we get the well-known result that only forwar
scattering yields a contribution to the refractive index.
bright optical lattices, which typically trap the atoms in th
intensity antinodes, the sum of all Bragg-scattering contri
tions ~i.e., aÞm) adds to the forward scattering term
whereas in dark optical lattices the two kinds of contrib
tions subtract. Intuitively, this can be understood by the f
that in bright lattices the atoms are localized at places wh
their coupling to the light field is strongest, thereby mo
strongly modifying the refractive index than a homog
neously distributed medium. In dark lattices the atoms te
to minimize their interaction with the trapping field, thu
leading to a smaller refractive index. In this case the latt
field will be less sensitive to distortions caused by the ato

III. EXPERIMENTAL APPARATUS

In this section we give a description of our experimen
system@28#. The preparation of the lattice proceeds in tw
steps. First, we collect atoms of the rubidium isotope85Rb
for typically 250 ms out of a background vapor by means
a vapor cell magneto-optical trap~MOT! @29#. In the second
step, the light beams of the MOT are turned off with a m
chanical shutter and the atoms interact for typically 30
with the lattice field alone to form the lattice. For conv
nience, in the experiments presented here the lattice fie
not switched off during the filling phase. Only at high inte
sities of the lattice field does this lead to a degradation of
MOT performance.

A. Magneto-optical trap for 85Rb

The MOT provides us with an atomic sample~almost 108

atoms! of high density~some 1010 atoms/cm3) at a relatively
low initial temperature~on the order of several tens ofmK!.
The six beams of the light field providing the MOT a
slightly tilted with respect to the beams of the optical latti
and aligned such that the atoms collect at exactly the in
section of the MOT and the lattice fields. Both fields a
negatively detuned with respect to the closed-cycle hyper
transition 5S1/2(F53)→5P3/2(F854) (F5total angular
momentum! of the rubidium D2 resonance line atlL
5780.2 nm. Since atoms might eventually leave this cy
by off-resonant excitation to other hyperfine excited state
repumping laser beam resonant with a transition from

e
e
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other hyperfine ground state 5S1/2(F52) to the excited state
5P3/2(F52,3) is coupled into the chamber collinear with th
MOT beams. By changing the intensity of the repumpi
beam we control the number of atoms loaded into the M
and subsequently into the lattice. Since the rubidium M
operates in the density limited regime@30# the initial density
in the lattice decreases only marginally with decreasing nu
ber of trapped atoms. Typical values of the magnetic fi
gradient are on the order of several Gauss/cm in all exp
ments presented here. The Earth’s magnetic field is care
compensated by three orthogonal pairs of coils placed a
the 40-cm-long sides of a cube.

To provide optical access to the atomic lattice along
directions of Bragg diffraction, we have constructed a sta
less steel vacuum chamber with octagonal cross section
fering from the chamber used in previous Munich expe
ments on optical lattices@31#. Indium-sealed high-quality
windows are placed at each surface of the chamber~eight
windows at the sides of the octagon plus one above
below!. The residual pressure of the vacuum system is de
mined by the rubidium partial pressure of about 1028 mbar
and can be increased by heating the rubidium reservoir.

B. Optical lattice at 780 nm

Figure 5 shows a schematic drawing of the lattice field
the horizontal plane. The outcoupled beam~typically 15 mW
power! from a grating-stabilized diode laser@32# is spatially
filtered and sent through an electro-optic modulator~EOM!,
which allows fast switching of the lattice field as well a
precise adjustment of the intensity. The beam is then s
into three orthogonal retroreflected beams (1/e2 diameter
.5.2 mm! by means of polarizing beam splitter cubes~PBS!
in combination with half-wave plates to adjust the intens
in the individual arms of the lattice field. In the two horizo
tal x andy branches the same power oscillates while half t
value is fed into the verticalz axis. In the horizontal plane
both waves are linearly polarized in the plane of propagat
while the standing wave along the vertical axis is rig
circularly polarized. In this configuration the potentials a
isotropic in the case of the bcc lattice. Piezomounted mirr
control the relative time phase differences between the st

FIG. 5. Experimental setup for the optical lattice.
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ing waves. An active stabilization allows us to adjust t
phase differences to any desired value, therefore enablin
to switch between different field geometries as described
Ref. @33#. All optical components are cemented to a stainle
steel base plate to guarantee high passive stability of
phase differences~drift ,10 degrees/min without stabiliza
tion! so that a low-frequency servo loop is sufficient to s
bilize them.

To create the light shift potentials the frequency of t
lattice field is tuned to below the resonance by some li
widths G (G/2p56 MHz!. In such bright optical lattices
polarization gradient forces@2# cool the atoms into the anti
nodes of the intensity where the light field is purely righ
circularly polarized. Thus, the trapped atoms are pum
into the outermost Zeeman sublevelmF513 ~quantization
axis alongz) creating a spin polarization of the lattice. I
Fig. 2 the two lattice types corresponding to 0° and 90° tim
phase difference between the vertical and the horizo
standing waves are depicted. In both cases, the two hori
tal linearly polarized waves oscillate with a relative pha
difference of 90° leading to a two-dimensional polarizati
pattern of alternating linear and circular polarization as
scribed in Ref.@34#. The depth of the potential wells and, a
a consequence, the energy spacing\vvib of the vibrational
levels are functions of the laser detuning from resonancd
and the intensity in the antinodesÎ . To a good approxima-
tion, we find that the oscillation frequency scales asvosc

}AÎ /d @35#. The laser frequency is stabilized by polarizatio
spectroscopy in a rubidium vapor glass cell at room tempe
ture. Detunings ranging from 0 up to210G can be adjusted
with a long-term stability of better than 1 MHz. In our ex
periments potential depths of up to 10 MHz for the bcc str
ture and 6 MHz for the st lattice are achieved.

In order to perform probe transmission spectrosco
@36,35# on the bound atoms, a weak linearly polarized pro
beam is split from the lattice beam and sent through
atomic sample along the horizontal plane~cf. Fig. 5!. Before
entering the vacuum chamber the beam is passed thro
two acousto-optical modulators~AOM, A.A model MTS
1200!. The first AOM shifts the frequency by280 MHz
provided by a quartz oscillator~A.A model 80.B46!. The
second AOM shifts the frequency back by a frequency t
able between175 and185 MHz generated by a voltage
controlled oscillator~Avantek VTO 9020!. This allows us to
scan the probe frequency around the frequency of the la
field, while preserving the phase coherence between pr
and lattice beam. The transmitted probe intensity is recor
by a photodiode. Probe transmission spectra are taken in
time during the lattice phase~scan time 10 ms!. The Raman
resonances induced by the probe beam serve as a mo
signal for fine adjustment of the time phase differences
the determination of the oscillation frequency.

C. Laser source at 422 nm

The frequency of the incident light for Bragg scattering
chosen to be close to the 5S1/2→6P1/2 transition at lB
5421.7 nm, thus enhancing the scattering cross section.
transition has a natural linewidth of only 1.3 MHz. To ge
erate tunable, narrow-band laser light at 422 nm in a sim
yet reliable manner we have realized a very comp
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frequency-doubled diode laser system shown in Fig.
which is inspired by a design of Zimmermannet al. @37#. It
consists of a grating-stabilized laser diode at 843 nm@32#
~power 15 mW!, which is fed into a small ring resonator i
bow tie geometry to enhance the power of the fundamen
wave. As we shall see later, for some applications in Bra
scattering, e.g., to address all atoms trapped in the op
potentials, it might prove useful to increase the laser ba
width to values on the order of the potential depth. By si
ply adding white noise to the injection current~noise genera-
tor NoiseCom NC204! we can adjust the linewidth of th
blue laser to values from around 1 MHz up to around
MHz.

As depicted in Fig. 6 the resonator consists of two curv
mirrors ~radius 25 mm! separated by 31 mm and two plan
mirrors closing the light path yielding a free spectral range
1770 MHz. One of the plane mirrors has a reflectivity
96% at 843 nm and serves as an input coupler. All ot
mirrors are high reflectors for the fundamental wave. T
output coupling mirror for the blue light is additionally ant
reflection coated for 422 nm. Thebow tiegeometry results in
two foci. The 6-mm-long nonlinear crystal (KNbO3) with an
antireflection coating at 843 nm on both surfaces is place
the site of the smaller focus located half-way between
curved mirrors~see Fig. 6!. The crystal is cut along the crys
tallographica axis. The fundamental wave is polarized alo
the b axis to benefit from the large nonlinear coupling co
ficient d23 ~in standard notation@38#! for the harmonic wave
polarized perpendicular to the fundamental@39#. Phase
matching@38# between fundamental and harmonic wave
achieved by stabilizing the crystal temperature to219 °C by
means of a Peltier element that is driven by a PI feedb
loop using the current of a temperature sensor as an i
signal. The crystal is directly placed onto the Peltier elem
with heat-conducting grease. To prevent formation of ice
the crystal surfaces the resonator is shielded from air curr
by a plastic box purged with nitrogen at very low flux.

A 60-dB optical isolator prevents undesired optical loc
ing of the diode laser to light scattered into the counterpro
gating ring cavity mode. A convex lens of 300-mm foc
length focuses the diode laser beam onto the larger reson
focus for spatial mode matching. In this way, 70% of t
diode laser output power is typically coupled into the cavi
The power of the fundamental wave~.10 mW! is enhanced
by a factor of 30 inside the resonator, creating up to 600mW
of outcoupled power in the second harmonic in a TEM00
mode@40#. The outgoing beam passes through a blue filte
separate the harmonic from the fundamental wave. The r

FIG. 6. Compact source of tunable, narrow-band blue la
light. ~OI, optical isolator; AP, anamorphic prism pair; PD, phas
sensitive detection.!
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nance of the doubling cavity is actively stabilized to the la
diode frequency by means of a polarization method@41#. We
can either scan the blue output frequency up to 4 GHz in
ms, or stabilize it to a tunable, low drift Fabry-Pe´rot etalon to
achieve high drift stability over long time periods.

D. Setup for Bragg diffraction

The blue laser beam is split into two independent bea
which are both collimated to a waistw0 of 2.5 mm by pass-
ing through a telescope consisting of two lenses with posi
focal length. The diameter 2w0 of the beams is thus muc
larger than the extension of the optical lattice. The result
divergenceq5lB /(pw0) is 5.531022 mrad. The intensity
is attenuated to around 200mW/cm2. The low intensity en-
sures that scattering occurs exclusively into the elastic c
ponent of the fluorescence spectrum~pure Rayleigh scatter
ing!.

The beams cross the optical lattice in the horizontal pla
enclosing an angle of 32.7° and 12.9° with the closest lat
beam, respectively, as shown in Fig. 7. Following Eq.~1!
these angles correspond tou (100)557.3° @reflection from the
~100! plane# and u (310)531.3° @reflection from the~310!
plane# ~cf. Fig. 3!. In order to vary the incidence angle ove
several degrees while still keeping the beam centered on
lattice, a mirror is placed inside each telescope such that
outcoupling lens of the telescope images the mirror onto
lattice ~see Fig. 7!. Fine adjustment of the incidence angle
achieved by a piezocontrolled mirror holder enabling us
scan the incidence angle in the horizontal plane over a ra
of 2.5 mrad.

The scattered light is detected by photomultiplie
~Hamamatsu R928! 60 cm away from the optical lattice a
the expected diffraction angles~see Fig. 7!. For a typical
lattice extension ofD.1 mm the condition for Fraunhofe
diffraction L&D2/lB yields distancesL of larger than 2 m
between the detector and the lattice. The angular width of
Bragg spot can thus not be directly related to the lattice
tension since the size of the diffracted Bragg spot is sign
cantly larger than its diffraction limited size. An iris apertu
in front of each photomultiplier covers a detection so
angle of 531024 sr chosen much larger than the expect
divergence of the diffracted beam. Stray light and fluor
cence from the atomic sample at 780 nm are blocked
bandpass filters at 422 nm~bandwidth 10 nm, Anders Optik!.

If the incident beam is adjusted according to the Bra
condition we observe a strong increase of the scattered
during the lattice phase as shown in Fig. 8. Since the lat

r
-

FIG. 7. Experimental geometry for Bragg diffraction from th
~100! and ~130! planes of the optical lattice.
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field is present during the loading phase, we find some
herent scattering also during loading, indicating that the
tice field induces a certain degree of long-range order e
with the perturbing MOT field present~see Fig. 8!. The dif-
fracted power during the MOT phase is strongly depend
on the lattice depth and reaches values of up to one-thir
the power diffracted in the lattice phase for the deepest
tices investigated here. If the lattice field is turned off duri
loading the Bragg diffracted power exceeds the backgro
during the loading phase~MOT field on, lattice field off! by
at least three orders of magnitude. To our delight we
watch the Bragg spot, even with unaided eyes, as b
flashes from the atom cloud when looking into the cham
along the Bragg direction.

The oscillator strength of the 5S1/2→6P1/2 transition is
170 times smaller than the strength of theD2 line. Absorp-
tion of the incoming beams is negligible for the densities
achieve in the lattice even at resonance (,0.1% for 1010

atoms/cm3). Therefore diffuse scattering of the incide
beam need not to be taken into account since all Br
planes contribute equally to the diffracted signal. This is
other important difference from the experiment of Birklet al.
@8# where the Bragg beam acted on the strongD2 line. In that
experiment the number of contributing lattice planes w
limited due to significant attenuation.

IV. RESULTS

A. Long-range order

One may ask whether the regular structure detected
Bragg diffraction in optical lattices is formed by a spat
density pattern or by a regular spatial modulation of so
other atomic observable~e.g., magnetic moment, etc.!, or
possibly by a mixture of both. We have addressed this qu
tion experimentally. In Fig. 9 we show spectra of the d
fracted intensity for two orthogonal linear polarizations
the Bragg beam. For the polarization in the horizontal pla
@s polarization, Fig. 9~a!# two resonances appear at the fr

FIG. 8. Total diffracted power during the lattice phase and
loading~MOT! phase for the~100! ~dashed line! and the~130! ~full
line! Bragg spot, respectively. The MOT field is turned off for 1
ms att50. Fulfillment of the Bragg condition manifests itself in
strong increase of the scattered light into the Bragg directions
ing the lattice phase. The difference in the diffracted power is
to the different Debye-Waller factors for the two Bragg directio
Some coherent diffraction can also be observed during the loa
phase since the lattice field is not turned off then.
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quencies of the two hyperfine transitions from the (F53)
ground state to the (F852) and (F853) excited-state levels
respectively. If the polarization is turned by 90°@p polariza-
tion, Fig. 9~b!# the most striking feature of the spectrum
the disappearance of the resonance at lower frequencyF
53→F852). Our Bragg diffraction signal must therefor
originate from a periodic density distributionrmF563 of at-
oms in the (F53,mF563) ground states since these are t
only ones not coupled to theF853 excited state. The tota
spatial density distribution of the trapped ground-state ato
r tot(r ) can be written as the sum over those of the differ
Zeeman sublevelsmF : r tot 5 (mF

rmF
. In a pure spin lattice,

only certain of thermF
would show long-range order withou

necessarily implying long-range order in the total distrib
tion r tot . From Monte Carlo simulations@42,43# we expect
that almost all atoms in the lattice are pumped into the o
ermost Zeeman sublevel, i.e.,r tot5rmF513. Consequently,
our observation of Bragg diffraction reveals the crystalli
order of the total density distributionr tot(r ).

By blocking the lattice beams along thez axis and keep-
ing the time phase difference for the standing waves in
horizontal plane at the same value (f590°) one switches
from the spin-polarized bcc lattice to an antiferromagne
two-dimensional configuration with two face-centered squ
lattices. The trapping sites for atoms of antiparallel spin
interleaved. For the~10! lattice planes@corresponding to the
~100! lattice planes in the three-dimensional case# only the
number of available lattice sites is increased by a factor
two, whereas in the~13! direction the spacing between th
lattice planes is now decreased by a factor of two. Destr
tive interference arises in the latter case, and indeed
Bragg diffraction is observed for the~13! direction while the
~10! Bragg spot is preserved. This again indicates that
observed Bragg diffraction is due to the regular density d
tribution of localized atoms.

B. Extension of the lattice

An important quantity to be investigated is the range o
which long-range order is preserved. The extension of

e

r-
e
.
ng

FIG. 9. Spectrum of the Bragg diffracted power vs frequency
the incident blue light. The incident beam is linearly polarized~a! in
the horizontal plane (s polarization! and ~b! along the vertical di-
rection (p polarization!. The resonance frequencies of the 5S1/2(F
53)→6P1/2(F852) and (F853) transitions are indicated above
The different size of the resonances in~a! reflects the line strength
ratio of 1:5. The observed resonance at higher frequencies in~b! for
the F53→F853 transition is about 12 times larger than the co
responding resonance fors polarization as expected for Rayleig
scattering taking into account the transition matrix elements.
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atomic lattice is not necessarily equivalent to the size of
atomic cloud as derived, e.g., from a fluorescence image.
still an open question how many atoms are actually locali
in the lattice and how many form a kind of molasses witho
periodic order. Section IV D will address this question
more detail. In the ideal case, the maximum size of the lat
should be given by the lattice beam diameters. But pertu
tions in the phase fronts of the laser beams may distort
lattice field, thus reducing the maximum possible extens

To determine the diameter of the lattice we measure
total diffracted powerP as a function of the incidence ang
u in . The detection solid angle is chosen large compared
the width of the Bragg reflex, which is centered around
angleuG satisfying the Bragg condition for the correspon
ing G. To calculateP(u in), we assume a Gaussian probab
ity distribution @44# proportional to exp(24R2/D2) for find-
ing an atom at a siteR where we callD the diameter of the
lattice that indicates the range over which long-range orde
preserved. We neglect any incoherent background terms
obtain

dP

ds
5N

*
2 uAsu2b2expS 2

1

8
~Dk2G!2D2D ~8!

by incorporating the Gaussian density distribution into E
~3!.

If we satisfy the Bragg condition in Eq.~8! we find a
Gaussian angular distribution for the diffracted radiati
with a diffraction-limited 1/e2 width given by 4lB /pD. In-
tegrating Eq.~8! over the solid angle covered by the detec
~which is assumed to be much smaller than 4p but suffi-
ciently large as to completely cover the Bragg peak! yields
the diffracted powerP(u in) as a function of the angle o
incidenceu in . Varying u in in the plane perpendicular to th
lattice plane@45# we find to lowest order

P~u in!5N
*
2 uAsu2

2

pS lB

D D 2

b2expF28S u in2uG

Du in
D 2G , ~9a!

where the 1/e2 angular widthDu in is given by

Du in5
4

p

lB

D sin 2uG
, ~9b!

where we have assumeduG @as given by Eq.~1!# to be sig-
nificantly larger thanlB /D (lB /D&1023 in all realistic
cases!.

Figure 10~a! depicts an example of the dependence of
Bragg diffracted power on the incidence angle. The result
resonance can be well fitted by a Gaussian. The meas
width of the angular resonance is much larger than the di
gence angle of the incident beam, which can therefore
neglected. The width of this resonance yields the lattice
tension via Eq.~9b!.

As described in Sec. III A we change the initial size of t
atomic cloud by varying the number of atoms trapped in
MOT. Figure 10~b! shows the diameter of the lattice vers
the number of localized atoms, which is determined as w
be shown in Sec. IV D. The acceptance angle was meas
directly after loading the atoms into the lattice. The cor
sponding extension of the lattice should therefore coinc
e
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with the diameter of the atomic cloud in the MOT before
was loaded into the lattice. As expected for a MOT in t
density-limited regime the diameter steadily increases w
the number of trapped atoms. In all cases the measured
of the atomic lattice is much smaller than the interferen
pattern of the three standing waves as given by the lat
beam diameters. In addition, we have found no evidence
limitations of the lattice extension due to phase distortions
the lattice field.

After being loaded into the optical lattice the atomic clo
will expand since the strong restoring forces of the MOT a
no longer present. By analyzing the temporal evolution
the acceptance angle it is therefore possible to follow
expansion of the lattice and to gain useful information
transport properties in optical lattices@46#. We are currently
preparing a study of this phenomenon and the results wil
discussed elsewhere.

C. Atomic localization inside the potential wells

Besides the possibility to measure variables concern
global properties of the lattice like the spatial extensio
Bragg diffraction gives one the opportunity to investiga
average properties of an atom in a single potential well.
particular one may infer information about the mean posit
spread of the localized atomic wave packets. This is due
the dependence of the Debye-Waller factor on the ato
localization as described by Eq.~4!. In principle, it would be
possible to deduce the atomic position spread by record
the intensity diffracted into a single Bragg spot@43#. Never-
theless, to minimize experimental uncertainties we emplo
more elegant method using Bragg diffraction from two d
ferent sets of lattice planes. From Eq.~4! and Eq.~9a! it
follows that for larger values ofDk less intensity will be
scattered into the Bragg direction for a given atomic posit
spread. To be able to use the Debye-Waller factor for a qu
titative determination of the position spread we have to m

FIG. 10. ~a! Diffracted power vs incidence angle for 3.63107

localized atoms. From the acceptance angleDu one deduces a lat
tice diameter of 940mm. ~b! Diameter of the lattice as a function o
the number of atoms initially loaded into the lattice. The indicat
errors are systematic errors representing the uncertainties in
scaling of the axis.
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two assumptions about the energy distribution of the loc
ized atoms. First, the localized atoms have to predomina
occupy low-lying vibrational levels where a harmonic a
proximation to the potential can be used. For an atom
sample at a typical temperature of some tenmK and optical
potentials with a depth of several MHz this should readily
the case. Second, the energy distribution is assumed t
thermal. For bright optical lattices this has been justified
several experiments~see, e.g.,@47#!.

The sensitivity of different Bragg reflexes on a variati
of the atomic localization may differ significantly. This
due to the exponential dependence of the Debye-Waller
tor on the rms extension of the localized wave packetsdR
compared to the spacing of the lattice planes. In our exp
ment we use the~100! and ~130! lattice planes for Bragg
diffraction. Given a thermal distribution in isotropic pote
tials and equal single atom scattering amplitudes the c
parison of the total Bragg diffracted powersP(u (100)) and
P(u (130)) yields the mean absolute value of the atomic po
tion spread. Combining Eqs.~1!, ~4!, and~9a! we get for our
choice of lattice planes

dR5S 3lL
2

24p2
@ ln P~u~100!!2 ln P~u~130!!# D 1/2

. ~10!

Since we know the reciprocal lattice vectors we can
termine the localization by measuring the total Bragg d
fracted powersP(u (100)) and P(u (130)). To avoid problems
with fluctuations of experimental parameters, such as
number of atoms or the light intensity, we record the tw
intensities simultaneously as shown in Fig. 8. Care is ta
to adjust the intensities in the different arms of the opti
lattice and the relative time phases to assure that the resu
3D potential is isotropic.

Figure 11~a! shows the experimental values of the atom
position spread as determined by means of Eq.~10! versus
the vibrational frequency of the optical potentials. The vib
tional frequency for each data point is measured by conv
tional probe transmission spectroscopy as described in
III B. The potential depth was adjusted by varying the inte

FIG. 11. ~a! Mean position spread~rms radius! of the localized
atoms vs the oscillation frequency and~b! vibrational temperature
vs the potential depth. The indicated errors are representative fo
data points.
l-
ly

ic

e
be
y

c-

ri-

-

i-

-
-

e

n
l
ng

-
n-
ec.
-

sity of the lattice field while the detuning was kept fixed
29G. One observes a decrease of the position spreaddR
with increasing vibrational frequency down to a value
l/7.5 at a frequency of 180 kHz.

Knowing the mean atomic position spread we can cal
late the vibrational temperature in the optical lattice
means of a simple harmonic oscillator model. In an isotro
harmonic potential the relation between position spread
vibrational temperature is given by

dR5S 3\

2mvvib
coth

\vvib

2kBTD 1/2

, ~11!

with m being the mass of the atom andkB denoting Boltz-
mann’s constant.

In Fig. 11~b! the corresponding vibrational temperatu
for each data point in Fig. 11~a! is plotted versus the poten
tial depth U0 using Eq. ~11! and the relation U0

50.75vvib
2 /v recoil

2 , which is valid for our lattice geometry
The solid curve in Fig. 11~b! is a linear fit to the data points
yielding a dependence of the temperature of the formT
5T01aU0. By taking the linear functional dependence ofT
upon the potential depth and using Eq.~11! one obtains the
solid curve in Fig. 11~a!.

Our finding that the temperature in an optical lattice
creases linearly with the potential depth is in qualitati
agreement with temperature studies recently performed
NIST by Gatzkeet al. @47#. In the NIST experiments the
temperature of a Cs optical lattice in four beam geome
was deduced from the mean velocity after releasing the
oms from the lattice. In addition, Gatzkeet al. have deter-
mined the position spread of the atomic wave packets in
lattice by heterodyne fluorescence spectroscopy and foun
to be independent of the potential depth@47#. This clearly
differs from our results as shown in Fig. 11~a! and can
mostly be attributed to the fact thatT0 in the Cs lattice is
smalller by almost a factor of three. Nevertheless, the dep
dence of the temperature upon the potential depth give
Ref. @47# implies that the position spread in the Cs latti
should also increase for very shallow lattice potentials. O
method to determine the position spread, i.e., by compa
the intensities diffracted into two different Bragg direction
seems more reliable for shallow potentials. This is due to
fact that our method does not involve the scattering of p
tons from the lattice field itself, which is naturally reduced
shallow optical lattices.

D. Total number and density of localized atoms

Having determined independently the extensionD of the
atomic lattice~Sec. IV B! and the Debye-Waller factorb
~Sec. IV C! we can now use Eq.~9a! to estimate the numbe
of localized atomsN* from the measured absolute value
the total diffracted power. This number might differ from th
number of atoms initially loaded into the optical lattice b
cause the atoms are spending part of their time in states
very high momentum, i.e., nonlocalized states@46#. Experi-
mental indication for a partition of atoms in nonbound sta
in optical lattices is reported in Ref.@48#. Measuring the
fluorescence or the absorption during the lattice phase yi
no information on the fraction of ordered atoms. These m

all
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surements do not even provide the total number of ato
since the mean polarization of the nonlocalized atoms is
known. The power diffracted into a Bragg peak contains
contribution from the nonbound partition and is therefo
well suited to investigate this problem. To ensure that
bound atoms contribute to the diffracted signal@49# the laser
bandwidth has to be larger than the potential depth.
achieved this by frequency modulation of the diode lase
explained in Sec. III C.

In the following example we calculate the number of l
calized atoms based on the experimentally determined
rameters for the spectrum shown in Fig. 10~a!, where the
vibrational frequency has been 90 kHz. The scattering a
plitude in Eq.~2! contains the atomic polarizability, whic
we derive from the dipole moment of the transition. For t
p polarized incident beam we get the the polarizabilityuau
53.67310222 m3. For a lattice with an extension ofD
50.9560.01 mm and an atomic position spread ofdR
5(0.17160.008)lL we measure a total power diffracte
from the~100! plane ofPu(100)

5(4706190) pW. Uncertain-
ties in the absolute calibration of our photmultipliers main
contribute to the estimated error. The intensity of the inco
ing beam was (236624) mW/cm2, uniformly distributed
over a frequency interval of 1063 MHz. Since the linewidth
of the transition equals 1.3 MHz, we assume an effec
intensity of 31610 mW/cm2 for the calculation of the scat
tering amplitude. Equation~9a! yields (3.661.1)3107 as the
number of localized atoms. This has to be compared with
number of almost 108 atoms trapped in the MOT, which w
deduced from the fluorescence during the MOT phase
suming random distribution of population among the Ze
man sublevels.

It becomes obvious that the large systematical errors
lating the measured power to the absolute number of at
impede a clear statement on the actual fraction of atoms
calized in the potential wells. Furthermore, at the pres
state of our experiment we can provide no reliable estim
on the transfer efficiency from the MOT into the lattic
However, since the diffracted power scales asN

*
2 @cf. Eq.

~9a!# it provides an excellent signal for comparing the~rela-
tive! number of localized atoms. This is used in the expe
ments concerning the backaction of the atoms on the la
field which are described Sec. IV F.

E. Probe-induced resonances

Several techniques have been demonstrated to invest
the atomic motion inside the potential wells@13,14,10#.
Probe transmission spectroscopy has been proven to
particularly convenient way. When the frequency differen
between the probe and the lattice fields matches the sep
tion between two vibrational states, photons are exchan
between both fields due to stimulated Raman transitions
tween different vibrational states@36#. Since the atoms are
bound at points of pures1 polarization the probe polariza
tion has to lie in the horizontal plane (s polarization! to only
couple vibrational levels in themF513 potential via stimu-
lated Raman transitions involving one photon from each
the lattice field and the probe. As shown in Fig. 12~a!, these
transitions lead to amplifying~absorbing! resonances in the
probe transmission when the probe frequency is be
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~above! the lattice field frequency since lower-lying vibra
tional levels are more populated than higher-lying ones.

From the positions of the first resonances in the transm
sion spectra we extract the oscillation frequency along
probe beam and thus determine the depth of the pote
wells. The probe transmission spectrum therefore allows
to clearly distinguish between different time phase diffe
ences of the lattice field, which result in different potent
depths. However, a quantitative analysis of the spectra
comes a difficult issue sinceall populated bound levels con
tribute to the signal. Higher-lying, i.e., less tightly boun
states, experience a large anharmonicity. Although th
states are less populated than the low-lying states, they
tribute significantly to the Raman signal because of th
larger transition matrix elements~Franck-Condon overlap!
@34#. Extracting quantitative information about the tempe
ture or the position spread in the lattice is therefore qu
difficult if not impossible.

The dependence of the Debye-Waller factor on the po
tion spread of the bound atoms can be utilized for a com
nation of probe spectroscopy with Bragg scattering. In
classical picture the time varying interference pattern
tween the probe and the lattice field parametrically drives
oscillatory motion of atoms bound in the potential wel
This process becomes resonant when the interference pa
oscillates at the atom’s vibrational frequency. The amplitu
of the atomic motion is increased along the directionu of the
probe beam leading to an increase ofdRu . Quantum me-
chanically, probe-induced Raman transitions are accom
nied by a population transfer from a lower, more strong
populated vibrational level to a higher, less populated o
As a consequence, the Raman process always increase
mean spatial extension of the atomic c.m. wave funct
along the probe beam, i.e.,dRu in Eq. ~4! increases. From
Eq. ~3! it follows that the power diffracted into a Bragg sp
must decrease. Due to the exponential dependence o
Debye-Waller factor on the localization, mainly populatio

FIG. 12. Probe-induced resonances in~a! the probe transmis-
sion, and the power diffracted from the~b! ~100! and the~c! ~130!
lattice planes. The resonances yield an oscillation frequency for
potential wells of 90 kHz. The resonances in the Bragg spectra
much narrower and show less anharmonicity. In the~130! spectrum
even the third sidebands can be identified.
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changes of low-lying bound states manifest themselves in
decrease of the Bragg diffracted power.

The effect is demonstrated in Fig. 12 where we ha
scanned the weak probe beam while simultaneously rec
ing the transmitted probe power at 780 nm, and the to
Bragg diffracted power at 422 nm for both the~100! and the
~130! Bragg reflex, respectively. The resonances in the
fracted signal are much narrower than the correspond
resonances in the probe transmission spectrum~at 780 nm!,
particularly for the second Raman side band near62vvib .
Furthermore, the resonances at 422 nm exhibit much
anharmonicity, seen by the fact that the second sideba
appear almost exactly at62vvib . In order to check whethe
these resonances are induced by an increase of the w
packet extension along the probe direction we have repe
the experiment with the probe beam perpendicular to
~130! lattice vector. In this case the Debye-Waller factor@Eq.
~4!# for the ~130! direction is not modified by the prob
(dRu50), and we indeed observe that the probe-indu
resonances in the~130! Bragg spot do not appear.

These observations confirm that mainly the lowest bou
states yield a significant contribution to the probe-induc
Bragg spectrum. This selectivity gets more pronounced if
spacing of the lattice planes for Bragg diffraction is small
This explains why even third-order sidebands are dis
guishable in the probe-induced spectrum of the~130! reflex
shown in Fig. 12~b!.

The selectivity of the probe-induced resonances on at
deeply bound in the potential wells also becomes appa
when we heat the lattice by tuning the lattice field closer
resonance. In this case, most of the population is transfe
to higher-lying vibrational states. The Bragg spectrum v
ishes while the probe transmission spectrum is still preser
but shows significantly broadened Raman resonances,
cating that atoms are still bound in the lattice.

F. Modification of the lattice constant due to atomic backaction

From our discussion in Sec. II C it follows that variation
in the density of trapped atoms change the refractive ind
which, for red detuned optical lattices, becomes apparent
shrinking of the lattice structure as a whole. This contract
should show up as a minute deviation of the measured Br
angle from the one calculated without including the back
tion of the atoms on the lattice field@Eq. ~1!#. By recording
the total Bragg diffracted power versus the angle of in
dence~as described in detail in Sec. IV B! for different val-
ues of the atomic density one is thus able to measure
corresponding change of the lattice constant.

To vary the density the lattice is filled at a maximu
density limited by the MOT~remember that the MOT is
operated in the density-limited regime!. We then let the lat-
tice expand for approximately 100 ms, which naturally lea
to a decrease of the density. During this interval a serie
angular spectra is recorded. For every spectrum the Br
angle is determined to within better than 10mrad by fitting a
Gaussian to the spectrum. This means that we are sensiti
changes of the lattice spacing as small as;5 pm. The num-
ber of trapped atoms is determined for each individual sp
trum as described in Sec. IV D. By means of Eq.~9b! the
diameterD of the atomic sample is deduced from the wid
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of the angular spectra, which, together with the number
atomsN* , yields the peak density%05N* /@(Ap/2)D#3 of
the Gaussian density distribution%(r )5%0exp(24r2/D2).
Thus, the series of angular spectra represents a
consistent data set providing the Bragg angle versus the p
density.

The result is shown in Fig. 13 for an optical lattice with
vibrational frequency of 80 kHz. The Bragg angle increas
linearly with the density as expected from Eq.~5!, which
proves that the spacing between the~100! lattice planes has
actually decreased. At the highest densities the meas
change of the Bragg angle can be directly translated into
average reduction of the lattice spacingd(100).390 nm by 40
pm.

In general, the nonuniform density distribution in the o
tical lattice leads to a variation of the lattice spacing over
atomic sample. Similar to the Debye-Waller factor, a no
uniform distribution of lattice spacings essentially leads to
decrease of the Bragg diffracted signal. However, this eff
can be neglected with respect to the Debye-Waller fac
since the average reduction of the lattice spacing is m
smaller than the mean position spread of the localized at
(dR;140 nm!.

To answer the question whether there are identifiable
fects of the atomic localization on the observed shift of t
Bragg angle we specialize Eq.~7! to the case of our six beam
bright optical lattice introduced in Sec. III B. We writeaJR in
terms of its componentsa (1) anda (2) for s1 ands2 po-
larized light, respectively. We expect two types of coher
scattering contributions, i.e., backward scattering and
angle scattering which scale with two different Deby
Waller factorsb05exp(22

3kL
2dR2) and b905exp(21

3kL
2dR2).

For the index of refraction experienced by either of t
waves propagating within thexy plane we obtain

nxy215 1
4 «0%@~11b014b90!a~1 !

1~11b022b90!a~2 !#. ~12a!

FIG. 13. Shift of the Bragg angle as a function of density. T
solid line is a linear fit to our data. The shaded area represen
confidence interval for this fit including the uncertainties of t
density measurement and the calibration of the Bragg angle.
uncertainties as indicated are mainly due to the error in determin
the density and to a lesser extent to the calibration of the Br
angle. The dashed line marks the expected change of the B
angle including the enhancement due to the localization of the
oms (dR50.18lL) in an ordered lattice, while for the dotted lin
this enhancement is discarded.
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The sign in front of the Debye-Waller factors stems from t
constructive and destructive interference, respectively, of
s1 ands2 components of the lattice beams at the locat
R. Because the trapped atoms are assumed to be comp
optically pumped into the outermost Zeeman component
may assume thata (1) is considerably larger thana (2) and
Eq. ~12a! reduces to its first term. Similarly, we find that th
index of refraction for either of the circularly polarized la
tice beams along thez axis is given by

nz215 1
4 «0%~11b014b90!a~1 ! . ~12b!

If two classes of lattice sites exist as in antiferromagn
cally ordered optical lattices@34,8# the preceeding analysi
can be easily extended by treating both lattices indep
dently and summing over the corresponding contributio
One can then apply our model to the four-beam field c
figuration used in the Bragg experiment in Gaithersburg@8#.
We find n215 1

2 «0%(113b90)(a (1)1a (2)), which repro-
duces the result used in Ref.@8#.

To apply Eq.~12! to the nonuniform density distribution
in our experiment we replace the density% by the average
density %̄ defined by%̄[*%2d3r / *%d3r . For a Gaussian
distribution, the average density is related to the peak den
by %̄5%0 /2A2. The Debye-Waller factorsb0 and b90 are
calculated by taking the position spread from the data p
sented in Sec. IV C. For the vibrational frequency of 80 k
we measureddR50.18lL and thusn21 is expected to be
enhanced by a factor of.4 as compared to the value for
disordered gas (b05b9050) at the same density. In Fig. 1
we have plotted the shift of the Bragg angle as a function
density as expected from Eq.~12!. In one case we have ne
glected the contribution of the localization to the refracti
index ~dotted line!, in the other case we have included t
actual position spread~dashed line!. The corresponding cal
culated values for the angle shifts are 1.4310216 cm3%0
without and 5.6310216 cm3%0 with taking into account the
enhancement due to the localization of the atoms in the
tice. Within the experimental uncertainties given by t
shaded area in Fig. 13, our data thus show clear evidenc
the enhancement of the refractive index due to the str
localization of the atoms.

V. DISCUSSION

Bragg diffraction has opened new insights into the pro
erties of light bound atomic lattices. We have demonstra
an in situ method which provides a powerful diagnostic to
for their characterization~extension of the long-range orde
position spread of the bound wave packets, number of
dered atoms!. One can now search for additional correlatio
in the spatial density distribution of the atoms which ma
e.g., indicate optical binding@24#. In view of the reasonable
experimental effort our method may also prove useful
applications in atom lithography employing optical lattic
@50,51#.

The direct determination of the Debye-Waller factor fro
the comparison of two different Bragg spots enables one
measure the position spread of the atomic wave packe
real time. This offers the opportunity to aim for nonclassic
parametric motion in the potential wells~‘‘breathing
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modes’’! @42#. Results on oscillations in the position spre
after nonadiabatic changes of the potential have rece
been observed by us@17# and independently by other group
@52–54#.

The interpretation of our data was based on a sim
model assuming a thermal distribution of population amo
the vibrational states. This assumption has been proven
sonable for bright optical lattices, but it breaks down in t
case of dark optical lattices@15#. Evidence for a nontherma
distribution has already been given since most of the po
lation is found in the vibrational ground state@55,56#. In this
case, our model may still be applied since the contribution
the small partition in higher bound states does not sign
cantly contribute to the diffraction signal due to their lar
position spread. The extension of the wave packet in Eq.~4!
then has to be replaced by the ground-state extension re
ing in a better localization and thus a larger Debye-Wa
factor as compared to bright optical lattices.

Since Bragg diffraction relies on elastic Rayleigh scatt
ing from the localized atoms it is especially suited as a n
destructive detection method for the new kind of optical l
tices in far-detuned fields, which have recently be
demonstrated@56–59#. Conventional probe transmission
not suited here since the large detuning of the lattice fi
results in very small Raman transition rates, and charac
ization methods employed up to now have been destruct

Directly after loading the atoms into the lattice one m
follow the formation of long-range order by observing a te
poral increase of the Bragg signal. By monitoring the acc
tance angle as a function of time it will be possible to stu
atomic transport in optical lattices. Spatial diffusion is pr
dicted to be anomalous~Lévy flights! for certain lattice pa-
rameters@46#. Previous experiments seem to indicate su
non-Brownian atomic diffusion@10#. Another approach to
diffusion processes in optical lattices might be the investi
tion of intensity correlations in Bragg diffracted light. Tim
scales during which the atoms are bound at a particular
before hopping to another well should become apparent.
experiment along these lines was recently published inve
gating atomic transport in optical lattices through intens
correlations in the fluorescence@60#. Similar experiments
employing Bragg-diffraction would promise much increas
signal to noise.

On the other hand, fundamental processes in the lig
matter interaction can be studied. As an example, we h
demonstrated how the presence of localized atoms mod
the index of refraction and thus the lattice constant. O
model described the localized atoms as a medium with
effective refractive index taking into account only lowes
order scattering theory. Yet it is still unclear how mutu
interactions between the atoms might modify the latt
structure and the long-range properties of optical lattices
seems possible to enter the regime of multiple light scat
ing by operating dark optical lattices at high filling rate
which will offer an intriguing application of Bragg scatterin
in the search for such modifications of the lattice structure
this regime, the periodic arrangement of cold atoms in
near resonant light field also provides a unique model sys
suited to search for photonic band gaps@26,61#.
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